The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/opencrypto/crypto.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   23  */
   24 
   25 #include <sys/cdefs.h>
   26 __FBSDID("$FreeBSD: releng/10.1/sys/opencrypto/crypto.c 208834 2010-06-05 16:00:53Z kib $");
   27 
   28 /*
   29  * Cryptographic Subsystem.
   30  *
   31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
   32  * that has the copyright shown below.  Very little of the original
   33  * code remains.
   34  */
   35 
   36 /*-
   37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
   38  *
   39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
   40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
   41  * supported the development of this code.
   42  *
   43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
   44  *
   45  * Permission to use, copy, and modify this software with or without fee
   46  * is hereby granted, provided that this entire notice is included in
   47  * all source code copies of any software which is or includes a copy or
   48  * modification of this software.
   49  *
   50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
   51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
   52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
   53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
   54  * PURPOSE.
   55  */
   56 
   57 #define CRYPTO_TIMING                           /* enable timing support */
   58 
   59 #include "opt_ddb.h"
   60 #include "opt_kdtrace.h"
   61 
   62 #include <sys/param.h>
   63 #include <sys/systm.h>
   64 #include <sys/eventhandler.h>
   65 #include <sys/kernel.h>
   66 #include <sys/kthread.h>
   67 #include <sys/lock.h>
   68 #include <sys/module.h>
   69 #include <sys/mutex.h>
   70 #include <sys/malloc.h>
   71 #include <sys/proc.h>
   72 #include <sys/sdt.h>
   73 #include <sys/sysctl.h>
   74 
   75 #include <ddb/ddb.h>
   76 
   77 #include <vm/uma.h>
   78 #include <opencrypto/cryptodev.h>
   79 #include <opencrypto/xform.h>                   /* XXX for M_XDATA */
   80 
   81 #include <sys/kobj.h>
   82 #include <sys/bus.h>
   83 #include "cryptodev_if.h"
   84 
   85 #if defined(__i386__) || defined(__amd64__)
   86 #include <machine/pcb.h>
   87 #endif
   88 
   89 SDT_PROVIDER_DEFINE(opencrypto);
   90 
   91 /*
   92  * Crypto drivers register themselves by allocating a slot in the
   93  * crypto_drivers table with crypto_get_driverid() and then registering
   94  * each algorithm they support with crypto_register() and crypto_kregister().
   95  */
   96 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
   97 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
   98 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
   99 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
  100 
  101 /*
  102  * Crypto device/driver capabilities structure.
  103  *
  104  * Synchronization:
  105  * (d) - protected by CRYPTO_DRIVER_LOCK()
  106  * (q) - protected by CRYPTO_Q_LOCK()
  107  * Not tagged fields are read-only.
  108  */
  109 struct cryptocap {
  110         device_t        cc_dev;                 /* (d) device/driver */
  111         u_int32_t       cc_sessions;            /* (d) # of sessions */
  112         u_int32_t       cc_koperations;         /* (d) # os asym operations */
  113         /*
  114          * Largest possible operator length (in bits) for each type of
  115          * encryption algorithm. XXX not used
  116          */
  117         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
  118         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
  119         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
  120 
  121         int             cc_flags;               /* (d) flags */
  122 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
  123         int             cc_qblocked;            /* (q) symmetric q blocked */
  124         int             cc_kqblocked;           /* (q) asymmetric q blocked */
  125 };
  126 static  struct cryptocap *crypto_drivers = NULL;
  127 static  int crypto_drivers_num = 0;
  128 
  129 /*
  130  * There are two queues for crypto requests; one for symmetric (e.g.
  131  * cipher) operations and one for asymmetric (e.g. MOD)operations.
  132  * A single mutex is used to lock access to both queues.  We could
  133  * have one per-queue but having one simplifies handling of block/unblock
  134  * operations.
  135  */
  136 static  int crp_sleep = 0;
  137 static  TAILQ_HEAD(,cryptop) crp_q;             /* request queues */
  138 static  TAILQ_HEAD(,cryptkop) crp_kq;
  139 static  struct mtx crypto_q_mtx;
  140 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
  141 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
  142 
  143 /*
  144  * There are two queues for processing completed crypto requests; one
  145  * for the symmetric and one for the asymmetric ops.  We only need one
  146  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
  147  * mutex is used to lock access to both queues.  Note that this lock
  148  * must be separate from the lock on request queues to insure driver
  149  * callbacks don't generate lock order reversals.
  150  */
  151 static  TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queues */
  152 static  TAILQ_HEAD(,cryptkop) crp_ret_kq;
  153 static  struct mtx crypto_ret_q_mtx;
  154 #define CRYPTO_RETQ_LOCK()      mtx_lock(&crypto_ret_q_mtx)
  155 #define CRYPTO_RETQ_UNLOCK()    mtx_unlock(&crypto_ret_q_mtx)
  156 #define CRYPTO_RETQ_EMPTY()     (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
  157 
  158 static  uma_zone_t cryptop_zone;
  159 static  uma_zone_t cryptodesc_zone;
  160 
  161 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
  162 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
  163            &crypto_userasymcrypto, 0,
  164            "Enable/disable user-mode access to asymmetric crypto support");
  165 int     crypto_devallowsoft = 0;        /* only use hardware crypto for asym */
  166 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
  167            &crypto_devallowsoft, 0,
  168            "Enable/disable use of software asym crypto support");
  169 
  170 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
  171 
  172 static  void crypto_proc(void);
  173 static  struct proc *cryptoproc;
  174 static  void crypto_ret_proc(void);
  175 static  struct proc *cryptoretproc;
  176 static  void crypto_destroy(void);
  177 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
  178 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
  179 
  180 static  struct cryptostats cryptostats;
  181 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
  182             cryptostats, "Crypto system statistics");
  183 
  184 #ifdef CRYPTO_TIMING
  185 static  int crypto_timing = 0;
  186 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
  187            &crypto_timing, 0, "Enable/disable crypto timing support");
  188 #endif
  189 
  190 static int
  191 crypto_init(void)
  192 {
  193         int error;
  194 
  195         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
  196                 MTX_DEF|MTX_QUIET);
  197 
  198         TAILQ_INIT(&crp_q);
  199         TAILQ_INIT(&crp_kq);
  200         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
  201 
  202         TAILQ_INIT(&crp_ret_q);
  203         TAILQ_INIT(&crp_ret_kq);
  204         mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
  205 
  206         cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
  207                                     0, 0, 0, 0,
  208                                     UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
  209         cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
  210                                     0, 0, 0, 0,
  211                                     UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
  212         if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
  213                 printf("crypto_init: cannot setup crypto zones\n");
  214                 error = ENOMEM;
  215                 goto bad;
  216         }
  217 
  218         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
  219         crypto_drivers = malloc(crypto_drivers_num *
  220             sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
  221         if (crypto_drivers == NULL) {
  222                 printf("crypto_init: cannot setup crypto drivers\n");
  223                 error = ENOMEM;
  224                 goto bad;
  225         }
  226 
  227         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
  228                     &cryptoproc, 0, 0, "crypto");
  229         if (error) {
  230                 printf("crypto_init: cannot start crypto thread; error %d",
  231                         error);
  232                 goto bad;
  233         }
  234 
  235         error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL,
  236                     &cryptoretproc, 0, 0, "crypto returns");
  237         if (error) {
  238                 printf("crypto_init: cannot start cryptoret thread; error %d",
  239                         error);
  240                 goto bad;
  241         }
  242         return 0;
  243 bad:
  244         crypto_destroy();
  245         return error;
  246 }
  247 
  248 /*
  249  * Signal a crypto thread to terminate.  We use the driver
  250  * table lock to synchronize the sleep/wakeups so that we
  251  * are sure the threads have terminated before we release
  252  * the data structures they use.  See crypto_finis below
  253  * for the other half of this song-and-dance.
