The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pc98/pc98/clock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1990 The Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * William Jolitz and Don Ahn.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
   37  * $FreeBSD: releng/5.0/sys/pc98/pc98/clock.c 105710 2002-10-22 15:19:46Z nyan $
   38  */
   39 
   40 /*
   41  * Routines to handle clock hardware.
   42  */
   43 
   44 /*
   45  * inittodr, settodr and support routines written
   46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
   47  *
   48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
   49  */
   50 
   51 /*
   52  * modified for PC98 by Kakefuda
   53  */
   54 
   55 #include "opt_clock.h"
   56 #include "opt_isa.h"
   57 #include "opt_mca.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/systm.h>
   61 #include <sys/bus.h>
   62 #include <sys/lock.h>
   63 #include <sys/mutex.h>
   64 #include <sys/proc.h>
   65 #include <sys/time.h>
   66 #include <sys/timetc.h>
   67 #include <sys/kernel.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/cons.h>
   70 #include <sys/power.h>
   71 
   72 #include <machine/clock.h>
   73 #include <machine/cputypes.h>
   74 #include <machine/frame.h>
   75 #include <machine/limits.h>
   76 #include <machine/md_var.h>
   77 #include <machine/psl.h>
   78 #ifdef APIC_IO
   79 #include <machine/segments.h>
   80 #endif
   81 #if defined(SMP) || defined(APIC_IO)
   82 #include <machine/smp.h>
   83 #endif /* SMP || APIC_IO */
   84 #include <machine/specialreg.h>
   85 
   86 #include <i386/isa/icu.h>
   87 #ifdef PC98
   88 #include <pc98/pc98/pc98.h>
   89 #include <pc98/pc98/pc98_machdep.h>
   90 #include <i386/isa/isa_device.h>
   91 #else
   92 #include <i386/isa/isa.h>
   93 #include <isa/rtc.h>
   94 #endif
   95 #ifdef DEV_ISA
   96 #include <isa/isavar.h>
   97 #endif
   98 #include <i386/isa/timerreg.h>
   99 
  100 #include <i386/isa/intr_machdep.h>
  101 
  102 #ifdef DEV_MCA
  103 #include <i386/isa/mca_machdep.h>
  104 #endif
  105 
  106 #ifdef APIC_IO
  107 #include <i386/isa/intr_machdep.h>
  108 /* The interrupt triggered by the 8254 (timer) chip */
  109 int apic_8254_intr;
  110 static u_long read_intr_count(int vec);
  111 static void setup_8254_mixed_mode(void);
  112 #endif
  113 
  114 /*
  115  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
  116  * can use a simple formula for leap years.
  117  */
  118 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
  119 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
  120 
  121 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
  122 
  123 /*
  124  * Time in timer cycles that it takes for microtime() to disable interrupts
  125  * and latch the count.  microtime() currently uses "cli; outb ..." so it
  126  * normally takes less than 2 timer cycles.  Add a few for cache misses.
  127  * Add a few more to allow for latency in bogus calls to microtime() with
  128  * interrupts already disabled.
  129  */
  130 #define TIMER0_LATCH_COUNT      20
  131 
  132 /*
  133  * Maximum frequency that we are willing to allow for timer0.  Must be
  134  * low enough to guarantee that the timer interrupt handler returns
  135  * before the next timer interrupt.
