1 /*-
2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD: releng/9.2/sys/opencrypto/crypto.c 208834 2010-06-05 16:00:53Z kib $");
27
28 /*
29 * Cryptographic Subsystem.
30 *
31 * This code is derived from the Openbsd Cryptographic Framework (OCF)
32 * that has the copyright shown below. Very little of the original
33 * code remains.
34 */
35
36 /*-
37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38 *
39 * This code was written by Angelos D. Keromytis in Athens, Greece, in
40 * February 2000. Network Security Technologies Inc. (NSTI) kindly
41 * supported the development of this code.
42 *
43 * Copyright (c) 2000, 2001 Angelos D. Keromytis
44 *
45 * Permission to use, copy, and modify this software with or without fee
46 * is hereby granted, provided that this entire notice is included in
47 * all source code copies of any software which is or includes a copy or
48 * modification of this software.
49 *
50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54 * PURPOSE.
55 */
56
57 #define CRYPTO_TIMING /* enable timing support */
58
59 #include "opt_ddb.h"
60 #include "opt_kdtrace.h"
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/lock.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/malloc.h>
71 #include <sys/proc.h>
72 #include <sys/sdt.h>
73 #include <sys/sysctl.h>
74
75 #include <ddb/ddb.h>
76
77 #include <vm/uma.h>
78 #include <opencrypto/cryptodev.h>
79 #include <opencrypto/xform.h> /* XXX for M_XDATA */
80
81 #include <sys/kobj.h>
82 #include <sys/bus.h>
83 #include "cryptodev_if.h"
84
85 #if defined(__i386__) || defined(__amd64__)
86 #include <machine/pcb.h>
87 #endif
88
89 SDT_PROVIDER_DEFINE(opencrypto);
90
91 /*
92 * Crypto drivers register themselves by allocating a slot in the
93 * crypto_drivers table with crypto_get_driverid() and then registering
94 * each algorithm they support with crypto_register() and crypto_kregister().
95 */
96 static struct mtx crypto_drivers_mtx; /* lock on driver table */
97 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
98 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
99 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
100
101 /*
102 * Crypto device/driver capabilities structure.
103 *
104 * Synchronization:
105 * (d) - protected by CRYPTO_DRIVER_LOCK()
106 * (q) - protected by CRYPTO_Q_LOCK()
107 * Not tagged fields are read-only.
108 */
109 struct cryptocap {
110 device_t cc_dev; /* (d) device/driver */
111 u_int32_t cc_sessions; /* (d) # of sessions */
112 u_int32_t cc_koperations; /* (d) # os asym operations */
113 /*
114 * Largest possible operator length (in bits) for each type of
115 * encryption algorithm. XXX not used
116 */
117 u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
118 u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1];
119 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
120
121 int cc_flags; /* (d) flags */
122 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
123 int cc_qblocked; /* (q) symmetric q blocked */
124 int cc_kqblocked; /* (q) asymmetric q blocked */
125 };
126 static struct cryptocap *crypto_drivers = NULL;
127 static int crypto_drivers_num = 0;
128
129 /*
130 * There are two queues for crypto requests; one for symmetric (e.g.
131 * cipher) operations and one for asymmetric (e.g. MOD)operations.
132 * A single mutex is used to lock access to both queues. We could
133 * have one per-queue but having one simplifies handling of block/unblock
134 * operations.
135 */
136 static int crp_sleep = 0;
137 static TAILQ_HEAD(,cryptop) crp_q; /* request queues */
138 static TAILQ_HEAD(,cryptkop) crp_kq;
139 static struct mtx crypto_q_mtx;
140 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
141 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
142
143 /*
144 * There are two queues for processing completed crypto requests; one
145 * for the symmetric and one for the asymmetric ops. We only need one
146 * but have two to avoid type futzing (cryptop vs. cryptkop). A single
147 * mutex is used to lock access to both queues. Note that this lock
148 * must be separate from the lock on request queues to insure driver
149 * callbacks don't generate lock order reversals.
150 */
151 static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */
152 static TAILQ_HEAD(,cryptkop) crp_ret_kq;
153 static struct mtx crypto_ret_q_mtx;
154 #define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx)
155 #define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx)
156 #define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
157
158 static uma_zone_t cryptop_zone;
159 static uma_zone_t cryptodesc_zone;
160
161 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
162 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
163 &crypto_userasymcrypto, 0,
164 "Enable/disable user-mode access to asymmetric crypto support");
165 int crypto_devallowsoft = 0; /* only use hardware crypto for asym */
166 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
167 &crypto_devallowsoft, 0,
168 "Enable/disable use of software asym crypto support");
169
170 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
171
172 static void crypto_proc(void);
173 static struct proc *cryptoproc;
174 static void crypto_ret_proc(void);
175 static struct proc *cryptoretproc;
176 static void crypto_destroy(void);
177 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
178 static int crypto_kinvoke(struct cryptkop *krp, int flags);
179
180 static struct cryptostats cryptostats;
181 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
182 cryptostats, "Crypto system statistics");
183
184 #ifdef CRYPTO_TIMING
185 static int crypto_timing = 0;
186 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
187 &crypto_timing, 0, "Enable/disable crypto timing support");
188 #endif
189
190 static int
191 crypto_init(void)
192 {
193 int error;
194
195 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
196 MTX_DEF|MTX_QUIET);
197
198 TAILQ_INIT(&crp_q);
199 TAILQ_INIT(&crp_kq);
200 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
201
202 TAILQ_INIT(&crp_ret_q);
203 TAILQ_INIT(&crp_ret_kq);
204 mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
205
206 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
207 0, 0, 0, 0,
208 UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
209 cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
210 0, 0, 0, 0,
211 UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
212 if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
213 printf("crypto_init: cannot setup crypto zones\n");
214 error = ENOMEM;
215 goto bad;
216 }
217
218 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
219 crypto_drivers = malloc(crypto_drivers_num *
220 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
221 if (crypto_drivers == NULL) {
222 printf("crypto_init: cannot setup crypto drivers\n");
223 error = ENOMEM;
224 goto bad;
225 }
226
227 error = kproc_create((void (*)(void *)) crypto_proc, NULL,
228 &cryptoproc, 0, 0, "crypto");
229 if (error) {
230 printf("crypto_init: cannot start crypto thread; error %d",
231 error);
232 goto bad;
233 }
234
235 error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL,
236 &cryptoretproc, 0, 0, "crypto returns");
237 if (error) {
238 printf("crypto_init: cannot start cryptoret thread; error %d",
239 error);
240 goto bad;
241 }
242 return 0;
243 bad:
244 crypto_destroy();
245 return error;
246 }
247
248 /*
249 * Signal a crypto thread to terminate. We use the driver
250 * table lock to synchronize the sleep/wakeups so that we
251 * are sure the threads have terminated before we release
252 * the data structures they use. See crypto_finis below
253 * for the other half of this song-and-dance.
