The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/osfmk/i386/machine_routines_asm.s

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
    3  *
    4  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
    5  * 
    6  * This file contains Original Code and/or Modifications of Original Code
    7  * as defined in and that are subject to the Apple Public Source License
    8  * Version 2.0 (the 'License'). You may not use this file except in
    9  * compliance with the License. The rights granted to you under the License
   10  * may not be used to create, or enable the creation or redistribution of,
   11  * unlawful or unlicensed copies of an Apple operating system, or to
   12  * circumvent, violate, or enable the circumvention or violation of, any
   13  * terms of an Apple operating system software license agreement.
   14  * 
   15  * Please obtain a copy of the License at
   16  * http://www.opensource.apple.com/apsl/ and read it before using this file.
   17  * 
   18  * The Original Code and all software distributed under the License are
   19  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
   20  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
   21  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
   22  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
   23  * Please see the License for the specific language governing rights and
   24  * limitations under the License.
   25  * 
   26  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
   27  */
   28  
   29 #include <i386/asm.h>
   30 #include <i386/rtclock.h>
   31 #include <i386/proc_reg.h>
   32 #include <i386/eflags.h>
   33        
   34 #include <i386/postcode.h>
   35 #include <i386/apic.h>
   36 #include <assym.s>
   37 
   38 /*
   39 **      ml_get_timebase()
   40 **
   41 **      Entry   - %esp contains pointer to 64 bit structure.
   42 **
   43 **      Exit    - 64 bit structure filled in.
   44 **
   45 */
   46 ENTRY(ml_get_timebase)
   47 
   48                         movl    S_ARG0, %ecx
   49                         
   50                         lfence
   51                         rdtsc
   52                         lfence
   53                         
   54                         movl    %edx, 0(%ecx)
   55                         movl    %eax, 4(%ecx)
   56                         
   57                         ret
   58 
   59 /*
   60  *      Convert between various timer units 
   61  *
   62  *              uint64_t tmrCvt(uint64_t time, uint64_t *conversion)
   63  *
   64  *              This code converts 64-bit time units to other units.
   65  *              For example, the TSC is converted to HPET units.
   66  *
   67  *              Time is a 64-bit integer that is some number of ticks.
   68  *              Conversion is 64-bit fixed point number which is composed
   69  *              of a 32 bit integer and a 32 bit fraction. 
   70  *
   71  *              The time ticks are multiplied by the conversion factor.  The
   72  *              calculations are done as a 128-bit value but both the high
   73  *              and low words are dropped.  The high word is overflow and the
   74  *              low word is the fraction part of the result.
   75  *
   76  *              We return a 64-bit value.
   77  *
   78  *              Note that we can use this function to multiply 2 conversion factors.
   79  *              We do this in order to calculate the multiplier used to convert
   80  *              directly between any two units.
   81  *
   82  */
   83 
   84                         .globl  EXT(tmrCvt)
   85                         .align FALIGN
   86 
   87 LEXT(tmrCvt)
   88 
   89                         pushl   %ebp                                    // Save a volatile
   90                         movl    %esp,%ebp                               // Get the parameters - 8
   91                         pushl   %ebx                                    // Save a volatile
   92                         pushl   %esi                                    // Save a volatile
   93                         pushl   %edi                                    // Save a volatile
   94 
   95 //                      %ebp + 8        - low-order ts
   96 //                      %ebp + 12       - high-order ts
   97 //                      %ebp + 16       - low-order cvt
   98 //                      %ebp + 20       - high-order cvt
   99 
  100                         movl    8(%ebp),%eax                    // Get low-order ts
  101                         mull    16(%ebp)                                // Multiply by low-order conversion
  102                         movl    %edx,%edi                               // Need to save only the high order part
  103                         
  104                         movl    12(%ebp),%eax                   // Get the high-order ts
  105                         mull    16(%ebp)                                // Multiply by low-order conversion
  106                         addl    %eax,%edi                               // Add in the overflow from the low x low calculation
  107                         adcl    $0,%edx                                 // Add in any overflow to high high part
  108                         movl    %edx,%esi                               // Save high high part
  109                         
  110 //                      We now have the upper 64 bits of the 96 bit multiply of ts and the low half of cvt
  111 //                      in %esi:%edi
  112 
  113                         movl    8(%ebp),%eax                    // Get low-order ts
  114                         mull    20(%ebp)                                // Multiply by high-order conversion
  115                         movl    %eax,%ebx                               // Need to save the low order part
  116                         movl    %edx,%ecx                               // Need to save the high order part
  117                         
  118                         movl    12(%ebp),%eax                   // Get the high-order ts
  119                         mull    20(%ebp)                                // Multiply by high-order conversion
  120                         
  121 //                      Now have %ecx:%ebx as low part of high low and %edx:%eax as high part of high high
  122 //                      We don't care about the highest word since it is overflow
  123                         
  124                         addl    %edi,%ebx                               // Add the low words
  125                         adcl    %ecx,%esi                               // Add in the high plus carry from low
  126                         addl    %eax,%esi                               // Add in the rest of the high
  127                         
  128                         movl    %ebx,%eax                               // Pass back low word
  129                         movl    %esi,%edx                               // and the high word
  130                         
  131                         popl    %edi                                    // Restore a volatile
  132                         popl    %esi                                    // Restore a volatile
  133                         popl    %ebx                                    // Restore a volatile
  134                         popl    %ebp                                    // Restore a volatile
  135 
  136                         ret                                             // Leave...