  254  */
  255 static void
  256 crypto_terminate(struct proc **pp, void *q)
  257 {
  258         struct proc *p;
  259 
  260         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
  261         p = *pp;
  262         *pp = NULL;
  263         if (p) {
  264                 wakeup_one(q);
  265                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
  266                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
  267                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
  268                 PROC_UNLOCK(p);
  269                 CRYPTO_DRIVER_LOCK();
  270         }
  271 }
  272 
  273 static void
  274 crypto_destroy(void)
  275 {
  276         /*
  277          * Terminate any crypto threads.
  278          */
  279         CRYPTO_DRIVER_LOCK();
  280         crypto_terminate(&cryptoproc, &crp_q);
  281         crypto_terminate(&cryptoretproc, &crp_ret_q);
  282         CRYPTO_DRIVER_UNLOCK();
  283 
  284         /* XXX flush queues??? */
  285 
  286         /* 
  287          * Reclaim dynamically allocated resources.
  288          */
  289         if (crypto_drivers != NULL)
  290                 free(crypto_drivers, M_CRYPTO_DATA);
  291 
  292         if (cryptodesc_zone != NULL)
  293                 uma_zdestroy(cryptodesc_zone);
  294         if (cryptop_zone != NULL)
  295                 uma_zdestroy(cryptop_zone);
  296         mtx_destroy(&crypto_q_mtx);
  297         mtx_destroy(&crypto_ret_q_mtx);
  298         mtx_destroy(&crypto_drivers_mtx);
  299 }
  300 
  301 static struct cryptocap *
  302 crypto_checkdriver(u_int32_t hid)
  303 {
  304         if (crypto_drivers == NULL)
  305                 return NULL;
  306         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
  307 }
  308 
  309 /*
  310  * Compare a driver's list of supported algorithms against another
  311  * list; return non-zero if all algorithms are supported.
  312  */
  313 static int
  314 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
  315 {
  316         const struct cryptoini *cr;
  317 
  318         /* See if all the algorithms are supported. */
  319         for (cr = cri; cr; cr = cr->cri_next)
  320                 if (cap->cc_alg[cr->cri_alg] == 0)
  321                         return 0;
  322         return 1;
  323 }
  324 
  325 /*
  326  * Select a driver for a new session that supports the specified
  327  * algorithms and, optionally, is constrained according to the flags.
  328  * The algorithm we use here is pretty stupid; just use the
  329  * first driver that supports all the algorithms we need. If there
  330  * are multiple drivers we choose the driver with the fewest active
  331  * sessions.  We prefer hardware-backed drivers to software ones.
  332  *
  333  * XXX We need more smarts here (in real life too, but that's
  334  * XXX another story altogether).
  335  */
  336 static struct cryptocap *
  337 crypto_select_driver(const struct cryptoini *cri, int flags)
  338 {
  339         struct cryptocap *cap, *best;
  340         int match, hid;
  341 
  342         CRYPTO_DRIVER_ASSERT();
  343 
  344         /*
  345          * Look first for hardware crypto devices if permitted.
  346          */
  347         if (flags & CRYPTOCAP_F_HARDWARE)
  348                 match = CRYPTOCAP_F_HARDWARE;
  349         else
  350                 match = CRYPTOCAP_F_SOFTWARE;
  351         best = NULL;
  352 again:
  353         for (hid = 0; hid < crypto_drivers_num; hid++) {
  354                 cap = &crypto_drivers[hid];
  355                 /*
  356                  * If it's not initialized, is in the process of
  357                  * going away, or is not appropriate (hardware
  358                  * or software based on match), then skip.
  359                  */
  360                 if (cap->cc_dev == NULL ||
  361                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
  362                     (cap->cc_flags & match) == 0)
  363                         continue;
  364 
  365                 /* verify all the algorithms are supported. */
  366                 if (driver_suitable(cap, cri)) {
  367                         if (best == NULL ||
  368                             cap->cc_sessions < best->cc_sessions)
  369                                 best = cap;
  370                 }
  371         }
  372         if (best != NULL)
  373                 return best;
  374         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
  375                 /* sort of an Algol 68-style for loop */
  376                 match = CRYPTOCAP_F_SOFTWARE;
  377                 goto again;
  378         }
  379         return best;
  380 }
  381 
  382 /*
  383  * Create a new session.  The crid argument specifies a crypto
  384  * driver to use or constraints on a driver to select (hardware
  385  * only, software only, either).  Whatever driver is selected
  386  * must be capable of the requested crypto algorithms.
  387  */
  388 int
  389 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
  390 {
  391         struct cryptocap *cap;
  392         u_int32_t hid, lid;
  393         int err;
  394 
  395         CRYPTO_DRIVER_LOCK();
  396         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  397                 /*
  398                  * Use specified driver; verify it is capable.
  399                  */
  400                 cap = crypto_checkdriver(crid);
  401                 if (cap != NULL && !driver_suitable(cap, cri))
  402                         cap = NULL;
  403         } else {
  404                 /*
  405                  * No requested driver; select based on crid flags.
  406                  */
  407                 cap = crypto_select_driver(cri, crid);
  408                 /*
  409                  * if NULL then can't do everything in one session.
  410                  * XXX Fix this. We need to inject a "virtual" session
  411                  * XXX layer right about here.
