The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/opencrypto/crypto.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
    3  * Copyright (c) 2021 The FreeBSD Foundation
    4  *
    5  * Portions of this software were developed by Ararat River
    6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 /*
   33  * Cryptographic Subsystem.
   34  *
   35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
   36  * that has the copyright shown below.  Very little of the original
   37  * code remains.
   38  */
   39 
   40 /*-
   41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
   42  *
   43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
   44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
   45  * supported the development of this code.
   46  *
   47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
   48  *
   49  * Permission to use, copy, and modify this software with or without fee
   50  * is hereby granted, provided that this entire notice is included in
   51  * all source code copies of any software which is or includes a copy or
   52  * modification of this software.
   53  *
   54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
   55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
   56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
   57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
   58  * PURPOSE.
   59  */
   60 
   61 #include "opt_compat.h"
   62 #include "opt_ddb.h"
   63 
   64 #include <sys/param.h>
   65 #include <sys/systm.h>
   66 #include <sys/counter.h>
   67 #include <sys/kernel.h>
   68 #include <sys/kthread.h>
   69 #include <sys/linker.h>
   70 #include <sys/lock.h>
   71 #include <sys/module.h>
   72 #include <sys/mutex.h>
   73 #include <sys/malloc.h>
   74 #include <sys/mbuf.h>
   75 #include <sys/proc.h>
   76 #include <sys/refcount.h>
   77 #include <sys/sdt.h>
   78 #include <sys/smp.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/taskqueue.h>
   81 #include <sys/uio.h>
   82 
   83 #include <ddb/ddb.h>
   84 
   85 #include <machine/vmparam.h>
   86 #include <vm/uma.h>
   87 
   88 #include <crypto/intake.h>
   89 #include <opencrypto/cryptodev.h>
   90 #include <opencrypto/xform_auth.h>
   91 #include <opencrypto/xform_enc.h>
   92 
   93 #include <sys/kobj.h>
   94 #include <sys/bus.h>
   95 #include "cryptodev_if.h"
   96 
   97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
   98 #include <machine/pcb.h>
   99 #endif
  100 
  101 SDT_PROVIDER_DEFINE(opencrypto);
  102 
  103 /*
  104  * Crypto drivers register themselves by allocating a slot in the
  105  * crypto_drivers table with crypto_get_driverid().
  106  */
  107 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
  108 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
  109 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
  110 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
  111 
  112 /*
  113  * Crypto device/driver capabilities structure.
  114  *
  115  * Synchronization:
  116  * (d) - protected by CRYPTO_DRIVER_LOCK()
  117  * (q) - protected by CRYPTO_Q_LOCK()
  118  * Not tagged fields are read-only.
  119  */
  120 struct cryptocap {
  121         device_t        cc_dev;
  122         uint32_t        cc_hid;
  123         uint32_t        cc_sessions;            /* (d) # of sessions */
  124 
  125         int             cc_flags;               /* (d) flags */
  126 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
  127         int             cc_qblocked;            /* (q) symmetric q blocked */
  128         size_t          cc_session_size;
  129         volatile int    cc_refs;
  130 };
  131 
  132 static  struct cryptocap **crypto_drivers = NULL;
  133 static  int crypto_drivers_size = 0;
  134 
  135 struct crypto_session {
  136         struct cryptocap *cap;
  137         struct crypto_session_params csp;
  138         uint64_t id;
  139         /* Driver softc follows. */
  140 };
  141 
  142 static  int crp_sleep = 0;
  143 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
  144 static  struct mtx crypto_q_mtx;
  145 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
  146 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
  147 
  148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
  149     "In-kernel cryptography");
  150 
  151 /*
  152  * Taskqueue used to dispatch the crypto requests submitted with
  153  * crypto_dispatch_async .
  154  */
  155 static struct taskqueue *crypto_tq;
  156 
  157 /*
  158  * Crypto seq numbers are operated on with modular arithmetic
  159  */
  160 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
  161 
  162 struct crypto_ret_worker {
  163         struct mtx crypto_ret_mtx;
  164 
  165         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
  166         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
  167 
  168         uint32_t reorder_ops;           /* total ordered sym jobs received */
  169         uint32_t reorder_cur_seq;       /* current sym job dispatched */
  170 
  171         struct thread *td;
  172 };
  173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
  174 
  175 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
  176 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
  177 #define FOREACH_CRYPTO_RETW(w) \
  178         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
  179 
  180 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
  181 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
  182 
  183 static int crypto_workers_num = 0;
  184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
  185            &crypto_workers_num, 0,
  186            "Number of crypto workers used to dispatch crypto jobs");
  187 #ifdef COMPAT_FREEBSD12
  188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
  189            &crypto_workers_num, 0,
  190            "Number of crypto workers used to dispatch crypto jobs");
  191 #endif
  192 
  193 static  uma_zone_t cryptop_zone;
  194 
  195 int     crypto_devallowsoft = 0;
  196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
  197            &crypto_devallowsoft, 0,
  198            "Enable use of software crypto by /dev/crypto");
  199 #ifdef COMPAT_FREEBSD12
  200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
  201            &crypto_devallowsoft, 0,
  202            "Enable/disable use of software crypto by /dev/crypto");
  203 #endif
  204 
  205 #ifdef DIAGNOSTIC
  206 bool crypto_destroyreq_check;
  207 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
  208            &crypto_destroyreq_check, 0,
  209            "Enable checks when destroying a request");
  210 #endif
  211 
  212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
  213 
  214 static  void crypto_dispatch_thread(void *arg);
  215 static  struct thread *cryptotd;
  216 static  void crypto_ret_thread(void *arg);
  217 static  void crypto_destroy(void);
  218 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
  219 static  void crypto_task_invoke(void *ctx, int pending);
  220 static void crypto_batch_enqueue(struct cryptop *crp);
  221 
  222 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
  223 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
  224     cryptostats, nitems(cryptostats),
  225     "Crypto system statistics");
  226 
  227 #define CRYPTOSTAT_INC(stat) do {                                       \
  228         counter_u64_add(                                                \
  229             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
  230             1);                                                         \
  231 } while (0)
  232 
  233 static void
  234 cryptostats_init(void *arg __unused)
  235 {
  236         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
  237 }
  238 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
  239 
  240 static void
  241 cryptostats_fini(void *arg __unused)
  242 {
  243         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
  244 }
  245 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
  246     NULL);
  247 
  248 /* Try to avoid directly exposing the key buffer as a symbol */
  249 static struct keybuf *keybuf;
  250 
  251 static struct keybuf empty_keybuf = {
  252         .kb_nents = 0
  253 };
  254 
  255 /* Obtain the key buffer from boot metadata */
  256 static void
  257 keybuf_init(void)
  258 {
  259         caddr_t kmdp;
  260 
  261         kmdp = preload_search_by_type("elf kernel");
  262 
  263         if (kmdp == NULL)
  264                 kmdp = preload_search_by_type("elf64 kernel");
  265 
  266         keybuf = (struct keybuf *)preload_search_info(kmdp,
  267             MODINFO_METADATA | MODINFOMD_KEYBUF);
  268 
  269         if (keybuf == NULL)
  270                 keybuf = &empty_keybuf;
  271 }
  272 
  273 /* It'd be nice if we could store these in some kind of secure memory... */
  274 struct keybuf *
  275 get_keybuf(void)
  276 {
  277 
  278         return (keybuf);
  279 }
  280 
  281 static struct cryptocap *
  282 cap_ref(struct cryptocap *cap)
  283 {
  284 
  285         refcount_acquire(&cap->cc_refs);
  286         return (cap);
  287 }
  288 
  289 static void
  290 cap_rele(struct cryptocap *cap)
  291 {
  292 
  293         if (refcount_release(&cap->cc_refs) == 0)
  294                 return;
  295 
  296         KASSERT(cap->cc_sessions == 0,
  297             ("freeing crypto driver with active sessions"));
  298 
  299         free(cap, M_CRYPTO_DATA);
  300 }
  301 
  302 static int
  303 crypto_init(void)
  304 {
  305         struct crypto_ret_worker *ret_worker;
  306         struct proc *p;
  307         int error;
  308 
  309         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
  310 
  311         TAILQ_INIT(&crp_q);
  312         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
  313 
  314         cryptop_zone = uma_zcreate("cryptop",
  315             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
  316             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
  317 
  318         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
  319         crypto_drivers = malloc(crypto_drivers_size *
  320             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
  321 
  322         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
  323                 crypto_workers_num = mp_ncpus;
  324 
  325         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
  326             taskqueue_thread_enqueue, &crypto_tq);
  327 
  328         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
  329             "crypto");
  330 
  331         p = NULL;
  332         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
  333             0, 0, "crypto", "crypto");
  334         if (error) {
  335                 printf("crypto_init: cannot start crypto thread; error %d",
  336                         error);
  337                 goto bad;
  338         }
  339 
  340         crypto_ret_workers = mallocarray(crypto_workers_num,
  341             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
  342 
  343         FOREACH_CRYPTO_RETW(ret_worker) {
  344                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
  345                 TAILQ_INIT(&ret_worker->crp_ret_q);
  346 
  347                 ret_worker->reorder_ops = 0;
  348                 ret_worker->reorder_cur_seq = 0;
  349 
  350                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
  351                     NULL, MTX_DEF);
  352 
  353                 error = kthread_add(crypto_ret_thread, ret_worker, p,
  354                     &ret_worker->td, 0, 0, "crypto returns %td",
  355                     CRYPTO_RETW_ID(ret_worker));
  356                 if (error) {
  357                         printf("crypto_init: cannot start cryptoret thread; error %d",
  358                                 error);
  359                         goto bad;
  360                 }
  361         }
  362 
  363         keybuf_init();
  364 
  365         return 0;
  366 bad:
  367         crypto_destroy();
  368         return error;
  369 }
  370 
  371 /*
  372  * Signal a crypto thread to terminate.  We use the driver
  373  * table lock to synchronize the sleep/wakeups so that we
  374  * are sure the threads have terminated before we release
  375  * the data structures they use.  See crypto_finis below
  376  * for the other half of this song-and-dance.
