1 /*-
2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
3 * Copyright (c) 2021 The FreeBSD Foundation
4 *
5 * Portions of this software were developed by Ararat River
6 * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33 * Cryptographic Subsystem.
34 *
35 * This code is derived from the Openbsd Cryptographic Framework (OCF)
36 * that has the copyright shown below. Very little of the original
37 * code remains.
38 */
39
40 /*-
41 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42 *
43 * This code was written by Angelos D. Keromytis in Athens, Greece, in
44 * February 2000. Network Security Technologies Inc. (NSTI) kindly
45 * supported the development of this code.
46 *
47 * Copyright (c) 2000, 2001 Angelos D. Keromytis
48 *
49 * Permission to use, copy, and modify this software with or without fee
50 * is hereby granted, provided that this entire notice is included in
51 * all source code copies of any software which is or includes a copy or
52 * modification of this software.
53 *
54 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58 * PURPOSE.
59 */
60
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82
83 #include <ddb/ddb.h>
84
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100
101 SDT_PROVIDER_DEFINE(opencrypto);
102
103 /*
104 * Crypto drivers register themselves by allocating a slot in the
105 * crypto_drivers table with crypto_get_driverid().
106 */
107 static struct mtx crypto_drivers_mtx; /* lock on driver table */
108 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
109 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
110 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
111
112 /*
113 * Crypto device/driver capabilities structure.
114 *
115 * Synchronization:
116 * (d) - protected by CRYPTO_DRIVER_LOCK()
117 * (q) - protected by CRYPTO_Q_LOCK()
118 * Not tagged fields are read-only.
119 */
120 struct cryptocap {
121 device_t cc_dev;
122 uint32_t cc_hid;
123 uint32_t cc_sessions; /* (d) # of sessions */
124
125 int cc_flags; /* (d) flags */
126 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
127 int cc_qblocked; /* (q) symmetric q blocked */
128 size_t cc_session_size;
129 volatile int cc_refs;
130 };
131
132 static struct cryptocap **crypto_drivers = NULL;
133 static int crypto_drivers_size = 0;
134
135 struct crypto_session {
136 struct cryptocap *cap;
137 struct crypto_session_params csp;
138 uint64_t id;
139 /* Driver softc follows. */
140 };
141
142 static int crp_sleep = 0;
143 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
144 static struct mtx crypto_q_mtx;
145 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
146 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
147
148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
149 "In-kernel cryptography");
150
151 /*
152 * Taskqueue used to dispatch the crypto requests submitted with
153 * crypto_dispatch_async .
154 */
155 static struct taskqueue *crypto_tq;
156
157 /*
158 * Crypto seq numbers are operated on with modular arithmetic
159 */
160 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
161
162 struct crypto_ret_worker {
163 struct mtx crypto_ret_mtx;
164
165 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
166 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
167
168 uint32_t reorder_ops; /* total ordered sym jobs received */
169 uint32_t reorder_cur_seq; /* current sym job dispatched */
170
171 struct thread *td;
172 };
173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
174
175 #define CRYPTO_RETW(i) (&crypto_ret_workers[i])
176 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
177 #define FOREACH_CRYPTO_RETW(w) \
178 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
179
180 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
181 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
182
183 static int crypto_workers_num = 0;
184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
185 &crypto_workers_num, 0,
186 "Number of crypto workers used to dispatch crypto jobs");
187 #ifdef COMPAT_FREEBSD12
188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
189 &crypto_workers_num, 0,
190 "Number of crypto workers used to dispatch crypto jobs");
191 #endif
192
193 static uma_zone_t cryptop_zone;
194
195 int crypto_devallowsoft = 0;
196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
197 &crypto_devallowsoft, 0,
198 "Enable use of software crypto by /dev/crypto");
199 #ifdef COMPAT_FREEBSD12
200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
201 &crypto_devallowsoft, 0,
202 "Enable/disable use of software crypto by /dev/crypto");
203 #endif
204
205 #ifdef DIAGNOSTIC
206 bool crypto_destroyreq_check;
207 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
208 &crypto_destroyreq_check, 0,
209 "Enable checks when destroying a request");
210 #endif
211
212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
213
214 static void crypto_dispatch_thread(void *arg);
215 static struct thread *cryptotd;
216 static void crypto_ret_thread(void *arg);
217 static void crypto_destroy(void);
218 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
219 static void crypto_task_invoke(void *ctx, int pending);
220 static void crypto_batch_enqueue(struct cryptop *crp);
221
222 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
223 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
224 cryptostats, nitems(cryptostats),
225 "Crypto system statistics");
226
227 #define CRYPTOSTAT_INC(stat) do { \
228 counter_u64_add( \
229 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
230 1); \
231 } while (0)
232
233 static void
234 cryptostats_init(void *arg __unused)
235 {
236 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
237 }
238 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
239
240 static void
241 cryptostats_fini(void *arg __unused)
242 {
243 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
244 }
245 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
246 NULL);
247
248 /* Try to avoid directly exposing the key buffer as a symbol */
249 static struct keybuf *keybuf;
250
251 static struct keybuf empty_keybuf = {
252 .kb_nents = 0
253 };
254
255 /* Obtain the key buffer from boot metadata */
256 static void
257 keybuf_init(void)
258 {
259 caddr_t kmdp;
260
261 kmdp = preload_search_by_type("elf kernel");
262
263 if (kmdp == NULL)
264 kmdp = preload_search_by_type("elf64 kernel");
265
266 keybuf = (struct keybuf *)preload_search_info(kmdp,
267 MODINFO_METADATA | MODINFOMD_KEYBUF);
268
269 if (keybuf == NULL)
270 keybuf = &empty_keybuf;
271 }
272
273 /* It'd be nice if we could store these in some kind of secure memory... */
274 struct keybuf *
275 get_keybuf(void)
276 {
277
278 return (keybuf);
279 }
280
281 static struct cryptocap *
282 cap_ref(struct cryptocap *cap)
283 {
284
285 refcount_acquire(&cap->cc_refs);
286 return (cap);
287 }
288
289 static void
290 cap_rele(struct cryptocap *cap)
291 {
292
293 if (refcount_release(&cap->cc_refs) == 0)
294 return;
295
296 KASSERT(cap->cc_sessions == 0,
297 ("freeing crypto driver with active sessions"));
298
299 free(cap, M_CRYPTO_DATA);
300 }
301
302 static int
303 crypto_init(void)
304 {
305 struct crypto_ret_worker *ret_worker;
306 struct proc *p;
307 int error;
308
309 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
310
311 TAILQ_INIT(&crp_q);
312 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
313
314 cryptop_zone = uma_zcreate("cryptop",
315 sizeof(struct cryptop), NULL, NULL, NULL, NULL,
316 UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
317
318 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
319 crypto_drivers = malloc(crypto_drivers_size *
320 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
321
322 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
323 crypto_workers_num = mp_ncpus;
324
325 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
326 taskqueue_thread_enqueue, &crypto_tq);
327
328 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
329 "crypto");
330
331 p = NULL;
332 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
333 0, 0, "crypto", "crypto");
334 if (error) {
335 printf("crypto_init: cannot start crypto thread; error %d",
336 error);
337 goto bad;
338 }
339
340 crypto_ret_workers = mallocarray(crypto_workers_num,
341 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
342
343 FOREACH_CRYPTO_RETW(ret_worker) {
344 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
345 TAILQ_INIT(&ret_worker->crp_ret_q);
346
347 ret_worker->reorder_ops = 0;
348 ret_worker->reorder_cur_seq = 0;
349
350 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
351 NULL, MTX_DEF);
352
353 error = kthread_add(crypto_ret_thread, ret_worker, p,
354 &ret_worker->td, 0, 0, "crypto returns %td",
355 CRYPTO_RETW_ID(ret_worker));
356 if (error) {
357 printf("crypto_init: cannot start cryptoret thread; error %d",
358 error);
359 goto bad;
360 }
361 }
362
363 keybuf_init();
364
365 return 0;
366 bad:
367 crypto_destroy();
368 return error;
369 }
370
371 /*
372 * Signal a crypto thread to terminate. We use the driver
373 * table lock to synchronize the sleep/wakeups so that we
374 * are sure the threads have terminated before we release
375 * the data structures they use. See crypto_finis below
376 * for the other half of this song-and-dance.
