The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/opencrypto/crypto.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $   */
    2 /*-
    3  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   24  */
   25 
   26 /*
   27  * Cryptographic Subsystem.
   28  *
   29  * This code is derived from the Openbsd Cryptographic Framework (OCF)
   30  * that has the copyright shown below.  Very little of the original
   31  * code remains.
   32  */
   33 
   34 /*-
   35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
   36  *
   37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
   38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
   39  * supported the development of this code.
   40  *
   41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
   42  *
   43  * Permission to use, copy, and modify this software with or without fee
   44  * is hereby granted, provided that this entire notice is included in
   45  * all source code copies of any software which is or includes a copy or
   46  * modification of this software.
   47  *
   48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
   49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
   50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
   51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
   52  * PURPOSE.
   53  */
   54 
   55 #define CRYPTO_TIMING                           /* enable timing support */
   56 
   57 #include "opt_ddb.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/systm.h>
   61 #include <sys/eventhandler.h>
   62 #include <sys/kernel.h>
   63 #include <sys/kthread.h>
   64 #include <sys/lock.h>
   65 #include <sys/module.h>
   66 #include <sys/malloc.h>
   67 #include <sys/proc.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/objcache.h>
   70 
   71 #include <sys/thread2.h>
   72 #include <sys/mplock2.h>
   73 
   74 #include <ddb/ddb.h>
   75 
   76 #include <opencrypto/cryptodev.h>
   77 #include <opencrypto/xform.h>                   /* XXX for M_XDATA */
   78 
   79 #include <sys/kobj.h>
   80 #include <sys/bus.h>
   81 #include "cryptodev_if.h"
   82 
   83 /*
   84  * Crypto drivers register themselves by allocating a slot in the
   85  * crypto_drivers table with crypto_get_driverid() and then registering
   86  * each algorithm they support with crypto_register() and crypto_kregister().
   87  */
   88 static  struct lock crypto_drivers_lock;        /* lock on driver table */
   89 #define CRYPTO_DRIVER_LOCK()    lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
   90 #define CRYPTO_DRIVER_UNLOCK()  lockmgr(&crypto_drivers_lock, LK_RELEASE)
   91 #define CRYPTO_DRIVER_ASSERT()  KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
   92 
   93 /*
   94  * Crypto device/driver capabilities structure.
   95  *
   96  * Synchronization:
   97  * (d) - protected by CRYPTO_DRIVER_LOCK()
   98  * (q) - protected by CRYPTO_Q_LOCK()
   99  * Not tagged fields are read-only.
  100  */
  101 struct cryptocap {
  102         device_t        cc_dev;                 /* (d) device/driver */
  103         u_int32_t       cc_sessions;            /* (d) # of sessions */
  104         u_int32_t       cc_koperations;         /* (d) # os asym operations */
  105         /*
  106          * Largest possible operator length (in bits) for each type of
  107          * encryption algorithm. XXX not used
  108          */
  109         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
  110         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
  111         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
  112 
  113         int             cc_flags;               /* (d) flags */
  114 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
  115         int             cc_qblocked;            /* (q) symmetric q blocked */
  116         int             cc_kqblocked;           /* (q) asymmetric q blocked */
  117 };
  118 static  struct cryptocap *crypto_drivers = NULL;
  119 static  int crypto_drivers_num = 0;
  120 
  121 typedef struct crypto_tdinfo {
  122         TAILQ_HEAD(,cryptop)    crp_q;          /* request queues */
  123         TAILQ_HEAD(,cryptkop)   crp_kq;
  124         thread_t                crp_td;
  125         struct lock             crp_lock;
  126         int                     crp_sleep;
  127 } *crypto_tdinfo_t;
  128 
  129 /*
  130  * There are two queues for crypto requests; one for symmetric (e.g.
  131  * cipher) operations and one for asymmetric (e.g. MOD) operations.
  132  * See below for how synchronization is handled.
  133  * A single lock is used to lock access to both queues.  We could
  134  * have one per-queue but having one simplifies handling of block/unblock
  135  * operations.
  136  */
  137 static  struct crypto_tdinfo tdinfo_array[MAXCPU];
  138 
  139 #define CRYPTO_Q_LOCK(tdinfo)   lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
  140 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
  141 
  142 /*
  143  * There are two queues for processing completed crypto requests; one
  144  * for the symmetric and one for the asymmetric ops.  We only need one
  145  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
  146  * lock is used to lock access to both queues.  Note that this lock
  147  * must be separate from the lock on request queues to insure driver
  148  * callbacks don't generate lock order reversals.
  149  */
  150 static  TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queues */
  151 static  TAILQ_HEAD(,cryptkop) crp_ret_kq;
  152 static  struct lock crypto_ret_q_lock;
  153 #define CRYPTO_RETQ_LOCK()      lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
  154 #define CRYPTO_RETQ_UNLOCK()    lockmgr(&crypto_ret_q_lock, LK_RELEASE)
  155 #define CRYPTO_RETQ_EMPTY()     (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
  156 
  157 /*
  158  * Crypto op and desciptor data structures are allocated
  159  * from separate object caches.
  160  */
  161 static struct objcache *cryptop_oc, *cryptodesc_oc;
  162 
  163 static MALLOC_DEFINE(M_CRYPTO_OP, "crypto op", "crypto op");
  164 static MALLOC_DEFINE(M_CRYPTO_DESC, "crypto desc", "crypto desc");
  165 
  166 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
  167 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
  168            &crypto_userasymcrypto, 0,
  169            "Enable/disable user-mode access to asymmetric crypto support");
  170 int     crypto_devallowsoft = 0;        /* only use hardware crypto for asym */
  171 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
  172            &crypto_devallowsoft, 0,
  173            "Enable/disable use of software asym crypto support");
  174 int     crypto_altdispatch = 0;         /* dispatch to alternative cpu */
  175 SYSCTL_INT(_kern, OID_AUTO, cryptoaltdispatch, CTLFLAG_RW,
  176            &crypto_altdispatch, 0,
  177            "Do not queue crypto op on current cpu");
  178 
  179 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
  180 
  181 static  void crypto_proc(void *dummy);
  182 static  void crypto_ret_proc(void *dummy);
  183 static  struct thread *cryptoretthread;
  184 static  void crypto_destroy(void);
  185 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
  186 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
  187 
  188 static struct cryptostats cryptostats;
  189 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
  190             cryptostats, "Crypto system statistics");
  191 
  192 #ifdef CRYPTO_TIMING
  193 static  int crypto_timing = 0;
  194 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
  195            &crypto_timing, 0, "Enable/disable crypto timing support");
  196 #endif
  197 
  198 static int
  199 crypto_init(void)
  200 {
  201         crypto_tdinfo_t tdinfo;
  202         int error;
  203         int n;
  204 
  205         lockinit(&crypto_drivers_lock, "crypto driver table", 0, LK_CANRECURSE);
  206 
  207         TAILQ_INIT(&crp_ret_q);
  208         TAILQ_INIT(&crp_ret_kq);
  209         lockinit(&crypto_ret_q_lock, "crypto return queues", 0, LK_CANRECURSE);
  210 
  211         cryptop_oc = objcache_create_simple(M_CRYPTO_OP, sizeof(struct cryptop));
  212         cryptodesc_oc = objcache_create_simple(M_CRYPTO_DESC,
  213                                 sizeof(struct cryptodesc));
  214         if (cryptodesc_oc == NULL || cryptop_oc == NULL) {
  215                 kprintf("crypto_init: cannot setup crypto caches\n");
  216                 error = ENOMEM;
  217                 goto bad;
  218         }
  219 
  220         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
  221         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
  222                                  M_CRYPTO_DATA, M_WAITOK | M_ZERO);
  223 
  224         for (n = 0; n < ncpus; ++n) {
  225                 tdinfo = &tdinfo_array[n];
  226                 TAILQ_INIT(&tdinfo->crp_q);
  227                 TAILQ_INIT(&tdinfo->crp_kq);
  228                 lockinit(&tdinfo->crp_lock, "crypto op queues",
  229                          0, LK_CANRECURSE);
  230                 kthread_create_cpu(crypto_proc, tdinfo, &tdinfo->crp_td,
  231                                    n, "crypto %d", n);
  232         }
  233         kthread_create(crypto_ret_proc, NULL,
  234                        &cryptoretthread, "crypto returns");
  235         return 0;
  236 bad:
  237         crypto_destroy();
  238         return error;
  239 }
  240 
  241 /*
  242  * Signal a crypto thread to terminate.  We use the driver
  243  * table lock to synchronize the sleep/wakeups so that we
  244  * are sure the threads have terminated before we release
  245  * the data structures they use.  See crypto_finis below
  246  * for the other half of this song-and-dance.
