The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/opencrypto/cbc_mac.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2018-2019 iXsystems Inc.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   23  */
   24 
   25 #include <sys/cdefs.h>
   26 __FBSDID("$FreeBSD$");
   27 
   28 #include <sys/types.h>
   29 #include <sys/systm.h>
   30 #include <sys/param.h>
   31 #include <sys/endian.h>
   32 #include <opencrypto/cbc_mac.h>
   33 #include <opencrypto/xform_auth.h>
   34 
   35 /*
   36  * Given two CCM_CBC_BLOCK_LEN blocks, xor
   37  * them into dst, and then encrypt dst.
   38  */
   39 static void
   40 xor_and_encrypt(struct aes_cbc_mac_ctx *ctx,
   41                 const uint8_t *src, uint8_t *dst)
   42 {
   43         const uint64_t *b1;
   44         uint64_t *b2;
   45         uint64_t temp_block[CCM_CBC_BLOCK_LEN/sizeof(uint64_t)];
   46 
   47         b1 = (const uint64_t*)src;
   48         b2 = (uint64_t*)dst;
   49 
   50         for (size_t count = 0;
   51              count < CCM_CBC_BLOCK_LEN/sizeof(uint64_t);
   52              count++) {
   53                 temp_block[count] = b1[count] ^ b2[count];
   54         }
   55         rijndaelEncrypt(ctx->keysched, ctx->rounds, (void*)temp_block, dst);
   56 }
   57 
   58 void
   59 AES_CBC_MAC_Init(void *vctx)
   60 {
   61         struct aes_cbc_mac_ctx *ctx;
   62 
   63         ctx = vctx;
   64         bzero(ctx, sizeof(*ctx));
   65 }
   66 
   67 void
   68 AES_CBC_MAC_Setkey(void *vctx, const uint8_t *key, u_int klen)
   69 {
   70         struct aes_cbc_mac_ctx *ctx;
   71 
   72         ctx = vctx;
   73         ctx->rounds = rijndaelKeySetupEnc(ctx->keysched, key, klen * 8);
   74 }
   75 
   76 /*
   77  * This is called to set the nonce, aka IV.
   78  * Before this call, the authDataLength and cryptDataLength fields
   79  * MUST have been set.  Sadly, there's no way to return an error.
   80  *
   81  * The CBC-MAC algorithm requires that the first block contain the
   82  * nonce, as well as information about the sizes and lengths involved.
   83  */
   84 void
   85 AES_CBC_MAC_Reinit(void *vctx, const uint8_t *nonce, u_int nonceLen)
   86 {
   87         struct aes_cbc_mac_ctx *ctx = vctx;
   88         uint8_t b0[CCM_CBC_BLOCK_LEN];
   89         uint8_t *bp = b0, flags = 0;
   90         uint8_t L = 0;
   91         uint64_t dataLength = ctx->cryptDataLength;
   92 
   93         KASSERT(nonceLen >= 7 && nonceLen <= 13,
   94             ("nonceLen must be between 7 and 13 bytes"));
   95 
   96         ctx->nonce = nonce;
   97         ctx->nonceLength = nonceLen;
   98         
   99         ctx->authDataCount = 0;
  100         ctx->blockIndex = 0;
  101         explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
  102         
  103         /*
  104          * Need to determine the L field value.  This is the number of
  105          * bytes needed to specify the length of the message; the length
  106          * is whatever is left in the 16 bytes after specifying flags and
  107          * the nonce.
  108          */
  109         L = 15 - nonceLen;
  110         
  111         flags = ((ctx->authDataLength > 0) << 6) +
  112             (((AES_CBC_MAC_HASH_LEN - 2) / 2) << 3) +
  113             L - 1;
  114         /*
  115          * Now we need to set up the first block, which has flags, nonce,
  116          * and the message length.
  117          */
  118         b0[0] = flags;
  119         bcopy(nonce, b0 + 1, nonceLen);
  120         bp = b0 + 1 + nonceLen;
  121 
  122         /* Need to copy L' [aka L-1] bytes of cryptDataLength */
  123         for (uint8_t *dst = b0 + sizeof(b0) - 1; dst >= bp; dst--) {
  124                 *dst = dataLength;
  125                 dataLength >>= 8;
  126         }
  127         /* Now need to encrypt b0 */
  128         rijndaelEncrypt(ctx->keysched, ctx->rounds, b0, ctx->block);
  129         /* If there is auth data, we need to set up the staging block */
  130         if (ctx->authDataLength) {
  131                 size_t addLength;
  132                 if (ctx->authDataLength < ((1<<16) - (1<<8))) {
  133                         uint16_t sizeVal = htobe16(ctx->authDataLength);
  134                         bcopy(&sizeVal, ctx->staging_block, sizeof(sizeVal));
  135                         addLength = sizeof(sizeVal);
  136                 } else if (ctx->authDataLength < (1ULL<<32)) {
  137                         uint32_t sizeVal = htobe32(ctx->authDataLength);
  138                         ctx->staging_block[0] = 0xff;
  139                         ctx->staging_block[1] = 0xfe;
  140                         bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
  141                         addLength = 2 + sizeof(sizeVal);
  142                 } else {
  143                         uint64_t sizeVal = htobe64(ctx->authDataLength);
  144                         ctx->staging_block[0] = 0xff;
  145                         ctx->staging_block[1] = 0xff;
  146                         bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
  147                         addLength = 2 + sizeof(sizeVal);
  148                 }
  149                 ctx->blockIndex = addLength;
  150                 /*
  151                  * The length descriptor goes into the AAD buffer, so we
  152                  * need to account for it.