377 */
378 static void
379 crypto_terminate(struct thread **tdp, void *q)
380 {
381 struct thread *td;
382
383 mtx_assert(&crypto_drivers_mtx, MA_OWNED);
384 td = *tdp;
385 *tdp = NULL;
386 if (td != NULL) {
387 wakeup_one(q);
388 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
389 }
390 }
391
392 static void
393 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
394 void *auth_ctx, uint8_t padval)
395 {
396 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
397 u_int i;
398
399 KASSERT(axf->blocksize <= sizeof(hmac_key),
400 ("Invalid HMAC block size %d", axf->blocksize));
401
402 /*
403 * If the key is larger than the block size, use the digest of
404 * the key as the key instead.
405 */
406 memset(hmac_key, 0, sizeof(hmac_key));
407 if (klen > axf->blocksize) {
408 axf->Init(auth_ctx);
409 axf->Update(auth_ctx, key, klen);
410 axf->Final(hmac_key, auth_ctx);
411 klen = axf->hashsize;
412 } else
413 memcpy(hmac_key, key, klen);
414
415 for (i = 0; i < axf->blocksize; i++)
416 hmac_key[i] ^= padval;
417
418 axf->Init(auth_ctx);
419 axf->Update(auth_ctx, hmac_key, axf->blocksize);
420 explicit_bzero(hmac_key, sizeof(hmac_key));
421 }
422
423 void
424 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
425 void *auth_ctx)
426 {
427
428 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
429 }
430
431 void
432 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
433 void *auth_ctx)
434 {
435
436 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
437 }
438
439 static void
440 crypto_destroy(void)
441 {
442 struct crypto_ret_worker *ret_worker;
443 int i;
444
445 /*
446 * Terminate any crypto threads.
447 */
448 if (crypto_tq != NULL)
449 taskqueue_drain_all(crypto_tq);
450 CRYPTO_DRIVER_LOCK();
451 crypto_terminate(&cryptotd, &crp_q);
452 FOREACH_CRYPTO_RETW(ret_worker)
453 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
454 CRYPTO_DRIVER_UNLOCK();
455
456 /* XXX flush queues??? */
457
458 /*
459 * Reclaim dynamically allocated resources.
460 */
461 for (i = 0; i < crypto_drivers_size; i++) {
462 if (crypto_drivers[i] != NULL)
463 cap_rele(crypto_drivers[i]);
464 }
465 free(crypto_drivers, M_CRYPTO_DATA);
466
467 if (cryptop_zone != NULL)
468 uma_zdestroy(cryptop_zone);
469 mtx_destroy(&crypto_q_mtx);
470 FOREACH_CRYPTO_RETW(ret_worker)
471 mtx_destroy(&ret_worker->crypto_ret_mtx);
472 free(crypto_ret_workers, M_CRYPTO_DATA);
473 if (crypto_tq != NULL)
474 taskqueue_free(crypto_tq);
475 mtx_destroy(&crypto_drivers_mtx);
476 }
477
478 uint32_t
479 crypto_ses2hid(crypto_session_t crypto_session)
480 {
481 return (crypto_session->cap->cc_hid);
482 }
483
484 uint32_t
485 crypto_ses2caps(crypto_session_t crypto_session)
486 {
487 return (crypto_session->cap->cc_flags & 0xff000000);
488 }
489
490 void *
491 crypto_get_driver_session(crypto_session_t crypto_session)
492 {
493 return (crypto_session + 1);
494 }
495
496 const struct crypto_session_params *
497 crypto_get_params(crypto_session_t crypto_session)
498 {
499 return (&crypto_session->csp);
500 }
501
502 const struct auth_hash *
503 crypto_auth_hash(const struct crypto_session_params *csp)
504 {
505
506 switch (csp->csp_auth_alg) {
507 case CRYPTO_SHA1_HMAC:
508 return (&auth_hash_hmac_sha1);
509 case CRYPTO_SHA2_224_HMAC:
510 return (&auth_hash_hmac_sha2_224);
511 case CRYPTO_SHA2_256_HMAC:
512 return (&auth_hash_hmac_sha2_256);
513 case CRYPTO_SHA2_384_HMAC:
514 return (&auth_hash_hmac_sha2_384);
515 case CRYPTO_SHA2_512_HMAC:
516 return (&auth_hash_hmac_sha2_512);
517 case CRYPTO_NULL_HMAC:
518 return (&auth_hash_null);
519 case CRYPTO_RIPEMD160_HMAC:
520 return (&auth_hash_hmac_ripemd_160);
521 case CRYPTO_RIPEMD160:
522 return (&auth_hash_ripemd_160);
523 case CRYPTO_SHA1:
524 return (&auth_hash_sha1);
525 case CRYPTO_SHA2_224:
526 return (&auth_hash_sha2_224);
527 case CRYPTO_SHA2_256:
528 return (&auth_hash_sha2_256);
529 case CRYPTO_SHA2_384:
530 return (&auth_hash_sha2_384);
531 case CRYPTO_SHA2_512:
532 return (&auth_hash_sha2_512);
533 case CRYPTO_AES_NIST_GMAC:
534 switch (csp->csp_auth_klen) {
535 case 128 / 8:
536 return (&auth_hash_nist_gmac_aes_128);
537 case 192 / 8:
538 return (&auth_hash_nist_gmac_aes_192);
539 case 256 / 8:
540 return (&auth_hash_nist_gmac_aes_256);
541 default:
542 return (NULL);
543 }
544 case CRYPTO_BLAKE2B:
545 return (&auth_hash_blake2b);
546 case CRYPTO_BLAKE2S:
547 return (&auth_hash_blake2s);
548 case CRYPTO_POLY1305:
549 return (&auth_hash_poly1305);
550 case CRYPTO_AES_CCM_CBC_MAC:
551 switch (csp->csp_auth_klen) {
552 case 128 / 8:
553 return (&auth_hash_ccm_cbc_mac_128);
554 case 192 / 8:
555 return (&auth_hash_ccm_cbc_mac_192);
556 case 256 / 8:
557 return (&auth_hash_ccm_cbc_mac_256);
558 default:
559 return (NULL);
560 }
561 default:
562 return (NULL);
563 }
564 }
565
566 const struct enc_xform *
567 crypto_cipher(const struct crypto_session_params *csp)
568 {
569
570 switch (csp->csp_cipher_alg) {
571 case CRYPTO_AES_CBC:
572 return (&enc_xform_aes_cbc);
573 case CRYPTO_AES_XTS:
574 return (&enc_xform_aes_xts);
575 case CRYPTO_AES_ICM:
576 return (&enc_xform_aes_icm);
577 case CRYPTO_AES_NIST_GCM_16:
578 return (&enc_xform_aes_nist_gcm);
579 case CRYPTO_CAMELLIA_CBC:
580 return (&enc_xform_camellia);
581 case CRYPTO_NULL_CBC:
582 return (&enc_xform_null);
583 case CRYPTO_CHACHA20:
584 return (&enc_xform_chacha20);
585 case CRYPTO_AES_CCM_16:
586 return (&enc_xform_ccm);
587 case CRYPTO_CHACHA20_POLY1305:
588 return (&enc_xform_chacha20_poly1305);
589 case CRYPTO_XCHACHA20_POLY1305:
590 return (&enc_xform_xchacha20_poly1305);
591 default:
592 return (NULL);
593 }
594 }
595
596 static struct cryptocap *
597 crypto_checkdriver(uint32_t hid)
598 {
599
600 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
601 }
602
603 /*
604 * Select a driver for a new session that supports the specified
605 * algorithms and, optionally, is constrained according to the flags.