254 */
255 static void
256 crypto_terminate(struct proc **pp, void *q)
257 {
258 struct proc *p;
259
260 mtx_assert(&crypto_drivers_mtx, MA_OWNED);
261 p = *pp;
262 *pp = NULL;
263 if (p) {
264 wakeup_one(q);
265 PROC_LOCK(p); /* NB: insure we don't miss wakeup */
266 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
267 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
268 PROC_UNLOCK(p);
269 CRYPTO_DRIVER_LOCK();
270 }
271 }
272
273 static void
274 crypto_destroy(void)
275 {
276 /*
277 * Terminate any crypto threads.
278 */
279 CRYPTO_DRIVER_LOCK();
280 crypto_terminate(&cryptoproc, &crp_q);
281 crypto_terminate(&cryptoretproc, &crp_ret_q);
282 CRYPTO_DRIVER_UNLOCK();
283
284 /* XXX flush queues??? */
285
286 /*
287 * Reclaim dynamically allocated resources.
288 */
289 if (crypto_drivers != NULL)
290 free(crypto_drivers, M_CRYPTO_DATA);
291
292 if (cryptodesc_zone != NULL)
293 uma_zdestroy(cryptodesc_zone);
294 if (cryptop_zone != NULL)
295 uma_zdestroy(cryptop_zone);
296 mtx_destroy(&crypto_q_mtx);
297 mtx_destroy(&crypto_ret_q_mtx);
298 mtx_destroy(&crypto_drivers_mtx);
299 }
300
301 static struct cryptocap *
302 crypto_checkdriver(u_int32_t hid)
303 {
304 if (crypto_drivers == NULL)
305 return NULL;
306 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
307 }
308
309 /*
310 * Compare a driver's list of supported algorithms against another
311 * list; return non-zero if all algorithms are supported.
312 */
313 static int
314 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
315 {
316 const struct cryptoini *cr;
317
318 /* See if all the algorithms are supported. */
319 for (cr = cri; cr; cr = cr->cri_next)
320 if (cap->cc_alg[cr->cri_alg] == 0)
321 return 0;
322 return 1;
323 }
324
325 /*
326 * Select a driver for a new session that supports the specified
327 * algorithms and, optionally, is constrained according to the flags.
328 * The algorithm we use here is pretty stupid; just use the
329 * first driver that supports all the algorithms we need. If there
330 * are multiple drivers we choose the driver with the fewest active
331 * sessions. We prefer hardware-backed drivers to software ones.
332 *
333 * XXX We need more smarts here (in real life too, but that's
334 * XXX another story altogether).
335 */
336 static struct cryptocap *
337 crypto_select_driver(const struct cryptoini *cri, int flags)
338 {
339 struct cryptocap *cap, *best;
340 int match, hid;
341
342 CRYPTO_DRIVER_ASSERT();
343
344 /*
345 * Look first for hardware crypto devices if permitted.
346 */
347 if (flags & CRYPTOCAP_F_HARDWARE)
348 match = CRYPTOCAP_F_HARDWARE;
349 else
350 match = CRYPTOCAP_F_SOFTWARE;
351 best = NULL;
352 again:
353 for (hid = 0; hid < crypto_drivers_num; hid++) {
354 cap = &crypto_drivers[hid];
355 /*
356 * If it's not initialized, is in the process of
357 * going away, or is not appropriate (hardware
358 * or software based on match), then skip.
359 */
360 if (cap->cc_dev == NULL ||
361 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
362 (cap->cc_flags & match) == 0)
363 continue;
364
365 /* verify all the algorithms are supported. */
366 if (driver_suitable(cap, cri)) {
367 if (best == NULL ||
368 cap->cc_sessions < best->cc_sessions)
369 best = cap;
370 }
371 }
372 if (best != NULL)
373 return best;
374 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
375 /* sort of an Algol 68-style for loop */
376 match = CRYPTOCAP_F_SOFTWARE;
377 goto again;
378 }
379 return best;
380 }
381
382 /*
383 * Create a new session. The crid argument specifies a crypto
384 * driver to use or constraints on a driver to select (hardware
385 * only, software only, either). Whatever driver is selected
386 * must be capable of the requested crypto algorithms.
387 */
388 int
389 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
390 {
391 struct cryptocap *cap;
392 u_int32_t hid, lid;
393 int err;
394
395 CRYPTO_DRIVER_LOCK();
396 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
397 /*
398 * Use specified driver; verify it is capable.
399 */
400 cap = crypto_checkdriver(crid);
401 if (cap != NULL && !driver_suitable(cap, cri))
402 cap = NULL;
403 } else {
404 /*
405 * No requested driver; select based on crid flags.