  412                  */
  413         }
  414         if (cap != NULL) {
  415                 /* Call the driver initialization routine. */
  416                 hid = cap - crypto_drivers;
  417                 lid = hid;              /* Pass the driver ID. */
  418                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
  419                 if (err == 0) {
  420                         (*sid) = (cap->cc_flags & 0xff000000)
  421                                | (hid & 0x00ffffff);
  422                         (*sid) <<= 32;
  423                         (*sid) |= (lid & 0xffffffff);
  424                         cap->cc_sessions++;
  425                 }
  426         } else
  427                 err = EINVAL;
  428         CRYPTO_DRIVER_UNLOCK();
  429         return err;
  430 }
  431 
  432 static void
  433 crypto_remove(struct cryptocap *cap)
  434 {
  435 
  436         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
  437         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
  438                 bzero(cap, sizeof(*cap));
  439 }
  440 
  441 /*
  442  * Delete an existing session (or a reserved session on an unregistered
  443  * driver).
  444  */
  445 int
  446 crypto_freesession(u_int64_t sid)
  447 {
  448         struct cryptocap *cap;
  449         u_int32_t hid;
  450         int err;
  451 
  452         CRYPTO_DRIVER_LOCK();
  453 
  454         if (crypto_drivers == NULL) {
  455                 err = EINVAL;
  456                 goto done;
  457         }
  458 
  459         /* Determine two IDs. */
  460         hid = CRYPTO_SESID2HID(sid);
  461 
  462         if (hid >= crypto_drivers_num) {
  463                 err = ENOENT;
  464                 goto done;
  465         }
  466         cap = &crypto_drivers[hid];
  467 
  468         if (cap->cc_sessions)
  469                 cap->cc_sessions--;
  470 
  471         /* Call the driver cleanup routine, if available. */
  472         err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
  473 
  474         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
  475                 crypto_remove(cap);
  476 
  477 done:
  478         CRYPTO_DRIVER_UNLOCK();
  479         return err;
  480 }
  481 
  482 /*
  483  * Return an unused driver id.  Used by drivers prior to registering
  484  * support for the algorithms they handle.
  485  */
  486 int32_t
  487 crypto_get_driverid(device_t dev, int flags)
  488 {
  489         struct cryptocap *newdrv;
  490         int i;
  491 
  492         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  493                 printf("%s: no flags specified when registering driver\n",
  494                     device_get_nameunit(dev));
  495                 return -1;
  496         }
  497 
  498         CRYPTO_DRIVER_LOCK();
  499 
  500         for (i = 0; i < crypto_drivers_num; i++) {
  501                 if (crypto_drivers[i].cc_dev == NULL &&
  502                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
  503                         break;
  504                 }
  505         }
  506 
  507         /* Out of entries, allocate some more. */
  508         if (i == crypto_drivers_num) {
  509                 /* Be careful about wrap-around. */
  510                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
  511                         CRYPTO_DRIVER_UNLOCK();
  512                         printf("crypto: driver count wraparound!\n");
  513                         return -1;
  514                 }
  515 
  516                 newdrv = malloc(2 * crypto_drivers_num *
  517                     sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
  518                 if (newdrv == NULL) {
  519                         CRYPTO_DRIVER_UNLOCK();
  520                         printf("crypto: no space to expand driver table!\n");
  521                         return -1;
  522                 }
  523 
  524                 bcopy(crypto_drivers, newdrv,
  525                     crypto_drivers_num * sizeof(struct cryptocap));
  526 
  527                 crypto_drivers_num *= 2;
  528 
  529                 free(crypto_drivers, M_CRYPTO_DATA);
  530                 crypto_drivers = newdrv;
  531         }
  532 
  533         /* NB: state is zero'd on free */
  534         crypto_drivers[i].cc_sessions = 1;      /* Mark */
  535         crypto_drivers[i].cc_dev = dev;
  536         crypto_drivers[i].cc_flags = flags;
  537         if (bootverbose)
  538                 printf("crypto: assign %s driver id %u, flags %u\n",
  539                     device_get_nameunit(dev), i, flags);
  540 
  541         CRYPTO_DRIVER_UNLOCK();
  542 
  543         return i;
  544 }
  545 
  546 /*
  547  * Lookup a driver by name.  We match against the full device
  548  * name and unit, and against just the name.  The latter gives
  549  * us a simple widlcarding by device name.  On success return the
  550  * driver/hardware identifier; otherwise return -1.
  551  */
  552 int
  553 crypto_find_driver(const char *match)
  554 {
  555         int i, len = strlen(match);
  556 
  557         CRYPTO_DRIVER_LOCK();
  558         for (i = 0; i < crypto_drivers_num; i++) {
  559                 device_t dev = crypto_drivers[i].cc_dev;
  560                 if (dev == NULL ||
  561                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
  562                         continue;
  563                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
  564                     strncmp(match, device_get_name(dev), len) == 0)
  565                         break;
  566         }
  567         CRYPTO_DRIVER_UNLOCK();
  568         return i < crypto_drivers_num ? i : -1;
  569 }
  570 
  571 /*
  572  * Return the device_t for the specified driver or NULL
  573  * if the driver identifier is invalid.
  574  */
  575 device_t
  576 crypto_find_device_byhid(int hid)
  577 {
  578         struct cryptocap *cap = crypto_checkdriver(hid);
  579         return cap != NULL ? cap->cc_dev : NULL;
  580 }
  581 
  582 /*
  583  * Return the device/driver capabilities.
  584  */
  585 int
  586 crypto_getcaps(int hid)
  587 {
  588         struct cryptocap *cap = crypto_checkdriver(hid);
  589         return cap != NULL ? cap->cc_flags : 0;
  590 }
  591 
  592 /*
  593  * Register support for a key-related algorithm.  This routine
  594  * is called once for each algorithm supported a driver.
  595  */
  596 int
  597 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
  598 {
  599         struct cryptocap *cap;
  600         int err;
  601 
  602         CRYPTO_DRIVER_LOCK();
  603 
  604         cap = crypto_checkdriver(driverid);
  605         if (cap != NULL &&
  606             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
  607                 /*
  608                  * XXX Do some performance testing to determine placing.
  609                  * XXX We probably need an auxiliary data structure that
  610                  * XXX describes relative performances.