606 */
607 static struct cryptocap *
608 crypto_select_driver(const struct crypto_session_params *csp, int flags)
609 {
610 struct cryptocap *cap, *best;
611 int best_match, error, hid;
612
613 CRYPTO_DRIVER_ASSERT();
614
615 best = NULL;
616 for (hid = 0; hid < crypto_drivers_size; hid++) {
617 /*
618 * If there is no driver for this slot, or the driver
619 * is not appropriate (hardware or software based on
620 * match), then skip.
621 */
622 cap = crypto_drivers[hid];
623 if (cap == NULL ||
624 (cap->cc_flags & flags) == 0)
625 continue;
626
627 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
628 if (error >= 0)
629 continue;
630
631 /*
632 * Use the driver with the highest probe value.
633 * Hardware drivers use a higher probe value than
634 * software. In case of a tie, prefer the driver with
635 * the fewest active sessions.
636 */
637 if (best == NULL || error > best_match ||
638 (error == best_match &&
639 cap->cc_sessions < best->cc_sessions)) {
640 best = cap;
641 best_match = error;
642 }
643 }
644 return best;
645 }
646
647 static enum alg_type {
648 ALG_NONE = 0,
649 ALG_CIPHER,
650 ALG_DIGEST,
651 ALG_KEYED_DIGEST,
652 ALG_COMPRESSION,
653 ALG_AEAD
654 } alg_types[] = {
655 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
656 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
657 [CRYPTO_AES_CBC] = ALG_CIPHER,
658 [CRYPTO_SHA1] = ALG_DIGEST,
659 [CRYPTO_NULL_HMAC] = ALG_DIGEST,
660 [CRYPTO_NULL_CBC] = ALG_CIPHER,
661 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
662 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
663 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
664 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
665 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
666 [CRYPTO_AES_XTS] = ALG_CIPHER,
667 [CRYPTO_AES_ICM] = ALG_CIPHER,
668 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
669 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
670 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
671 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
672 [CRYPTO_CHACHA20] = ALG_CIPHER,
673 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
674 [CRYPTO_RIPEMD160] = ALG_DIGEST,
675 [CRYPTO_SHA2_224] = ALG_DIGEST,
676 [CRYPTO_SHA2_256] = ALG_DIGEST,
677 [CRYPTO_SHA2_384] = ALG_DIGEST,
678 [CRYPTO_SHA2_512] = ALG_DIGEST,
679 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
680 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
681 [CRYPTO_AES_CCM_16] = ALG_AEAD,
682 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
683 [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
684 };
685
686 static enum alg_type
687 alg_type(int alg)
688 {
689
690 if (alg < nitems(alg_types))
691 return (alg_types[alg]);
692 return (ALG_NONE);
693 }
694
695 static bool
696 alg_is_compression(int alg)
697 {
698
699 return (alg_type(alg) == ALG_COMPRESSION);
700 }
701
702 static bool
703 alg_is_cipher(int alg)
704 {
705
706 return (alg_type(alg) == ALG_CIPHER);
707 }
708
709 static bool
710 alg_is_digest(int alg)
711 {
712
713 return (alg_type(alg) == ALG_DIGEST ||
714 alg_type(alg) == ALG_KEYED_DIGEST);
715 }
716
717 static bool
718 alg_is_keyed_digest(int alg)
719 {
720
721 return (alg_type(alg) == ALG_KEYED_DIGEST);
722 }
723
724 static bool
725 alg_is_aead(int alg)
726 {
727
728 return (alg_type(alg) == ALG_AEAD);
729 }
730
731 static bool
732 ccm_tag_length_valid(int len)
733 {
734 /* RFC 3610 */
735 switch (len) {
736 case 4:
737 case 6:
738 case 8:
739 case 10:
740 case 12:
741 case 14:
742 case 16:
743 return (true);
744 default:
745 return (false);
746 }
747 }
748
749 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
750
751 /* Various sanity checks on crypto session parameters. */
752 static bool
753 check_csp(const struct crypto_session_params *csp)
754 {
755 const struct auth_hash *axf;
756
757 /* Mode-independent checks. */
758 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
759 return (false);
760 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
761 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
762 return (false);
763 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
764 return (false);
765 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
766 return (false);
767
768 switch (csp->csp_mode) {
769 case CSP_MODE_COMPRESS:
770 if (!alg_is_compression(csp->csp_cipher_alg))
771 return (false);
772 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
773 return (false);
774 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
775 return (false);
776 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
777 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
778 csp->csp_auth_mlen != 0)
779 return (false);
780 break;
781 case CSP_MODE_CIPHER:
782 if (!alg_is_cipher(csp->csp_cipher_alg))
783 return (false);
784 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
785 return (false);
786 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
787 if (csp->csp_cipher_klen == 0)
788 return (false);
789 if (csp->csp_ivlen == 0)
790 return (false);
791 }
792 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
793 return (false);
794 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
795 csp->csp_auth_mlen != 0)
796 return (false);
797 break;
798 case CSP_MODE_DIGEST:
799 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
800 return (false);
801
802 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
803 return (false);
804
805 /* IV is optional for digests (e.g. GMAC). */
806 switch (csp->csp_auth_alg) {
807 case CRYPTO_AES_CCM_CBC_MAC:
808 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
809 return (false);
810 break;
811 case CRYPTO_AES_NIST_GMAC:
812 if (csp->csp_ivlen != AES_GCM_IV_LEN)
813 return (false);
814 break;
815 default:
816 if (csp->csp_ivlen != 0)
817 return (false);
818 break;
819 }
820
821 if (!alg_is_digest(csp->csp_auth_alg))
822 return (false);
823
824 /* Key is optional for BLAKE2 digests. */
825 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
826 csp->csp_auth_alg == CRYPTO_BLAKE2S)
827 ;
828 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
829 if (csp->csp_auth_klen == 0)
830 return (false);
831 } else {
832 if (csp->csp_auth_klen != 0)
833 return (false);
834 }
835 if (csp->csp_auth_mlen != 0) {
836 axf = crypto_auth_hash(csp);
837 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
838 return (false);
839
840 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
841 !ccm_tag_length_valid(csp->csp_auth_mlen))
842 return (false);
843 }
844 break;
845 case CSP_MODE_AEAD:
846 if (!alg_is_aead(csp->csp_cipher_alg))