  377  */
  378 static void
  379 crypto_terminate(struct thread **tdp, void *q)
  380 {
  381         struct thread *td;
  382 
  383         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
  384         td = *tdp;
  385         *tdp = NULL;
  386         if (td != NULL) {
  387                 wakeup_one(q);
  388                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
  389         }
  390 }
  391 
  392 static void
  393 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
  394     void *auth_ctx, uint8_t padval)
  395 {
  396         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
  397         u_int i;
  398 
  399         KASSERT(axf->blocksize <= sizeof(hmac_key),
  400             ("Invalid HMAC block size %d", axf->blocksize));
  401 
  402         /*
  403          * If the key is larger than the block size, use the digest of
  404          * the key as the key instead.
  405          */
  406         memset(hmac_key, 0, sizeof(hmac_key));
  407         if (klen > axf->blocksize) {
  408                 axf->Init(auth_ctx);
  409                 axf->Update(auth_ctx, key, klen);
  410                 axf->Final(hmac_key, auth_ctx);
  411                 klen = axf->hashsize;
  412         } else
  413                 memcpy(hmac_key, key, klen);
  414 
  415         for (i = 0; i < axf->blocksize; i++)
  416                 hmac_key[i] ^= padval;
  417 
  418         axf->Init(auth_ctx);
  419         axf->Update(auth_ctx, hmac_key, axf->blocksize);
  420         explicit_bzero(hmac_key, sizeof(hmac_key));
  421 }
  422 
  423 void
  424 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
  425     void *auth_ctx)
  426 {
  427 
  428         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
  429 }
  430 
  431 void
  432 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
  433     void *auth_ctx)
  434 {
  435 
  436         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
  437 }
  438 
  439 static void
  440 crypto_destroy(void)
  441 {
  442         struct crypto_ret_worker *ret_worker;
  443         int i;
  444 
  445         /*
  446          * Terminate any crypto threads.
  447          */
  448         if (crypto_tq != NULL)
  449                 taskqueue_drain_all(crypto_tq);
  450         CRYPTO_DRIVER_LOCK();
  451         crypto_terminate(&cryptotd, &crp_q);
  452         FOREACH_CRYPTO_RETW(ret_worker)
  453                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
  454         CRYPTO_DRIVER_UNLOCK();
  455 
  456         /* XXX flush queues??? */
  457 
  458         /*
  459          * Reclaim dynamically allocated resources.
  460          */
  461         for (i = 0; i < crypto_drivers_size; i++) {
  462                 if (crypto_drivers[i] != NULL)
  463                         cap_rele(crypto_drivers[i]);
  464         }
  465         free(crypto_drivers, M_CRYPTO_DATA);
  466 
  467         if (cryptop_zone != NULL)
  468                 uma_zdestroy(cryptop_zone);
  469         mtx_destroy(&crypto_q_mtx);
  470         FOREACH_CRYPTO_RETW(ret_worker)
  471                 mtx_destroy(&ret_worker->crypto_ret_mtx);
  472         free(crypto_ret_workers, M_CRYPTO_DATA);
  473         if (crypto_tq != NULL)
  474                 taskqueue_free(crypto_tq);
  475         mtx_destroy(&crypto_drivers_mtx);
  476 }
  477 
  478 uint32_t
  479 crypto_ses2hid(crypto_session_t crypto_session)
  480 {
  481         return (crypto_session->cap->cc_hid);
  482 }
  483 
  484 uint32_t
  485 crypto_ses2caps(crypto_session_t crypto_session)
  486 {
  487         return (crypto_session->cap->cc_flags & 0xff000000);
  488 }
  489 
  490 void *
  491 crypto_get_driver_session(crypto_session_t crypto_session)
  492 {
  493         return (crypto_session + 1);
  494 }
  495 
  496 const struct crypto_session_params *
  497 crypto_get_params(crypto_session_t crypto_session)
  498 {
  499         return (&crypto_session->csp);
  500 }
  501 
  502 const struct auth_hash *
  503 crypto_auth_hash(const struct crypto_session_params *csp)
  504 {
  505 
  506         switch (csp->csp_auth_alg) {
  507         case CRYPTO_SHA1_HMAC:
  508                 return (&auth_hash_hmac_sha1);
  509         case CRYPTO_SHA2_224_HMAC:
  510                 return (&auth_hash_hmac_sha2_224);
  511         case CRYPTO_SHA2_256_HMAC:
  512                 return (&auth_hash_hmac_sha2_256);
  513         case CRYPTO_SHA2_384_HMAC:
  514                 return (&auth_hash_hmac_sha2_384);
  515         case CRYPTO_SHA2_512_HMAC:
  516                 return (&auth_hash_hmac_sha2_512);
  517         case CRYPTO_NULL_HMAC:
  518                 return (&auth_hash_null);
  519         case CRYPTO_RIPEMD160_HMAC:
  520                 return (&auth_hash_hmac_ripemd_160);
  521         case CRYPTO_RIPEMD160:
  522                 return (&auth_hash_ripemd_160);
  523         case CRYPTO_SHA1:
  524                 return (&auth_hash_sha1);
  525         case CRYPTO_SHA2_224:
  526                 return (&auth_hash_sha2_224);
  527         case CRYPTO_SHA2_256:
  528                 return (&auth_hash_sha2_256);
  529         case CRYPTO_SHA2_384:
  530                 return (&auth_hash_sha2_384);
  531         case CRYPTO_SHA2_512:
  532                 return (&auth_hash_sha2_512);
  533         case CRYPTO_AES_NIST_GMAC:
  534                 switch (csp->csp_auth_klen) {
  535                 case 128 / 8:
  536                         return (&auth_hash_nist_gmac_aes_128);
  537                 case 192 / 8:
  538                         return (&auth_hash_nist_gmac_aes_192);
  539                 case 256 / 8:
  540                         return (&auth_hash_nist_gmac_aes_256);
  541                 default:
  542                         return (NULL);
  543                 }
  544         case CRYPTO_BLAKE2B:
  545                 return (&auth_hash_blake2b);
  546         case CRYPTO_BLAKE2S:
  547                 return (&auth_hash_blake2s);
  548         case CRYPTO_POLY1305:
  549                 return (&auth_hash_poly1305);
  550         case CRYPTO_AES_CCM_CBC_MAC:
  551                 switch (csp->csp_auth_klen) {
  552                 case 128 / 8:
  553                         return (&auth_hash_ccm_cbc_mac_128);
  554                 case 192 / 8:
  555                         return (&auth_hash_ccm_cbc_mac_192);
  556                 case 256 / 8:
  557                         return (&auth_hash_ccm_cbc_mac_256);
  558                 default:
  559                         return (NULL);
  560                 }
  561         default:
  562                 return (NULL);
  563         }
  564 }
  565 
  566 const struct enc_xform *
  567 crypto_cipher(const struct crypto_session_params *csp)
  568 {
  569 
  570         switch (csp->csp_cipher_alg) {
  571         case CRYPTO_AES_CBC:
  572                 return (&enc_xform_aes_cbc);
  573         case CRYPTO_AES_XTS:
  574                 return (&enc_xform_aes_xts);
  575         case CRYPTO_AES_ICM:
  576                 return (&enc_xform_aes_icm);
  577         case CRYPTO_AES_NIST_GCM_16:
  578                 return (&enc_xform_aes_nist_gcm);
  579         case CRYPTO_CAMELLIA_CBC:
  580                 return (&enc_xform_camellia);
  581         case CRYPTO_NULL_CBC:
  582                 return (&enc_xform_null);
  583         case CRYPTO_CHACHA20:
  584                 return (&enc_xform_chacha20);
  585         case CRYPTO_AES_CCM_16:
  586                 return (&enc_xform_ccm);
  587         case CRYPTO_CHACHA20_POLY1305:
  588                 return (&enc_xform_chacha20_poly1305);
  589         case CRYPTO_XCHACHA20_POLY1305:
  590                 return (&enc_xform_xchacha20_poly1305);
  591         default:
  592                 return (NULL);
  593         }
  594 }
  595 
  596 static struct cryptocap *
  597 crypto_checkdriver(uint32_t hid)
  598 {
  599 
  600         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
  601 }
  602 
  603 /*
  604  * Select a driver for a new session that supports the specified
  605  * algorithms and, optionally, is constrained according to the flags.