  247  */
  248 static void
  249 crypto_terminate(struct thread **tp, void *q)
  250 {
  251         struct thread *t;
  252 
  253         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
  254         t = *tp;
  255         *tp = NULL;
  256         if (t) {
  257                 kprintf("crypto_terminate: start\n");
  258                 wakeup_one(q);
  259                 crit_enter();
  260                 tsleep_interlock(t, 0);
  261                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
  262                 crit_exit();
  263                 tsleep(t, PINTERLOCKED, "crypto_destroy", 0);
  264                 CRYPTO_DRIVER_LOCK();
  265                 kprintf("crypto_terminate: end\n");
  266         }
  267 }
  268 
  269 static void
  270 crypto_destroy(void)
  271 {
  272         crypto_tdinfo_t tdinfo;
  273         int n;
  274 
  275         /*
  276          * Terminate any crypto threads.
  277          */
  278         CRYPTO_DRIVER_LOCK();
  279         for (n = 0; n < ncpus; ++n) {
  280                 tdinfo = &tdinfo_array[n];
  281                 crypto_terminate(&tdinfo->crp_td, &tdinfo->crp_q);
  282                 lockuninit(&tdinfo->crp_lock);
  283         }
  284         crypto_terminate(&cryptoretthread, &crp_ret_q);
  285         CRYPTO_DRIVER_UNLOCK();
  286 
  287         /* XXX flush queues??? */
  288 
  289         /*
  290          * Reclaim dynamically allocated resources.
  291          */
  292         if (crypto_drivers != NULL)
  293                 kfree(crypto_drivers, M_CRYPTO_DATA);
  294 
  295         if (cryptodesc_oc != NULL)
  296                 objcache_destroy(cryptodesc_oc);
  297         if (cryptop_oc != NULL)
  298                 objcache_destroy(cryptop_oc);
  299         lockuninit(&crypto_ret_q_lock);
  300         lockuninit(&crypto_drivers_lock);
  301 }
  302 
  303 static struct cryptocap *
  304 crypto_checkdriver(u_int32_t hid)
  305 {
  306         if (crypto_drivers == NULL)
  307                 return NULL;
  308         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
  309 }
  310 
  311 /*
  312  * Compare a driver's list of supported algorithms against another
  313  * list; return non-zero if all algorithms are supported.
  314  */
  315 static int
  316 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
  317 {
  318         const struct cryptoini *cr;
  319 
  320         /* See if all the algorithms are supported. */
  321         for (cr = cri; cr; cr = cr->cri_next)
  322                 if (cap->cc_alg[cr->cri_alg] == 0)
  323                         return 0;
  324         return 1;
  325 }
  326 
  327 /*
  328  * Select a driver for a new session that supports the specified
  329  * algorithms and, optionally, is constrained according to the flags.
  330  * The algorithm we use here is pretty stupid; just use the
  331  * first driver that supports all the algorithms we need. If there
  332  * are multiple drivers we choose the driver with the fewest active
  333  * sessions.  We prefer hardware-backed drivers to software ones.
  334  *
  335  * XXX We need more smarts here (in real life too, but that's
  336  * XXX another story altogether).
  337  */
  338 static struct cryptocap *
  339 crypto_select_driver(const struct cryptoini *cri, int flags)
  340 {
  341         struct cryptocap *cap, *best;
  342         int match, hid;
  343 
  344         CRYPTO_DRIVER_ASSERT();
  345 
  346         /*
  347          * Look first for hardware crypto devices if permitted.
  348          */
  349         if (flags & CRYPTOCAP_F_HARDWARE)
  350                 match = CRYPTOCAP_F_HARDWARE;
  351         else
  352                 match = CRYPTOCAP_F_SOFTWARE;
  353         best = NULL;
  354 again:
  355         for (hid = 0; hid < crypto_drivers_num; hid++) {
  356                 cap = &crypto_drivers[hid];
  357                 /*
  358                  * If it's not initialized, is in the process of
  359                  * going away, or is not appropriate (hardware
  360                  * or software based on match), then skip.
  361                  */
  362                 if (cap->cc_dev == NULL ||
  363                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
  364                     (cap->cc_flags & match) == 0)
  365                         continue;
  366 
  367                 /* verify all the algorithms are supported. */
  368                 if (driver_suitable(cap, cri)) {
  369                         if (best == NULL ||
  370                             cap->cc_sessions < best->cc_sessions)
  371                                 best = cap;
  372                 }
  373         }
  374         if (best != NULL)
  375                 return best;
  376         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
  377                 /* sort of an Algol 68-style for loop */
  378                 match = CRYPTOCAP_F_SOFTWARE;
  379                 goto again;
  380         }
  381         return best;
  382 }
  383 
  384 /*
  385  * Create a new session.  The crid argument specifies a crypto
  386  * driver to use or constraints on a driver to select (hardware
  387  * only, software only, either).  Whatever driver is selected
  388  * must be capable of the requested crypto algorithms.
  389  */
  390 int
  391 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
  392 {
  393         struct cryptocap *cap;
  394         u_int32_t hid, lid;
  395         int err;
  396 
  397         CRYPTO_DRIVER_LOCK();
  398         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  399                 /*
  400                  * Use specified driver; verify it is capable.
  401                  */
  402                 cap = crypto_checkdriver(crid);
  403                 if (cap != NULL && !driver_suitable(cap, cri))
  404                         cap = NULL;
  405         } else {
  406                 /*
  407                  * No requested driver; select based on crid flags.
  408                  */
  409                 cap = crypto_select_driver(cri, crid);
  410                 /*
  411                  * if NULL then can't do everything in one session.