847 return (false);
848 if (csp->csp_cipher_klen == 0)
849 return (false);
850 if (csp->csp_ivlen == 0 ||
851 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
852 return (false);
853 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
854 return (false);
855
856 switch (csp->csp_cipher_alg) {
857 case CRYPTO_AES_CCM_16:
858 if (csp->csp_auth_mlen != 0 &&
859 !ccm_tag_length_valid(csp->csp_auth_mlen))
860 return (false);
861
862 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
863 return (false);
864 break;
865 case CRYPTO_AES_NIST_GCM_16:
866 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
867 return (false);
868
869 if (csp->csp_ivlen != AES_GCM_IV_LEN)
870 return (false);
871 break;
872 case CRYPTO_CHACHA20_POLY1305:
873 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
874 return (false);
875 if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
876 return (false);
877 break;
878 case CRYPTO_XCHACHA20_POLY1305:
879 if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
880 return (false);
881 if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
882 return (false);
883 break;
884 }
885 break;
886 case CSP_MODE_ETA:
887 if (!alg_is_cipher(csp->csp_cipher_alg))
888 return (false);
889 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
890 if (csp->csp_cipher_klen == 0)
891 return (false);
892 if (csp->csp_ivlen == 0)
893 return (false);
894 }
895 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
896 return (false);
897 if (!alg_is_digest(csp->csp_auth_alg))
898 return (false);
899
900 /* Key is optional for BLAKE2 digests. */
901 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
902 csp->csp_auth_alg == CRYPTO_BLAKE2S)
903 ;
904 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
905 if (csp->csp_auth_klen == 0)
906 return (false);
907 } else {
908 if (csp->csp_auth_klen != 0)
909 return (false);
910 }
911 if (csp->csp_auth_mlen != 0) {
912 axf = crypto_auth_hash(csp);
913 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
914 return (false);
915 }
916 break;
917 default:
918 return (false);
919 }
920
921 return (true);
922 }
923
924 /*
925 * Delete a session after it has been detached from its driver.
926 */
927 static void
928 crypto_deletesession(crypto_session_t cses)
929 {
930 struct cryptocap *cap;
931
932 cap = cses->cap;
933
934 zfree(cses, M_CRYPTO_DATA);
935
936 CRYPTO_DRIVER_LOCK();
937 cap->cc_sessions--;
938 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
939 wakeup(cap);
940 CRYPTO_DRIVER_UNLOCK();
941 cap_rele(cap);
942 }
943
944 /*
945 * Create a new session. The crid argument specifies a crypto
946 * driver to use or constraints on a driver to select (hardware
947 * only, software only, either). Whatever driver is selected
948 * must be capable of the requested crypto algorithms.
949 */
950 int
951 crypto_newsession(crypto_session_t *cses,
952 const struct crypto_session_params *csp, int crid)
953 {
954 static uint64_t sessid = 0;
955 crypto_session_t res;
956 struct cryptocap *cap;
957 int err;
958
959 if (!check_csp(csp))
960 return (EINVAL);
961
962 res = NULL;
963
964 CRYPTO_DRIVER_LOCK();
965 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
966 /*
967 * Use specified driver; verify it is capable.
968 */
969 cap = crypto_checkdriver(crid);
970 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
971 cap = NULL;
972 } else {
973 /*
974 * No requested driver; select based on crid flags.
975 */
976 cap = crypto_select_driver(csp, crid);
977 }
978 if (cap == NULL) {
979 CRYPTO_DRIVER_UNLOCK();
980 CRYPTDEB("no driver");
981 return (EOPNOTSUPP);
982 }
983 cap_ref(cap);
984 cap->cc_sessions++;
985 CRYPTO_DRIVER_UNLOCK();
986
987 /* Allocate a single block for the generic session and driver softc. */
988 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
989 M_WAITOK | M_ZERO);
990 res->cap = cap;
991 res->csp = *csp;
992 res->id = atomic_fetchadd_64(&sessid, 1);
993
994 /* Call the driver initialization routine. */
995 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
996 if (err != 0) {
997 CRYPTDEB("dev newsession failed: %d", err);
998 crypto_deletesession(res);
999 return (err);
1000 }
1001
1002 *cses = res;
1003 return (0);
1004 }
1005
1006 /*
1007 * Delete an existing session (or a reserved session on an unregistered
1008 * driver).
1009 */
1010 void
1011 crypto_freesession(crypto_session_t cses)
1012 {
1013 struct cryptocap *cap;
1014
1015 if (cses == NULL)
1016 return;
1017
1018 cap = cses->cap;
1019
1020 /* Call the driver cleanup routine, if available. */
1021 CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1022
1023 crypto_deletesession(cses);
1024 }
1025
1026 /*
1027 * Return a new driver id. Registers a driver with the system so that
1028 * it can be probed by subsequent sessions.
1029 */
1030 int32_t
1031 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1032 {
1033 struct cryptocap *cap, **newdrv;
1034 int i;
1035
1036 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1037 device_printf(dev,
1038 "no flags specified when registering driver\n");
1039 return -1;
1040 }
1041
1042 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1043 cap->cc_dev = dev;
1044 cap->cc_session_size = sessionsize;
1045 cap->cc_flags = flags;
1046 refcount_init(&cap->cc_refs, 1);
1047
1048 CRYPTO_DRIVER_LOCK();
1049 for (;;) {
1050 for (i = 0; i < crypto_drivers_size; i++) {
1051 if (crypto_drivers[i] == NULL)
1052 break;
1053 }
1054
1055 if (i < crypto_drivers_size)
1056 break;
1057
1058 /* Out of entries, allocate some more. */
1059
1060 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1061 CRYPTO_DRIVER_UNLOCK();
1062 printf("crypto: driver count wraparound!\n");
1063 cap_rele(cap);
1064 return (-1);
1065 }
1066 CRYPTO_DRIVER_UNLOCK();
1067
1068 newdrv = malloc(2 * crypto_drivers_size *
1069 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1070
1071 CRYPTO_DRIVER_LOCK();
1072 memcpy(newdrv, crypto_drivers,
1073 crypto_drivers_size * sizeof(*crypto_drivers));
1074
1075 crypto_drivers_size *= 2;
1076
1077 free(crypto_drivers, M_CRYPTO_DATA);
1078 crypto_drivers = newdrv;
1079 }
1080
1081 cap->cc_hid = i;
1082 crypto_drivers[i] = cap;
1083 CRYPTO_DRIVER_UNLOCK();
1084
1085 if (bootverbose)
1086 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1087 device_get_nameunit(dev), i, flags);
1088
1089 return i;
1090 }
1091
1092 /*
1093 * Lookup a driver by name. We match against the full device
1094 * name and unit, and against just the name. The latter gives
1095 * us a simple widlcarding by device name. On success return the
1096 * driver/hardware identifier; otherwise return -1.