  137 
  138 
  139 /* void             _rtc_nanotime_store(uint64_t                tsc,
  140                                         uint64_t                nsec,
  141                                         uint32_t                scale,
  142                                         uint32_t                shift,
  143                                         rtc_nanotime_t  *dst) ;
  144 */
  145                         .globl  EXT(_rtc_nanotime_store)
  146                         .align  FALIGN
  147 
  148 LEXT(_rtc_nanotime_store)
  149                 push            %ebp
  150                 movl            %esp,%ebp
  151                 push            %esi
  152 
  153                 mov             32(%ebp),%edx                           /* get ptr to rtc_nanotime_info */
  154                 
  155                 movl            RNT_GENERATION(%edx),%esi               /* get current generation */
  156                 movl            $0,RNT_GENERATION(%edx)                 /* flag data as being updated */
  157 
  158                 mov             8(%ebp),%eax
  159                 mov             %eax,RNT_TSC_BASE(%edx)
  160                 mov             12(%ebp),%eax
  161                 mov             %eax,RNT_TSC_BASE+4(%edx)
  162 
  163                 mov             24(%ebp),%eax
  164                 mov             %eax,RNT_SCALE(%edx)
  165 
  166                 mov             28(%ebp),%eax
  167                 mov             %eax,RNT_SHIFT(%edx)
  168 
  169                 mov             16(%ebp),%eax
  170                 mov             %eax,RNT_NS_BASE(%edx)
  171                 mov             20(%ebp),%eax
  172                 mov             %eax,RNT_NS_BASE+4(%edx)
  173                 
  174                 incl            %esi                                    /* next generation */
  175                 jnz             1f
  176                 incl            %esi                                    /* skip 0, which is a flag */
  177 1:              movl            %esi,RNT_GENERATION(%edx)               /* update generation and make usable */
  178 
  179                 pop             %esi
  180                 pop             %ebp
  181                 ret
  182 
  183 
  184 /* unint64_t _rtc_nanotime_read( rtc_nanotime_t *rntp, int slow );
  185  *
  186  * This is the same as the commpage nanotime routine, except that it uses the
  187  * kernel internal "rtc_nanotime_info" data instead of the commpage data.  The two copies
  188  * of data (one in the kernel and one in user space) are kept in sync by rtc_clock_napped().
  189  *
  190  * Warning!  There is another copy of this code in osfmk/i386/locore.s.  The
  191  * two versions must be kept in sync with each other!