  606  */
  607 static struct cryptocap *
  608 crypto_select_driver(const struct crypto_session_params *csp, int flags)
  609 {
  610         struct cryptocap *cap, *best;
  611         int best_match, error, hid;
  612 
  613         CRYPTO_DRIVER_ASSERT();
  614 
  615         best = NULL;
  616         for (hid = 0; hid < crypto_drivers_size; hid++) {
  617                 /*
  618                  * If there is no driver for this slot, or the driver
  619                  * is not appropriate (hardware or software based on
  620                  * match), then skip.
  621                  */
  622                 cap = crypto_drivers[hid];
  623                 if (cap == NULL ||
  624                     (cap->cc_flags & flags) == 0)
  625                         continue;
  626 
  627                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
  628                 if (error >= 0)
  629                         continue;
  630 
  631                 /*
  632                  * Use the driver with the highest probe value.
  633                  * Hardware drivers use a higher probe value than
  634                  * software.  In case of a tie, prefer the driver with
  635                  * the fewest active sessions.
  636                  */
  637                 if (best == NULL || error > best_match ||
  638                     (error == best_match &&
  639                     cap->cc_sessions < best->cc_sessions)) {
  640                         best = cap;
  641                         best_match = error;
  642                 }
  643         }
  644         return best;
  645 }
  646 
  647 static enum alg_type {
  648         ALG_NONE = 0,
  649         ALG_CIPHER,
  650         ALG_DIGEST,
  651         ALG_KEYED_DIGEST,
  652         ALG_COMPRESSION,
  653         ALG_AEAD
  654 } alg_types[] = {
  655         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
  656         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
  657         [CRYPTO_AES_CBC] = ALG_CIPHER,
  658         [CRYPTO_SHA1] = ALG_DIGEST,
  659         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
  660         [CRYPTO_NULL_CBC] = ALG_CIPHER,
  661         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
  662         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
  663         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
  664         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
  665         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
  666         [CRYPTO_AES_XTS] = ALG_CIPHER,
  667         [CRYPTO_AES_ICM] = ALG_CIPHER,
  668         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
  669         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
  670         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
  671         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
  672         [CRYPTO_CHACHA20] = ALG_CIPHER,
  673         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
  674         [CRYPTO_RIPEMD160] = ALG_DIGEST,
  675         [CRYPTO_SHA2_224] = ALG_DIGEST,
  676         [CRYPTO_SHA2_256] = ALG_DIGEST,
  677         [CRYPTO_SHA2_384] = ALG_DIGEST,
  678         [CRYPTO_SHA2_512] = ALG_DIGEST,
  679         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
  680         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
  681         [CRYPTO_AES_CCM_16] = ALG_AEAD,
  682         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
  683         [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
  684 };
  685 
  686 static enum alg_type
  687 alg_type(int alg)
  688 {
  689 
  690         if (alg < nitems(alg_types))
  691                 return (alg_types[alg]);
  692         return (ALG_NONE);
  693 }
  694 
  695 static bool
  696 alg_is_compression(int alg)
  697 {
  698 
  699         return (alg_type(alg) == ALG_COMPRESSION);
  700 }
  701 
  702 static bool
  703 alg_is_cipher(int alg)
  704 {
  705 
  706         return (alg_type(alg) == ALG_CIPHER);
  707 }
  708 
  709 static bool
  710 alg_is_digest(int alg)
  711 {
  712 
  713         return (alg_type(alg) == ALG_DIGEST ||
  714             alg_type(alg) == ALG_KEYED_DIGEST);
  715 }
  716 
  717 static bool
  718 alg_is_keyed_digest(int alg)
  719 {
  720 
  721         return (alg_type(alg) == ALG_KEYED_DIGEST);
  722 }
  723 
  724 static bool
  725 alg_is_aead(int alg)
  726 {
  727 
  728         return (alg_type(alg) == ALG_AEAD);
  729 }
  730 
  731 static bool
  732 ccm_tag_length_valid(int len)
  733 {
  734         /* RFC 3610 */
  735         switch (len) {
  736         case 4:
  737         case 6:
  738         case 8:
  739         case 10:
  740         case 12:
  741         case 14:
  742         case 16:
  743                 return (true);
  744         default:
  745                 return (false);
  746         }
  747 }
  748 
  749 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
  750 
  751 /* Various sanity checks on crypto session parameters. */
  752 static bool
  753 check_csp(const struct crypto_session_params *csp)
  754 {
  755         const struct auth_hash *axf;
  756 
  757         /* Mode-independent checks. */
  758         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
  759                 return (false);
  760         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
  761             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
  762                 return (false);
  763         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
  764                 return (false);
  765         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
  766                 return (false);
  767 
  768         switch (csp->csp_mode) {
  769         case CSP_MODE_COMPRESS:
  770                 if (!alg_is_compression(csp->csp_cipher_alg))
  771                         return (false);
  772                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
  773                         return (false);
  774                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
  775                         return (false);
  776                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
  777                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
  778                     csp->csp_auth_mlen != 0)
  779                         return (false);
  780                 break;
  781         case CSP_MODE_CIPHER:
  782                 if (!alg_is_cipher(csp->csp_cipher_alg))
  783                         return (false);
  784                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
  785                         return (false);
  786                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
  787                         if (csp->csp_cipher_klen == 0)
  788                                 return (false);
  789                         if (csp->csp_ivlen == 0)
  790                                 return (false);
  791                 }
  792                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
  793                         return (false);
  794                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
  795                     csp->csp_auth_mlen != 0)
  796                         return (false);
  797                 break;
  798         case CSP_MODE_DIGEST:
  799                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
  800                         return (false);
  801 
  802                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
  803                         return (false);
  804 
  805                 /* IV is optional for digests (e.g. GMAC). */
  806                 switch (csp->csp_auth_alg) {
  807                 case CRYPTO_AES_CCM_CBC_MAC:
  808                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
  809                                 return (false);
  810                         break;
  811                 case CRYPTO_AES_NIST_GMAC:
  812                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
  813                                 return (false);
  814                         break;
  815                 default:
  816                         if (csp->csp_ivlen != 0)
  817                                 return (false);
  818                         break;
  819                 }
  820 
  821                 if (!alg_is_digest(csp->csp_auth_alg))
  822                         return (false);
  823 
  824                 /* Key is optional for BLAKE2 digests. */
  825                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
  826                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
  827                         ;
  828                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
  829                         if (csp->csp_auth_klen == 0)
  830                                 return (false);
  831                 } else {
  832                         if (csp->csp_auth_klen != 0)
  833                                 return (false);
  834                 }
  835                 if (csp->csp_auth_mlen != 0) {
  836                         axf = crypto_auth_hash(csp);
  837                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
  838                                 return (false);
  839 
  840                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
  841                             !ccm_tag_length_valid(csp->csp_auth_mlen))
  842                                 return (false);
  843                 }
  844                 break;
  845         case CSP_MODE_AEAD:
  846                 if (!alg_is_aead(csp->csp_cipher_alg))
  847                         return (false);