1097 */
1098 int
1099 crypto_find_driver(const char *match)
1100 {
1101 struct cryptocap *cap;
1102 int i, len = strlen(match);
1103
1104 CRYPTO_DRIVER_LOCK();
1105 for (i = 0; i < crypto_drivers_size; i++) {
1106 if (crypto_drivers[i] == NULL)
1107 continue;
1108 cap = crypto_drivers[i];
1109 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1110 strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1111 CRYPTO_DRIVER_UNLOCK();
1112 return (i);
1113 }
1114 }
1115 CRYPTO_DRIVER_UNLOCK();
1116 return (-1);
1117 }
1118
1119 /*
1120 * Return the device_t for the specified driver or NULL
1121 * if the driver identifier is invalid.
1122 */
1123 device_t
1124 crypto_find_device_byhid(int hid)
1125 {
1126 struct cryptocap *cap;
1127 device_t dev;
1128
1129 dev = NULL;
1130 CRYPTO_DRIVER_LOCK();
1131 cap = crypto_checkdriver(hid);
1132 if (cap != NULL)
1133 dev = cap->cc_dev;
1134 CRYPTO_DRIVER_UNLOCK();
1135 return (dev);
1136 }
1137
1138 /*
1139 * Return the device/driver capabilities.
1140 */
1141 int
1142 crypto_getcaps(int hid)
1143 {
1144 struct cryptocap *cap;
1145 int flags;
1146
1147 flags = 0;
1148 CRYPTO_DRIVER_LOCK();
1149 cap = crypto_checkdriver(hid);
1150 if (cap != NULL)
1151 flags = cap->cc_flags;
1152 CRYPTO_DRIVER_UNLOCK();
1153 return (flags);
1154 }
1155
1156 /*
1157 * Unregister all algorithms associated with a crypto driver.
1158 * If there are pending sessions using it, leave enough information
1159 * around so that subsequent calls using those sessions will
1160 * correctly detect the driver has been unregistered and reroute
1161 * requests.
1162 */
1163 int
1164 crypto_unregister_all(uint32_t driverid)
1165 {
1166 struct cryptocap *cap;
1167
1168 CRYPTO_DRIVER_LOCK();
1169 cap = crypto_checkdriver(driverid);
1170 if (cap == NULL) {
1171 CRYPTO_DRIVER_UNLOCK();
1172 return (EINVAL);
1173 }
1174
1175 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1176 crypto_drivers[driverid] = NULL;
1177
1178 /*
1179 * XXX: This doesn't do anything to kick sessions that
1180 * have no pending operations.
1181 */
1182 while (cap->cc_sessions != 0)
1183 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1184 CRYPTO_DRIVER_UNLOCK();
1185 cap_rele(cap);
1186
1187 return (0);
1188 }
1189
1190 /*
1191 * Clear blockage on a driver. The what parameter indicates whether
1192 * the driver is now ready for cryptop's and/or cryptokop's.
1193 */
1194 int
1195 crypto_unblock(uint32_t driverid, int what)
1196 {
1197 struct cryptocap *cap;
1198 int err;
1199
1200 CRYPTO_Q_LOCK();
1201 cap = crypto_checkdriver(driverid);
1202 if (cap != NULL) {
1203 if (what & CRYPTO_SYMQ)
1204 cap->cc_qblocked = 0;
1205 if (crp_sleep)
1206 wakeup_one(&crp_q);
1207 err = 0;
1208 } else
1209 err = EINVAL;
1210 CRYPTO_Q_UNLOCK();
1211
1212 return err;
1213 }
1214
1215 size_t
1216 crypto_buffer_len(struct crypto_buffer *cb)
1217 {
1218 switch (cb->cb_type) {
1219 case CRYPTO_BUF_CONTIG:
1220 return (cb->cb_buf_len);
1221 case CRYPTO_BUF_MBUF:
1222 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1223 return (cb->cb_mbuf->m_pkthdr.len);
1224 return (m_length(cb->cb_mbuf, NULL));
1225 case CRYPTO_BUF_SINGLE_MBUF:
1226 return (cb->cb_mbuf->m_len);
1227 case CRYPTO_BUF_VMPAGE:
1228 return (cb->cb_vm_page_len);
1229 case CRYPTO_BUF_UIO:
1230 return (cb->cb_uio->uio_resid);
1231 default:
1232 return (0);
1233 }
1234 }
1235
1236 #ifdef INVARIANTS
1237 /* Various sanity checks on crypto requests. */
1238 static void
1239 cb_sanity(struct crypto_buffer *cb, const char *name)
1240 {
1241 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1242 ("incoming crp with invalid %s buffer type", name));
1243 switch (cb->cb_type) {
1244 case CRYPTO_BUF_CONTIG:
1245 KASSERT(cb->cb_buf_len >= 0,
1246 ("incoming crp with -ve %s buffer length", name));
1247 break;
1248 case CRYPTO_BUF_VMPAGE:
1249 KASSERT(CRYPTO_HAS_VMPAGE,
1250 ("incoming crp uses dmap on supported arch"));
1251 KASSERT(cb->cb_vm_page_len >= 0,
1252 ("incoming crp with -ve %s buffer length", name));
1253 KASSERT(cb->cb_vm_page_offset >= 0,
1254 ("incoming crp with -ve %s buffer offset", name));
1255 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1256 ("incoming crp with %s buffer offset greater than page size"
1257 , name));
1258 break;
1259 default:
1260 break;
1261 }
1262 }
1263
1264 static void
1265 crp_sanity(struct cryptop *crp)
1266 {
1267 struct crypto_session_params *csp;
1268 struct crypto_buffer *out;
1269 size_t ilen, len, olen;
1270
1271 KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1272 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1273 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1274 ("incoming crp with invalid output buffer type"));
1275 KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1276 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1277 ("incoming crp already done"));
1278
1279 csp = &crp->crp_session->csp;
1280 cb_sanity(&crp->crp_buf, "input");
1281 ilen = crypto_buffer_len(&crp->crp_buf);
1282 olen = ilen;
1283 out = NULL;
1284 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1285 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1286 cb_sanity(&crp->crp_obuf, "output");
1287 out = &crp->crp_obuf;
1288 olen = crypto_buffer_len(out);
1289 }
1290 } else
1291 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1292 ("incoming crp with separate output buffer "
1293 "but no session support"));
1294
1295 switch (csp->csp_mode) {
1296 case CSP_MODE_COMPRESS:
1297 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1298 crp->crp_op == CRYPTO_OP_DECOMPRESS,
1299 ("invalid compression op %x", crp->crp_op));
1300 break;
1301 case CSP_MODE_CIPHER:
1302 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1303 crp->crp_op == CRYPTO_OP_DECRYPT,
1304 ("invalid cipher op %x", crp->crp_op));
1305 break;
1306 case CSP_MODE_DIGEST:
1307 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1308 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1309 ("invalid digest op %x", crp->crp_op));
1310 break;
1311 case CSP_MODE_AEAD:
1312 KASSERT(crp->crp_op ==
1313 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1314 crp->crp_op ==
1315 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1316 ("invalid AEAD op %x", crp->crp_op));
1317 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1318 ("AEAD without a separate IV"));
1319 break;
1320 case CSP_MODE_ETA:
1321 KASSERT(crp->crp_op ==
1322 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1323 crp->crp_op ==
1324 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1325 ("invalid ETA op %x", crp->crp_op));
1326 break;
1327 }
1328 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1329 if (crp->crp_aad == NULL) {
1330 KASSERT(crp->crp_aad_start == 0 ||
1331 crp->crp_aad_start < ilen,
1332 ("invalid AAD start"));
1333 KASSERT(crp->crp_aad_length != 0 ||