  136  */
  137 #define TIMER0_MAX_FREQ         20000
  138 
  139 int     adjkerntz;              /* local offset from GMT in seconds */
  140 int     clkintr_pending;
  141 int     disable_rtc_set;        /* disable resettodr() if != 0 */
  142 int     statclock_disable;
  143 #ifndef TIMER_FREQ
  144 #ifdef PC98
  145 #define TIMER_FREQ   2457600
  146 #else /* IBM-PC */
  147 #define TIMER_FREQ   1193182
  148 #endif /* PC98 */
  149 #endif
  150 u_int   timer_freq = TIMER_FREQ;
  151 int     timer0_max_count;
  152 u_int   tsc_freq;
  153 int     tsc_is_broken;
  154 u_int   tsc_present;
  155 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
  156 struct mtx clock_lock;
  157 
  158 static  int     beeping = 0;
  159 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
  160 static  u_int   hardclock_max_count;
  161 static  u_int32_t i8254_lastcount;
  162 static  u_int32_t i8254_offset;
  163 static  int     i8254_ticked;
  164 /*
  165  * XXX new_function and timer_func should not handle clockframes, but
  166  * timer_func currently needs to hold hardclock to handle the
  167  * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
  168  * to switch between clkintr() and a slightly different timerintr().
  169  */
  170 static  void    (*new_function)(struct clockframe *frame);
  171 static  u_int   new_rate;
  172 #ifndef PC98
  173 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
  174 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
  175 #endif
  176 static  u_int   timer0_prescaler_count;
  177 
  178 /* Values for timerX_state: */
  179 #define RELEASED        0
  180 #define RELEASE_PENDING 1
  181 #define ACQUIRED        2
  182 #define ACQUIRE_PENDING 3
  183 
  184 static  u_char  timer0_state;
  185 #ifdef  PC98
  186 static  u_char  timer1_state;
  187 #endif
  188 static  u_char  timer2_state;
  189 static  void    (*timer_func)(struct clockframe *frame) = hardclock;
  190 #ifdef PC98
  191 static void rtc_serialcombit(int);
  192 static void rtc_serialcom(int);
  193 static int rtc_inb(void);
  194 static void rtc_outb(int);
  195 #endif
  196 
  197 static  unsigned i8254_get_timecount(struct timecounter *tc);
  198 static  unsigned tsc_get_timecount(struct timecounter *tc);
  199 static  void    set_timer_freq(u_int freq, int intr_freq);
  200 
  201 static struct timecounter tsc_timecounter = {
  202         tsc_get_timecount,      /* get_timecount */
  203         0,                      /* no poll_pps */
  204         ~0u,                    /* counter_mask */
  205         0,                      /* frequency */
  206          "TSC"                  /* name */
  207 };
  208 
  209 static struct timecounter i8254_timecounter = {
  210         i8254_get_timecount,    /* get_timecount */
  211         0,                      /* no poll_pps */
  212         ~0u,                    /* counter_mask */
  213         0,                      /* frequency */
  214         "i8254"                 /* name */
  215 };
  216 
  217 static void
  218 clkintr(struct clockframe frame)
  219 {
  220 
  221         if (timecounter->tc_get_timecount == i8254_get_timecount) {
  222                 mtx_lock_spin(&clock_lock);
  223                 if (i8254_ticked)
  224                         i8254_ticked = 0;
  225                 else {
  226                         i8254_offset += timer0_max_count;
  227                         i8254_lastcount = 0;
  228                 }
  229                 clkintr_pending = 0;
  230                 mtx_unlock_spin(&clock_lock);
  231         }
  232         timer_func(&frame);
  233 #ifdef SMP
  234         if (timer_func == hardclock)
  235                 forward_hardclock();
  236 #endif
  237         switch (timer0_state) {
  238 
  239         case RELEASED:
  240                 break;
  241 
  242         case ACQUIRED:
  243                 if ((timer0_prescaler_count += timer0_max_count)
  244                     >= hardclock_max_count) {
  245                         timer0_prescaler_count -= hardclock_max_count;
  246                         hardclock(&frame);
  247 #ifdef SMP
  248                         forward_hardclock();
  249 #endif
  250                 }
  251                 break;
  252 
  253         case ACQUIRE_PENDING:
  254                 mtx_lock_spin(&clock_lock);
  255                 i8254_offset = i8254_get_timecount(NULL);
  256                 i8254_lastcount = 0;
  257                 timer0_max_count = TIMER_DIV(new_rate);
  258                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  259                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  260                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  261                 mtx_unlock_spin(&clock_lock);
  262                 timer_func = new_function;
  263                 timer0_state = ACQUIRED;
  264                 break;
  265 
  266         case RELEASE_PENDING:
  267                 if ((timer0_prescaler_count += timer0_max_count)