406 */
407 cap = crypto_select_driver(cri, crid);
408 /*
409 * if NULL then can't do everything in one session.
410 * XXX Fix this. We need to inject a "virtual" session
411 * XXX layer right about here.
412 */
413 }
414 if (cap != NULL) {
415 /* Call the driver initialization routine. */
416 hid = cap - crypto_drivers;
417 lid = hid; /* Pass the driver ID. */
418 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
419 if (err == 0) {
420 (*sid) = (cap->cc_flags & 0xff000000)
421 | (hid & 0x00ffffff);
422 (*sid) <<= 32;
423 (*sid) |= (lid & 0xffffffff);
424 cap->cc_sessions++;
425 }
426 } else
427 err = EINVAL;
428 CRYPTO_DRIVER_UNLOCK();
429 return err;
430 }
431
432 static void
433 crypto_remove(struct cryptocap *cap)
434 {
435
436 mtx_assert(&crypto_drivers_mtx, MA_OWNED);
437 if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
438 bzero(cap, sizeof(*cap));
439 }
440
441 /*
442 * Delete an existing session (or a reserved session on an unregistered
443 * driver).
444 */
445 int
446 crypto_freesession(u_int64_t sid)
447 {
448 struct cryptocap *cap;
449 u_int32_t hid;
450 int err;
451
452 CRYPTO_DRIVER_LOCK();
453
454 if (crypto_drivers == NULL) {
455 err = EINVAL;
456 goto done;
457 }
458
459 /* Determine two IDs. */
460 hid = CRYPTO_SESID2HID(sid);
461
462 if (hid >= crypto_drivers_num) {
463 err = ENOENT;
464 goto done;
465 }
466 cap = &crypto_drivers[hid];
467
468 if (cap->cc_sessions)
469 cap->cc_sessions--;
470
471 /* Call the driver cleanup routine, if available. */
472 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
473
474 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
475 crypto_remove(cap);
476
477 done:
478 CRYPTO_DRIVER_UNLOCK();
479 return err;
480 }
481
482 /*
483 * Return an unused driver id. Used by drivers prior to registering
484 * support for the algorithms they handle.
485 */
486 int32_t
487 crypto_get_driverid(device_t dev, int flags)
488 {
489 struct cryptocap *newdrv;
490 int i;
491
492 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
493 printf("%s: no flags specified when registering driver\n",
494 device_get_nameunit(dev));
495 return -1;
496 }
497
498 CRYPTO_DRIVER_LOCK();
499
500 for (i = 0; i < crypto_drivers_num; i++) {
501 if (crypto_drivers[i].cc_dev == NULL &&
502 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
503 break;
504 }
505 }
506
507 /* Out of entries, allocate some more. */
508 if (i == crypto_drivers_num) {
509 /* Be careful about wrap-around. */
510 if (2 * crypto_drivers_num <= crypto_drivers_num) {
511 CRYPTO_DRIVER_UNLOCK();
512 printf("crypto: driver count wraparound!\n");
513 return -1;
514 }
515
516 newdrv = malloc(2 * crypto_drivers_num *
517 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
518 if (newdrv == NULL) {
519 CRYPTO_DRIVER_UNLOCK();
520 printf("crypto: no space to expand driver table!\n");
521 return -1;
522 }
523
524 bcopy(crypto_drivers, newdrv,
525 crypto_drivers_num * sizeof(struct cryptocap));
526
527 crypto_drivers_num *= 2;
528
529 free(crypto_drivers, M_CRYPTO_DATA);
530 crypto_drivers = newdrv;
531 }
532
533 /* NB: state is zero'd on free */
534 crypto_drivers[i].cc_sessions = 1; /* Mark */
535 crypto_drivers[i].cc_dev = dev;
536 crypto_drivers[i].cc_flags = flags;
537 if (bootverbose)
538 printf("crypto: assign %s driver id %u, flags %u\n",
539 device_get_nameunit(dev), i, flags);
540
541 CRYPTO_DRIVER_UNLOCK();
542
543 return i;
544 }
545
546 /*
547 * Lookup a driver by name. We match against the full device
548 * name and unit, and against just the name. The latter gives
549 * us a simple widlcarding by device name. On success return the
550 * driver/hardware identifier; otherwise return -1.
551 */
552 int
553 crypto_find_driver(const char *match)
554 {
555 int i, len = strlen(match);
556
557 CRYPTO_DRIVER_LOCK();
558 for (i = 0; i < crypto_drivers_num; i++) {
559 device_t dev = crypto_drivers[i].cc_dev;
560 if (dev == NULL ||
561 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
562 continue;
563 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
564 strncmp(match, device_get_name(dev), len) == 0)
565 break;
566 }
567 CRYPTO_DRIVER_UNLOCK();
568 return i < crypto_drivers_num ? i : -1;
569 }
570
571 /*
572 * Return the device_t for the specified driver or NULL
573 * if the driver identifier is invalid.
574 */
575 device_t
576 crypto_find_device_byhid(int hid)
577 {
578 struct cryptocap *cap = crypto_checkdriver(hid);
579 return cap != NULL ? cap->cc_dev : NULL;
580 }
581
582 /*
583 * Return the device/driver capabilities.
584 */
585 int
586 crypto_getcaps(int hid)
587 {
588 struct cryptocap *cap = crypto_checkdriver(hid);
589 return cap != NULL ? cap->cc_flags : 0;
590 }
591
592 /*
593 * Register support for a key-related algorithm. This routine
594 * is called once for each algorithm supported a driver.
595 */
596 int
597 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
598 {
599 struct cryptocap *cap;
600 int err;
601
602 CRYPTO_DRIVER_LOCK();
603
604 cap = crypto_checkdriver(driverid);
605 if (cap != NULL &&
606 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
607 /*
608 * XXX Do some performance testing to determine placing.