1334 crp->crp_aad_start == 0,
1335 ("AAD with zero length and non-zero start"));
1336 KASSERT(crp->crp_aad_length == 0 ||
1337 crp->crp_aad_start + crp->crp_aad_length <= ilen,
1338 ("AAD outside input length"));
1339 } else {
1340 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1341 ("session doesn't support separate AAD buffer"));
1342 KASSERT(crp->crp_aad_start == 0,
1343 ("separate AAD buffer with non-zero AAD start"));
1344 KASSERT(crp->crp_aad_length != 0,
1345 ("separate AAD buffer with zero length"));
1346 }
1347 } else {
1348 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1349 crp->crp_aad_length == 0,
1350 ("AAD region in request not supporting AAD"));
1351 }
1352 if (csp->csp_ivlen == 0) {
1353 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1354 ("IV_SEPARATE set when IV isn't used"));
1355 KASSERT(crp->crp_iv_start == 0,
1356 ("crp_iv_start set when IV isn't used"));
1357 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1358 KASSERT(crp->crp_iv_start == 0,
1359 ("IV_SEPARATE used with non-zero IV start"));
1360 } else {
1361 KASSERT(crp->crp_iv_start < ilen,
1362 ("invalid IV start"));
1363 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1364 ("IV outside buffer length"));
1365 }
1366 /* XXX: payload_start of 0 should always be < ilen? */
1367 KASSERT(crp->crp_payload_start == 0 ||
1368 crp->crp_payload_start < ilen,
1369 ("invalid payload start"));
1370 KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1371 ilen, ("payload outside input buffer"));
1372 if (out == NULL) {
1373 KASSERT(crp->crp_payload_output_start == 0,
1374 ("payload output start non-zero without output buffer"));
1375 } else if (csp->csp_mode == CSP_MODE_DIGEST) {
1376 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1377 ("digest verify with separate output buffer"));
1378 KASSERT(crp->crp_payload_output_start == 0,
1379 ("digest operation with non-zero payload output start"));
1380 } else {
1381 KASSERT(crp->crp_payload_output_start == 0 ||
1382 crp->crp_payload_output_start < olen,
1383 ("invalid payload output start"));
1384 KASSERT(crp->crp_payload_output_start +
1385 crp->crp_payload_length <= olen,
1386 ("payload outside output buffer"));
1387 }
1388 if (csp->csp_mode == CSP_MODE_DIGEST ||
1389 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1390 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1391 len = ilen;
1392 else
1393 len = olen;
1394 KASSERT(crp->crp_digest_start == 0 ||
1395 crp->crp_digest_start < len,
1396 ("invalid digest start"));
1397 /* XXX: For the mlen == 0 case this check isn't perfect. */
1398 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1399 ("digest outside buffer"));
1400 } else {
1401 KASSERT(crp->crp_digest_start == 0,
1402 ("non-zero digest start for request without a digest"));
1403 }
1404 if (csp->csp_cipher_klen != 0)
1405 KASSERT(csp->csp_cipher_key != NULL ||
1406 crp->crp_cipher_key != NULL,
1407 ("cipher request without a key"));
1408 if (csp->csp_auth_klen != 0)
1409 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1410 ("auth request without a key"));
1411 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1412 }
1413 #endif
1414
1415 static int
1416 crypto_dispatch_one(struct cryptop *crp, int hint)
1417 {
1418 struct cryptocap *cap;
1419 int result;
1420
1421 #ifdef INVARIANTS
1422 crp_sanity(crp);
1423 #endif
1424 CRYPTOSTAT_INC(cs_ops);
1425
1426 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1427
1428 /*
1429 * Caller marked the request to be processed immediately; dispatch it
1430 * directly to the driver unless the driver is currently blocked, in
1431 * which case it is queued for deferred dispatch.
1432 */
1433 cap = crp->crp_session->cap;
1434 if (!atomic_load_int(&cap->cc_qblocked)) {
1435 result = crypto_invoke(cap, crp, hint);
1436 if (result != ERESTART)
1437 return (result);
1438
1439 /*
1440 * The driver ran out of resources, put the request on the
1441 * queue.
1442 */
1443 }
1444 crypto_batch_enqueue(crp);
1445 return (0);
1446 }
1447
1448 int
1449 crypto_dispatch(struct cryptop *crp)
1450 {
1451 return (crypto_dispatch_one(crp, 0));
1452 }
1453
1454 int
1455 crypto_dispatch_async(struct cryptop *crp, int flags)
1456 {
1457 struct crypto_ret_worker *ret_worker;
1458
1459 if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1460 /*
1461 * The driver issues completions asynchonously, don't bother
1462 * deferring dispatch to a worker thread.
1463 */
1464 return (crypto_dispatch(crp));
1465 }
1466
1467 #ifdef INVARIANTS
1468 crp_sanity(crp);
1469 #endif
1470 CRYPTOSTAT_INC(cs_ops);
1471
1472 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1473 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1474 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1475 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1476 CRYPTO_RETW_LOCK(ret_worker);
1477 crp->crp_seq = ret_worker->reorder_ops++;
1478 CRYPTO_RETW_UNLOCK(ret_worker);
1479 }
1480 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1481 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1482 return (0);
1483 }
1484
1485 void
1486 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1487 {
1488 struct cryptop *crp;
1489 int hint;
1490
1491 while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1492 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1493 TAILQ_REMOVE(crpq, crp, crp_next);
1494 if (crypto_dispatch_one(crp, hint) != 0)
1495 crypto_batch_enqueue(crp);
1496 }
1497 }
1498
1499 static void
1500 crypto_batch_enqueue(struct cryptop *crp)
1501 {
1502
1503 CRYPTO_Q_LOCK();
1504 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1505 if (crp_sleep)
1506 wakeup_one(&crp_q);
1507 CRYPTO_Q_UNLOCK();
1508 }
1509
1510 static void
1511 crypto_task_invoke(void *ctx, int pending)
1512 {
1513 struct cryptocap *cap;
1514 struct cryptop *crp;
1515 int result;
1516
1517 crp = (struct cryptop *)ctx;
1518 cap = crp->crp_session->cap;
1519 result = crypto_invoke(cap, crp, 0);
1520 if (result == ERESTART)
1521 crypto_batch_enqueue(crp);
1522 }
1523
1524 /*
1525 * Dispatch a crypto request to the appropriate crypto devices.
1526 */
1527 static int
1528 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1529 {
1530 int error;
1531
1532 KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1533 KASSERT(crp->crp_callback != NULL,
1534 ("%s: crp->crp_callback == NULL", __func__));
1535 KASSERT(crp->crp_session != NULL,
1536 ("%s: crp->crp_session == NULL", __func__));
1537
1538 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1539 struct crypto_session_params csp;
1540 crypto_session_t nses;
1541
1542 /*
1543 * Driver has unregistered; migrate the session and return
1544 * an error to the caller so they'll resubmit the op.
1545 *
1546 * XXX: What if there are more already queued requests for this
1547 * session?