  412                  * XXX Fix this. We need to inject a "virtual" session
  413                  * XXX layer right about here.
  414                  */
  415         }
  416         if (cap != NULL) {
  417                 /* Call the driver initialization routine. */
  418                 hid = cap - crypto_drivers;
  419                 lid = hid;              /* Pass the driver ID. */
  420                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
  421                 if (err == 0) {
  422                         (*sid) = (cap->cc_flags & 0xff000000)
  423                                | (hid & 0x00ffffff);
  424                         (*sid) <<= 32;
  425                         (*sid) |= (lid & 0xffffffff);
  426                         cap->cc_sessions++;
  427                 }
  428         } else
  429                 err = EINVAL;
  430         CRYPTO_DRIVER_UNLOCK();
  431         return err;
  432 }
  433 
  434 static void
  435 crypto_remove(struct cryptocap *cap)
  436 {
  437 
  438         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
  439         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
  440                 bzero(cap, sizeof(*cap));
  441 }
  442 
  443 /*
  444  * Delete an existing session (or a reserved session on an unregistered
  445  * driver).
  446  */
  447 int
  448 crypto_freesession(u_int64_t sid)
  449 {
  450         struct cryptocap *cap;
  451         u_int32_t hid;
  452         int err;
  453 
  454         CRYPTO_DRIVER_LOCK();
  455 
  456         if (crypto_drivers == NULL) {
  457                 err = EINVAL;
  458                 goto done;
  459         }
  460 
  461         /* Determine two IDs. */
  462         hid = CRYPTO_SESID2HID(sid);
  463 
  464         if (hid >= crypto_drivers_num) {
  465                 err = ENOENT;
  466                 goto done;
  467         }
  468         cap = &crypto_drivers[hid];
  469 
  470         if (cap->cc_sessions)
  471                 cap->cc_sessions--;
  472 
  473         /* Call the driver cleanup routine, if available. */
  474         err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
  475 
  476         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
  477                 crypto_remove(cap);
  478 
  479 done:
  480         CRYPTO_DRIVER_UNLOCK();
  481         return err;
  482 }
  483 
  484 /*
  485  * Return an unused driver id.  Used by drivers prior to registering
  486  * support for the algorithms they handle.
  487  */
  488 int32_t
  489 crypto_get_driverid(device_t dev, int flags)
  490 {
  491         struct cryptocap *newdrv;
  492         int i;
  493 
  494         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  495                 kprintf("%s: no flags specified when registering driver\n",
  496                     device_get_nameunit(dev));
  497                 return -1;
  498         }
  499 
  500         CRYPTO_DRIVER_LOCK();
  501 
  502         for (i = 0; i < crypto_drivers_num; i++) {
  503                 if (crypto_drivers[i].cc_dev == NULL &&
  504                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
  505                         break;
  506                 }
  507         }
  508 
  509         /* Out of entries, allocate some more. */
  510         if (i == crypto_drivers_num) {
  511                 /* Be careful about wrap-around. */
  512                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
  513                         CRYPTO_DRIVER_UNLOCK();
  514                         kprintf("crypto: driver count wraparound!\n");
  515                         return -1;
  516                 }
  517 
  518                 newdrv = kmalloc(2 * crypto_drivers_num *
  519                                  sizeof(struct cryptocap),
  520                                  M_CRYPTO_DATA, M_WAITOK|M_ZERO);
  521 
  522                 bcopy(crypto_drivers, newdrv,
  523                     crypto_drivers_num * sizeof(struct cryptocap));
  524 
  525                 crypto_drivers_num *= 2;
  526 
  527                 kfree(crypto_drivers, M_CRYPTO_DATA);
  528                 crypto_drivers = newdrv;
  529         }
  530 
  531         /* NB: state is zero'd on free */
  532         crypto_drivers[i].cc_sessions = 1;      /* Mark */
  533         crypto_drivers[i].cc_dev = dev;
  534         crypto_drivers[i].cc_flags = flags;
  535         if (bootverbose)
  536                 kprintf("crypto: assign %s driver id %u, flags %u\n",
  537                     device_get_nameunit(dev), i, flags);
  538 
  539         CRYPTO_DRIVER_UNLOCK();
  540 
  541         return i;
  542 }
  543 
  544 /*
  545  * Lookup a driver by name.  We match against the full device
  546  * name and unit, and against just the name.  The latter gives
  547  * us a simple widlcarding by device name.  On success return the
  548  * driver/hardware identifier; otherwise return -1.
  549  */
  550 int
  551 crypto_find_driver(const char *match)
  552 {
  553         int i, len = strlen(match);
  554 
  555         CRYPTO_DRIVER_LOCK();
  556         for (i = 0; i < crypto_drivers_num; i++) {
  557                 device_t dev = crypto_drivers[i].cc_dev;
  558                 if (dev == NULL ||
  559                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
  560                         continue;
  561                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
  562                     strncmp(match, device_get_name(dev), len) == 0)
  563                         break;
  564         }
  565         CRYPTO_DRIVER_UNLOCK();
  566         return i < crypto_drivers_num ? i : -1;
  567 }
  568 
  569 /*
  570  * Return the device_t for the specified driver or NULL
  571  * if the driver identifier is invalid.
  572  */
  573 device_t
  574 crypto_find_device_byhid(int hid)
  575 {
  576         struct cryptocap *cap = crypto_checkdriver(hid);
  577         return cap != NULL ? cap->cc_dev : NULL;
  578 }
  579 
  580 /*
  581  * Return the device/driver capabilities.
  582  */
  583 int
  584 crypto_getcaps(int hid)
  585 {
  586         struct cryptocap *cap = crypto_checkdriver(hid);
  587         return cap != NULL ? cap->cc_flags : 0;
  588 }
  589 
  590 /*
  591  * Register support for a key-related algorithm.  This routine
  592  * is called once for each algorithm supported a driver.
  593  */
  594 int
  595 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
  596 {
  597         struct cryptocap *cap;
  598         int err;
  599 
  600         CRYPTO_DRIVER_LOCK();
  601 
  602         cap = crypto_checkdriver(driverid);
  603         if (cap != NULL &&
  604             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
  605                 /*
  606                  * XXX Do some performance testing to determine placing.
  607                  * XXX We probably need an auxiliary data structure that
  608                  * XXX describes relative performances.
  609                  */
  610 
  611                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
  612                 if (bootverbose)
  613                         kprintf("crypto: %s registers key alg %u flags %u\n"
  614                                 , device_get_nameunit(cap->cc_dev)
  615                                 , kalg
  616                                 , flags
  617                         );
  618 
  619                 err = 0;
  620         } else
  621                 err = EINVAL;
  622 
  623         CRYPTO_DRIVER_UNLOCK();
  624         return err;
  625 }
  626 
  627 /*
  628  * Register support for a non-key-related algorithm.  This routine
  629  * is called once for each such algorithm supported by a driver.
  630  */
  631 int
  632 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
  633                 u_int32_t flags)
  634 {
  635         struct cryptocap *cap;
  636         int err;
  637 
  638         CRYPTO_DRIVER_LOCK();
  639 
  640         cap = crypto_checkdriver(driverid);
  641         /* NB: algorithms are in the range [1..max] */
  642         if (cap != NULL &&
  643             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
  644                 /*
  645                  * XXX Do some performance testing to determine placing.