  268                     >= hardclock_max_count) {
  269                         mtx_lock_spin(&clock_lock);
  270                         i8254_offset = i8254_get_timecount(NULL);
  271                         i8254_lastcount = 0;
  272                         timer0_max_count = hardclock_max_count;
  273                         outb(TIMER_MODE,
  274                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  275                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  276                         outb(TIMER_CNTR0, timer0_max_count >> 8);
  277                         mtx_unlock_spin(&clock_lock);
  278                         timer0_prescaler_count = 0;
  279                         timer_func = hardclock;
  280                         timer0_state = RELEASED;
  281                         hardclock(&frame);
  282 #ifdef SMP
  283                         forward_hardclock();
  284 #endif
  285                 }
  286                 break;
  287         }
  288 #ifdef DEV_MCA
  289         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
  290         if (MCA_system)
  291                 outb(0x61, inb(0x61) | 0x80);
  292 #endif
  293 }
  294 
  295 /*
  296  * The acquire and release functions must be called at ipl >= splclock().
  297  */
  298 int
  299 acquire_timer0(int rate, void (*function)(struct clockframe *frame))
  300 {
  301         static int old_rate;
  302 
  303         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
  304                 return (-1);
  305         switch (timer0_state) {
  306 
  307         case RELEASED:
  308                 timer0_state = ACQUIRE_PENDING;
  309                 break;
  310 
  311         case RELEASE_PENDING:
  312                 if (rate != old_rate)
  313                         return (-1);
  314                 /*
  315                  * The timer has been released recently, but is being
  316                  * re-acquired before the release completed.  In this
  317                  * case, we simply reclaim it as if it had not been
  318                  * released at all.
  319                  */
  320                 timer0_state = ACQUIRED;
  321                 break;
  322 
  323         default:
  324                 return (-1);    /* busy */
  325         }
  326         new_function = function;
  327         old_rate = new_rate = rate;
  328         return (0);
  329 }
  330 
  331 #ifdef PC98
  332 int
  333 acquire_timer1(int mode)
  334 {
  335 
  336         if (timer1_state != RELEASED)
  337                 return (-1);
  338         timer1_state = ACQUIRED;
  339 
  340         /*
  341          * This access to the timer registers is as atomic as possible
  342          * because it is a single instruction.  We could do better if we
  343          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  344          * and this is probably good enough for timer2, so we aren't as
  345          * careful with it as with timer0.
  346          */
  347         outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
  348 
  349         return (0);
  350 }
  351 #endif
  352 
  353 int
  354 acquire_timer2(int mode)
  355 {
  356 
  357         if (timer2_state != RELEASED)
  358                 return (-1);
  359         timer2_state = ACQUIRED;
  360 
  361         /*
  362          * This access to the timer registers is as atomic as possible
  363          * because it is a single instruction.  We could do better if we
  364          * knew the rate.  Use of splclock() limits glitches to 10-100us,
  365          * and this is probably good enough for timer2, so we aren't as
  366          * careful with it as with timer0.
  367          */
  368         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
  369 
  370         return (0);
  371 }
  372 
  373 int
  374 release_timer0()
  375 {
  376         switch (timer0_state) {
  377 
  378         case ACQUIRED:
  379                 timer0_state = RELEASE_PENDING;
  380                 break;
  381 
  382         case ACQUIRE_PENDING:
  383                 /* Nothing happened yet, release quickly. */
  384                 timer0_state = RELEASED;
  385                 break;
  386 
  387         default:
  388                 return (-1);
  389         }
  390         return (0);
  391 }
  392 
  393 #ifdef PC98
  394 int
  395 release_timer1()
  396 {
  397 
  398         if (timer1_state != ACQUIRED)
  399                 return (-1);
  400         timer1_state = RELEASED;
  401         outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
  402         return (0);
  403 }
  404 #endif
  405 
  406 int
  407 release_timer2()
  408 {
  409 
  410         if (timer2_state != ACQUIRED)
  411                 return (-1);
  412         timer2_state = RELEASED;
  413         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
  414         return (0);
  415 }
  416 
  417 #ifndef PC98
  418 /*
  419  * This routine receives statistical clock interrupts from the RTC.
