1 /* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */
2 /*-
3 * The authors of this code are John Ioannidis (ji@tla.org),
4 * Angelos D. Keromytis (kermit@csd.uch.gr),
5 * Niels Provos (provos@physnet.uni-hamburg.de) and
6 * Damien Miller (djm@mindrot.org).
7 *
8 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
9 * in November 1995.
10 *
11 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12 * by Angelos D. Keromytis.
13 *
14 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
15 * and Niels Provos.
16 *
17 * Additional features in 1999 by Angelos D. Keromytis.
18 *
19 * AES XTS implementation in 2008 by Damien Miller
20 *
21 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
22 * Angelos D. Keromytis and Niels Provos.
23 *
24 * Copyright (C) 2001, Angelos D. Keromytis.
25 *
26 * Copyright (C) 2008, Damien Miller
27 *
28 * Permission to use, copy, and modify this software with or without fee
29 * is hereby granted, provided that this entire notice is included in
30 * all copies of any software which is or includes a copy or
31 * modification of this software.
32 * You may use this code under the GNU public license if you so wish. Please
33 * contribute changes back to the authors under this freer than GPL license
34 * so that we may further the use of strong encryption without limitations to
35 * all.
36 *
37 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
38 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
39 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
40 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
41 * PURPOSE.
42 */
43
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD: releng/10.1/sys/opencrypto/xform.c 247061 2013-02-20 22:59:53Z pjd $");
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/errno.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <machine/cpu.h>
55
56 #include <crypto/blowfish/blowfish.h>
57 #include <crypto/des/des.h>
58 #include <crypto/rijndael/rijndael.h>
59 #include <crypto/camellia/camellia.h>
60 #include <crypto/sha1.h>
61
62 #include <opencrypto/cast.h>
63 #include <opencrypto/deflate.h>
64 #include <opencrypto/rmd160.h>
65 #include <opencrypto/skipjack.h>
66
67 #include <sys/md5.h>
68
69 #include <opencrypto/cryptodev.h>
70 #include <opencrypto/xform.h>
71
72 static int null_setkey(u_int8_t **, u_int8_t *, int);
73 static int des1_setkey(u_int8_t **, u_int8_t *, int);
74 static int des3_setkey(u_int8_t **, u_int8_t *, int);
75 static int blf_setkey(u_int8_t **, u_int8_t *, int);
76 static int cast5_setkey(u_int8_t **, u_int8_t *, int);
77 static int skipjack_setkey(u_int8_t **, u_int8_t *, int);
78 static int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
79 static int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
80 static int cml_setkey(u_int8_t **, u_int8_t *, int);
81
82 static void null_encrypt(caddr_t, u_int8_t *);
83 static void des1_encrypt(caddr_t, u_int8_t *);
84 static void des3_encrypt(caddr_t, u_int8_t *);
85 static void blf_encrypt(caddr_t, u_int8_t *);
86 static void cast5_encrypt(caddr_t, u_int8_t *);
87 static void skipjack_encrypt(caddr_t, u_int8_t *);
88 static void rijndael128_encrypt(caddr_t, u_int8_t *);