  646                  * XXX We probably need an auxiliary data structure that
  647                  * XXX describes relative performances.
  648                  */
  649 
  650                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
  651                 cap->cc_max_op_len[alg] = maxoplen;
  652                 if (bootverbose)
  653                         kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
  654                                 , device_get_nameunit(cap->cc_dev)
  655                                 , alg
  656                                 , flags
  657                                 , maxoplen
  658                         );
  659                 cap->cc_sessions = 0;           /* Unmark */
  660                 err = 0;
  661         } else
  662                 err = EINVAL;
  663 
  664         CRYPTO_DRIVER_UNLOCK();
  665         return err;
  666 }
  667 
  668 static void
  669 driver_finis(struct cryptocap *cap)
  670 {
  671         u_int32_t ses, kops;
  672 
  673         CRYPTO_DRIVER_ASSERT();
  674 
  675         ses = cap->cc_sessions;
  676         kops = cap->cc_koperations;
  677         bzero(cap, sizeof(*cap));
  678         if (ses != 0 || kops != 0) {
  679                 /*
  680                  * If there are pending sessions,
  681                  * just mark as invalid.
  682                  */
  683                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
  684                 cap->cc_sessions = ses;
  685                 cap->cc_koperations = kops;
  686         }
  687 }
  688 
  689 /*
  690  * Unregister a crypto driver. If there are pending sessions using it,
  691  * leave enough information around so that subsequent calls using those
  692  * sessions will correctly detect the driver has been unregistered and
  693  * reroute requests.
  694  */
  695 int
  696 crypto_unregister(u_int32_t driverid, int alg)
  697 {
  698         struct cryptocap *cap;
  699         int i, err;
  700 
  701         CRYPTO_DRIVER_LOCK();
  702         cap = crypto_checkdriver(driverid);
  703         if (cap != NULL &&
  704             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
  705             cap->cc_alg[alg] != 0) {
  706                 cap->cc_alg[alg] = 0;
  707                 cap->cc_max_op_len[alg] = 0;
  708 
  709                 /* Was this the last algorithm ? */
  710                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) {
  711                         if (cap->cc_alg[i] != 0)
  712                                 break;
  713                 }
  714 
  715                 if (i == CRYPTO_ALGORITHM_MAX + 1)
  716                         driver_finis(cap);
  717                 err = 0;
  718         } else {
  719                 err = EINVAL;
  720         }
  721         CRYPTO_DRIVER_UNLOCK();
  722 
  723         return err;
  724 }
  725 
  726 /*
  727  * Unregister all algorithms associated with a crypto driver.
  728  * If there are pending sessions using it, leave enough information
  729  * around so that subsequent calls using those sessions will
  730  * correctly detect the driver has been unregistered and reroute
  731  * requests.
  732  */
  733 int
  734 crypto_unregister_all(u_int32_t driverid)
  735 {
  736         struct cryptocap *cap;
  737         int err;
  738 
  739         CRYPTO_DRIVER_LOCK();
  740         cap = crypto_checkdriver(driverid);
  741         if (cap != NULL) {
  742                 driver_finis(cap);
  743                 err = 0;
  744         } else {
  745                 err = EINVAL;
  746         }
  747         CRYPTO_DRIVER_UNLOCK();
  748 
  749         return err;
  750 }
  751 
  752 /*
  753  * Clear blockage on a driver.  The what parameter indicates whether
  754  * the driver is now ready for cryptop's and/or cryptokop's.
  755  */
  756 int
  757 crypto_unblock(u_int32_t driverid, int what)
  758 {
  759         crypto_tdinfo_t tdinfo;
  760         struct cryptocap *cap;
  761         int err;
  762         int n;
  763 
  764         CRYPTO_DRIVER_LOCK();
  765         cap = crypto_checkdriver(driverid);
  766         if (cap != NULL) {
  767                 if (what & CRYPTO_SYMQ)
  768                         cap->cc_qblocked = 0;
  769                 if (what & CRYPTO_ASYMQ)
  770                         cap->cc_kqblocked = 0;
  771                 for (n = 0; n < ncpus; ++n) {
  772                         tdinfo = &tdinfo_array[n];
  773                         CRYPTO_Q_LOCK(tdinfo);
  774                         if (tdinfo[n].crp_sleep)
  775                                 wakeup_one(&tdinfo->crp_q);
  776                         CRYPTO_Q_UNLOCK(tdinfo);
  777                 }
  778                 err = 0;
  779         } else {
  780                 err = EINVAL;
  781         }
  782         CRYPTO_DRIVER_UNLOCK();
  783 
  784         return err;
  785 }
  786 
  787 static volatile int dispatch_rover;
  788 
  789 /*
  790  * Add a crypto request to a queue, to be processed by the kernel thread.
  791  */
  792 int
  793 crypto_dispatch(struct cryptop *crp)
  794 {
  795         crypto_tdinfo_t tdinfo;
  796         struct cryptocap *cap;
  797         u_int32_t hid;
  798         int result;
  799         int n;
  800 
  801         cryptostats.cs_ops++;
  802 
  803 #ifdef CRYPTO_TIMING
  804         if (crypto_timing)
  805                 nanouptime(&crp->crp_tstamp);
  806 #endif
  807 
  808         hid = CRYPTO_SESID2HID(crp->crp_sid);
  809 
  810         /*
  811          * Dispatch the crypto op directly to the driver if the caller
  812          * marked the request to be processed immediately or this is
  813          * a synchronous callback chain occuring from within a crypto
  814          * processing thread.
  815          *
  816          * Fall through to queueing the driver is blocked.
  817          */
  818         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0 ||
  819             curthread->td_type == TD_TYPE_CRYPTO) {
  820                 cap = crypto_checkdriver(hid);
  821                 /* Driver cannot disappeared when there is an active session. */
  822                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
  823                 if (!cap->cc_qblocked) {
  824                         result = crypto_invoke(cap, crp, 0);
  825                         if (result != ERESTART)
  826                                 return (result);
  827                         /*
  828                          * The driver ran out of resources, put the request on
  829                          * the queue.
  830                          */
  831                 }
  832         }
  833 
  834         /*
  835          * Dispatch to a cpu for action if possible.  Dispatch to a different
  836          * cpu than the current cpu.
  837          */
  838         if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SMP) {
  839                 n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
  840                 if (crypto_altdispatch && mycpu->gd_cpuid == n)
  841                         ++n;
  842                 n = n % ncpus;
  843         } else {
  844                 n = 0;
  845         }
  846         tdinfo = &tdinfo_array[n];
  847 
  848         CRYPTO_Q_LOCK(tdinfo);
  849         TAILQ_INSERT_TAIL(&tdinfo->crp_q, crp, crp_next);
  850         if (tdinfo->crp_sleep)
  851                 wakeup_one(&tdinfo->crp_q);
  852         CRYPTO_Q_UNLOCK(tdinfo);
  853         return 0;
  854 }
  855 
  856 /*
  857  * Add an asymetric crypto request to a queue,
  858  * to be processed by the kernel thread.