  848                 if (csp->csp_cipher_klen == 0)
  849                         return (false);
  850                 if (csp->csp_ivlen == 0 ||
  851                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
  852                         return (false);
  853                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
  854                         return (false);
  855 
  856                 switch (csp->csp_cipher_alg) {
  857                 case CRYPTO_AES_CCM_16:
  858                         if (csp->csp_auth_mlen != 0 &&
  859                             !ccm_tag_length_valid(csp->csp_auth_mlen))
  860                                 return (false);
  861 
  862                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
  863                                 return (false);
  864                         break;
  865                 case CRYPTO_AES_NIST_GCM_16:
  866                         if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
  867                                 return (false);
  868 
  869                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
  870                                 return (false);
  871                         break;
  872                 case CRYPTO_CHACHA20_POLY1305:
  873                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
  874                                 return (false);
  875                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
  876                                 return (false);
  877                         break;
  878                 case CRYPTO_XCHACHA20_POLY1305:
  879                         if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
  880                                 return (false);
  881                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
  882                                 return (false);
  883                         break;
  884                 }
  885                 break;
  886         case CSP_MODE_ETA:
  887                 if (!alg_is_cipher(csp->csp_cipher_alg))
  888                         return (false);
  889                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
  890                         if (csp->csp_cipher_klen == 0)
  891                                 return (false);
  892                         if (csp->csp_ivlen == 0)
  893                                 return (false);
  894                 }
  895                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
  896                         return (false);
  897                 if (!alg_is_digest(csp->csp_auth_alg))
  898                         return (false);
  899 
  900                 /* Key is optional for BLAKE2 digests. */
  901                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
  902                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
  903                         ;
  904                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
  905                         if (csp->csp_auth_klen == 0)
  906                                 return (false);
  907                 } else {
  908                         if (csp->csp_auth_klen != 0)
  909                                 return (false);
  910                 }
  911                 if (csp->csp_auth_mlen != 0) {
  912                         axf = crypto_auth_hash(csp);
  913                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
  914                                 return (false);
  915                 }
  916                 break;
  917         default:
  918                 return (false);
  919         }
  920 
  921         return (true);
  922 }
  923 
  924 /*
  925  * Delete a session after it has been detached from its driver.
  926  */
  927 static void
  928 crypto_deletesession(crypto_session_t cses)
  929 {
  930         struct cryptocap *cap;
  931 
  932         cap = cses->cap;
  933 
  934         zfree(cses, M_CRYPTO_DATA);
  935 
  936         CRYPTO_DRIVER_LOCK();
  937         cap->cc_sessions--;
  938         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
  939                 wakeup(cap);
  940         CRYPTO_DRIVER_UNLOCK();
  941         cap_rele(cap);
  942 }
  943 
  944 /*
  945  * Create a new session.  The crid argument specifies a crypto
  946  * driver to use or constraints on a driver to select (hardware
  947  * only, software only, either).  Whatever driver is selected
  948  * must be capable of the requested crypto algorithms.
  949  */
  950 int
  951 crypto_newsession(crypto_session_t *cses,
  952     const struct crypto_session_params *csp, int crid)
  953 {
  954         static uint64_t sessid = 0;
  955         crypto_session_t res;
  956         struct cryptocap *cap;
  957         int err;
  958 
  959         if (!check_csp(csp))
  960                 return (EINVAL);
  961 
  962         res = NULL;
  963 
  964         CRYPTO_DRIVER_LOCK();
  965         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  966                 /*
  967                  * Use specified driver; verify it is capable.
  968                  */
  969                 cap = crypto_checkdriver(crid);
  970                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
  971                         cap = NULL;
  972         } else {
  973                 /*
  974                  * No requested driver; select based on crid flags.
  975                  */
  976                 cap = crypto_select_driver(csp, crid);
  977         }
  978         if (cap == NULL) {
  979                 CRYPTO_DRIVER_UNLOCK();
  980                 CRYPTDEB("no driver");
  981                 return (EOPNOTSUPP);
  982         }
  983         cap_ref(cap);
  984         cap->cc_sessions++;
  985         CRYPTO_DRIVER_UNLOCK();
  986 
  987         /* Allocate a single block for the generic session and driver softc. */
  988         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
  989             M_WAITOK | M_ZERO);
  990         res->cap = cap;
  991         res->csp = *csp;
  992         res->id = atomic_fetchadd_64(&sessid, 1);
  993 
  994         /* Call the driver initialization routine. */
  995         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
  996         if (err != 0) {
  997                 CRYPTDEB("dev newsession failed: %d", err);
  998                 crypto_deletesession(res);
  999                 return (err);
 1000         }
 1001 
 1002         *cses = res;
 1003         return (0);
 1004 }
 1005 
 1006 /*
 1007  * Delete an existing session (or a reserved session on an unregistered
 1008  * driver).
 1009  */
 1010 void
 1011 crypto_freesession(crypto_session_t cses)
 1012 {
 1013         struct cryptocap *cap;
 1014 
 1015         if (cses == NULL)
 1016                 return;
 1017 
 1018         cap = cses->cap;
 1019 
 1020         /* Call the driver cleanup routine, if available. */
 1021         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
 1022 
 1023         crypto_deletesession(cses);
 1024 }
 1025 
 1026 /*
 1027  * Return a new driver id.  Registers a driver with the system so that
 1028  * it can be probed by subsequent sessions.
 1029  */
 1030 int32_t
 1031 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
 1032 {
 1033         struct cryptocap *cap, **newdrv;
 1034         int i;
 1035 
 1036         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
 1037                 device_printf(dev,
 1038                     "no flags specified when registering driver\n");
 1039                 return -1;
 1040         }
 1041 
 1042         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
 1043         cap->cc_dev = dev;
 1044         cap->cc_session_size = sessionsize;
 1045         cap->cc_flags = flags;
 1046         refcount_init(&cap->cc_refs, 1);
 1047 
 1048         CRYPTO_DRIVER_LOCK();
 1049         for (;;) {
 1050                 for (i = 0; i < crypto_drivers_size; i++) {
 1051                         if (crypto_drivers[i] == NULL)
 1052                                 break;
 1053                 }
 1054 
 1055                 if (i < crypto_drivers_size)
 1056                         break;
 1057 
 1058                 /* Out of entries, allocate some more. */
 1059 
 1060                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
 1061                         CRYPTO_DRIVER_UNLOCK();
 1062                         printf("crypto: driver count wraparound!\n");
 1063                         cap_rele(cap);
 1064                         return (-1);
 1065                 }
 1066                 CRYPTO_DRIVER_UNLOCK();
 1067 
 1068                 newdrv = malloc(2 * crypto_drivers_size *
 1069                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
 1070 
 1071                 CRYPTO_DRIVER_LOCK();
 1072                 memcpy(newdrv, crypto_drivers,
 1073                     crypto_drivers_size * sizeof(*crypto_drivers));
 1074 
 1075                 crypto_drivers_size *= 2;
 1076 
 1077                 free(crypto_drivers, M_CRYPTO_DATA);
 1078                 crypto_drivers = newdrv;
 1079         }
 1080 
 1081         cap->cc_hid = i;
 1082         crypto_drivers[i] = cap;
 1083         CRYPTO_DRIVER_UNLOCK();
 1084 
 1085         if (bootverbose)
 1086                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
 1087                     device_get_nameunit(dev), i, flags);
 1088 
 1089         return i;
 1090 }
 1091 
 1092 /*
 1093  * Lookup a driver by name.  We match against the full device
 1094  * name and unit, and against just the name.  The latter gives
 1095  * us a simple widlcarding by device name.  On success return the
 1096  * driver/hardware identifier; otherwise return -1.