89 static void aes_xts_encrypt(caddr_t, u_int8_t *);
90 static void cml_encrypt(caddr_t, u_int8_t *);
91
92 static void null_decrypt(caddr_t, u_int8_t *);
93 static void des1_decrypt(caddr_t, u_int8_t *);
94 static void des3_decrypt(caddr_t, u_int8_t *);
95 static void blf_decrypt(caddr_t, u_int8_t *);
96 static void cast5_decrypt(caddr_t, u_int8_t *);
97 static void skipjack_decrypt(caddr_t, u_int8_t *);
98 static void rijndael128_decrypt(caddr_t, u_int8_t *);
99 static void aes_xts_decrypt(caddr_t, u_int8_t *);
100 static void cml_decrypt(caddr_t, u_int8_t *);
101
102 static void null_zerokey(u_int8_t **);
103 static void des1_zerokey(u_int8_t **);
104 static void des3_zerokey(u_int8_t **);
105 static void blf_zerokey(u_int8_t **);
106 static void cast5_zerokey(u_int8_t **);
107 static void skipjack_zerokey(u_int8_t **);
108 static void rijndael128_zerokey(u_int8_t **);
109 static void aes_xts_zerokey(u_int8_t **);
110 static void cml_zerokey(u_int8_t **);
111
112 static void aes_xts_reinit(caddr_t, u_int8_t *);
113
114 static void null_init(void *);
115 static int null_update(void *, u_int8_t *, u_int16_t);
116 static void null_final(u_int8_t *, void *);
117 static int MD5Update_int(void *, u_int8_t *, u_int16_t);
118 static void SHA1Init_int(void *);
119 static int SHA1Update_int(void *, u_int8_t *, u_int16_t);
120 static void SHA1Final_int(u_int8_t *, void *);
121 static int RMD160Update_int(void *, u_int8_t *, u_int16_t);
122 static int SHA256Update_int(void *, u_int8_t *, u_int16_t);
123 static int SHA384Update_int(void *, u_int8_t *, u_int16_t);
124 static int SHA512Update_int(void *, u_int8_t *, u_int16_t);
125
126 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
127 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
128
129 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
130
131 /* Encryption instances */
132 struct enc_xform enc_xform_null = {
133 CRYPTO_NULL_CBC, "NULL",
134 /* NB: blocksize of 4 is to generate a properly aligned ESP header */
135 NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
136 null_encrypt,
137 null_decrypt,
138 null_setkey,
139 null_zerokey,
140 NULL
141 };
142
143 struct enc_xform enc_xform_des = {
144 CRYPTO_DES_CBC, "DES",
145 DES_BLOCK_LEN, 8, 8,
146 des1_encrypt,
147 des1_decrypt,
148 des1_setkey,
149 des1_zerokey,
150 NULL
151 };
152
153 struct enc_xform enc_xform_3des = {
154 CRYPTO_3DES_CBC, "3DES",
155 DES3_BLOCK_LEN, 24, 24,
156 des3_encrypt,
157 des3_decrypt,
158 des3_setkey,
159 des3_zerokey,
160 NULL
161 };
162
163 struct enc_xform enc_xform_blf = {
164 CRYPTO_BLF_CBC, "Blowfish",
165 BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
166 blf_encrypt,
167 blf_decrypt,
168 blf_setkey,
169 blf_zerokey,
170 NULL
171 };
172
173 struct enc_xform enc_xform_cast5 = {
174 CRYPTO_CAST_CBC, "CAST-128",
175 CAST128_BLOCK_LEN, 5, 16,
176 cast5_encrypt,
177 cast5_decrypt,
178 cast5_setkey,
179 cast5_zerokey,
180 NULL
181 };
182
183 struct enc_xform enc_xform_skipjack = {
184 CRYPTO_SKIPJACK_CBC, "Skipjack",
185 SKIPJACK_BLOCK_LEN, 10, 10,
186 skipjack_encrypt,
187 skipjack_decrypt,
188 skipjack_setkey,
189 skipjack_zerokey,
190 NULL
191 };
192
193 struct enc_xform enc_xform_rijndael128 = {