  859  */
  860 int
  861 crypto_kdispatch(struct cryptkop *krp)
  862 {
  863         crypto_tdinfo_t tdinfo;
  864         int error;
  865         int n;
  866 
  867         cryptostats.cs_kops++;
  868 
  869 #if 0
  870         /* not sure how to test F_SMP here */
  871         n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
  872         n = n % ncpus;
  873 #endif
  874         n = 0;
  875         tdinfo = &tdinfo_array[n];
  876 
  877         error = crypto_kinvoke(krp, krp->krp_crid);
  878 
  879         if (error == ERESTART) {
  880                 CRYPTO_Q_LOCK(tdinfo);
  881                 TAILQ_INSERT_TAIL(&tdinfo->crp_kq, krp, krp_next);
  882                 if (tdinfo->crp_sleep)
  883                         wakeup_one(&tdinfo->crp_q);
  884                 CRYPTO_Q_UNLOCK(tdinfo);
  885                 error = 0;
  886         }
  887         return error;
  888 }
  889 
  890 /*
  891  * Verify a driver is suitable for the specified operation.
  892  */
  893 static __inline int
  894 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
  895 {
  896         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
  897 }
  898 
  899 /*
  900  * Select a driver for an asym operation.  The driver must
  901  * support the necessary algorithm.  The caller can constrain
  902  * which device is selected with the flags parameter.  The
  903  * algorithm we use here is pretty stupid; just use the first
  904  * driver that supports the algorithms we need. If there are
  905  * multiple suitable drivers we choose the driver with the
  906  * fewest active operations.  We prefer hardware-backed
  907  * drivers to software ones when either may be used.
  908  */
  909 static struct cryptocap *
  910 crypto_select_kdriver(const struct cryptkop *krp, int flags)
  911 {
  912         struct cryptocap *cap, *best;
  913         int match, hid;
  914 
  915         CRYPTO_DRIVER_ASSERT();
  916 
  917         /*
  918          * Look first for hardware crypto devices if permitted.
  919          */
  920         if (flags & CRYPTOCAP_F_HARDWARE)
  921                 match = CRYPTOCAP_F_HARDWARE;
  922         else
  923                 match = CRYPTOCAP_F_SOFTWARE;
  924         best = NULL;
  925 again:
  926         for (hid = 0; hid < crypto_drivers_num; hid++) {
  927                 cap = &crypto_drivers[hid];
  928                 /*
  929                  * If it's not initialized, is in the process of
  930                  * going away, or is not appropriate (hardware
  931                  * or software based on match), then skip.
  932                  */
  933                 if (cap->cc_dev == NULL ||
  934                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
  935                     (cap->cc_flags & match) == 0)
  936                         continue;
  937 
  938                 /* verify all the algorithms are supported. */
  939                 if (kdriver_suitable(cap, krp)) {
  940                         if (best == NULL ||
  941                             cap->cc_koperations < best->cc_koperations)
  942                                 best = cap;
  943                 }
  944         }
  945         if (best != NULL)
  946                 return best;
  947         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
  948                 /* sort of an Algol 68-style for loop */
  949                 match = CRYPTOCAP_F_SOFTWARE;
  950                 goto again;
  951         }
  952         return best;
  953 }
  954 
  955 /*
  956  * Dispatch an assymetric crypto request.
  957  */
  958 static int
  959 crypto_kinvoke(struct cryptkop *krp, int crid)
  960 {
  961         struct cryptocap *cap = NULL;
  962         int error;
  963 
  964         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
  965         KASSERT(krp->krp_callback != NULL,
  966             ("%s: krp->crp_callback == NULL", __func__));
  967 
  968         CRYPTO_DRIVER_LOCK();
  969         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  970                 cap = crypto_checkdriver(crid);
  971                 if (cap != NULL) {
  972                         /*
  973                          * Driver present, it must support the necessary
  974                          * algorithm and, if s/w drivers are excluded,
  975                          * it must be registered as hardware-backed.
  976                          */
  977                         if (!kdriver_suitable(cap, krp) ||
  978                             (!crypto_devallowsoft &&
  979                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
  980                                 cap = NULL;
  981                 }
  982         } else {
  983                 /*
  984                  * No requested driver; select based on crid flags.
  985                  */
  986                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
  987                         crid &= ~CRYPTOCAP_F_SOFTWARE;
  988                 cap = crypto_select_kdriver(krp, crid);
  989         }
  990         if (cap != NULL && !cap->cc_kqblocked) {
  991                 krp->krp_hid = cap - crypto_drivers;
  992                 cap->cc_koperations++;
  993                 CRYPTO_DRIVER_UNLOCK();
  994                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
  995                 CRYPTO_DRIVER_LOCK();
  996                 if (error == ERESTART) {
  997                         cap->cc_koperations--;
  998                         CRYPTO_DRIVER_UNLOCK();
  999                         return (error);
 1000                 }
 1001         } else {
 1002                 /*
 1003                  * NB: cap is !NULL if device is blocked; in
 1004                  *     that case return ERESTART so the operation
 1005                  *     is resubmitted if possible.
 1006                  */
 1007                 error = (cap == NULL) ? ENODEV : ERESTART;
 1008         }
 1009         CRYPTO_DRIVER_UNLOCK();
 1010 
 1011         if (error) {
 1012                 krp->krp_status = error;
 1013                 crypto_kdone(krp);
 1014         }
 1015         return 0;
 1016 }
 1017 
 1018 #ifdef CRYPTO_TIMING
 1019 static void
 1020 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
 1021 {
 1022         struct timespec now, t;
 1023 
 1024         nanouptime(&now);
 1025         t.tv_sec = now.tv_sec - tv->tv_sec;
 1026         t.tv_nsec = now.tv_nsec - tv->tv_nsec;
 1027         if (t.tv_nsec < 0) {
 1028                 t.tv_sec--;
 1029                 t.tv_nsec += 1000000000;
 1030         }
 1031         timespecadd(&ts->acc, &t);
 1032         if (timespeccmp(&t, &ts->min, <))
 1033                 ts->min = t;
 1034         if (timespeccmp(&t, &ts->max, >))
 1035                 ts->max = t;
 1036         ts->count++;
 1037 
 1038         *tv = now;
 1039 }
 1040 #endif
 1041 
 1042 /*
 1043  * Dispatch a crypto request to the appropriate crypto devices.
 1044  */
 1045 static int
 1046 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
 1047 {
 1048 
 1049         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
 1050         KASSERT(crp->crp_callback != NULL,
 1051             ("%s: crp->crp_callback == NULL", __func__));
 1052         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
 1053 
 1054 #ifdef CRYPTO_TIMING
 1055         if (crypto_timing)
 1056                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
 1057 #endif
 1058         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
 1059                 struct cryptodesc *crd;
 1060                 u_int64_t nid;
 1061 
 1062                 /*
 1063                  * Driver has unregistered; migrate the session and return
 1064                  * an error to the caller so they'll resubmit the op.
 1065                  *
 1066                  * XXX: What if there are more already queued requests for this
 1067                  *      session?