  611                  */
  612 
  613                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
  614                 if (bootverbose)
  615                         printf("crypto: %s registers key alg %u flags %u\n"
  616                                 , device_get_nameunit(cap->cc_dev)
  617                                 , kalg
  618                                 , flags
  619                         );
  620                 err = 0;
  621         } else
  622                 err = EINVAL;
  623 
  624         CRYPTO_DRIVER_UNLOCK();
  625         return err;
  626 }
  627 
  628 /*
  629  * Register support for a non-key-related algorithm.  This routine
  630  * is called once for each such algorithm supported by a driver.
  631  */
  632 int
  633 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
  634     u_int32_t flags)
  635 {
  636         struct cryptocap *cap;
  637         int err;
  638 
  639         CRYPTO_DRIVER_LOCK();
  640 
  641         cap = crypto_checkdriver(driverid);
  642         /* NB: algorithms are in the range [1..max] */
  643         if (cap != NULL &&
  644             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
  645                 /*
  646                  * XXX Do some performance testing to determine placing.
  647                  * XXX We probably need an auxiliary data structure that
  648                  * XXX describes relative performances.
  649                  */
  650 
  651                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
  652                 cap->cc_max_op_len[alg] = maxoplen;
  653                 if (bootverbose)
  654                         printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
  655                                 , device_get_nameunit(cap->cc_dev)
  656                                 , alg
  657                                 , flags
  658                                 , maxoplen
  659                         );
  660                 cap->cc_sessions = 0;           /* Unmark */
  661                 err = 0;
  662         } else
  663                 err = EINVAL;
  664 
  665         CRYPTO_DRIVER_UNLOCK();
  666         return err;
  667 }
  668 
  669 static void
  670 driver_finis(struct cryptocap *cap)
  671 {
  672         u_int32_t ses, kops;
  673 
  674         CRYPTO_DRIVER_ASSERT();
  675 
  676         ses = cap->cc_sessions;
  677         kops = cap->cc_koperations;
  678         bzero(cap, sizeof(*cap));
  679         if (ses != 0 || kops != 0) {
  680                 /*
  681                  * If there are pending sessions,
  682                  * just mark as invalid.
  683                  */
  684                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
  685                 cap->cc_sessions = ses;
  686                 cap->cc_koperations = kops;
  687         }
  688 }
  689 
  690 /*
  691  * Unregister a crypto driver. If there are pending sessions using it,
  692  * leave enough information around so that subsequent calls using those
  693  * sessions will correctly detect the driver has been unregistered and
  694  * reroute requests.
  695  */
  696 int
  697 crypto_unregister(u_int32_t driverid, int alg)
  698 {
  699         struct cryptocap *cap;
  700         int i, err;
  701 
  702         CRYPTO_DRIVER_LOCK();
  703         cap = crypto_checkdriver(driverid);
  704         if (cap != NULL &&
  705             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
  706             cap->cc_alg[alg] != 0) {
  707                 cap->cc_alg[alg] = 0;
  708                 cap->cc_max_op_len[alg] = 0;
  709 
  710                 /* Was this the last algorithm ? */
  711                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
  712                         if (cap->cc_alg[i] != 0)
  713                                 break;
  714 
  715                 if (i == CRYPTO_ALGORITHM_MAX + 1)
  716                         driver_finis(cap);
  717                 err = 0;
  718         } else
  719                 err = EINVAL;
  720         CRYPTO_DRIVER_UNLOCK();
  721 
  722         return err;
  723 }
  724 
  725 /*
  726  * Unregister all algorithms associated with a crypto driver.
  727  * If there are pending sessions using it, leave enough information
  728  * around so that subsequent calls using those sessions will
  729  * correctly detect the driver has been unregistered and reroute
  730  * requests.
  731  */
  732 int
  733 crypto_unregister_all(u_int32_t driverid)
  734 {
  735         struct cryptocap *cap;
  736         int err;
  737 
  738         CRYPTO_DRIVER_LOCK();
  739         cap = crypto_checkdriver(driverid);
  740         if (cap != NULL) {
  741                 driver_finis(cap);
  742                 err = 0;
  743         } else
  744                 err = EINVAL;
  745         CRYPTO_DRIVER_UNLOCK();
  746 
  747         return err;
  748 }
  749 
  750 /*
  751  * Clear blockage on a driver.  The what parameter indicates whether
  752  * the driver is now ready for cryptop's and/or cryptokop's.
  753  */
  754 int
  755 crypto_unblock(u_int32_t driverid, int what)
  756 {
  757         struct cryptocap *cap;
  758         int err;
  759 
  760         CRYPTO_Q_LOCK();
  761         cap = crypto_checkdriver(driverid);
  762         if (cap != NULL) {
  763                 if (what & CRYPTO_SYMQ)
  764                         cap->cc_qblocked = 0;
  765                 if (what & CRYPTO_ASYMQ)
  766                         cap->cc_kqblocked = 0;
  767                 if (crp_sleep)
  768                         wakeup_one(&crp_q);
  769                 err = 0;
  770         } else
  771                 err = EINVAL;
  772         CRYPTO_Q_UNLOCK();
  773 
  774         return err;
  775 }
  776 
  777 /*
  778  * Add a crypto request to a queue, to be processed by the kernel thread.
  779  */
  780 int
  781 crypto_dispatch(struct cryptop *crp)
  782 {
  783         struct cryptocap *cap;
  784         u_int32_t hid;
  785         int result;
  786 
  787         cryptostats.cs_ops++;
  788 
  789 #ifdef CRYPTO_TIMING
  790         if (crypto_timing)
  791                 binuptime(&crp->crp_tstamp);
  792 #endif
  793 
  794         hid = CRYPTO_SESID2HID(crp->crp_sid);
  795 
  796         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
  797                 /*
  798                  * Caller marked the request to be processed
  799                  * immediately; dispatch it directly to the
  800                  * driver unless the driver is currently blocked.
  801                  */
  802                 cap = crypto_checkdriver(hid);
  803                 /* Driver cannot disappeared when there is an active session. */
  804                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
  805                 if (!cap->cc_qblocked) {
  806                         result = crypto_invoke(cap, crp, 0);
  807                         if (result != ERESTART)
  808                                 return (result);
  809                         /*
  810                          * The driver ran out of resources, put the request on
  811                          * the queue.
  812                          */
  813                 }
  814         }
  815         CRYPTO_Q_LOCK();
  816         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
  817         if (crp_sleep)
  818                 wakeup_one(&crp_q);
  819         CRYPTO_Q_UNLOCK();
  820         return 0;
  821 }
  822 
  823 /*
  824  * Add an asymetric crypto request to a queue,
  825  * to be processed by the kernel thread.