194 CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
195 RIJNDAEL128_BLOCK_LEN, 8, 32,
196 rijndael128_encrypt,
197 rijndael128_decrypt,
198 rijndael128_setkey,
199 rijndael128_zerokey,
200 NULL
201 };
202
203 struct enc_xform enc_xform_aes_xts = {
204 CRYPTO_AES_XTS, "AES-XTS",
205 RIJNDAEL128_BLOCK_LEN, 32, 64,
206 aes_xts_encrypt,
207 aes_xts_decrypt,
208 aes_xts_setkey,
209 aes_xts_zerokey,
210 aes_xts_reinit
211 };
212
213 struct enc_xform enc_xform_arc4 = {
214 CRYPTO_ARC4, "ARC4",
215 1, 1, 32,
216 NULL,
217 NULL,
218 NULL,
219 NULL,
220 NULL
221 };
222
223 struct enc_xform enc_xform_camellia = {
224 CRYPTO_CAMELLIA_CBC, "Camellia",
225 CAMELLIA_BLOCK_LEN, 8, 32,
226 cml_encrypt,
227 cml_decrypt,
228 cml_setkey,
229 cml_zerokey,
230 NULL
231 };
232
233 /* Authentication instances */
234 struct auth_hash auth_hash_null = {
235 CRYPTO_NULL_HMAC, "NULL-HMAC",
236 0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int), /* NB: context isn't used */
237 null_init, null_update, null_final
238 };
239
240 struct auth_hash auth_hash_hmac_md5 = {
241 CRYPTO_MD5_HMAC, "HMAC-MD5",
242 16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
243 (void (*) (void *)) MD5Init, MD5Update_int,
244 (void (*) (u_int8_t *, void *)) MD5Final
245 };
246
247 struct auth_hash auth_hash_hmac_sha1 = {
248 CRYPTO_SHA1_HMAC, "HMAC-SHA1",
249 20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
250 SHA1Init_int, SHA1Update_int, SHA1Final_int
251 };
252
253 struct auth_hash auth_hash_hmac_ripemd_160 = {
254 CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
255 20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
256 (void (*)(void *)) RMD160Init, RMD160Update_int,
257 (void (*)(u_int8_t *, void *)) RMD160Final
258 };
259
260 struct auth_hash auth_hash_key_md5 = {
261 CRYPTO_MD5_KPDK, "Keyed MD5",
262 0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
263 (void (*)(void *)) MD5Init, MD5Update_int,
264 (void (*)(u_int8_t *, void *)) MD5Final
265 };
266
267 struct auth_hash auth_hash_key_sha1 = {
268 CRYPTO_SHA1_KPDK, "Keyed SHA1",
269 0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
270 SHA1Init_int, SHA1Update_int, SHA1Final_int
271 };
272
273 struct auth_hash auth_hash_hmac_sha2_256 = {
274 CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
275 32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
276 (void (*)(void *)) SHA256_Init, SHA256Update_int,
277 (void (*)(u_int8_t *, void *)) SHA256_Final
278 };
279
280 struct auth_hash auth_hash_hmac_sha2_384 = {
281 CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
282 48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
283 (void (*)(void *)) SHA384_Init, SHA384Update_int,
284 (void (*)(u_int8_t *, void *)) SHA384_Final
285 };
286
287 struct auth_hash auth_hash_hmac_sha2_512 = {
288 CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
289 64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
290 (void (*)(void *)) SHA512_Init, SHA512Update_int,
291 (void (*)(u_int8_t *, void *)) SHA512_Final
292 };
293
294 /* Compression instance */
295 struct comp_algo comp_algo_deflate = {
296 CRYPTO_DEFLATE_COMP, "Deflate",
297 90, deflate_compress,
298 deflate_decompress
299 };
300
301 /*
302 * Encryption wrapper routines.