 1068                  */
 1069                 crypto_freesession(crp->crp_sid);
 1070 
 1071                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
 1072                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
 1073 
 1074                 /* XXX propagate flags from initial session? */
 1075                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
 1076                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
 1077                         crp->crp_sid = nid;
 1078 
 1079                 crp->crp_etype = EAGAIN;
 1080                 crypto_done(crp);
 1081                 return 0;
 1082         } else {
 1083                 /*
 1084                  * Invoke the driver to process the request.
 1085                  */
 1086                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
 1087         }
 1088 }
 1089 
 1090 /*
 1091  * Release a set of crypto descriptors.
 1092  */
 1093 void
 1094 crypto_freereq(struct cryptop *crp)
 1095 {
 1096         struct cryptodesc *crd;
 1097 #ifdef DIAGNOSTIC
 1098         crypto_tdinfo_t tdinfo;
 1099         struct cryptop *crp2;
 1100         int n;
 1101 #endif
 1102 
 1103         if (crp == NULL)
 1104                 return;
 1105 
 1106 #ifdef DIAGNOSTIC
 1107         for (n = 0; n < ncpus; ++n) {
 1108                 tdinfo = &tdinfo_array[n];
 1109 
 1110                 CRYPTO_Q_LOCK(tdinfo);
 1111                 TAILQ_FOREACH(crp2, &tdinfo->crp_q, crp_next) {
 1112                         KASSERT(crp2 != crp,
 1113                             ("Freeing cryptop from the crypto queue (%p).",
 1114                             crp));
 1115                 }
 1116                 CRYPTO_Q_UNLOCK(tdinfo);
 1117         }
 1118         CRYPTO_RETQ_LOCK();
 1119         TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
 1120                 KASSERT(crp2 != crp,
 1121                     ("Freeing cryptop from the return queue (%p).",
 1122                     crp));
 1123         }
 1124         CRYPTO_RETQ_UNLOCK();
 1125 #endif
 1126 
 1127         while ((crd = crp->crp_desc) != NULL) {
 1128                 crp->crp_desc = crd->crd_next;
 1129                 objcache_put(cryptodesc_oc, crd);
 1130         }
 1131         objcache_put(cryptop_oc, crp);
 1132 }
 1133 
 1134 /*
 1135  * Acquire a set of crypto descriptors.
 1136  */
 1137 struct cryptop *
 1138 crypto_getreq(int num)
 1139 {
 1140         struct cryptodesc *crd;
 1141         struct cryptop *crp;
 1142 
 1143         crp = objcache_get(cryptop_oc, M_WAITOK);
 1144         if (crp != NULL) {
 1145                 bzero(crp, sizeof (*crp));
 1146                 while (num--) {
 1147                         crd = objcache_get(cryptodesc_oc, M_WAITOK);
 1148                         if (crd == NULL) {
 1149                                 crypto_freereq(crp);
 1150                                 return NULL;
 1151                         }
 1152                         bzero(crd, sizeof (*crd));
 1153 
 1154                         crd->crd_next = crp->crp_desc;
 1155                         crp->crp_desc = crd;
 1156                 }
 1157         }
 1158         return crp;
 1159 }
 1160 
 1161 /*
 1162  * Invoke the callback on behalf of the driver.
 1163  */
 1164 void
 1165 crypto_done(struct cryptop *crp)
 1166 {
 1167         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
 1168                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
 1169         crp->crp_flags |= CRYPTO_F_DONE;
 1170         if (crp->crp_etype != 0)
 1171                 cryptostats.cs_errs++;
 1172 #ifdef CRYPTO_TIMING
 1173         if (crypto_timing)
 1174                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
 1175 #endif
 1176         /*
 1177          * CBIMM means unconditionally do the callback immediately;
 1178          * CBIFSYNC means do the callback immediately only if the
 1179          * operation was done synchronously.  Both are used to avoid
 1180          * doing extraneous context switches; the latter is mostly
 1181          * used with the software crypto driver.
 1182          */
 1183         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
 1184             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
 1185              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
 1186                 /*
 1187                  * Do the callback directly.  This is ok when the
 1188                  * callback routine does very little (e.g. the
 1189                  * /dev/crypto callback method just does a wakeup).
 1190                  */
 1191 #ifdef CRYPTO_TIMING
 1192                 if (crypto_timing) {
 1193                         /*
 1194                          * NB: We must copy the timestamp before
 1195                          * doing the callback as the cryptop is
 1196                          * likely to be reclaimed.
 1197                          */
 1198                         struct timespec t = crp->crp_tstamp;
 1199                         crypto_tstat(&cryptostats.cs_cb, &t);
 1200                         crp->crp_callback(crp);
 1201                         crypto_tstat(&cryptostats.cs_finis, &t);
 1202                 } else
 1203 #endif
 1204                         crp->crp_callback(crp);
 1205         } else {
 1206                 /*
 1207                  * Normal case; queue the callback for the thread.
 1208                  */
 1209                 CRYPTO_RETQ_LOCK();
 1210                 if (CRYPTO_RETQ_EMPTY())
 1211                         wakeup_one(&crp_ret_q); /* shared wait channel */
 1212                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
 1213                 CRYPTO_RETQ_UNLOCK();
 1214         }
 1215 }
 1216 
 1217 /*
 1218  * Invoke the callback on behalf of the driver.
 1219  */
 1220 void
 1221 crypto_kdone(struct cryptkop *krp)
 1222 {
 1223         struct cryptocap *cap;
 1224 
 1225         if (krp->krp_status != 0)
 1226                 cryptostats.cs_kerrs++;
 1227         CRYPTO_DRIVER_LOCK();
 1228         /* XXX: What if driver is loaded in the meantime? */
 1229         if (krp->krp_hid < crypto_drivers_num) {
 1230                 cap = &crypto_drivers[krp->krp_hid];
 1231                 cap->cc_koperations--;
 1232                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
 1233                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
 1234                         crypto_remove(cap);
 1235         }
 1236         CRYPTO_DRIVER_UNLOCK();
 1237         CRYPTO_RETQ_LOCK();
 1238         if (CRYPTO_RETQ_EMPTY())
 1239                 wakeup_one(&crp_ret_q);         /* shared wait channel */
 1240         TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
 1241         CRYPTO_RETQ_UNLOCK();
 1242 }
 1243 
 1244 int
 1245 crypto_getfeat(int *featp)
 1246 {
 1247         int hid, kalg, feat = 0;
 1248 
 1249         CRYPTO_DRIVER_LOCK();
 1250         for (hid = 0; hid < crypto_drivers_num; hid++) {
 1251                 const struct cryptocap *cap = &crypto_drivers[hid];
 1252 
 1253                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
 1254                     !crypto_devallowsoft) {
 1255                         continue;
 1256                 }
 1257                 for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
 1258                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
 1259                                 feat |=  1 << kalg;
 1260         }
 1261         CRYPTO_DRIVER_UNLOCK();
 1262         *featp = feat;
 1263         return (0);
 1264 }
 1265 
 1266 /*
 1267  * Terminate a thread at module unload.  The process that
 1268  * initiated this is waiting for us to signal that we're gone;
 1269  * wake it up and exit.  We use the driver table lock to insure
 1270  * we don't do the wakeup before they're waiting.  There is no
 1271  * race here because the waiter sleeps on the proc lock for the
 1272  * thread so it gets notified at the right time because of an
 1273  * extra wakeup that's done in exit1().