 1097  */
 1098 int
 1099 crypto_find_driver(const char *match)
 1100 {
 1101         struct cryptocap *cap;
 1102         int i, len = strlen(match);
 1103 
 1104         CRYPTO_DRIVER_LOCK();
 1105         for (i = 0; i < crypto_drivers_size; i++) {
 1106                 if (crypto_drivers[i] == NULL)
 1107                         continue;
 1108                 cap = crypto_drivers[i];
 1109                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
 1110                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
 1111                         CRYPTO_DRIVER_UNLOCK();
 1112                         return (i);
 1113                 }
 1114         }
 1115         CRYPTO_DRIVER_UNLOCK();
 1116         return (-1);
 1117 }
 1118 
 1119 /*
 1120  * Return the device_t for the specified driver or NULL
 1121  * if the driver identifier is invalid.
 1122  */
 1123 device_t
 1124 crypto_find_device_byhid(int hid)
 1125 {
 1126         struct cryptocap *cap;
 1127         device_t dev;
 1128 
 1129         dev = NULL;
 1130         CRYPTO_DRIVER_LOCK();
 1131         cap = crypto_checkdriver(hid);
 1132         if (cap != NULL)
 1133                 dev = cap->cc_dev;
 1134         CRYPTO_DRIVER_UNLOCK();
 1135         return (dev);
 1136 }
 1137 
 1138 /*
 1139  * Return the device/driver capabilities.
 1140  */
 1141 int
 1142 crypto_getcaps(int hid)
 1143 {
 1144         struct cryptocap *cap;
 1145         int flags;
 1146 
 1147         flags = 0;
 1148         CRYPTO_DRIVER_LOCK();
 1149         cap = crypto_checkdriver(hid);
 1150         if (cap != NULL)
 1151                 flags = cap->cc_flags;
 1152         CRYPTO_DRIVER_UNLOCK();
 1153         return (flags);
 1154 }
 1155 
 1156 /*
 1157  * Unregister all algorithms associated with a crypto driver.
 1158  * If there are pending sessions using it, leave enough information
 1159  * around so that subsequent calls using those sessions will
 1160  * correctly detect the driver has been unregistered and reroute
 1161  * requests.
 1162  */
 1163 int
 1164 crypto_unregister_all(uint32_t driverid)
 1165 {
 1166         struct cryptocap *cap;
 1167 
 1168         CRYPTO_DRIVER_LOCK();
 1169         cap = crypto_checkdriver(driverid);
 1170         if (cap == NULL) {
 1171                 CRYPTO_DRIVER_UNLOCK();
 1172                 return (EINVAL);
 1173         }
 1174 
 1175         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
 1176         crypto_drivers[driverid] = NULL;
 1177 
 1178         /*
 1179          * XXX: This doesn't do anything to kick sessions that
 1180          * have no pending operations.
 1181          */
 1182         while (cap->cc_sessions != 0)
 1183                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
 1184         CRYPTO_DRIVER_UNLOCK();
 1185         cap_rele(cap);
 1186 
 1187         return (0);
 1188 }
 1189 
 1190 /*
 1191  * Clear blockage on a driver.  The what parameter indicates whether
 1192  * the driver is now ready for cryptop's and/or cryptokop's.
 1193  */
 1194 int
 1195 crypto_unblock(uint32_t driverid, int what)
 1196 {
 1197         struct cryptocap *cap;
 1198         int err;
 1199 
 1200         CRYPTO_Q_LOCK();
 1201         cap = crypto_checkdriver(driverid);
 1202         if (cap != NULL) {
 1203                 if (what & CRYPTO_SYMQ)
 1204                         cap->cc_qblocked = 0;
 1205                 if (crp_sleep)
 1206                         wakeup_one(&crp_q);
 1207                 err = 0;
 1208         } else
 1209                 err = EINVAL;
 1210         CRYPTO_Q_UNLOCK();
 1211 
 1212         return err;
 1213 }
 1214 
 1215 size_t
 1216 crypto_buffer_len(struct crypto_buffer *cb)
 1217 {
 1218         switch (cb->cb_type) {
 1219         case CRYPTO_BUF_CONTIG:
 1220                 return (cb->cb_buf_len);
 1221         case CRYPTO_BUF_MBUF:
 1222                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
 1223                         return (cb->cb_mbuf->m_pkthdr.len);
 1224                 return (m_length(cb->cb_mbuf, NULL));
 1225         case CRYPTO_BUF_SINGLE_MBUF:
 1226                 return (cb->cb_mbuf->m_len);
 1227         case CRYPTO_BUF_VMPAGE:
 1228                 return (cb->cb_vm_page_len);
 1229         case CRYPTO_BUF_UIO:
 1230                 return (cb->cb_uio->uio_resid);
 1231         default:
 1232                 return (0);
 1233         }
 1234 }
 1235 
 1236 #ifdef INVARIANTS
 1237 /* Various sanity checks on crypto requests. */
 1238 static void
 1239 cb_sanity(struct crypto_buffer *cb, const char *name)
 1240 {
 1241         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
 1242             ("incoming crp with invalid %s buffer type", name));
 1243         switch (cb->cb_type) {
 1244         case CRYPTO_BUF_CONTIG:
 1245                 KASSERT(cb->cb_buf_len >= 0,
 1246                     ("incoming crp with -ve %s buffer length", name));
 1247                 break;
 1248         case CRYPTO_BUF_VMPAGE:
 1249                 KASSERT(CRYPTO_HAS_VMPAGE,
 1250                     ("incoming crp uses dmap on supported arch"));
 1251                 KASSERT(cb->cb_vm_page_len >= 0,
 1252                     ("incoming crp with -ve %s buffer length", name));
 1253                 KASSERT(cb->cb_vm_page_offset >= 0,
 1254                     ("incoming crp with -ve %s buffer offset", name));
 1255                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
 1256                     ("incoming crp with %s buffer offset greater than page size"
 1257                      , name));
 1258                 break;
 1259         default:
 1260                 break;
 1261         }
 1262 }
 1263 
 1264 static void
 1265 crp_sanity(struct cryptop *crp)
 1266 {
 1267         struct crypto_session_params *csp;
 1268         struct crypto_buffer *out;
 1269         size_t ilen, len, olen;
 1270 
 1271         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
 1272         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
 1273             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
 1274             ("incoming crp with invalid output buffer type"));
 1275         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
 1276         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
 1277             ("incoming crp already done"));
 1278 
 1279         csp = &crp->crp_session->csp;
 1280         cb_sanity(&crp->crp_buf, "input");
 1281         ilen = crypto_buffer_len(&crp->crp_buf);
 1282         olen = ilen;
 1283         out = NULL;
 1284         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
 1285                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
 1286                         cb_sanity(&crp->crp_obuf, "output");
 1287                         out = &crp->crp_obuf;
 1288                         olen = crypto_buffer_len(out);
 1289                 }
 1290         } else
 1291                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
 1292                     ("incoming crp with separate output buffer "
 1293                     "but no session support"));
 1294 
 1295         switch (csp->csp_mode) {
 1296         case CSP_MODE_COMPRESS:
 1297                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
 1298                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
 1299                     ("invalid compression op %x", crp->crp_op));
 1300                 break;
 1301         case CSP_MODE_CIPHER:
 1302                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
 1303                     crp->crp_op == CRYPTO_OP_DECRYPT,
 1304                     ("invalid cipher op %x", crp->crp_op));
 1305                 break;
 1306         case CSP_MODE_DIGEST:
 1307                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
 1308                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
 1309                     ("invalid digest op %x", crp->crp_op));
 1310                 break;
 1311         case CSP_MODE_AEAD:
 1312                 KASSERT(crp->crp_op ==
 1313                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
 1314                     crp->crp_op ==
 1315                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
 1316                     ("invalid AEAD op %x", crp->crp_op));
 1317                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
 1318                     ("AEAD without a separate IV"));
 1319                 break;
 1320         case CSP_MODE_ETA:
 1321                 KASSERT(crp->crp_op ==
 1322                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
 1323                     crp->crp_op ==
 1324                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
 1325                     ("invalid ETA op %x", crp->crp_op));
 1326                 break;
 1327         }
 1328         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
 1329                 if (crp->crp_aad == NULL) {
 1330                         KASSERT(crp->crp_aad_start == 0 ||
 1331                             crp->crp_aad_start < ilen,
 1332                             ("invalid AAD start"));
 1333                         KASSERT(crp->crp_aad_length != 0 ||
 1334                             crp->crp_aad_start == 0,
 1335                             ("AAD with zero length and non-zero start"));
 1336                         KASSERT(crp->crp_aad_length == 0 ||
 1337                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