303 */
304 static void
305 null_encrypt(caddr_t key, u_int8_t *blk)
306 {
307 }
308 static void
309 null_decrypt(caddr_t key, u_int8_t *blk)
310 {
311 }
312 static int
313 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
314 {
315 *sched = NULL;
316 return 0;
317 }
318 static void
319 null_zerokey(u_int8_t **sched)
320 {
321 *sched = NULL;
322 }
323
324 static void
325 des1_encrypt(caddr_t key, u_int8_t *blk)
326 {
327 des_cblock *cb = (des_cblock *) blk;
328 des_key_schedule *p = (des_key_schedule *) key;
329
330 des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
331 }
332
333 static void
334 des1_decrypt(caddr_t key, u_int8_t *blk)
335 {
336 des_cblock *cb = (des_cblock *) blk;
337 des_key_schedule *p = (des_key_schedule *) key;
338
339 des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
340 }
341
342 static int
343 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
344 {
345 des_key_schedule *p;
346 int err;
347
348 p = malloc(sizeof (des_key_schedule),
349 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
350 if (p != NULL) {
351 des_set_key((des_cblock *) key, p[0]);
352 err = 0;
353 } else
354 err = ENOMEM;
355 *sched = (u_int8_t *) p;
356 return err;
357 }
358
359 static void
360 des1_zerokey(u_int8_t **sched)
361 {
362 bzero(*sched, sizeof (des_key_schedule));
363 free(*sched, M_CRYPTO_DATA);
364 *sched = NULL;
365 }
366
367 static void
368 des3_encrypt(caddr_t key, u_int8_t *blk)
369 {
370 des_cblock *cb = (des_cblock *) blk;
371 des_key_schedule *p = (des_key_schedule *) key;
372
373 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
374 }
375
376 static void
377 des3_decrypt(caddr_t key, u_int8_t *blk)
378 {
379 des_cblock *cb = (des_cblock *) blk;
380 des_key_schedule *p = (des_key_schedule *) key;
381
382 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
383 }
384
385 static int
386 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
387 {
388 des_key_schedule *p;
389 int err;
390
391 p = malloc(3*sizeof (des_key_schedule),
392 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
393 if (p != NULL) {
394 des_set_key((des_cblock *)(key + 0), p[0]);
395 des_set_key((des_cblock *)(key + 8), p[1]);
396 des_set_key((des_cblock *)(key + 16), p[2]);
397 err = 0;
398 } else
399 err = ENOMEM;
400 *sched = (u_int8_t *) p;
401 return err;
402 }
403
404 static void
405 des3_zerokey(u_int8_t **sched)
406 {
407 bzero(*sched, 3*sizeof (des_key_schedule));
408 free(*sched, M_CRYPTO_DATA);
409 *sched = NULL;
410 }
411
412 static void
413 blf_encrypt(caddr_t key, u_int8_t *blk)
414 {
415 BF_LONG t[2];
416
417 memcpy(t, blk, sizeof (t));
418 t[0] = ntohl(t[0]);
419 t[1] = ntohl(t[1]);
420 /* NB: BF_encrypt expects the block in host order! */
421 BF_encrypt(t, (BF_KEY *) key);
422 t[0] = htonl(t[0]);
423 t[1] = htonl(t[1]);
424 memcpy(blk, t, sizeof (t));
425 }
426
427 static void
428 blf_decrypt(caddr_t key, u_int8_t *blk)
429 {
430 BF_LONG t[2];
431
432 memcpy(t, blk, sizeof (t));
433 t[0] = ntohl(t[0]);
434 t[1] = ntohl(t[1]);
435 /* NB: BF_decrypt expects the block in host order! */
436 BF_decrypt(t, (BF_KEY *) key);
437 t[0] = htonl(t[0]);
438 t[1] = htonl(t[1]);
439 memcpy(blk, t, sizeof (t));
440 }
441
442 static int
443 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
444 {
445 int err;
446
447 *sched = malloc(sizeof(BF_KEY),
448 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
449 if (*sched != NULL) {
450 BF_set_key((BF_KEY *) *sched, len, key);