1548 *
1549 * XXX: Real solution is to make sessions refcounted
1550 * and force callers to hold a reference when
1551 * assigning to crp_session. Could maybe change
1552 * crypto_getreq to accept a session pointer to make
1553 * that work. Alternatively, we could abandon the
1554 * notion of rewriting crp_session in requests forcing
1555 * the caller to deal with allocating a new session.
1556 * Perhaps provide a method to allow a crp's session to
1557 * be swapped that callers could use.
1558 */
1559 csp = crp->crp_session->csp;
1560 crypto_freesession(crp->crp_session);
1561
1562 /*
1563 * XXX: Key pointers may no longer be valid. If we
1564 * really want to support this we need to define the
1565 * KPI such that 'csp' is required to be valid for the
1566 * duration of a session by the caller perhaps.
1567 *
1568 * XXX: If the keys have been changed this will reuse
1569 * the old keys. This probably suggests making
1570 * rekeying more explicit and updating the key
1571 * pointers in 'csp' when the keys change.
1572 */
1573 if (crypto_newsession(&nses, &csp,
1574 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1575 crp->crp_session = nses;
1576
1577 crp->crp_etype = EAGAIN;
1578 crypto_done(crp);
1579 error = 0;
1580 } else {
1581 /*
1582 * Invoke the driver to process the request. Errors are
1583 * signaled by setting crp_etype before invoking the completion
1584 * callback.
1585 */
1586 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1587 KASSERT(error == 0 || error == ERESTART,
1588 ("%s: invalid error %d from CRYPTODEV_PROCESS",
1589 __func__, error));
1590 }
1591 return (error);
1592 }
1593
1594 void
1595 crypto_destroyreq(struct cryptop *crp)
1596 {
1597 #ifdef DIAGNOSTIC
1598 {
1599 struct cryptop *crp2;
1600 struct crypto_ret_worker *ret_worker;
1601
1602 if (!crypto_destroyreq_check)
1603 return;
1604
1605 CRYPTO_Q_LOCK();
1606 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1607 KASSERT(crp2 != crp,
1608 ("Freeing cryptop from the crypto queue (%p).",
1609 crp));
1610 }
1611 CRYPTO_Q_UNLOCK();
1612
1613 FOREACH_CRYPTO_RETW(ret_worker) {
1614 CRYPTO_RETW_LOCK(ret_worker);
1615 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1616 KASSERT(crp2 != crp,
1617 ("Freeing cryptop from the return queue (%p).",
1618 crp));
1619 }
1620 CRYPTO_RETW_UNLOCK(ret_worker);
1621 }
1622 }
1623 #endif
1624 }
1625
1626 void
1627 crypto_freereq(struct cryptop *crp)
1628 {
1629 if (crp == NULL)
1630 return;
1631
1632 crypto_destroyreq(crp);
1633 uma_zfree(cryptop_zone, crp);
1634 }
1635
1636 void
1637 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1638 {
1639 memset(crp, 0, sizeof(*crp));
1640 crp->crp_session = cses;
1641 }
1642
1643 struct cryptop *
1644 crypto_getreq(crypto_session_t cses, int how)
1645 {
1646 struct cryptop *crp;
1647
1648 MPASS(how == M_WAITOK || how == M_NOWAIT);
1649 crp = uma_zalloc(cryptop_zone, how);
1650 if (crp != NULL)
1651 crypto_initreq(crp, cses);
1652 return (crp);
1653 }
1654
1655 /*
1656 * Clone a crypto request, but associate it with the specified session
1657 * rather than inheriting the session from the original request. The
1658 * fields describing the request buffers are copied, but not the
1659 * opaque field or callback function.
1660 */
1661 struct cryptop *
1662 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1663 {
1664 struct cryptop *new;
1665
1666 MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1667 new = crypto_getreq(cses, how);
1668 if (new == NULL)
1669 return (NULL);
1670
1671 memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1672 __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1673 return (new);
1674 }
1675
1676 /*
1677 * Invoke the callback on behalf of the driver.
1678 */
1679 void
1680 crypto_done(struct cryptop *crp)
1681 {
1682 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1683 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1684 crp->crp_flags |= CRYPTO_F_DONE;
1685 if (crp->crp_etype != 0)
1686 CRYPTOSTAT_INC(cs_errs);
1687
1688 /*
1689 * CBIMM means unconditionally do the callback immediately;
1690 * CBIFSYNC means do the callback immediately only if the
1691 * operation was done synchronously. Both are used to avoid
1692 * doing extraneous context switches; the latter is mostly
1693 * used with the software crypto driver.
1694 */
1695 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1696 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1697 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1698 CRYPTO_SESS_SYNC(crp->crp_session)))) {
1699 /*
1700 * Do the callback directly. This is ok when the
1701 * callback routine does very little (e.g. the
1702 * /dev/crypto callback method just does a wakeup).
1703 */
1704 crp->crp_callback(crp);
1705 } else {
1706 struct crypto_ret_worker *ret_worker;
1707 bool wake;
1708
1709 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1710
1711 /*
1712 * Normal case; queue the callback for the thread.
1713 */
1714 CRYPTO_RETW_LOCK(ret_worker);
1715 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1716 struct cryptop *tmp;
1717
1718 TAILQ_FOREACH_REVERSE(tmp,
1719 &ret_worker->crp_ordered_ret_q, cryptop_q,
1720 crp_next) {
1721 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1722 TAILQ_INSERT_AFTER(
1723 &ret_worker->crp_ordered_ret_q, tmp,
1724 crp, crp_next);
1725 break;
1726 }
1727 }
1728 if (tmp == NULL) {
1729 TAILQ_INSERT_HEAD(
1730 &ret_worker->crp_ordered_ret_q, crp,
1731 crp_next);
1732 }
1733
1734 wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1735 } else {
1736 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1737 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1738 crp_next);
1739 }
1740
1741 if (wake)
1742 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
1743 CRYPTO_RETW_UNLOCK(ret_worker);
1744 }
1745 }
1746
1747 /*
1748 * Terminate a thread at module unload. The process that
1749 * initiated this is waiting for us to signal that we're gone;
1750 * wake it up and exit. We use the driver table lock to insure
1751 * we don't do the wakeup before they're waiting. There is no
1752 * race here because the waiter sleeps on the proc lock for the
1753 * thread so it gets notified at the right time because of an
1754 * extra wakeup that's done in exit1().
1755 */
1756 static void
1757 crypto_finis(void *chan)
1758 {
1759 CRYPTO_DRIVER_LOCK();
1760 wakeup_one(chan);
1761 CRYPTO_DRIVER_UNLOCK();
1762 kthread_exit();
1763 }
1764
1765 /*
1766 * Crypto thread, dispatches crypto requests.
1767 */
1768 static void
1769 crypto_dispatch_thread(void *arg __unused)
1770 {
1771 struct cryptop *crp, *submit;
1772 struct cryptocap *cap;
1773 int result, hint;
1774
1775 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1776 fpu_kern_thread(FPU_KERN_NORMAL);
1777 #endif
1778
1779 CRYPTO_Q_LOCK();
1780 for (;;) {
1781 /*
1782 * Find the first element in the queue that can be
1783 * processed and look-ahead to see if multiple ops
1784 * are ready for the same driver.