  826  */
  827 int
  828 crypto_kdispatch(struct cryptkop *krp)
  829 {
  830         int error;
  831 
  832         cryptostats.cs_kops++;
  833 
  834         error = crypto_kinvoke(krp, krp->krp_crid);
  835         if (error == ERESTART) {
  836                 CRYPTO_Q_LOCK();
  837                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
  838                 if (crp_sleep)
  839                         wakeup_one(&crp_q);
  840                 CRYPTO_Q_UNLOCK();
  841                 error = 0;
  842         }
  843         return error;
  844 }
  845 
  846 /*
  847  * Verify a driver is suitable for the specified operation.
  848  */
  849 static __inline int
  850 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
  851 {
  852         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
  853 }
  854 
  855 /*
  856  * Select a driver for an asym operation.  The driver must
  857  * support the necessary algorithm.  The caller can constrain
  858  * which device is selected with the flags parameter.  The
  859  * algorithm we use here is pretty stupid; just use the first
  860  * driver that supports the algorithms we need. If there are
  861  * multiple suitable drivers we choose the driver with the
  862  * fewest active operations.  We prefer hardware-backed
  863  * drivers to software ones when either may be used.
  864  */
  865 static struct cryptocap *
  866 crypto_select_kdriver(const struct cryptkop *krp, int flags)
  867 {
  868         struct cryptocap *cap, *best, *blocked;
  869         int match, hid;
  870 
  871         CRYPTO_DRIVER_ASSERT();
  872 
  873         /*
  874          * Look first for hardware crypto devices if permitted.
  875          */
  876         if (flags & CRYPTOCAP_F_HARDWARE)
  877                 match = CRYPTOCAP_F_HARDWARE;
  878         else
  879                 match = CRYPTOCAP_F_SOFTWARE;
  880         best = NULL;
  881         blocked = NULL;
  882 again:
  883         for (hid = 0; hid < crypto_drivers_num; hid++) {
  884                 cap = &crypto_drivers[hid];
  885                 /*
  886                  * If it's not initialized, is in the process of
  887                  * going away, or is not appropriate (hardware
  888                  * or software based on match), then skip.
  889                  */
  890                 if (cap->cc_dev == NULL ||
  891                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
  892                     (cap->cc_flags & match) == 0)
  893                         continue;
  894 
  895                 /* verify all the algorithms are supported. */
  896                 if (kdriver_suitable(cap, krp)) {
  897                         if (best == NULL ||
  898                             cap->cc_koperations < best->cc_koperations)
  899                                 best = cap;
  900                 }
  901         }
  902         if (best != NULL)
  903                 return best;
  904         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
  905                 /* sort of an Algol 68-style for loop */
  906                 match = CRYPTOCAP_F_SOFTWARE;
  907                 goto again;
  908         }
  909         return best;
  910 }
  911 
  912 /*
  913  * Dispatch an assymetric crypto request.
  914  */
  915 static int
  916 crypto_kinvoke(struct cryptkop *krp, int crid)
  917 {
  918         struct cryptocap *cap = NULL;
  919         int error;
  920 
  921         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
  922         KASSERT(krp->krp_callback != NULL,
  923             ("%s: krp->crp_callback == NULL", __func__));
  924 
  925         CRYPTO_DRIVER_LOCK();
  926         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
  927                 cap = crypto_checkdriver(crid);
  928                 if (cap != NULL) {
  929                         /*
  930                          * Driver present, it must support the necessary
  931                          * algorithm and, if s/w drivers are excluded,
  932                          * it must be registered as hardware-backed.
  933                          */
  934                         if (!kdriver_suitable(cap, krp) ||
  935                             (!crypto_devallowsoft &&
  936                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
  937                                 cap = NULL;
  938                 }
  939         } else {
  940                 /*
  941                  * No requested driver; select based on crid flags.
  942                  */
  943                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
  944                         crid &= ~CRYPTOCAP_F_SOFTWARE;
  945                 cap = crypto_select_kdriver(krp, crid);
  946         }
  947         if (cap != NULL && !cap->cc_kqblocked) {
  948                 krp->krp_hid = cap - crypto_drivers;
  949                 cap->cc_koperations++;
  950                 CRYPTO_DRIVER_UNLOCK();
  951                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
  952                 CRYPTO_DRIVER_LOCK();
  953                 if (error == ERESTART) {
  954                         cap->cc_koperations--;
  955                         CRYPTO_DRIVER_UNLOCK();
  956                         return (error);
  957                 }
  958         } else {
  959                 /*
  960                  * NB: cap is !NULL if device is blocked; in
  961                  *     that case return ERESTART so the operation
  962                  *     is resubmitted if possible.
  963                  */
  964                 error = (cap == NULL) ? ENODEV : ERESTART;
  965         }
  966         CRYPTO_DRIVER_UNLOCK();
  967 
  968         if (error) {
  969                 krp->krp_status = error;
  970                 crypto_kdone(krp);
  971         }
  972         return 0;
  973 }
  974 
  975 #ifdef CRYPTO_TIMING
  976 static void
  977 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
  978 {
  979         struct bintime now, delta;
  980         struct timespec t;
  981         uint64_t u;
  982 
  983         binuptime(&now);
  984         u = now.frac;
  985         delta.frac = now.frac - bt->frac;
  986         delta.sec = now.sec - bt->sec;
  987         if (u < delta.frac)
  988                 delta.sec--;
  989         bintime2timespec(&delta, &t);
  990         timespecadd(&ts->acc, &t);
  991         if (timespeccmp(&t, &ts->min, <))
  992                 ts->min = t;
  993         if (timespeccmp(&t, &ts->max, >))
  994                 ts->max = t;
  995         ts->count++;
  996 
  997         *bt = now;
  998 }
  999 #endif
 1000 
 1001 /*
 1002  * Dispatch a crypto request to the appropriate crypto devices.
 1003  */
 1004 static int
 1005 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
 1006 {
 1007 
 1008         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
 1009         KASSERT(crp->crp_callback != NULL,
 1010             ("%s: crp->crp_callback == NULL", __func__));
 1011         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
 1012 
 1013 #ifdef CRYPTO_TIMING
 1014         if (crypto_timing)
 1015                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
 1016 #endif
 1017         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
 1018                 struct cryptodesc *crd;
 1019                 u_int64_t nid;
 1020 
 1021                 /*
 1022                  * Driver has unregistered; migrate the session and return
 1023                  * an error to the caller so they'll resubmit the op.
 1024                  *
 1025                  * XXX: What if there are more already queued requests for this
 1026                  *      session?