609 * XXX We probably need an auxiliary data structure that
610 * XXX describes relative performances.
611 */
612
613 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
614 if (bootverbose)
615 printf("crypto: %s registers key alg %u flags %u\n"
616 , device_get_nameunit(cap->cc_dev)
617 , kalg
618 , flags
619 );
620 err = 0;
621 } else
622 err = EINVAL;
623
624 CRYPTO_DRIVER_UNLOCK();
625 return err;
626 }
627
628 /*
629 * Register support for a non-key-related algorithm. This routine
630 * is called once for each such algorithm supported by a driver.
631 */
632 int
633 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
634 u_int32_t flags)
635 {
636 struct cryptocap *cap;
637 int err;
638
639 CRYPTO_DRIVER_LOCK();
640
641 cap = crypto_checkdriver(driverid);
642 /* NB: algorithms are in the range [1..max] */
643 if (cap != NULL &&
644 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
645 /*
646 * XXX Do some performance testing to determine placing.
647 * XXX We probably need an auxiliary data structure that
648 * XXX describes relative performances.
649 */
650
651 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
652 cap->cc_max_op_len[alg] = maxoplen;
653 if (bootverbose)
654 printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
655 , device_get_nameunit(cap->cc_dev)
656 , alg
657 , flags
658 , maxoplen
659 );
660 cap->cc_sessions = 0; /* Unmark */
661 err = 0;
662 } else
663 err = EINVAL;
664
665 CRYPTO_DRIVER_UNLOCK();
666 return err;
667 }
668
669 static void
670 driver_finis(struct cryptocap *cap)
671 {
672 u_int32_t ses, kops;
673
674 CRYPTO_DRIVER_ASSERT();
675
676 ses = cap->cc_sessions;
677 kops = cap->cc_koperations;
678 bzero(cap, sizeof(*cap));
679 if (ses != 0 || kops != 0) {
680 /*
681 * If there are pending sessions,
682 * just mark as invalid.
683 */
684 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
685 cap->cc_sessions = ses;
686 cap->cc_koperations = kops;
687 }
688 }
689
690 /*
691 * Unregister a crypto driver. If there are pending sessions using it,
692 * leave enough information around so that subsequent calls using those
693 * sessions will correctly detect the driver has been unregistered and
694 * reroute requests.
695 */
696 int
697 crypto_unregister(u_int32_t driverid, int alg)
698 {
699 struct cryptocap *cap;
700 int i, err;
701
702 CRYPTO_DRIVER_LOCK();
703 cap = crypto_checkdriver(driverid);
704 if (cap != NULL &&
705 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
706 cap->cc_alg[alg] != 0) {
707 cap->cc_alg[alg] = 0;
708 cap->cc_max_op_len[alg] = 0;
709
710 /* Was this the last algorithm ? */
711 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
712 if (cap->cc_alg[i] != 0)
713 break;
714
715 if (i == CRYPTO_ALGORITHM_MAX + 1)
716 driver_finis(cap);
717 err = 0;
718 } else
719 err = EINVAL;
720 CRYPTO_DRIVER_UNLOCK();
721
722 return err;
723 }
724
725 /*
726 * Unregister all algorithms associated with a crypto driver.
727 * If there are pending sessions using it, leave enough information
728 * around so that subsequent calls using those sessions will
729 * correctly detect the driver has been unregistered and reroute
730 * requests.
731 */
732 int
733 crypto_unregister_all(u_int32_t driverid)
734 {
735 struct cryptocap *cap;
736 int err;
737
738 CRYPTO_DRIVER_LOCK();
739 cap = crypto_checkdriver(driverid);
740 if (cap != NULL) {
741 driver_finis(cap);
742 err = 0;
743 } else
744 err = EINVAL;
745 CRYPTO_DRIVER_UNLOCK();
746
747 return err;
748 }
749
750 /*
751 * Clear blockage on a driver. The what parameter indicates whether
752 * the driver is now ready for cryptop's and/or cryptokop's.
753 */
754 int
755 crypto_unblock(u_int32_t driverid, int what)
756 {
757 struct cryptocap *cap;
758 int err;
759
760 CRYPTO_Q_LOCK();
761 cap = crypto_checkdriver(driverid);
762 if (cap != NULL) {
763 if (what & CRYPTO_SYMQ)
764 cap->cc_qblocked = 0;
765 if (what & CRYPTO_ASYMQ)
766 cap->cc_kqblocked = 0;
767 if (crp_sleep)
768 wakeup_one(&crp_q);
769 err = 0;
770 } else
771 err = EINVAL;
772 CRYPTO_Q_UNLOCK();
773
774 return err;
775 }
776
777 /*
778 * Add a crypto request to a queue, to be processed by the kernel thread.
779 */
780 int
781 crypto_dispatch(struct cryptop *crp)
782 {
783 struct cryptocap *cap;
784 u_int32_t hid;
785 int result;
786
787 cryptostats.cs_ops++;
788
789 #ifdef CRYPTO_TIMING
790 if (crypto_timing)
791 binuptime(&crp->crp_tstamp);
792 #endif
793
794 hid = CRYPTO_SESID2HID(crp->crp_sid);
795
796 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
797 /*
798 * Caller marked the request to be processed
799 * immediately; dispatch it directly to the
800 * driver unless the driver is currently blocked.
801 */
802 cap = crypto_checkdriver(hid);
803 /* Driver cannot disappeared when there is an active session. */
804 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
805 if (!cap->cc_qblocked) {
806 result = crypto_invoke(cap, crp, 0);
807 if (result != ERESTART)
808 return (result);
809 /*
810 * The driver ran out of resources, put the request on
811 * the queue.