  192  *
  193  * There are actually two versions of the algorithm, one each for "slow" and "fast"
  194  * processors.  The more common "fast" algorithm is:
  195  *
  196  *      nanoseconds = (((rdtsc - rnt_tsc_base) * rnt_tsc_scale) / 2**32) - rnt_ns_base;
  197  *
  198  * Of course, the divide by 2**32 is a nop.  rnt_tsc_scale is a constant computed during initialization:
  199  *
  200  *      rnt_tsc_scale = (10e9 * 2**32) / tscFreq;
  201  *
  202  * The "slow" algorithm uses long division:
  203  *
  204  *      nanoseconds = (((rdtsc - rnt_tsc_base) * 10e9) / tscFreq) - rnt_ns_base;
  205  *
  206  * Since this routine is not synchronized and can be called in any context, 
  207  * we use a generation count to guard against seeing partially updated data.  In addition,
  208  * the _rtc_nanotime_store() routine -- just above -- zeroes the generation before
  209  * updating the data, and stores the nonzero generation only after all other data has been
  210  * stored.  Because IA32 guarantees that stores by one processor must be seen in order
  211  * by another, we can avoid using a lock.  We spin while the generation is zero.
  212  *
  213  * In accordance with the ABI, we return the 64-bit nanotime in %edx:%eax.
  214  */
  215  
  216                 .globl  EXT(_rtc_nanotime_read)
  217                 .align  FALIGN
  218 LEXT(_rtc_nanotime_read)
  219                 pushl           %ebp
  220                 movl            %esp,%ebp
  221                 pushl           %esi
  222                 pushl           %edi
  223                 pushl           %ebx
  224                 movl            8(%ebp),%edi                            /* get ptr to rtc_nanotime_info */
  225                 movl            12(%ebp),%eax                           /* get "slow" flag */
  226                 testl           %eax,%eax
  227                 jnz             Lslow
  228                 
  229                 /* Processor whose TSC frequency is faster than SLOW_TSC_THRESHOLD */
  230                 RTC_NANOTIME_READ_FAST()
  231 
  232                 popl            %ebx
  233                 popl            %edi
  234                 popl            %esi
  235                 popl            %ebp
  236                 ret
  237 
  238                 /* Processor whose TSC frequency is slower than or equal to SLOW_TSC_THRESHOLD */
  239 Lslow:
  240                 movl            RNT_GENERATION(%edi),%esi               /* get generation (0 if being changed) */
  241                 testl           %esi,%esi                               /* if being changed, loop until stable */
  242                 jz              Lslow
  243                 pushl           %esi                                    /* save generation */
  244                 pushl           RNT_SHIFT(%edi)                         /* save low 32 bits of tscFreq */
  245 
  246                 lfence
  247                 rdtsc                                                   /* get TSC in %edx:%eax */
  248                 lfence
  249                 subl            RNT_TSC_BASE(%edi),%eax
  250                 sbbl            RNT_TSC_BASE+4(%edi),%edx
  251 
  252                 /*
  253                 * Do the math to convert tsc ticks to nanoseconds.  We first
  254                 * do long multiply of 1 billion times the tsc.  Then we do
  255                 * long division by the tsc frequency
  256                 */
  257                 mov             $1000000000, %ecx                       /* number of nanoseconds in a second */
  258                 mov             %edx, %ebx
  259                 mul             %ecx
  260                 mov             %edx, %edi
  261                 mov             %eax, %esi
  262                 mov             %ebx, %eax
  263                 mul             %ecx
  264                 add             %edi, %eax
  265                 adc             $0, %edx                                /* result in edx:eax:esi */
  266                 mov             %eax, %edi
  267                 popl            %ecx                                    /* get low 32 tscFreq */
  268                 xor             %eax, %eax
  269                 xchg            %edx, %eax
  270                 div             %ecx
  271                 xor             %eax, %eax
  272                 mov             %edi, %eax
  273                 div             %ecx
  274                 mov             %eax, %ebx
  275                 mov             %esi, %eax
  276                 div             %ecx
  277                 mov             %ebx, %edx                              /* result in edx:eax */
  278                 
  279                 movl            8(%ebp),%edi                            /* recover ptr to rtc_nanotime_info */
  280                 popl            %esi                                    /* recover generation */
  281 
  282                 addl            RNT_NS_BASE(%edi),%eax
  283                 adcl            RNT_NS_BASE+4(%edi),%edx
  284 
  285                 cmpl            RNT_GENERATION(%edi),%esi               /* have the parameters changed? */
  286                 jne             Lslow                                   /* yes, loop until stable */
  287 
  288                 pop             %ebx
  289                 pop             %edi
  290                 pop             %esi
  291                 pop             %ebp
  292                 ret                                                     /* result in edx:eax */
  293 

Cache object: b89e483503e9aa58c14e469caa34987a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.