 1027                  */
 1028                 crypto_freesession(crp->crp_sid);
 1029 
 1030                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
 1031                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
 1032 
 1033                 /* XXX propagate flags from initial session? */
 1034                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
 1035                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
 1036                         crp->crp_sid = nid;
 1037 
 1038                 crp->crp_etype = EAGAIN;
 1039                 crypto_done(crp);
 1040                 return 0;
 1041         } else {
 1042                 /*
 1043                  * Invoke the driver to process the request.
 1044                  */
 1045                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
 1046         }
 1047 }
 1048 
 1049 /*
 1050  * Release a set of crypto descriptors.
 1051  */
 1052 void
 1053 crypto_freereq(struct cryptop *crp)
 1054 {
 1055         struct cryptodesc *crd;
 1056 
 1057         if (crp == NULL)
 1058                 return;
 1059 
 1060 #ifdef DIAGNOSTIC
 1061         {
 1062                 struct cryptop *crp2;
 1063 
 1064                 CRYPTO_Q_LOCK();
 1065                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
 1066                         KASSERT(crp2 != crp,
 1067                             ("Freeing cryptop from the crypto queue (%p).",
 1068                             crp));
 1069                 }
 1070                 CRYPTO_Q_UNLOCK();
 1071                 CRYPTO_RETQ_LOCK();
 1072                 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
 1073                         KASSERT(crp2 != crp,
 1074                             ("Freeing cryptop from the return queue (%p).",
 1075                             crp));
 1076                 }
 1077                 CRYPTO_RETQ_UNLOCK();
 1078         }
 1079 #endif
 1080 
 1081         while ((crd = crp->crp_desc) != NULL) {
 1082                 crp->crp_desc = crd->crd_next;
 1083                 uma_zfree(cryptodesc_zone, crd);
 1084         }
 1085         uma_zfree(cryptop_zone, crp);
 1086 }
 1087 
 1088 /*
 1089  * Acquire a set of crypto descriptors.
 1090  */
 1091 struct cryptop *
 1092 crypto_getreq(int num)
 1093 {
 1094         struct cryptodesc *crd;
 1095         struct cryptop *crp;
 1096 
 1097         crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
 1098         if (crp != NULL) {
 1099                 while (num--) {
 1100                         crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
 1101                         if (crd == NULL) {
 1102                                 crypto_freereq(crp);
 1103                                 return NULL;
 1104                         }
 1105 
 1106                         crd->crd_next = crp->crp_desc;
 1107                         crp->crp_desc = crd;
 1108                 }
 1109         }
 1110         return crp;
 1111 }
 1112 
 1113 /*
 1114  * Invoke the callback on behalf of the driver.
 1115  */
 1116 void
 1117 crypto_done(struct cryptop *crp)
 1118 {
 1119         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
 1120                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
 1121         crp->crp_flags |= CRYPTO_F_DONE;
 1122         if (crp->crp_etype != 0)
 1123                 cryptostats.cs_errs++;
 1124 #ifdef CRYPTO_TIMING
 1125         if (crypto_timing)
 1126                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
 1127 #endif
 1128         /*
 1129          * CBIMM means unconditionally do the callback immediately;
 1130          * CBIFSYNC means do the callback immediately only if the
 1131          * operation was done synchronously.  Both are used to avoid
 1132          * doing extraneous context switches; the latter is mostly
 1133          * used with the software crypto driver.
 1134          */
 1135         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
 1136             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
 1137              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
 1138                 /*
 1139                  * Do the callback directly.  This is ok when the
 1140                  * callback routine does very little (e.g. the
 1141                  * /dev/crypto callback method just does a wakeup).
 1142                  */
 1143 #ifdef CRYPTO_TIMING
 1144                 if (crypto_timing) {
 1145                         /*
 1146                          * NB: We must copy the timestamp before
 1147                          * doing the callback as the cryptop is
 1148                          * likely to be reclaimed.
 1149                          */
 1150                         struct bintime t = crp->crp_tstamp;
 1151                         crypto_tstat(&cryptostats.cs_cb, &t);
 1152                         crp->crp_callback(crp);
 1153                         crypto_tstat(&cryptostats.cs_finis, &t);
 1154                 } else
 1155 #endif
 1156                         crp->crp_callback(crp);
 1157         } else {
 1158                 /*
 1159                  * Normal case; queue the callback for the thread.
 1160                  */
 1161                 CRYPTO_RETQ_LOCK();
 1162                 if (CRYPTO_RETQ_EMPTY())
 1163                         wakeup_one(&crp_ret_q); /* shared wait channel */
 1164                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
 1165                 CRYPTO_RETQ_UNLOCK();
 1166         }
 1167 }
 1168 
 1169 /*
 1170  * Invoke the callback on behalf of the driver.
 1171  */
 1172 void
 1173 crypto_kdone(struct cryptkop *krp)
 1174 {
 1175         struct cryptocap *cap;
 1176 
 1177         if (krp->krp_status != 0)
 1178                 cryptostats.cs_kerrs++;
 1179         CRYPTO_DRIVER_LOCK();
 1180         /* XXX: What if driver is loaded in the meantime? */
 1181         if (krp->krp_hid < crypto_drivers_num) {
 1182                 cap = &crypto_drivers[krp->krp_hid];
 1183                 cap->cc_koperations--;
 1184                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
 1185                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
 1186                         crypto_remove(cap);
 1187         }
 1188         CRYPTO_DRIVER_UNLOCK();
 1189         CRYPTO_RETQ_LOCK();
 1190         if (CRYPTO_RETQ_EMPTY())
 1191                 wakeup_one(&crp_ret_q);         /* shared wait channel */
 1192         TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
 1193         CRYPTO_RETQ_UNLOCK();
 1194 }
 1195 
 1196 int
 1197 crypto_getfeat(int *featp)
 1198 {
 1199         int hid, kalg, feat = 0;
 1200 
 1201         CRYPTO_DRIVER_LOCK();
 1202         for (hid = 0; hid < crypto_drivers_num; hid++) {
 1203                 const struct cryptocap *cap = &crypto_drivers[hid];
 1204 
 1205                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
 1206                     !crypto_devallowsoft) {
 1207                         continue;
 1208                 }
 1209                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
 1210                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
 1211                                 feat |=  1 << kalg;
 1212         }
 1213         CRYPTO_DRIVER_UNLOCK();
 1214         *featp = feat;
 1215         return (0);
 1216 }
 1217 
 1218 /*
 1219  * Terminate a thread at module unload.  The process that
 1220  * initiated this is waiting for us to signal that we're gone;
 1221  * wake it up and exit.  We use the driver table lock to insure
 1222  * we don't do the wakeup before they're waiting.  There is no
 1223  * race here because the waiter sleeps on the proc lock for the
 1224  * thread so it gets notified at the right time because of an
 1225  * extra wakeup that's done in exit1().