812 */
813 }
814 }
815 CRYPTO_Q_LOCK();
816 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
817 if (crp_sleep)
818 wakeup_one(&crp_q);
819 CRYPTO_Q_UNLOCK();
820 return 0;
821 }
822
823 /*
824 * Add an asymetric crypto request to a queue,
825 * to be processed by the kernel thread.
826 */
827 int
828 crypto_kdispatch(struct cryptkop *krp)
829 {
830 int error;
831
832 cryptostats.cs_kops++;
833
834 error = crypto_kinvoke(krp, krp->krp_crid);
835 if (error == ERESTART) {
836 CRYPTO_Q_LOCK();
837 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
838 if (crp_sleep)
839 wakeup_one(&crp_q);
840 CRYPTO_Q_UNLOCK();
841 error = 0;
842 }
843 return error;
844 }
845
846 /*
847 * Verify a driver is suitable for the specified operation.
848 */
849 static __inline int
850 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
851 {
852 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
853 }
854
855 /*
856 * Select a driver for an asym operation. The driver must
857 * support the necessary algorithm. The caller can constrain
858 * which device is selected with the flags parameter. The
859 * algorithm we use here is pretty stupid; just use the first
860 * driver that supports the algorithms we need. If there are
861 * multiple suitable drivers we choose the driver with the
862 * fewest active operations. We prefer hardware-backed
863 * drivers to software ones when either may be used.
864 */
865 static struct cryptocap *
866 crypto_select_kdriver(const struct cryptkop *krp, int flags)
867 {
868 struct cryptocap *cap, *best, *blocked;
869 int match, hid;
870
871 CRYPTO_DRIVER_ASSERT();
872
873 /*
874 * Look first for hardware crypto devices if permitted.
875 */
876 if (flags & CRYPTOCAP_F_HARDWARE)
877 match = CRYPTOCAP_F_HARDWARE;
878 else
879 match = CRYPTOCAP_F_SOFTWARE;
880 best = NULL;
881 blocked = NULL;
882 again:
883 for (hid = 0; hid < crypto_drivers_num; hid++) {
884 cap = &crypto_drivers[hid];
885 /*
886 * If it's not initialized, is in the process of
887 * going away, or is not appropriate (hardware
888 * or software based on match), then skip.
889 */
890 if (cap->cc_dev == NULL ||
891 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
892 (cap->cc_flags & match) == 0)
893 continue;
894
895 /* verify all the algorithms are supported. */
896 if (kdriver_suitable(cap, krp)) {
897 if (best == NULL ||
898 cap->cc_koperations < best->cc_koperations)
899 best = cap;
900 }
901 }
902 if (best != NULL)
903 return best;
904 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
905 /* sort of an Algol 68-style for loop */
906 match = CRYPTOCAP_F_SOFTWARE;
907 goto again;
908 }
909 return best;
910 }
911
912 /*
913 * Dispatch an assymetric crypto request.
914 */
915 static int
916 crypto_kinvoke(struct cryptkop *krp, int crid)
917 {
918 struct cryptocap *cap = NULL;
919 int error;
920
921 KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
922 KASSERT(krp->krp_callback != NULL,
923 ("%s: krp->crp_callback == NULL", __func__));
924
925 CRYPTO_DRIVER_LOCK();
926 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
927 cap = crypto_checkdriver(crid);
928 if (cap != NULL) {
929 /*
930 * Driver present, it must support the necessary
931 * algorithm and, if s/w drivers are excluded,
932 * it must be registered as hardware-backed.
933 */
934 if (!kdriver_suitable(cap, krp) ||
935 (!crypto_devallowsoft &&
936 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
937 cap = NULL;
938 }
939 } else {
940 /*
941 * No requested driver; select based on crid flags.
942 */
943 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
944 crid &= ~CRYPTOCAP_F_SOFTWARE;
945 cap = crypto_select_kdriver(krp, crid);
946 }
947 if (cap != NULL && !cap->cc_kqblocked) {
948 krp->krp_hid = cap - crypto_drivers;
949 cap->cc_koperations++;
950 CRYPTO_DRIVER_UNLOCK();
951 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
952 CRYPTO_DRIVER_LOCK();
953 if (error == ERESTART) {
954 cap->cc_koperations--;
955 CRYPTO_DRIVER_UNLOCK();
956 return (error);
957 }
958 } else {
959 /*
960 * NB: cap is !NULL if device is blocked; in
961 * that case return ERESTART so the operation
962 * is resubmitted if possible.
963 */
964 error = (cap == NULL) ? ENODEV : ERESTART;
965 }
966 CRYPTO_DRIVER_UNLOCK();
967
968 if (error) {
969 krp->krp_status = error;
970 crypto_kdone(krp);
971 }
972 return 0;
973 }
974
975 #ifdef CRYPTO_TIMING
976 static void
977 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
978 {
979 struct bintime now, delta;
980 struct timespec t;
981 uint64_t u;
982
983 binuptime(&now);
984 u = now.frac;
985 delta.frac = now.frac - bt->frac;
986 delta.sec = now.sec - bt->sec;
987 if (u < delta.frac)
988 delta.sec--;
989 bintime2timespec(&delta, &t);
990 timespecadd(&ts->acc, &t);
991 if (timespeccmp(&t, &ts->min, <))
992 ts->min = t;
993 if (timespeccmp(&t, &ts->max, >))
994 ts->max = t;
995 ts->count++;
996
997 *bt = now;
998 }
999 #endif
1000
1001 /*
1002 * Dispatch a crypto request to the appropriate crypto devices.
1003 */
1004 static int
1005 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1006 {
1007
1008 KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1009 KASSERT(crp->crp_callback != NULL,
1010 ("%s: crp->crp_callback == NULL", __func__));
1011 KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1012
1013 #ifdef CRYPTO_TIMING
1014 if (crypto_timing)
1015 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1016 #endif
1017 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1018 struct cryptodesc *crd;
1019 u_int64_t nid;
1020
1021 /*
1022 * Driver has unregistered; migrate the session and return
1023 * an error to the caller so they'll resubmit the op.