451 err = 0;
452 } else
453 err = ENOMEM;
454 return err;
455 }
456
457 static void
458 blf_zerokey(u_int8_t **sched)
459 {
460 bzero(*sched, sizeof(BF_KEY));
461 free(*sched, M_CRYPTO_DATA);
462 *sched = NULL;
463 }
464
465 static void
466 cast5_encrypt(caddr_t key, u_int8_t *blk)
467 {
468 cast_encrypt((cast_key *) key, blk, blk);
469 }
470
471 static void
472 cast5_decrypt(caddr_t key, u_int8_t *blk)
473 {
474 cast_decrypt((cast_key *) key, blk, blk);
475 }
476
477 static int
478 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
479 {
480 int err;
481
482 *sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
483 if (*sched != NULL) {
484 cast_setkey((cast_key *)*sched, key, len);
485 err = 0;
486 } else
487 err = ENOMEM;
488 return err;
489 }
490
491 static void
492 cast5_zerokey(u_int8_t **sched)
493 {
494 bzero(*sched, sizeof(cast_key));
495 free(*sched, M_CRYPTO_DATA);
496 *sched = NULL;
497 }
498
499 static void
500 skipjack_encrypt(caddr_t key, u_int8_t *blk)
501 {
502 skipjack_forwards(blk, blk, (u_int8_t **) key);
503 }
504
505 static void
506 skipjack_decrypt(caddr_t key, u_int8_t *blk)
507 {
508 skipjack_backwards(blk, blk, (u_int8_t **) key);
509 }
510
511 static int
512 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
513 {
514 int err;
515
516 /* NB: allocate all the memory that's needed at once */
517 *sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
518 M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
519 if (*sched != NULL) {
520 u_int8_t** key_tables = (u_int8_t**) *sched;
521 u_int8_t* table = (u_int8_t*) &key_tables[10];
522 int k;
523
524 for (k = 0; k < 10; k++) {
525 key_tables[k] = table;
526 table += 0x100;
527 }
528 subkey_table_gen(key, (u_int8_t **) *sched);
529 err = 0;
530 } else
531 err = ENOMEM;
532 return err;
533 }
534
535 static void
536 skipjack_zerokey(u_int8_t **sched)
537 {
538 bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
539 free(*sched, M_CRYPTO_DATA);
540 *sched = NULL;
541 }
542
543 static void
544 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
545 {
546 rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
547 }
548
549 static void
550 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
551 {
552 rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
553 (u_char *) blk);
554 }
555
556 static int
557 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
558 {
559 int err;
560
561 if (len != 16 && len != 24 && len != 32)
562 return (EINVAL);
563 *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
564 M_NOWAIT|M_ZERO);
565 if (*sched != NULL) {
566 rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
567 len * 8);
568 err = 0;
569 } else
570 err = ENOMEM;
571 return err;
572 }
573
574 static void
575 rijndael128_zerokey(u_int8_t **sched)
576 {
577 bzero(*sched, sizeof(rijndael_ctx));
578 free(*sched, M_CRYPTO_DATA);
579 *sched = NULL;
580 }
581
582 #define AES_XTS_BLOCKSIZE 16
583 #define AES_XTS_IVSIZE 8
584 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
585
586 struct aes_xts_ctx {
587 rijndael_ctx key1;
588 rijndael_ctx key2;
589 u_int8_t tweak[AES_XTS_BLOCKSIZE];
590 };
591
592 void
593 aes_xts_reinit(caddr_t key, u_int8_t *iv)
594 {
595 struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
596 u_int64_t blocknum;
597 u_int i;
598
599 /*
600 * Prepare tweak as E_k2(IV). IV is specified as LE representation
601 * of a 64-bit block number which we allow to be passed in directly.