  420  * As explained above, these occur at 128 interrupts per second.
  421  * When profiling, we receive interrupts at a rate of 1024 Hz.
  422  *
  423  * This does not actually add as much overhead as it sounds, because
  424  * when the statistical clock is active, the hardclock driver no longer
  425  * needs to keep (inaccurate) statistics on its own.  This decouples
  426  * statistics gathering from scheduling interrupts.
  427  *
  428  * The RTC chip requires that we read status register C (RTC_INTR)
  429  * to acknowledge an interrupt, before it will generate the next one.
  430  * Under high interrupt load, rtcintr() can be indefinitely delayed and
  431  * the clock can tick immediately after the read from RTC_INTR.  In this
  432  * case, the mc146818A interrupt signal will not drop for long enough
  433  * to register with the 8259 PIC.  If an interrupt is missed, the stat
  434  * clock will halt, considerably degrading system performance.  This is
  435  * why we use 'while' rather than a more straightforward 'if' below.
  436  * Stat clock ticks can still be lost, causing minor loss of accuracy
  437  * in the statistics, but the stat clock will no longer stop.
  438  */
  439 static void
  440 rtcintr(struct clockframe frame)
  441 {
  442         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
  443                 statclock(&frame);
  444 #ifdef SMP
  445                 forward_statclock();
  446 #endif
  447         }
  448 }
  449 
  450 #include "opt_ddb.h"
  451 #ifdef DDB
  452 #include <ddb/ddb.h>
  453 
  454 DB_SHOW_COMMAND(rtc, rtc)
  455 {
  456         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
  457                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
  458                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
  459                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
  460 }
  461 #endif /* DDB */
  462 #endif /* for PC98 */
  463 
  464 static int
  465 getit(void)
  466 {
  467         int high, low;
  468 
  469         mtx_lock_spin(&clock_lock);
  470 
  471         /* Select timer0 and latch counter value. */
  472         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
  473 
  474         low = inb(TIMER_CNTR0);
  475         high = inb(TIMER_CNTR0);
  476 
  477         mtx_unlock_spin(&clock_lock);
  478         return ((high << 8) | low);
  479 }
  480 
  481 /*
  482  * Wait "n" microseconds.
  483  * Relies on timer 1 counting down from (timer_freq / hz)
  484  * Note: timer had better have been programmed before this is first used!
  485  */
  486 void
  487 DELAY(int n)
  488 {
  489         int delta, prev_tick, tick, ticks_left;
  490 
  491 #ifdef DELAYDEBUG
  492         int getit_calls = 1;
  493         int n1;
  494         static int state = 0;
  495 
  496         if (state == 0) {
  497                 state = 1;
  498                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
  499                         DELAY(n1);
  500                 state = 2;
  501         }
  502         if (state == 1)
  503                 printf("DELAY(%d)...", n);
  504 #endif
  505         /*
  506          * Guard against the timer being uninitialized if we are called
  507          * early for console i/o.
  508          */
  509         if (timer0_max_count == 0)
  510                 set_timer_freq(timer_freq, hz);
  511 
  512         /*
  513          * Read the counter first, so that the rest of the setup overhead is
  514          * counted.  Guess the initial overhead is 20 usec (on most systems it
  515          * takes about 1.5 usec for each of the i/o's in getit().  The loop
  516          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
  517          * multiplications and divisions to scale the count take a while).
  518          */
  519         prev_tick = getit();
  520         n -= 0;                 /* XXX actually guess no initial overhead */
  521         /*
  522          * Calculate (n * (timer_freq / 1e6)) without using floating point
  523          * and without any avoidable overflows.