1024 *
1025 * XXX: What if there are more already queued requests for this
1026 * session?
1027 */
1028 crypto_freesession(crp->crp_sid);
1029
1030 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1031 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1032
1033 /* XXX propagate flags from initial session? */
1034 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1035 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1036 crp->crp_sid = nid;
1037
1038 crp->crp_etype = EAGAIN;
1039 crypto_done(crp);
1040 return 0;
1041 } else {
1042 /*
1043 * Invoke the driver to process the request.
1044 */
1045 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1046 }
1047 }
1048
1049 /*
1050 * Release a set of crypto descriptors.
1051 */
1052 void
1053 crypto_freereq(struct cryptop *crp)
1054 {
1055 struct cryptodesc *crd;
1056
1057 if (crp == NULL)
1058 return;
1059
1060 #ifdef DIAGNOSTIC
1061 {
1062 struct cryptop *crp2;
1063
1064 CRYPTO_Q_LOCK();
1065 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1066 KASSERT(crp2 != crp,
1067 ("Freeing cryptop from the crypto queue (%p).",
1068 crp));
1069 }
1070 CRYPTO_Q_UNLOCK();
1071 CRYPTO_RETQ_LOCK();
1072 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1073 KASSERT(crp2 != crp,
1074 ("Freeing cryptop from the return queue (%p).",
1075 crp));
1076 }
1077 CRYPTO_RETQ_UNLOCK();
1078 }
1079 #endif
1080
1081 while ((crd = crp->crp_desc) != NULL) {
1082 crp->crp_desc = crd->crd_next;
1083 uma_zfree(cryptodesc_zone, crd);
1084 }
1085 uma_zfree(cryptop_zone, crp);
1086 }
1087
1088 /*
1089 * Acquire a set of crypto descriptors.
1090 */
1091 struct cryptop *
1092 crypto_getreq(int num)
1093 {
1094 struct cryptodesc *crd;
1095 struct cryptop *crp;
1096
1097 crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
1098 if (crp != NULL) {
1099 while (num--) {
1100 crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
1101 if (crd == NULL) {
1102 crypto_freereq(crp);
1103 return NULL;
1104 }
1105
1106 crd->crd_next = crp->crp_desc;
1107 crp->crp_desc = crd;
1108 }
1109 }
1110 return crp;
1111 }
1112
1113 /*
1114 * Invoke the callback on behalf of the driver.
1115 */
1116 void
1117 crypto_done(struct cryptop *crp)
1118 {
1119 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1120 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1121 crp->crp_flags |= CRYPTO_F_DONE;
1122 if (crp->crp_etype != 0)
1123 cryptostats.cs_errs++;
1124 #ifdef CRYPTO_TIMING
1125 if (crypto_timing)
1126 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1127 #endif
1128 /*
1129 * CBIMM means unconditionally do the callback immediately;
1130 * CBIFSYNC means do the callback immediately only if the
1131 * operation was done synchronously. Both are used to avoid
1132 * doing extraneous context switches; the latter is mostly
1133 * used with the software crypto driver.
1134 */
1135 if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1136 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1137 (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1138 /*
1139 * Do the callback directly. This is ok when the
1140 * callback routine does very little (e.g. the
1141 * /dev/crypto callback method just does a wakeup).
1142 */
1143 #ifdef CRYPTO_TIMING
1144 if (crypto_timing) {
1145 /*
1146 * NB: We must copy the timestamp before
1147 * doing the callback as the cryptop is
1148 * likely to be reclaimed.
1149 */
1150 struct bintime t = crp->crp_tstamp;
1151 crypto_tstat(&cryptostats.cs_cb, &t);
1152 crp->crp_callback(crp);
1153 crypto_tstat(&cryptostats.cs_finis, &t);
1154 } else
1155 #endif
1156 crp->crp_callback(crp);
1157 } else {
1158 /*
1159 * Normal case; queue the callback for the thread.
1160 */
1161 CRYPTO_RETQ_LOCK();
1162 if (CRYPTO_RETQ_EMPTY())
1163 wakeup_one(&crp_ret_q); /* shared wait channel */
1164 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1165 CRYPTO_RETQ_UNLOCK();
1166 }
1167 }
1168
1169 /*
1170 * Invoke the callback on behalf of the driver.
1171 */
1172 void
1173 crypto_kdone(struct cryptkop *krp)
1174 {
1175 struct cryptocap *cap;
1176
1177 if (krp->krp_status != 0)
1178 cryptostats.cs_kerrs++;
1179 CRYPTO_DRIVER_LOCK();
1180 /* XXX: What if driver is loaded in the meantime? */
1181 if (krp->krp_hid < crypto_drivers_num) {
1182 cap = &crypto_drivers[krp->krp_hid];
1183 cap->cc_koperations--;
1184 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1185 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1186 crypto_remove(cap);
1187 }
1188 CRYPTO_DRIVER_UNLOCK();
1189 CRYPTO_RETQ_LOCK();
1190 if (CRYPTO_RETQ_EMPTY())
1191 wakeup_one(&crp_ret_q); /* shared wait channel */
1192 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1193 CRYPTO_RETQ_UNLOCK();
1194 }
1195
1196 int
1197 crypto_getfeat(int *featp)
1198 {
1199 int hid, kalg, feat = 0;
1200
1201 CRYPTO_DRIVER_LOCK();
1202 for (hid = 0; hid < crypto_drivers_num; hid++) {
1203 const struct cryptocap *cap = &crypto_drivers[hid];
1204
1205 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1206 !crypto_devallowsoft) {
1207 continue;
1208 }
1209 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1210 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1211 feat |= 1 << kalg;
1212 }
1213 CRYPTO_DRIVER_UNLOCK();
1214 *featp = feat;
1215 return (0);
1216 }
1217
1218 /*
1219 * Terminate a thread at module unload. The process that
1220 * initiated this is waiting for us to signal that we're gone;
1221 * wake it up and exit. We use the driver table lock to insure
1222 * we don't do the wakeup before they're waiting. There is no
1223 * race here because the waiter sleeps on the proc lock for the
1224 * thread so it gets notified at the right time because of an
1225 * extra wakeup that's done in exit1().