602 */
603 bcopy(iv, &blocknum, AES_XTS_IVSIZE);
604 for (i = 0; i < AES_XTS_IVSIZE; i++) {
605 ctx->tweak[i] = blocknum & 0xff;
606 blocknum >>= 8;
607 }
608 /* Last 64 bits of IV are always zero */
609 bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
610
611 rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
612 }
613
614 static void
615 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
616 {
617 u_int8_t block[AES_XTS_BLOCKSIZE];
618 u_int i, carry_in, carry_out;
619
620 for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
621 block[i] = data[i] ^ ctx->tweak[i];
622
623 if (do_encrypt)
624 rijndael_encrypt(&ctx->key1, block, data);
625 else
626 rijndael_decrypt(&ctx->key1, block, data);
627
628 for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
629 data[i] ^= ctx->tweak[i];
630
631 /* Exponentiate tweak */
632 carry_in = 0;
633 for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
634 carry_out = ctx->tweak[i] & 0x80;
635 ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
636 carry_in = carry_out;
637 }
638 if (carry_in)
639 ctx->tweak[0] ^= AES_XTS_ALPHA;
640 bzero(block, sizeof(block));
641 }
642
643 void
644 aes_xts_encrypt(caddr_t key, u_int8_t *data)
645 {
646 aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
647 }
648
649 void
650 aes_xts_decrypt(caddr_t key, u_int8_t *data)
651 {
652 aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
653 }
654
655 int
656 aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
657 {
658 struct aes_xts_ctx *ctx;
659
660 if (len != 32 && len != 64)
661 return EINVAL;
662
663 *sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
664 M_NOWAIT | M_ZERO);
665 if (*sched == NULL)
666 return ENOMEM;
667 ctx = (struct aes_xts_ctx *)*sched;
668
669 rijndael_set_key(&ctx->key1, key, len * 4);
670 rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
671
672 return 0;
673 }
674
675 void
676 aes_xts_zerokey(u_int8_t **sched)
677 {
678 bzero(*sched, sizeof(struct aes_xts_ctx));
679 free(*sched, M_CRYPTO_DATA);
680 *sched = NULL;
681 }
682
683 static void
684 cml_encrypt(caddr_t key, u_int8_t *blk)
685 {
686 camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
687 }
688
689 static void
690 cml_decrypt(caddr_t key, u_int8_t *blk)
691 {
692 camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
693 (u_char *) blk);
694 }
695
696 static int
697 cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
698 {
699 int err;
700
701 if (len != 16 && len != 24 && len != 32)
702 return (EINVAL);
703 *sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
704 M_NOWAIT|M_ZERO);
705 if (*sched != NULL) {
706 camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
707 len * 8);
708 err = 0;
709 } else
710 err = ENOMEM;
711 return err;
712 }
713
714 static void
715 cml_zerokey(u_int8_t **sched)
716 {
717 bzero(*sched, sizeof(camellia_ctx));
718 free(*sched, M_CRYPTO_DATA);
719 *sched = NULL;
720 }
721
722 /*
723 * And now for auth.
724 */
725
726 static void
727 null_init(void *ctx)
728 {
729 }
730
731 static int
732 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
733 {
734 return 0;
735 }
736
737 static void
738 null_final(u_int8_t *buf, void *ctx)
739 {
740 if (buf != (u_int8_t *) 0)
741 bzero(buf, 12);
742 }
743
744 static int
745 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
746 {
747 RMD160Update(ctx, buf, len);
748 return 0;
749 }
750
751 static int
752 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
753 {
754 MD5Update(ctx, buf, len);
755 return 0;
756 }
757
758 static void
759 SHA1Init_int(void *ctx)
760 {
761 SHA1Init(ctx);
762 }
763
764 static int
765 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
766 {
767 SHA1Update(ctx, buf, len);
768 return 0;
769 }
770
771 static void
772 SHA1Final_int(u_int8_t *blk, void *ctx)
773 {
774 SHA1Final(blk, ctx);
775 }
776
777 static int
778 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
779 {
780 SHA256_Update(ctx, buf, len);
781 return 0;
782 }
783
784 static int
785 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
786 {
787 SHA384_Update(ctx, buf, len);
788 return 0;
789 }
790
791 static int
792 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
793 {
794 SHA512_Update(ctx, buf, len);
795 return 0;
796 }
797
798 /*
799 * And compression
800 */
801
802 static u_int32_t
803 deflate_compress(data, size, out)
804 u_int8_t *data;
805 u_int32_t size;
806 u_int8_t **out;
807 {
808 return deflate_global(data, size, 0, out);
809 }
810
811 static u_int32_t
812 deflate_decompress(data, size, out)
813 u_int8_t *data;
814 u_int32_t size;
815 u_int8_t **out;
816 {
817 return deflate_global(data, size, 1, out);
818 }
Cache object: c304f4f426522b99e25158a9da264640
|