 1338                             ("AAD outside input length"));
 1339                 } else {
 1340                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
 1341                             ("session doesn't support separate AAD buffer"));
 1342                         KASSERT(crp->crp_aad_start == 0,
 1343                             ("separate AAD buffer with non-zero AAD start"));
 1344                         KASSERT(crp->crp_aad_length != 0,
 1345                             ("separate AAD buffer with zero length"));
 1346                 }
 1347         } else {
 1348                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
 1349                     crp->crp_aad_length == 0,
 1350                     ("AAD region in request not supporting AAD"));
 1351         }
 1352         if (csp->csp_ivlen == 0) {
 1353                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
 1354                     ("IV_SEPARATE set when IV isn't used"));
 1355                 KASSERT(crp->crp_iv_start == 0,
 1356                     ("crp_iv_start set when IV isn't used"));
 1357         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
 1358                 KASSERT(crp->crp_iv_start == 0,
 1359                     ("IV_SEPARATE used with non-zero IV start"));
 1360         } else {
 1361                 KASSERT(crp->crp_iv_start < ilen,
 1362                     ("invalid IV start"));
 1363                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
 1364                     ("IV outside buffer length"));
 1365         }
 1366         /* XXX: payload_start of 0 should always be < ilen? */
 1367         KASSERT(crp->crp_payload_start == 0 ||
 1368             crp->crp_payload_start < ilen,
 1369             ("invalid payload start"));
 1370         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
 1371             ilen, ("payload outside input buffer"));
 1372         if (out == NULL) {
 1373                 KASSERT(crp->crp_payload_output_start == 0,
 1374                     ("payload output start non-zero without output buffer"));
 1375         } else if (csp->csp_mode == CSP_MODE_DIGEST) {
 1376                 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
 1377                     ("digest verify with separate output buffer"));
 1378                 KASSERT(crp->crp_payload_output_start == 0,
 1379                     ("digest operation with non-zero payload output start"));
 1380         } else {
 1381                 KASSERT(crp->crp_payload_output_start == 0 ||
 1382                     crp->crp_payload_output_start < olen,
 1383                     ("invalid payload output start"));
 1384                 KASSERT(crp->crp_payload_output_start +
 1385                     crp->crp_payload_length <= olen,
 1386                     ("payload outside output buffer"));
 1387         }
 1388         if (csp->csp_mode == CSP_MODE_DIGEST ||
 1389             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
 1390                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
 1391                         len = ilen;
 1392                 else
 1393                         len = olen;
 1394                 KASSERT(crp->crp_digest_start == 0 ||
 1395                     crp->crp_digest_start < len,
 1396                     ("invalid digest start"));
 1397                 /* XXX: For the mlen == 0 case this check isn't perfect. */
 1398                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
 1399                     ("digest outside buffer"));
 1400         } else {
 1401                 KASSERT(crp->crp_digest_start == 0,
 1402                     ("non-zero digest start for request without a digest"));
 1403         }
 1404         if (csp->csp_cipher_klen != 0)
 1405                 KASSERT(csp->csp_cipher_key != NULL ||
 1406                     crp->crp_cipher_key != NULL,
 1407                     ("cipher request without a key"));
 1408         if (csp->csp_auth_klen != 0)
 1409                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
 1410                     ("auth request without a key"));
 1411         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
 1412 }
 1413 #endif
 1414 
 1415 static int
 1416 crypto_dispatch_one(struct cryptop *crp, int hint)
 1417 {
 1418         struct cryptocap *cap;
 1419         int result;
 1420 
 1421 #ifdef INVARIANTS
 1422         crp_sanity(crp);
 1423 #endif
 1424         CRYPTOSTAT_INC(cs_ops);
 1425 
 1426         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
 1427 
 1428         /*
 1429          * Caller marked the request to be processed immediately; dispatch it
 1430          * directly to the driver unless the driver is currently blocked, in
 1431          * which case it is queued for deferred dispatch.
 1432          */
 1433         cap = crp->crp_session->cap;
 1434         if (!atomic_load_int(&cap->cc_qblocked)) {
 1435                 result = crypto_invoke(cap, crp, hint);
 1436                 if (result != ERESTART)
 1437                         return (result);
 1438 
 1439                 /*
 1440                  * The driver ran out of resources, put the request on the
 1441                  * queue.
 1442                  */
 1443         }
 1444         crypto_batch_enqueue(crp);
 1445         return (0);
 1446 }
 1447 
 1448 int
 1449 crypto_dispatch(struct cryptop *crp)
 1450 {
 1451         return (crypto_dispatch_one(crp, 0));
 1452 }
 1453 
 1454 int
 1455 crypto_dispatch_async(struct cryptop *crp, int flags)
 1456 {
 1457         struct crypto_ret_worker *ret_worker;
 1458 
 1459         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
 1460                 /*
 1461                  * The driver issues completions asynchonously, don't bother
 1462                  * deferring dispatch to a worker thread.
 1463                  */
 1464                 return (crypto_dispatch(crp));
 1465         }
 1466 
 1467 #ifdef INVARIANTS
 1468         crp_sanity(crp);
 1469 #endif
 1470         CRYPTOSTAT_INC(cs_ops);
 1471 
 1472         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
 1473         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
 1474                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
 1475                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
 1476                 CRYPTO_RETW_LOCK(ret_worker);
 1477                 crp->crp_seq = ret_worker->reorder_ops++;
 1478                 CRYPTO_RETW_UNLOCK(ret_worker);
 1479         }
 1480         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
 1481         taskqueue_enqueue(crypto_tq, &crp->crp_task);
 1482         return (0);
 1483 }
 1484 
 1485 void
 1486 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
 1487 {
 1488         struct cryptop *crp;
 1489         int hint;
 1490 
 1491         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
 1492                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
 1493                 TAILQ_REMOVE(crpq, crp, crp_next);
 1494                 if (crypto_dispatch_one(crp, hint) != 0)
 1495                         crypto_batch_enqueue(crp);
 1496         }
 1497 }
 1498 
 1499 static void
 1500 crypto_batch_enqueue(struct cryptop *crp)
 1501 {
 1502 
 1503         CRYPTO_Q_LOCK();
 1504         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
 1505         if (crp_sleep)
 1506                 wakeup_one(&crp_q);
 1507         CRYPTO_Q_UNLOCK();
 1508 }
 1509 
 1510 static void
 1511 crypto_task_invoke(void *ctx, int pending)
 1512 {
 1513         struct cryptocap *cap;
 1514         struct cryptop *crp;
 1515         int result;
 1516 
 1517         crp = (struct cryptop *)ctx;
 1518         cap = crp->crp_session->cap;
 1519         result = crypto_invoke(cap, crp, 0);
 1520         if (result == ERESTART)
 1521                 crypto_batch_enqueue(crp);
 1522 }
 1523 
 1524 /*
 1525  * Dispatch a crypto request to the appropriate crypto devices.
 1526  */
 1527 static int
 1528 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
 1529 {
 1530         int error;
 1531 
 1532         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
 1533         KASSERT(crp->crp_callback != NULL,
 1534             ("%s: crp->crp_callback == NULL", __func__));
 1535         KASSERT(crp->crp_session != NULL,
 1536             ("%s: crp->crp_session == NULL", __func__));
 1537 
 1538         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
 1539                 struct crypto_session_params csp;
 1540                 crypto_session_t nses;
 1541 
 1542                 /*
 1543                  * Driver has unregistered; migrate the session and return
 1544                  * an error to the caller so they'll resubmit the op.
 1545                  *
 1546                  * XXX: What if there are more already queued requests for this
 1547                  *      session?
 1548                  *
 1549                  * XXX: Real solution is to make sessions refcounted
 1550                  * and force callers to hold a reference when
 1551                  * assigning to crp_session.  Could maybe change
 1552                  * crypto_getreq to accept a session pointer to make
 1553                  * that work.  Alternatively, we could abandon the
 1554                  * notion of rewriting crp_session in requests forcing
 1555                  * the caller to deal with allocating a new session.