1226 */
1227 static void
1228 crypto_finis(void *chan)
1229 {
1230 CRYPTO_DRIVER_LOCK();
1231 wakeup_one(chan);
1232 CRYPTO_DRIVER_UNLOCK();
1233 kproc_exit(0);
1234 }
1235
1236 /*
1237 * Crypto thread, dispatches crypto requests.
1238 */
1239 static void
1240 crypto_proc(void)
1241 {
1242 struct cryptop *crp, *submit;
1243 struct cryptkop *krp;
1244 struct cryptocap *cap;
1245 u_int32_t hid;
1246 int result, hint;
1247
1248 #if defined(__i386__) || defined(__amd64__)
1249 fpu_kern_thread(FPU_KERN_NORMAL);
1250 #endif
1251
1252 CRYPTO_Q_LOCK();
1253 for (;;) {
1254 /*
1255 * Find the first element in the queue that can be
1256 * processed and look-ahead to see if multiple ops
1257 * are ready for the same driver.
1258 */
1259 submit = NULL;
1260 hint = 0;
1261 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1262 hid = CRYPTO_SESID2HID(crp->crp_sid);
1263 cap = crypto_checkdriver(hid);
1264 /*
1265 * Driver cannot disappeared when there is an active
1266 * session.
1267 */
1268 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1269 __func__, __LINE__));
1270 if (cap == NULL || cap->cc_dev == NULL) {
1271 /* Op needs to be migrated, process it. */
1272 if (submit == NULL)
1273 submit = crp;
1274 break;
1275 }
1276 if (!cap->cc_qblocked) {
1277 if (submit != NULL) {
1278 /*
1279 * We stop on finding another op,
1280 * regardless whether its for the same
1281 * driver or not. We could keep
1282 * searching the queue but it might be
1283 * better to just use a per-driver
1284 * queue instead.
1285 */
1286 if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1287 hint = CRYPTO_HINT_MORE;
1288 break;
1289 } else {
1290 submit = crp;
1291 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1292 break;
1293 /* keep scanning for more are q'd */
1294 }
1295 }
1296 }
1297 if (submit != NULL) {
1298 TAILQ_REMOVE(&crp_q, submit, crp_next);
1299 hid = CRYPTO_SESID2HID(submit->crp_sid);
1300 cap = crypto_checkdriver(hid);
1301 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1302 __func__, __LINE__));
1303 result = crypto_invoke(cap, submit, hint);
1304 if (result == ERESTART) {
1305 /*
1306 * The driver ran out of resources, mark the
1307 * driver ``blocked'' for cryptop's and put
1308 * the request back in the queue. It would
1309 * best to put the request back where we got
1310 * it but that's hard so for now we put it
1311 * at the front. This should be ok; putting
1312 * it at the end does not work.
1313 */
1314 /* XXX validate sid again? */
1315 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1316 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1317 cryptostats.cs_blocks++;
1318 }
1319 }
1320
1321 /* As above, but for key ops */
1322 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1323 cap = crypto_checkdriver(krp->krp_hid);
1324 if (cap == NULL || cap->cc_dev == NULL) {
1325 /*
1326 * Operation needs to be migrated, invalidate
1327 * the assigned device so it will reselect a
1328 * new one below. Propagate the original
1329 * crid selection flags if supplied.
1330 */
1331 krp->krp_hid = krp->krp_crid &
1332 (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1333 if (krp->krp_hid == 0)
1334 krp->krp_hid =
1335 CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1336 break;
1337 }
1338 if (!cap->cc_kqblocked)
1339 break;
1340 }
1341 if (krp != NULL) {
1342 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1343 result = crypto_kinvoke(krp, krp->krp_hid);
1344 if (result == ERESTART) {
1345 /*
1346 * The driver ran out of resources, mark the
1347 * driver ``blocked'' for cryptkop's and put
1348 * the request back in the queue. It would
1349 * best to put the request back where we got
1350 * it but that's hard so for now we put it
1351 * at the front. This should be ok; putting
1352 * it at the end does not work.
1353 */
1354 /* XXX validate sid again? */
1355 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1356 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1357 cryptostats.cs_kblocks++;
1358 }
1359 }
1360
1361 if (submit == NULL && krp == NULL) {
1362 /*
1363 * Nothing more to be processed. Sleep until we're
1364 * woken because there are more ops to process.
1365 * This happens either by submission or by a driver
1366 * becoming unblocked and notifying us through
1367 * crypto_unblock. Note that when we wakeup we
1368 * start processing each queue again from the
1369 * front. It's not clear that it's important to
1370 * preserve this ordering since ops may finish
1371 * out of order if dispatched to different devices
1372 * and some become blocked while others do not.
1373 */
1374 crp_sleep = 1;
1375 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1376 crp_sleep = 0;
1377 if (cryptoproc == NULL)
1378 break;
1379 cryptostats.cs_intrs++;
1380 }
1381 }
1382 CRYPTO_Q_UNLOCK();
1383
1384 crypto_finis(&crp_q);
1385 }
1386
1387 /*
1388 * Crypto returns thread, does callbacks for processed crypto requests.
1389 * Callbacks are done here, rather than in the crypto drivers, because
1390 * callbacks typically are expensive and would slow interrupt handling.