1785 */
1786 submit = NULL;
1787 hint = 0;
1788 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1789 cap = crp->crp_session->cap;
1790 /*
1791 * Driver cannot disappeared when there is an active
1792 * session.
1793 */
1794 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1795 __func__, __LINE__));
1796 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1797 /* Op needs to be migrated, process it. */
1798 if (submit == NULL)
1799 submit = crp;
1800 break;
1801 }
1802 if (!cap->cc_qblocked) {
1803 if (submit != NULL) {
1804 /*
1805 * We stop on finding another op,
1806 * regardless whether its for the same
1807 * driver or not. We could keep
1808 * searching the queue but it might be
1809 * better to just use a per-driver
1810 * queue instead.
1811 */
1812 if (submit->crp_session->cap == cap)
1813 hint = CRYPTO_HINT_MORE;
1814 } else {
1815 submit = crp;
1816 }
1817 break;
1818 }
1819 }
1820 if (submit != NULL) {
1821 TAILQ_REMOVE(&crp_q, submit, crp_next);
1822 cap = submit->crp_session->cap;
1823 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1824 __func__, __LINE__));
1825 CRYPTO_Q_UNLOCK();
1826 result = crypto_invoke(cap, submit, hint);
1827 CRYPTO_Q_LOCK();
1828 if (result == ERESTART) {
1829 /*
1830 * The driver ran out of resources, mark the
1831 * driver ``blocked'' for cryptop's and put
1832 * the request back in the queue. It would
1833 * best to put the request back where we got
1834 * it but that's hard so for now we put it
1835 * at the front. This should be ok; putting
1836 * it at the end does not work.
1837 */
1838 cap->cc_qblocked = 1;
1839 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1840 CRYPTOSTAT_INC(cs_blocks);
1841 }
1842 } else {
1843 /*
1844 * Nothing more to be processed. Sleep until we're
1845 * woken because there are more ops to process.
1846 * This happens either by submission or by a driver
1847 * becoming unblocked and notifying us through
1848 * crypto_unblock. Note that when we wakeup we
1849 * start processing each queue again from the
1850 * front. It's not clear that it's important to
1851 * preserve this ordering since ops may finish
1852 * out of order if dispatched to different devices
1853 * and some become blocked while others do not.
1854 */
1855 crp_sleep = 1;
1856 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1857 crp_sleep = 0;
1858 if (cryptotd == NULL)
1859 break;
1860 CRYPTOSTAT_INC(cs_intrs);
1861 }
1862 }
1863 CRYPTO_Q_UNLOCK();
1864
1865 crypto_finis(&crp_q);
1866 }
1867
1868 /*
1869 * Crypto returns thread, does callbacks for processed crypto requests.
1870 * Callbacks are done here, rather than in the crypto drivers, because
1871 * callbacks typically are expensive and would slow interrupt handling.
1872 */
1873 static void
1874 crypto_ret_thread(void *arg)
1875 {
1876 struct crypto_ret_worker *ret_worker = arg;
1877 struct cryptop *crpt;
1878
1879 CRYPTO_RETW_LOCK(ret_worker);
1880 for (;;) {
1881 /* Harvest return q's for completed ops */
1882 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1883 if (crpt != NULL) {
1884 if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1885 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1886 ret_worker->reorder_cur_seq++;
1887 } else {
1888 crpt = NULL;
1889 }
1890 }
1891
1892 if (crpt == NULL) {
1893 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1894 if (crpt != NULL)
1895 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1896 }
1897
1898 if (crpt != NULL) {
1899 CRYPTO_RETW_UNLOCK(ret_worker);
1900 /*
1901 * Run callbacks unlocked.
1902 */
1903 if (crpt != NULL)
1904 crpt->crp_callback(crpt);
1905 CRYPTO_RETW_LOCK(ret_worker);
1906 } else {
1907 /*
1908 * Nothing more to be processed. Sleep until we're
1909 * woken because there are more returns to process.
1910 */
1911 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1912 "crypto_ret_wait", 0);
1913 if (ret_worker->td == NULL)
1914 break;
1915 CRYPTOSTAT_INC(cs_rets);
1916 }
1917 }
1918 CRYPTO_RETW_UNLOCK(ret_worker);
1919
1920 crypto_finis(&ret_worker->crp_ret_q);
1921 }
1922
1923 #ifdef DDB
1924 static void
1925 db_show_drivers(void)
1926 {
1927 int hid;
1928
1929 db_printf("%12s %4s %8s %2s\n"
1930 , "Device"
1931 , "Ses"
1932 , "Flags"
1933 , "QB"
1934 );
1935 for (hid = 0; hid < crypto_drivers_size; hid++) {
1936 const struct cryptocap *cap = crypto_drivers[hid];
1937 if (cap == NULL)
1938 continue;
1939 db_printf("%-12s %4u %08x %2u\n"
1940 , device_get_nameunit(cap->cc_dev)
1941 , cap->cc_sessions
1942 , cap->cc_flags
1943 , cap->cc_qblocked
1944 );
1945 }
1946 }
1947
1948 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1949 {
1950 struct cryptop *crp;
1951 struct crypto_ret_worker *ret_worker;
1952
1953 db_show_drivers();
1954 db_printf("\n");
1955
1956 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1957 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1958 "Device", "Callback");
1959 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1960 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1961 , crp->crp_session->cap->cc_hid
1962 , (int) crypto_ses2caps(crp->crp_session)
1963 , crp->crp_olen
1964 , crp->crp_etype
1965 , crp->crp_flags
1966 , device_get_nameunit(crp->crp_session->cap->cc_dev)
1967 , crp->crp_callback
1968 );
1969 }
1970 FOREACH_CRYPTO_RETW(ret_worker) {
1971 db_printf("\n%8s %4s %4s %4s %8s\n",
1972 "ret_worker", "HID", "Etype", "Flags", "Callback");
1973 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1974 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1975 db_printf("%8td %4u %4u %04x %8p\n"
1976 , CRYPTO_RETW_ID(ret_worker)
1977 , crp->crp_session->cap->cc_hid
1978 , crp->crp_etype
1979 , crp->crp_flags
1980 , crp->crp_callback
1981 );
1982 }
1983 }
1984 }
1985 }
1986 #endif
1987
1988 int crypto_modevent(module_t mod, int type, void *unused);
1989
1990 /*
1991 * Initialization code, both for static and dynamic loading.
1992 * Note this is not invoked with the usual MODULE_DECLARE
1993 * mechanism but instead is listed as a dependency by the
1994 * cryptosoft driver. This guarantees proper ordering of
1995 * calls on module load/unload.
1996 */
1997 int
1998 crypto_modevent(module_t mod, int type, void *unused)
1999 {
2000 int error = EINVAL;
2001
2002 switch (type) {
2003 case MOD_LOAD:
2004 error = crypto_init();
2005 if (error == 0 && bootverbose)
2006 printf("crypto: <crypto core>\n");
2007 break;
2008 case MOD_UNLOAD:
2009 /*XXX disallow if active sessions */
2010 error = 0;
2011 crypto_destroy();
2012 return 0;
2013 }
2014 return error;
2015 }
2016 MODULE_VERSION(crypto, 1);
2017 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
Cache object: 16b4a82f9fd0833d1473f0fa9be3d78b
|