 1226  */
 1227 static void
 1228 crypto_finis(void *chan)
 1229 {
 1230         CRYPTO_DRIVER_LOCK();
 1231         wakeup_one(chan);
 1232         CRYPTO_DRIVER_UNLOCK();
 1233         kproc_exit(0);
 1234 }
 1235 
 1236 /*
 1237  * Crypto thread, dispatches crypto requests.
 1238  */
 1239 static void
 1240 crypto_proc(void)
 1241 {
 1242         struct cryptop *crp, *submit;
 1243         struct cryptkop *krp;
 1244         struct cryptocap *cap;
 1245         u_int32_t hid;
 1246         int result, hint;
 1247 
 1248 #if defined(__i386__) || defined(__amd64__)
 1249         fpu_kern_thread(FPU_KERN_NORMAL);
 1250 #endif
 1251 
 1252         CRYPTO_Q_LOCK();
 1253         for (;;) {
 1254                 /*
 1255                  * Find the first element in the queue that can be
 1256                  * processed and look-ahead to see if multiple ops
 1257                  * are ready for the same driver.
 1258                  */
 1259                 submit = NULL;
 1260                 hint = 0;
 1261                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
 1262                         hid = CRYPTO_SESID2HID(crp->crp_sid);
 1263                         cap = crypto_checkdriver(hid);
 1264                         /*
 1265                          * Driver cannot disappeared when there is an active
 1266                          * session.
 1267                          */
 1268                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 1269                             __func__, __LINE__));
 1270                         if (cap == NULL || cap->cc_dev == NULL) {
 1271                                 /* Op needs to be migrated, process it. */
 1272                                 if (submit == NULL)
 1273                                         submit = crp;
 1274                                 break;
 1275                         }
 1276                         if (!cap->cc_qblocked) {
 1277                                 if (submit != NULL) {
 1278                                         /*
 1279                                          * We stop on finding another op,
 1280                                          * regardless whether its for the same
 1281                                          * driver or not.  We could keep
 1282                                          * searching the queue but it might be
 1283                                          * better to just use a per-driver
 1284                                          * queue instead.
 1285                                          */
 1286                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
 1287                                                 hint = CRYPTO_HINT_MORE;
 1288                                         break;
 1289                                 } else {
 1290                                         submit = crp;
 1291                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
 1292                                                 break;
 1293                                         /* keep scanning for more are q'd */
 1294                                 }
 1295                         }
 1296                 }
 1297                 if (submit != NULL) {
 1298                         TAILQ_REMOVE(&crp_q, submit, crp_next);
 1299                         hid = CRYPTO_SESID2HID(submit->crp_sid);
 1300                         cap = crypto_checkdriver(hid);
 1301                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 1302                             __func__, __LINE__));
 1303                         result = crypto_invoke(cap, submit, hint);
 1304                         if (result == ERESTART) {
 1305                                 /*
 1306                                  * The driver ran out of resources, mark the
 1307                                  * driver ``blocked'' for cryptop's and put
 1308                                  * the request back in the queue.  It would
 1309                                  * best to put the request back where we got
 1310                                  * it but that's hard so for now we put it
 1311                                  * at the front.  This should be ok; putting
 1312                                  * it at the end does not work.
 1313                                  */
 1314                                 /* XXX validate sid again? */
 1315                                 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
 1316                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
 1317                                 cryptostats.cs_blocks++;
 1318                         }
 1319                 }
 1320 
 1321                 /* As above, but for key ops */
 1322                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
 1323                         cap = crypto_checkdriver(krp->krp_hid);
 1324                         if (cap == NULL || cap->cc_dev == NULL) {
 1325                                 /*
 1326                                  * Operation needs to be migrated, invalidate
 1327                                  * the assigned device so it will reselect a
 1328                                  * new one below.  Propagate the original
 1329                                  * crid selection flags if supplied.
 1330                                  */
 1331                                 krp->krp_hid = krp->krp_crid &
 1332                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
 1333                                 if (krp->krp_hid == 0)
 1334                                         krp->krp_hid =
 1335                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
 1336                                 break;
 1337                         }
 1338                         if (!cap->cc_kqblocked)
 1339                                 break;
 1340                 }
 1341                 if (krp != NULL) {
 1342                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
 1343                         result = crypto_kinvoke(krp, krp->krp_hid);
 1344                         if (result == ERESTART) {
 1345                                 /*
 1346                                  * The driver ran out of resources, mark the
 1347                                  * driver ``blocked'' for cryptkop's and put
 1348                                  * the request back in the queue.  It would
 1349                                  * best to put the request back where we got
 1350                                  * it but that's hard so for now we put it
 1351                                  * at the front.  This should be ok; putting
 1352                                  * it at the end does not work.
 1353                                  */
 1354                                 /* XXX validate sid again? */
 1355                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
 1356                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
 1357                                 cryptostats.cs_kblocks++;
 1358                         }
 1359                 }
 1360 
 1361                 if (submit == NULL && krp == NULL) {
 1362                         /*
 1363                          * Nothing more to be processed.  Sleep until we're
 1364                          * woken because there are more ops to process.
 1365                          * This happens either by submission or by a driver
 1366                          * becoming unblocked and notifying us through
 1367                          * crypto_unblock.  Note that when we wakeup we
 1368                          * start processing each queue again from the
 1369                          * front. It's not clear that it's important to
 1370                          * preserve this ordering since ops may finish
 1371                          * out of order if dispatched to different devices
 1372                          * and some become blocked while others do not.
 1373                          */
 1374                         crp_sleep = 1;
 1375                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
 1376                         crp_sleep = 0;
 1377                         if (cryptoproc == NULL)
 1378                                 break;
 1379                         cryptostats.cs_intrs++;
 1380                 }
 1381         }
 1382         CRYPTO_Q_UNLOCK();
 1383 
 1384         crypto_finis(&crp_q);
 1385 }
 1386 
 1387 /*
 1388  * Crypto returns thread, does callbacks for processed crypto requests.
 1389  * Callbacks are done here, rather than in the crypto drivers, because
 1390  * callbacks typically are expensive and would slow interrupt handling.