1391 */
1392 static void
1393 crypto_ret_proc(void)
1394 {
1395 struct cryptop *crpt;
1396 struct cryptkop *krpt;
1397
1398 CRYPTO_RETQ_LOCK();
1399 for (;;) {
1400 /* Harvest return q's for completed ops */
1401 crpt = TAILQ_FIRST(&crp_ret_q);
1402 if (crpt != NULL)
1403 TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1404
1405 krpt = TAILQ_FIRST(&crp_ret_kq);
1406 if (krpt != NULL)
1407 TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1408
1409 if (crpt != NULL || krpt != NULL) {
1410 CRYPTO_RETQ_UNLOCK();
1411 /*
1412 * Run callbacks unlocked.
1413 */
1414 if (crpt != NULL) {
1415 #ifdef CRYPTO_TIMING
1416 if (crypto_timing) {
1417 /*
1418 * NB: We must copy the timestamp before
1419 * doing the callback as the cryptop is
1420 * likely to be reclaimed.
1421 */
1422 struct bintime t = crpt->crp_tstamp;
1423 crypto_tstat(&cryptostats.cs_cb, &t);
1424 crpt->crp_callback(crpt);
1425 crypto_tstat(&cryptostats.cs_finis, &t);
1426 } else
1427 #endif
1428 crpt->crp_callback(crpt);
1429 }
1430 if (krpt != NULL)
1431 krpt->krp_callback(krpt);
1432 CRYPTO_RETQ_LOCK();
1433 } else {
1434 /*
1435 * Nothing more to be processed. Sleep until we're
1436 * woken because there are more returns to process.
1437 */
1438 msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
1439 "crypto_ret_wait", 0);
1440 if (cryptoretproc == NULL)
1441 break;
1442 cryptostats.cs_rets++;
1443 }
1444 }
1445 CRYPTO_RETQ_UNLOCK();
1446
1447 crypto_finis(&crp_ret_q);
1448 }
1449
1450 #ifdef DDB
1451 static void
1452 db_show_drivers(void)
1453 {
1454 int hid;
1455
1456 db_printf("%12s %4s %4s %8s %2s %2s\n"
1457 , "Device"
1458 , "Ses"
1459 , "Kops"
1460 , "Flags"
1461 , "QB"
1462 , "KB"
1463 );
1464 for (hid = 0; hid < crypto_drivers_num; hid++) {
1465 const struct cryptocap *cap = &crypto_drivers[hid];
1466 if (cap->cc_dev == NULL)
1467 continue;
1468 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1469 , device_get_nameunit(cap->cc_dev)
1470 , cap->cc_sessions
1471 , cap->cc_koperations
1472 , cap->cc_flags
1473 , cap->cc_qblocked
1474 , cap->cc_kqblocked
1475 );
1476 }
1477 }
1478
1479 DB_SHOW_COMMAND(crypto, db_show_crypto)
1480 {
1481 struct cryptop *crp;
1482
1483 db_show_drivers();
1484 db_printf("\n");
1485
1486 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1487 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1488 "Desc", "Callback");
1489 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1490 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1491 , (int) CRYPTO_SESID2HID(crp->crp_sid)
1492 , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1493 , crp->crp_ilen, crp->crp_olen
1494 , crp->crp_etype
1495 , crp->crp_flags
1496 , crp->crp_desc
1497 , crp->crp_callback
1498 );
1499 }
1500 if (!TAILQ_EMPTY(&crp_ret_q)) {
1501 db_printf("\n%4s %4s %4s %8s\n",
1502 "HID", "Etype", "Flags", "Callback");
1503 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1504 db_printf("%4u %4u %04x %8p\n"
1505 , (int) CRYPTO_SESID2HID(crp->crp_sid)
1506 , crp->crp_etype
1507 , crp->crp_flags
1508 , crp->crp_callback
1509 );
1510 }
1511 }
1512 }
1513
1514 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1515 {
1516 struct cryptkop *krp;
1517
1518 db_show_drivers();
1519 db_printf("\n");
1520
1521 db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1522 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1523 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1524 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1525 , krp->krp_op
1526 , krp->krp_status
1527 , krp->krp_iparams, krp->krp_oparams
1528 , krp->krp_crid, krp->krp_hid
1529 , krp->krp_callback
1530 );
1531 }
1532 if (!TAILQ_EMPTY(&crp_ret_q)) {
1533 db_printf("%4s %5s %8s %4s %8s\n",
1534 "Op", "Status", "CRID", "HID", "Callback");
1535 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1536 db_printf("%4u %5u %08x %4u %8p\n"
1537 , krp->krp_op
1538 , krp->krp_status
1539 , krp->krp_crid, krp->krp_hid
1540 , krp->krp_callback
1541 );
1542 }
1543 }
1544 }
1545 #endif
1546
1547 int crypto_modevent(module_t mod, int type, void *unused);
1548
1549 /*
1550 * Initialization code, both for static and dynamic loading.
1551 * Note this is not invoked with the usual MODULE_DECLARE
1552 * mechanism but instead is listed as a dependency by the
1553 * cryptosoft driver. This guarantees proper ordering of
1554 * calls on module load/unload.
1555 */
1556 int
1557 crypto_modevent(module_t mod, int type, void *unused)
1558 {
1559 int error = EINVAL;
1560
1561 switch (type) {
1562 case MOD_LOAD:
1563 error = crypto_init();
1564 if (error == 0 && bootverbose)
1565 printf("crypto: <crypto core>\n");
1566 break;
1567 case MOD_UNLOAD:
1568 /*XXX disallow if active sessions */
1569 error = 0;
1570 crypto_destroy();
1571 return 0;
1572 }
1573 return error;
1574 }
1575 MODULE_VERSION(crypto, 1);
1576 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
Cache object: 2d7b6c18bdfa548e170c5e48f11fa593
|