 1556                  * Perhaps provide a method to allow a crp's session to
 1557                  * be swapped that callers could use.
 1558                  */
 1559                 csp = crp->crp_session->csp;
 1560                 crypto_freesession(crp->crp_session);
 1561 
 1562                 /*
 1563                  * XXX: Key pointers may no longer be valid.  If we
 1564                  * really want to support this we need to define the
 1565                  * KPI such that 'csp' is required to be valid for the
 1566                  * duration of a session by the caller perhaps.
 1567                  *
 1568                  * XXX: If the keys have been changed this will reuse
 1569                  * the old keys.  This probably suggests making
 1570                  * rekeying more explicit and updating the key
 1571                  * pointers in 'csp' when the keys change.
 1572                  */
 1573                 if (crypto_newsession(&nses, &csp,
 1574                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
 1575                         crp->crp_session = nses;
 1576 
 1577                 crp->crp_etype = EAGAIN;
 1578                 crypto_done(crp);
 1579                 error = 0;
 1580         } else {
 1581                 /*
 1582                  * Invoke the driver to process the request.  Errors are
 1583                  * signaled by setting crp_etype before invoking the completion
 1584                  * callback.
 1585                  */
 1586                 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
 1587                 KASSERT(error == 0 || error == ERESTART,
 1588                     ("%s: invalid error %d from CRYPTODEV_PROCESS",
 1589                     __func__, error));
 1590         }
 1591         return (error);
 1592 }
 1593 
 1594 void
 1595 crypto_destroyreq(struct cryptop *crp)
 1596 {
 1597 #ifdef DIAGNOSTIC
 1598         {
 1599                 struct cryptop *crp2;
 1600                 struct crypto_ret_worker *ret_worker;
 1601 
 1602                 if (!crypto_destroyreq_check)
 1603                         return;
 1604 
 1605                 CRYPTO_Q_LOCK();
 1606                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
 1607                         KASSERT(crp2 != crp,
 1608                             ("Freeing cryptop from the crypto queue (%p).",
 1609                             crp));
 1610                 }
 1611                 CRYPTO_Q_UNLOCK();
 1612 
 1613                 FOREACH_CRYPTO_RETW(ret_worker) {
 1614                         CRYPTO_RETW_LOCK(ret_worker);
 1615                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
 1616                                 KASSERT(crp2 != crp,
 1617                                     ("Freeing cryptop from the return queue (%p).",
 1618                                     crp));
 1619                         }
 1620                         CRYPTO_RETW_UNLOCK(ret_worker);
 1621                 }
 1622         }
 1623 #endif
 1624 }
 1625 
 1626 void
 1627 crypto_freereq(struct cryptop *crp)
 1628 {
 1629         if (crp == NULL)
 1630                 return;
 1631 
 1632         crypto_destroyreq(crp);
 1633         uma_zfree(cryptop_zone, crp);
 1634 }
 1635 
 1636 void
 1637 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
 1638 {
 1639         memset(crp, 0, sizeof(*crp));
 1640         crp->crp_session = cses;
 1641 }
 1642 
 1643 struct cryptop *
 1644 crypto_getreq(crypto_session_t cses, int how)
 1645 {
 1646         struct cryptop *crp;
 1647 
 1648         MPASS(how == M_WAITOK || how == M_NOWAIT);
 1649         crp = uma_zalloc(cryptop_zone, how);
 1650         if (crp != NULL)
 1651                 crypto_initreq(crp, cses);
 1652         return (crp);
 1653 }
 1654 
 1655 /*
 1656  * Clone a crypto request, but associate it with the specified session
 1657  * rather than inheriting the session from the original request.  The
 1658  * fields describing the request buffers are copied, but not the
 1659  * opaque field or callback function.
 1660  */
 1661 struct cryptop *
 1662 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
 1663 {
 1664         struct cryptop *new;
 1665 
 1666         MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
 1667         new = crypto_getreq(cses, how);
 1668         if (new == NULL)
 1669                 return (NULL);
 1670 
 1671         memcpy(&new->crp_startcopy, &crp->crp_startcopy,
 1672             __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
 1673         return (new);
 1674 }
 1675 
 1676 /*
 1677  * Invoke the callback on behalf of the driver.
 1678  */
 1679 void
 1680 crypto_done(struct cryptop *crp)
 1681 {
 1682         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
 1683                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
 1684         crp->crp_flags |= CRYPTO_F_DONE;
 1685         if (crp->crp_etype != 0)
 1686                 CRYPTOSTAT_INC(cs_errs);
 1687 
 1688         /*
 1689          * CBIMM means unconditionally do the callback immediately;
 1690          * CBIFSYNC means do the callback immediately only if the
 1691          * operation was done synchronously.  Both are used to avoid
 1692          * doing extraneous context switches; the latter is mostly
 1693          * used with the software crypto driver.
 1694          */
 1695         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
 1696             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
 1697             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
 1698             CRYPTO_SESS_SYNC(crp->crp_session)))) {
 1699                 /*
 1700                  * Do the callback directly.  This is ok when the
 1701                  * callback routine does very little (e.g. the
 1702                  * /dev/crypto callback method just does a wakeup).
 1703                  */
 1704                 crp->crp_callback(crp);
 1705         } else {
 1706                 struct crypto_ret_worker *ret_worker;
 1707                 bool wake;
 1708 
 1709                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
 1710 
 1711                 /*
 1712                  * Normal case; queue the callback for the thread.
 1713                  */
 1714                 CRYPTO_RETW_LOCK(ret_worker);
 1715                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
 1716                         struct cryptop *tmp;
 1717 
 1718                         TAILQ_FOREACH_REVERSE(tmp,
 1719                             &ret_worker->crp_ordered_ret_q, cryptop_q,
 1720                             crp_next) {
 1721                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
 1722                                         TAILQ_INSERT_AFTER(
 1723                                             &ret_worker->crp_ordered_ret_q, tmp,
 1724                                             crp, crp_next);
 1725                                         break;
 1726                                 }
 1727                         }
 1728                         if (tmp == NULL) {
 1729                                 TAILQ_INSERT_HEAD(
 1730                                     &ret_worker->crp_ordered_ret_q, crp,
 1731                                     crp_next);
 1732                         }
 1733 
 1734                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
 1735                 } else {
 1736                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
 1737                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
 1738                             crp_next);
 1739                 }
 1740 
 1741                 if (wake)
 1742                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
 1743                 CRYPTO_RETW_UNLOCK(ret_worker);
 1744         }
 1745 }
 1746 
 1747 /*
 1748  * Terminate a thread at module unload.  The process that
 1749  * initiated this is waiting for us to signal that we're gone;
 1750  * wake it up and exit.  We use the driver table lock to insure
 1751  * we don't do the wakeup before they're waiting.  There is no
 1752  * race here because the waiter sleeps on the proc lock for the
 1753  * thread so it gets notified at the right time because of an
 1754  * extra wakeup that's done in exit1().
 1755  */
 1756 static void
 1757 crypto_finis(void *chan)
 1758 {
 1759         CRYPTO_DRIVER_LOCK();
 1760         wakeup_one(chan);
 1761         CRYPTO_DRIVER_UNLOCK();
 1762         kthread_exit();
 1763 }
 1764 
 1765 /*
 1766  * Crypto thread, dispatches crypto requests.
 1767  */
 1768 static void
 1769 crypto_dispatch_thread(void *arg __unused)
 1770 {
 1771         struct cryptop *crp, *submit;
 1772         struct cryptocap *cap;
 1773         int result, hint;
 1774 
 1775 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
 1776         fpu_kern_thread(FPU_KERN_NORMAL);
 1777 #endif
 1778 
 1779         CRYPTO_Q_LOCK();
 1780         for (;;) {
 1781                 /*
 1782                  * Find the first element in the queue that can be
 1783                  * processed and look-ahead to see if multiple ops
 1784                  * are ready for the same driver.
 1785                  */
 1786                 submit = NULL;
 1787                 hint = 0;
 1788                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
 1789                         cap = crp->crp_session->cap;
 1790                         /*
 1791                          * Driver cannot disappeared when there is an active
 1792                          * session.