 1274  */
 1275 static void
 1276 crypto_finis(void *chan)
 1277 {
 1278         CRYPTO_DRIVER_LOCK();
 1279         wakeup_one(chan);
 1280         CRYPTO_DRIVER_UNLOCK();
 1281         kthread_exit();
 1282 }
 1283 
 1284 /*
 1285  * Crypto thread, dispatches crypto requests.
 1286  *
 1287  * MPSAFE
 1288  */
 1289 static void
 1290 crypto_proc(void *arg)
 1291 {
 1292         crypto_tdinfo_t tdinfo = arg;
 1293         struct cryptop *crp, *submit;
 1294         struct cryptkop *krp;
 1295         struct cryptocap *cap;
 1296         u_int32_t hid;
 1297         int result, hint;
 1298 
 1299         CRYPTO_Q_LOCK(tdinfo);
 1300 
 1301         curthread->td_type = TD_TYPE_CRYPTO;
 1302 
 1303         for (;;) {
 1304                 /*
 1305                  * Find the first element in the queue that can be
 1306                  * processed and look-ahead to see if multiple ops
 1307                  * are ready for the same driver.
 1308                  */
 1309                 submit = NULL;
 1310                 hint = 0;
 1311                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
 1312                         hid = CRYPTO_SESID2HID(crp->crp_sid);
 1313                         cap = crypto_checkdriver(hid);
 1314                         /*
 1315                          * Driver cannot disappeared when there is an active
 1316                          * session.
 1317                          */
 1318                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 1319                             __func__, __LINE__));
 1320                         if (cap == NULL || cap->cc_dev == NULL) {
 1321                                 /* Op needs to be migrated, process it. */
 1322                                 if (submit == NULL)
 1323                                         submit = crp;
 1324                                 break;
 1325                         }
 1326                         if (!cap->cc_qblocked) {
 1327                                 if (submit != NULL) {
 1328                                         /*
 1329                                          * We stop on finding another op,
 1330                                          * regardless whether its for the same
 1331                                          * driver or not.  We could keep
 1332                                          * searching the queue but it might be
 1333                                          * better to just use a per-driver
 1334                                          * queue instead.
 1335                                          */
 1336                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
 1337                                                 hint = CRYPTO_HINT_MORE;
 1338                                         break;
 1339                                 } else {
 1340                                         submit = crp;
 1341                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
 1342                                                 break;
 1343                                         /* keep scanning for more are q'd */
 1344                                 }
 1345                         }
 1346                 }
 1347                 if (submit != NULL) {
 1348                         TAILQ_REMOVE(&tdinfo->crp_q, submit, crp_next);
 1349                         hid = CRYPTO_SESID2HID(submit->crp_sid);
 1350                         cap = crypto_checkdriver(hid);
 1351                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 1352                             __func__, __LINE__));
 1353 
 1354                         CRYPTO_Q_UNLOCK(tdinfo);
 1355                         result = crypto_invoke(cap, submit, hint);
 1356                         CRYPTO_Q_LOCK(tdinfo);
 1357 
 1358                         if (result == ERESTART) {
 1359                                 /*
 1360                                  * The driver ran out of resources, mark the
 1361                                  * driver ``blocked'' for cryptop's and put
 1362                                  * the request back in the queue.  It would
 1363                                  * best to put the request back where we got
 1364                                  * it but that's hard so for now we put it
 1365                                  * at the front.  This should be ok; putting
 1366                                  * it at the end does not work.
 1367                                  */
 1368                                 /* XXX validate sid again? */
 1369                                 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
 1370                                 TAILQ_INSERT_HEAD(&tdinfo->crp_q,
 1371                                                   submit, crp_next);
 1372                                 cryptostats.cs_blocks++;
 1373                         }
 1374                 }
 1375 
 1376                 /* As above, but for key ops */
 1377                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
 1378                         cap = crypto_checkdriver(krp->krp_hid);
 1379                         if (cap == NULL || cap->cc_dev == NULL) {
 1380                                 /*
 1381                                  * Operation needs to be migrated, invalidate
 1382                                  * the assigned device so it will reselect a
 1383                                  * new one below.  Propagate the original
 1384                                  * crid selection flags if supplied.
 1385                                  */
 1386                                 krp->krp_hid = krp->krp_crid &
 1387                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
 1388                                 if (krp->krp_hid == 0)
 1389                                         krp->krp_hid =
 1390                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
 1391                                 break;
 1392                         }
 1393                         if (!cap->cc_kqblocked)
 1394                                 break;
 1395                 }
 1396                 if (krp != NULL) {
 1397                         TAILQ_REMOVE(&tdinfo->crp_kq, krp, krp_next);
 1398 
 1399                         CRYPTO_Q_UNLOCK(tdinfo);
 1400                         result = crypto_kinvoke(krp, krp->krp_hid);
 1401                         CRYPTO_Q_LOCK(tdinfo);
 1402 
 1403                         if (result == ERESTART) {
 1404                                 /*
 1405                                  * The driver ran out of resources, mark the
 1406                                  * driver ``blocked'' for cryptkop's and put
 1407                                  * the request back in the queue.  It would
 1408                                  * best to put the request back where we got
 1409                                  * it but that's hard so for now we put it
 1410                                  * at the front.  This should be ok; putting
 1411                                  * it at the end does not work.
 1412                                  */
 1413                                 /* XXX validate sid again? */
 1414                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
 1415                                 TAILQ_INSERT_HEAD(&tdinfo->crp_kq,
 1416                                                   krp, krp_next);
 1417                                 cryptostats.cs_kblocks++;
 1418                         }
 1419                 }
 1420 
 1421                 if (submit == NULL && krp == NULL) {
 1422                         /*
 1423                          * Nothing more to be processed.  Sleep until we're
 1424                          * woken because there are more ops to process.
 1425                          * This happens either by submission or by a driver
 1426                          * becoming unblocked and notifying us through
 1427                          * crypto_unblock.  Note that when we wakeup we
 1428                          * start processing each queue again from the
 1429                          * front. It's not clear that it's important to
 1430                          * preserve this ordering since ops may finish
 1431                          * out of order if dispatched to different devices
 1432                          * and some become blocked while others do not.
 1433                          */
 1434                         tdinfo->crp_sleep = 1;
 1435                         lksleep (&tdinfo->crp_q, &tdinfo->crp_lock,
 1436                                  0, "crypto_wait", 0);
 1437                         tdinfo->crp_sleep = 0;
 1438                         if (tdinfo->crp_td == NULL)
 1439                                 break;
 1440                         cryptostats.cs_intrs++;
 1441                 }
 1442         }
 1443         CRYPTO_Q_UNLOCK(tdinfo);
 1444 
 1445         crypto_finis(&tdinfo->crp_q);
 1446 }
 1447 
 1448 /*
 1449  * Crypto returns thread, does callbacks for processed crypto requests.
 1450  * Callbacks are done here, rather than in the crypto drivers, because
 1451  * callbacks typically are expensive and would slow interrupt handling.