  153                  */
  154                 ctx->authDataLength += addLength;
  155                 ctx->authDataCount = addLength;
  156         }
  157 }
  158 
  159 int
  160 AES_CBC_MAC_Update(void *vctx, const void *vdata, u_int length)
  161 {
  162         struct aes_cbc_mac_ctx *ctx;
  163         const uint8_t *data;
  164         size_t copy_amt;
  165         
  166         ctx = vctx;
  167         data = vdata;
  168 
  169         /*
  170          * This will be called in one of two phases:
  171          * (1)  Applying authentication data, or
  172          * (2)  Applying the payload data.
  173          *
  174          * Because CBC-MAC puts the authentication data size before the
  175          * data, subsequent calls won't be block-size-aligned.  Which
  176          * complicates things a fair bit.
  177          *
  178          * The payload data doesn't have that problem.
  179          */
  180                                 
  181         if (ctx->authDataCount < ctx->authDataLength) {
  182                 /*
  183                  * We need to process data as authentication data.
  184                  * Since we may be out of sync, we may also need
  185                  * to pad out the staging block.
  186                  */
  187                 const uint8_t *ptr = data;
  188                 while (length > 0) {
  189 
  190                         copy_amt = MIN(length,
  191                             sizeof(ctx->staging_block) - ctx->blockIndex);
  192 
  193                         bcopy(ptr, ctx->staging_block + ctx->blockIndex,
  194                             copy_amt);
  195                         ptr += copy_amt;
  196                         length -= copy_amt;
  197                         ctx->authDataCount += copy_amt;
  198                         ctx->blockIndex += copy_amt;
  199                         ctx->blockIndex %= sizeof(ctx->staging_block);
  200 
  201                         if (ctx->blockIndex == 0 ||
  202                             ctx->authDataCount == ctx->authDataLength) {
  203                                 /*
  204                                  * We're done with this block, so we
  205                                  * xor staging_block with block, and then
  206                                  * encrypt it.
  207                                  */
  208                                 xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
  209                                 bzero(ctx->staging_block, sizeof(ctx->staging_block));
  210                                 ctx->blockIndex = 0;
  211                                 if (ctx->authDataCount >= ctx->authDataLength)
  212                                         break;
  213                         }
  214                 }
  215                 /*
  216                  * We'd like to be able to check length == 0 and return
  217                  * here, but the way OCF calls us, length is always
  218                  * blksize (16, in this case).  So we have to count on
  219                  * the fact that OCF calls us separately for the AAD and
  220                  * for the real data.
  221                  */
  222                 return (0);
  223         }
  224         /*
  225          * If we're here, then we're encoding payload data.
  226          * This is marginally easier, except that _Update can
  227          * be called with non-aligned update lengths. As a result,
  228          * we still need to use the staging block.
  229          */
  230         KASSERT((length + ctx->cryptDataCount) <= ctx->cryptDataLength,
  231             ("More encryption data than allowed"));
  232 
  233         while (length) {
  234                 uint8_t *ptr;
  235                 
  236                 copy_amt = MIN(sizeof(ctx->staging_block) - ctx->blockIndex,
  237                     length);
  238                 ptr = ctx->staging_block + ctx->blockIndex;
  239                 bcopy(data, ptr, copy_amt);
  240                 data += copy_amt;
  241                 ctx->blockIndex += copy_amt;
  242                 ctx->cryptDataCount += copy_amt;
  243                 length -= copy_amt;
  244                 if (ctx->blockIndex == sizeof(ctx->staging_block)) {
  245                         /* We've got a full block */
  246                         xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
  247                         ctx->blockIndex = 0;
  248                         bzero(ctx->staging_block, sizeof(ctx->staging_block));
  249                 }
  250         }
  251         return (0);
  252 }
  253 
  254 void
  255 AES_CBC_MAC_Final(uint8_t *buf, void *vctx)
  256 {
  257         struct aes_cbc_mac_ctx *ctx;
  258         uint8_t s0[CCM_CBC_BLOCK_LEN];
  259 
  260         ctx = vctx;
  261 
  262         /*
  263          * We first need to check to see if we've got any data
  264          * left over to encrypt.
  265          */
  266         if (ctx->blockIndex != 0) {
  267                 xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
  268                 ctx->cryptDataCount += ctx->blockIndex;
  269                 ctx->blockIndex = 0;
  270                 explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
  271         }
  272         bzero(s0, sizeof(s0));
  273         s0[0] = (15 - ctx->nonceLength) - 1;
  274         bcopy(ctx->nonce, s0 + 1, ctx->nonceLength);
  275         rijndaelEncrypt(ctx->keysched, ctx->rounds, s0, s0);
  276         for (size_t indx = 0; indx < AES_CBC_MAC_HASH_LEN; indx++)
  277                 buf[indx] = ctx->block[indx] ^ s0[indx];
  278         explicit_bzero(s0, sizeof(s0));
  279 }

Cache object: 43579693b2a854c5adc43c4d197eb913


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.