 1793                          */
 1794                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 1795                             __func__, __LINE__));
 1796                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
 1797                                 /* Op needs to be migrated, process it. */
 1798                                 if (submit == NULL)
 1799                                         submit = crp;
 1800                                 break;
 1801                         }
 1802                         if (!cap->cc_qblocked) {
 1803                                 if (submit != NULL) {
 1804                                         /*
 1805                                          * We stop on finding another op,
 1806                                          * regardless whether its for the same
 1807                                          * driver or not.  We could keep
 1808                                          * searching the queue but it might be
 1809                                          * better to just use a per-driver
 1810                                          * queue instead.
 1811                                          */
 1812                                         if (submit->crp_session->cap == cap)
 1813                                                 hint = CRYPTO_HINT_MORE;
 1814                                 } else {
 1815                                         submit = crp;
 1816                                 }
 1817                                 break;
 1818                         }
 1819                 }
 1820                 if (submit != NULL) {
 1821                         TAILQ_REMOVE(&crp_q, submit, crp_next);
 1822                         cap = submit->crp_session->cap;
 1823                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 1824                             __func__, __LINE__));
 1825                         CRYPTO_Q_UNLOCK();
 1826                         result = crypto_invoke(cap, submit, hint);
 1827                         CRYPTO_Q_LOCK();
 1828                         if (result == ERESTART) {
 1829                                 /*
 1830                                  * The driver ran out of resources, mark the
 1831                                  * driver ``blocked'' for cryptop's and put
 1832                                  * the request back in the queue.  It would
 1833                                  * best to put the request back where we got
 1834                                  * it but that's hard so for now we put it
 1835                                  * at the front.  This should be ok; putting
 1836                                  * it at the end does not work.
 1837                                  */
 1838                                 cap->cc_qblocked = 1;
 1839                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
 1840                                 CRYPTOSTAT_INC(cs_blocks);
 1841                         }
 1842                 } else {
 1843                         /*
 1844                          * Nothing more to be processed.  Sleep until we're
 1845                          * woken because there are more ops to process.
 1846                          * This happens either by submission or by a driver
 1847                          * becoming unblocked and notifying us through
 1848                          * crypto_unblock.  Note that when we wakeup we
 1849                          * start processing each queue again from the
 1850                          * front. It's not clear that it's important to
 1851                          * preserve this ordering since ops may finish
 1852                          * out of order if dispatched to different devices
 1853                          * and some become blocked while others do not.
 1854                          */
 1855                         crp_sleep = 1;
 1856                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
 1857                         crp_sleep = 0;
 1858                         if (cryptotd == NULL)
 1859                                 break;
 1860                         CRYPTOSTAT_INC(cs_intrs);
 1861                 }
 1862         }
 1863         CRYPTO_Q_UNLOCK();
 1864 
 1865         crypto_finis(&crp_q);
 1866 }
 1867 
 1868 /*
 1869  * Crypto returns thread, does callbacks for processed crypto requests.
 1870  * Callbacks are done here, rather than in the crypto drivers, because
 1871  * callbacks typically are expensive and would slow interrupt handling.
 1872  */
 1873 static void
 1874 crypto_ret_thread(void *arg)
 1875 {
 1876         struct crypto_ret_worker *ret_worker = arg;
 1877         struct cryptop *crpt;
 1878 
 1879         CRYPTO_RETW_LOCK(ret_worker);
 1880         for (;;) {
 1881                 /* Harvest return q's for completed ops */
 1882                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
 1883                 if (crpt != NULL) {
 1884                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
 1885                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
 1886                                 ret_worker->reorder_cur_seq++;
 1887                         } else {
 1888                                 crpt = NULL;
 1889                         }
 1890                 }
 1891 
 1892                 if (crpt == NULL) {
 1893                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
 1894                         if (crpt != NULL)
 1895                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
 1896                 }
 1897 
 1898                 if (crpt != NULL) {
 1899                         CRYPTO_RETW_UNLOCK(ret_worker);
 1900                         /*
 1901                          * Run callbacks unlocked.
 1902                          */
 1903                         if (crpt != NULL)
 1904                                 crpt->crp_callback(crpt);
 1905                         CRYPTO_RETW_LOCK(ret_worker);
 1906                 } else {
 1907                         /*
 1908                          * Nothing more to be processed.  Sleep until we're
 1909                          * woken because there are more returns to process.
 1910                          */
 1911                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
 1912                                 "crypto_ret_wait", 0);
 1913                         if (ret_worker->td == NULL)
 1914                                 break;
 1915                         CRYPTOSTAT_INC(cs_rets);
 1916                 }
 1917         }
 1918         CRYPTO_RETW_UNLOCK(ret_worker);
 1919 
 1920         crypto_finis(&ret_worker->crp_ret_q);
 1921 }
 1922 
 1923 #ifdef DDB
 1924 static void
 1925 db_show_drivers(void)
 1926 {
 1927         int hid;
 1928 
 1929         db_printf("%12s %4s %8s %2s\n"
 1930                 , "Device"
 1931                 , "Ses"
 1932                 , "Flags"
 1933                 , "QB"
 1934         );
 1935         for (hid = 0; hid < crypto_drivers_size; hid++) {
 1936                 const struct cryptocap *cap = crypto_drivers[hid];
 1937                 if (cap == NULL)
 1938                         continue;
 1939                 db_printf("%-12s %4u %08x %2u\n"
 1940                     , device_get_nameunit(cap->cc_dev)
 1941                     , cap->cc_sessions
 1942                     , cap->cc_flags
 1943                     , cap->cc_qblocked
 1944                 );
 1945         }
 1946 }
 1947 
 1948 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
 1949 {
 1950         struct cryptop *crp;
 1951         struct crypto_ret_worker *ret_worker;
 1952 
 1953         db_show_drivers();
 1954         db_printf("\n");
 1955 
 1956         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
 1957             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
 1958             "Device", "Callback");
 1959         TAILQ_FOREACH(crp, &crp_q, crp_next) {
 1960                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
 1961                     , crp->crp_session->cap->cc_hid
 1962                     , (int) crypto_ses2caps(crp->crp_session)
 1963                     , crp->crp_olen
 1964                     , crp->crp_etype
 1965                     , crp->crp_flags
 1966                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
 1967                     , crp->crp_callback
 1968                 );
 1969         }
 1970         FOREACH_CRYPTO_RETW(ret_worker) {
 1971                 db_printf("\n%8s %4s %4s %4s %8s\n",
 1972                     "ret_worker", "HID", "Etype", "Flags", "Callback");
 1973                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
 1974                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
 1975                                 db_printf("%8td %4u %4u %04x %8p\n"
 1976                                     , CRYPTO_RETW_ID(ret_worker)
 1977                                     , crp->crp_session->cap->cc_hid
 1978                                     , crp->crp_etype
 1979                                     , crp->crp_flags
 1980                                     , crp->crp_callback
 1981                                 );
 1982                         }
 1983                 }
 1984         }
 1985 }
 1986 #endif
 1987 
 1988 int crypto_modevent(module_t mod, int type, void *unused);
 1989 
 1990 /*
 1991  * Initialization code, both for static and dynamic loading.
 1992  * Note this is not invoked with the usual MODULE_DECLARE
 1993  * mechanism but instead is listed as a dependency by the
 1994  * cryptosoft driver.  This guarantees proper ordering of
 1995  * calls on module load/unload.
 1996  */
 1997 int
 1998 crypto_modevent(module_t mod, int type, void *unused)
 1999 {
 2000         int error = EINVAL;
 2001 
 2002         switch (type) {
 2003         case MOD_LOAD:
 2004                 error = crypto_init();
 2005                 if (error == 0 && bootverbose)
 2006                         printf("crypto: <crypto core>\n");
 2007                 break;
 2008         case MOD_UNLOAD:
 2009                 /*XXX disallow if active sessions */
 2010                 error = 0;
 2011                 crypto_destroy();
 2012                 return 0;
 2013         }
 2014         return error;
 2015 }
 2016 MODULE_VERSION(crypto, 1);
 2017 MODULE_DEPEND(crypto, zlib, 1, 1, 1);

Cache object: 16b4a82f9fd0833d1473f0fa9be3d78b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.