 1391  */
 1392 static void
 1393 crypto_ret_proc(void)
 1394 {
 1395         struct cryptop *crpt;
 1396         struct cryptkop *krpt;
 1397 
 1398         CRYPTO_RETQ_LOCK();
 1399         for (;;) {
 1400                 /* Harvest return q's for completed ops */
 1401                 crpt = TAILQ_FIRST(&crp_ret_q);
 1402                 if (crpt != NULL)
 1403                         TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
 1404 
 1405                 krpt = TAILQ_FIRST(&crp_ret_kq);
 1406                 if (krpt != NULL)
 1407                         TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
 1408 
 1409                 if (crpt != NULL || krpt != NULL) {
 1410                         CRYPTO_RETQ_UNLOCK();
 1411                         /*
 1412                          * Run callbacks unlocked.
 1413                          */
 1414                         if (crpt != NULL) {
 1415 #ifdef CRYPTO_TIMING
 1416                                 if (crypto_timing) {
 1417                                         /*
 1418                                          * NB: We must copy the timestamp before
 1419                                          * doing the callback as the cryptop is
 1420                                          * likely to be reclaimed.
 1421                                          */
 1422                                         struct bintime t = crpt->crp_tstamp;
 1423                                         crypto_tstat(&cryptostats.cs_cb, &t);
 1424                                         crpt->crp_callback(crpt);
 1425                                         crypto_tstat(&cryptostats.cs_finis, &t);
 1426                                 } else
 1427 #endif
 1428                                         crpt->crp_callback(crpt);
 1429                         }
 1430                         if (krpt != NULL)
 1431                                 krpt->krp_callback(krpt);
 1432                         CRYPTO_RETQ_LOCK();
 1433                 } else {
 1434                         /*
 1435                          * Nothing more to be processed.  Sleep until we're
 1436                          * woken because there are more returns to process.
 1437                          */
 1438                         msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
 1439                                 "crypto_ret_wait", 0);
 1440                         if (cryptoretproc == NULL)
 1441                                 break;
 1442                         cryptostats.cs_rets++;
 1443                 }
 1444         }
 1445         CRYPTO_RETQ_UNLOCK();
 1446 
 1447         crypto_finis(&crp_ret_q);
 1448 }
 1449 
 1450 #ifdef DDB
 1451 static void
 1452 db_show_drivers(void)
 1453 {
 1454         int hid;
 1455 
 1456         db_printf("%12s %4s %4s %8s %2s %2s\n"
 1457                 , "Device"
 1458                 , "Ses"
 1459                 , "Kops"
 1460                 , "Flags"
 1461                 , "QB"
 1462                 , "KB"
 1463         );
 1464         for (hid = 0; hid < crypto_drivers_num; hid++) {
 1465                 const struct cryptocap *cap = &crypto_drivers[hid];
 1466                 if (cap->cc_dev == NULL)
 1467                         continue;
 1468                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
 1469                     , device_get_nameunit(cap->cc_dev)
 1470                     , cap->cc_sessions
 1471                     , cap->cc_koperations
 1472                     , cap->cc_flags
 1473                     , cap->cc_qblocked
 1474                     , cap->cc_kqblocked
 1475                 );
 1476         }
 1477 }
 1478 
 1479 DB_SHOW_COMMAND(crypto, db_show_crypto)
 1480 {
 1481         struct cryptop *crp;
 1482 
 1483         db_show_drivers();
 1484         db_printf("\n");
 1485 
 1486         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
 1487             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
 1488             "Desc", "Callback");
 1489         TAILQ_FOREACH(crp, &crp_q, crp_next) {
 1490                 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
 1491                     , (int) CRYPTO_SESID2HID(crp->crp_sid)
 1492                     , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
 1493                     , crp->crp_ilen, crp->crp_olen
 1494                     , crp->crp_etype
 1495                     , crp->crp_flags
 1496                     , crp->crp_desc
 1497                     , crp->crp_callback
 1498                 );
 1499         }
 1500         if (!TAILQ_EMPTY(&crp_ret_q)) {
 1501                 db_printf("\n%4s %4s %4s %8s\n",
 1502                     "HID", "Etype", "Flags", "Callback");
 1503                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
 1504                         db_printf("%4u %4u %04x %8p\n"
 1505                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
 1506                             , crp->crp_etype
 1507                             , crp->crp_flags
 1508                             , crp->crp_callback
 1509                         );
 1510                 }
 1511         }
 1512 }
 1513 
 1514 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
 1515 {
 1516         struct cryptkop *krp;
 1517 
 1518         db_show_drivers();
 1519         db_printf("\n");
 1520 
 1521         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
 1522             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
 1523         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
 1524                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
 1525                     , krp->krp_op
 1526                     , krp->krp_status
 1527                     , krp->krp_iparams, krp->krp_oparams
 1528                     , krp->krp_crid, krp->krp_hid
 1529                     , krp->krp_callback
 1530                 );
 1531         }
 1532         if (!TAILQ_EMPTY(&crp_ret_q)) {
 1533                 db_printf("%4s %5s %8s %4s %8s\n",
 1534                     "Op", "Status", "CRID", "HID", "Callback");
 1535                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
 1536                         db_printf("%4u %5u %08x %4u %8p\n"
 1537                             , krp->krp_op
 1538                             , krp->krp_status
 1539                             , krp->krp_crid, krp->krp_hid
 1540                             , krp->krp_callback
 1541                         );
 1542                 }
 1543         }
 1544 }
 1545 #endif
 1546 
 1547 int crypto_modevent(module_t mod, int type, void *unused);
 1548 
 1549 /*
 1550  * Initialization code, both for static and dynamic loading.
 1551  * Note this is not invoked with the usual MODULE_DECLARE
 1552  * mechanism but instead is listed as a dependency by the
 1553  * cryptosoft driver.  This guarantees proper ordering of
 1554  * calls on module load/unload.
 1555  */
 1556 int
 1557 crypto_modevent(module_t mod, int type, void *unused)
 1558 {
 1559         int error = EINVAL;
 1560 
 1561         switch (type) {
 1562         case MOD_LOAD:
 1563                 error = crypto_init();
 1564                 if (error == 0 && bootverbose)
 1565                         printf("crypto: <crypto core>\n");
 1566                 break;
 1567         case MOD_UNLOAD:
 1568                 /*XXX disallow if active sessions */
 1569                 error = 0;
 1570                 crypto_destroy();
 1571                 return 0;
 1572         }
 1573         return error;
 1574 }
 1575 MODULE_VERSION(crypto, 1);
 1576 MODULE_DEPEND(crypto, zlib, 1, 1, 1);

Cache object: 04a21b739910555650b389953489e5d2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.