 1452  *
 1453  * MPSAFE
 1454  */
 1455 static void
 1456 crypto_ret_proc(void *dummy __unused)
 1457 {
 1458         struct cryptop *crpt;
 1459         struct cryptkop *krpt;
 1460 
 1461         get_mplock();
 1462         CRYPTO_RETQ_LOCK();
 1463         for (;;) {
 1464                 /* Harvest return q's for completed ops */
 1465                 crpt = TAILQ_FIRST(&crp_ret_q);
 1466                 if (crpt != NULL)
 1467                         TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
 1468 
 1469                 krpt = TAILQ_FIRST(&crp_ret_kq);
 1470                 if (krpt != NULL)
 1471                         TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
 1472 
 1473                 if (crpt != NULL || krpt != NULL) {
 1474                         CRYPTO_RETQ_UNLOCK();
 1475                         /*
 1476                          * Run callbacks unlocked.
 1477                          */
 1478                         if (crpt != NULL) {
 1479 #ifdef CRYPTO_TIMING
 1480                                 if (crypto_timing) {
 1481                                         /*
 1482                                          * NB: We must copy the timestamp before
 1483                                          * doing the callback as the cryptop is
 1484                                          * likely to be reclaimed.
 1485                                          */
 1486                                         struct timespec t = crpt->crp_tstamp;
 1487                                         crypto_tstat(&cryptostats.cs_cb, &t);
 1488                                         crpt->crp_callback(crpt);
 1489                                         crypto_tstat(&cryptostats.cs_finis, &t);
 1490                                 } else
 1491 #endif
 1492                                         crpt->crp_callback(crpt);
 1493                         }
 1494                         if (krpt != NULL)
 1495                                 krpt->krp_callback(krpt);
 1496                         CRYPTO_RETQ_LOCK();
 1497                 } else {
 1498                         /*
 1499                          * Nothing more to be processed.  Sleep until we're
 1500                          * woken because there are more returns to process.
 1501                          */
 1502                         lksleep (&crp_ret_q, &crypto_ret_q_lock,
 1503                                  0, "crypto_ret_wait", 0);
 1504                         if (cryptoretthread == NULL)
 1505                                 break;
 1506                         cryptostats.cs_rets++;
 1507                 }
 1508         }
 1509         CRYPTO_RETQ_UNLOCK();
 1510 
 1511         crypto_finis(&crp_ret_q);
 1512 }
 1513 
 1514 #ifdef DDB
 1515 static void
 1516 db_show_drivers(void)
 1517 {
 1518         int hid;
 1519 
 1520         db_printf("%12s %4s %4s %8s %2s %2s\n"
 1521                 , "Device"
 1522                 , "Ses"
 1523                 , "Kops"
 1524                 , "Flags"
 1525                 , "QB"
 1526                 , "KB"
 1527         );
 1528         for (hid = 0; hid < crypto_drivers_num; hid++) {
 1529                 const struct cryptocap *cap = &crypto_drivers[hid];
 1530                 if (cap->cc_dev == NULL)
 1531                         continue;
 1532                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
 1533                     , device_get_nameunit(cap->cc_dev)
 1534                     , cap->cc_sessions
 1535                     , cap->cc_koperations
 1536                     , cap->cc_flags
 1537                     , cap->cc_qblocked
 1538                     , cap->cc_kqblocked
 1539                 );
 1540         }
 1541 }
 1542 
 1543 DB_SHOW_COMMAND(crypto, db_show_crypto)
 1544 {
 1545         crypto_tdinfo_t tdinfo;
 1546         struct cryptop *crp;
 1547         int n;
 1548 
 1549         db_show_drivers();
 1550         db_printf("\n");
 1551 
 1552         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
 1553             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
 1554             "Desc", "Callback");
 1555 
 1556         for (n = 0; n < ncpus; ++n) {
 1557                 tdinfo = &tdinfo_array[n];
 1558 
 1559                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
 1560                         db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
 1561                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
 1562                             , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
 1563                             , crp->crp_ilen, crp->crp_olen
 1564                             , crp->crp_etype
 1565                             , crp->crp_flags
 1566                             , crp->crp_desc
 1567                             , crp->crp_callback
 1568                         );
 1569                 }
 1570         }
 1571         if (!TAILQ_EMPTY(&crp_ret_q)) {
 1572                 db_printf("\n%4s %4s %4s %8s\n",
 1573                     "HID", "Etype", "Flags", "Callback");
 1574                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
 1575                         db_printf("%4u %4u %04x %8p\n"
 1576                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
 1577                             , crp->crp_etype
 1578                             , crp->crp_flags
 1579                             , crp->crp_callback
 1580                         );
 1581                 }
 1582         }
 1583 }
 1584 
 1585 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
 1586 {
 1587         crypto_tdinfo_t tdinfo;
 1588         struct cryptkop *krp;
 1589         int n;
 1590 
 1591         db_show_drivers();
 1592         db_printf("\n");
 1593 
 1594         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
 1595             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
 1596 
 1597         for (n = 0; n < ncpus; ++n) {
 1598                 tdinfo = &tdinfo_array[n];
 1599 
 1600                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
 1601                         db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
 1602                             , krp->krp_op
 1603                             , krp->krp_status
 1604                             , krp->krp_iparams, krp->krp_oparams
 1605                             , krp->krp_crid, krp->krp_hid
 1606                             , krp->krp_callback
 1607                         );
 1608                 }
 1609         }
 1610         if (!TAILQ_EMPTY(&crp_ret_q)) {
 1611                 db_printf("%4s %5s %8s %4s %8s\n",
 1612                     "Op", "Status", "CRID", "HID", "Callback");
 1613                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
 1614                         db_printf("%4u %5u %08x %4u %8p\n"
 1615                             , krp->krp_op
 1616                             , krp->krp_status
 1617                             , krp->krp_crid, krp->krp_hid
 1618                             , krp->krp_callback
 1619                         );
 1620                 }
 1621         }
 1622 }
 1623 #endif
 1624 
 1625 int crypto_modevent(module_t mod, int type, void *unused);
 1626 
 1627 /*
 1628  * Initialization code, both for static and dynamic loading.
 1629  * Note this is not invoked with the usual MODULE_DECLARE
 1630  * mechanism but instead is listed as a dependency by the
 1631  * cryptosoft driver.  This guarantees proper ordering of
 1632  * calls on module load/unload.
 1633  */
 1634 int
 1635 crypto_modevent(module_t mod, int type, void *unused)
 1636 {
 1637         int error = EINVAL;
 1638 
 1639         switch (type) {
 1640         case MOD_LOAD:
 1641                 error = crypto_init();
 1642                 if (error == 0 && bootverbose)
 1643                         kprintf("crypto: <crypto core>\n");
 1644                 break;
 1645         case MOD_UNLOAD:
 1646                 /*XXX disallow if active sessions */
 1647                 error = 0;
 1648                 crypto_destroy();
 1649                 return 0;
 1650         }
 1651         return error;
 1652 }
 1653 MODULE_VERSION(crypto, 1);
 1654 MODULE_DEPEND(crypto, zlib, 1, 1, 1);

Cache object: 11efd1fa2d0d715c9acdfc09f6ac0fb2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.