  524          */
  525         if (n <= 0)
  526                 ticks_left = 0;
  527         else if (n < 256)
  528                 /*
  529                  * Use fixed point to avoid a slow division by 1000000.
  530                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
  531                  * 2^15 is the first power of 2 that gives exact results
  532                  * for n between 0 and 256.
  533                  */
  534                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
  535         else
  536                 /*
  537                  * Don't bother using fixed point, although gcc-2.7.2
  538                  * generates particularly poor code for the long long
  539                  * division, since even the slow way will complete long
  540                  * before the delay is up (unless we're interrupted).
  541                  */
  542                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
  543                              / 1000000;
  544 
  545         while (ticks_left > 0) {
  546                 tick = getit();
  547 #ifdef DELAYDEBUG
  548                 ++getit_calls;
  549 #endif
  550                 delta = prev_tick - tick;
  551                 prev_tick = tick;
  552                 if (delta < 0) {
  553                         delta += timer0_max_count;
  554                         /*
  555                          * Guard against timer0_max_count being wrong.
  556                          * This shouldn't happen in normal operation,
  557                          * but it may happen if set_timer_freq() is
  558                          * traced.
  559                          */
  560                         if (delta < 0)
  561                                 delta = 0;
  562                 }
  563                 ticks_left -= delta;
  564         }
  565 #ifdef DELAYDEBUG
  566         if (state == 1)
  567                 printf(" %d calls to getit() at %d usec each\n",
  568                        getit_calls, (n + 5) / getit_calls);
  569 #endif
  570 }
  571 
  572 static void
  573 sysbeepstop(void *chan)
  574 {
  575 #ifdef PC98     /* PC98 */
  576         outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
  577         release_timer1();
  578 #else
  579         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
  580         release_timer2();
  581 #endif
  582         beeping = 0;
  583 }
  584 
  585 int
  586 sysbeep(int pitch, int period)
  587 {
  588         int x = splclock();
  589 
  590 #ifdef PC98
  591         if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
  592                 if (!beeping) {
  593                         /* Something else owns it. */
  594                         splx(x);
  595                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  596                 }
  597         disable_intr();
  598         outb(0x3fdb, pitch);
  599         outb(0x3fdb, (pitch>>8));
  600         enable_intr();
  601         if (!beeping) {
  602                 /* enable counter1 output to speaker */
  603                 outb(IO_PPI, (inb(IO_PPI) & 0xf7));
  604                 beeping = period;
  605                 timeout(sysbeepstop, (void *)NULL, period);
  606         }
  607 #else
  608         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
  609                 if (!beeping) {
  610                         /* Something else owns it. */
  611                         splx(x);
  612                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
  613                 }
  614         mtx_lock_spin(&clock_lock);
  615         outb(TIMER_CNTR2, pitch);
  616         outb(TIMER_CNTR2, (pitch>>8));
  617         mtx_unlock_spin(&clock_lock);
  618         if (!beeping) {
  619                 /* enable counter2 output to speaker */
  620                 outb(IO_PPI, inb(IO_PPI) | 3);
  621                 beeping = period;
  622                 timeout(sysbeepstop, (void *)NULL, period);
  623         }
  624 #endif
  625         splx(x);
  626         return (0);
  627 }
  628 
  629 #ifndef PC98
  630 /*
  631  * RTC support routines
  632  */
  633 
  634 int
  635 rtcin(reg)
  636         int reg;
  637 {
  638         int s;
  639         u_char val;
  640 
  641         s = splhigh();
  642         outb(IO_RTC, reg);
  643         inb(0x84);
  644         val = inb(IO_RTC + 1);
  645         inb(0x84);
  646         splx(s);
  647         return (val);
  648 }
  649 
  650 static __inline void
  651 writertc(u_char reg, u_char val)
  652 {
  653         int s;
  654 
  655         s = splhigh();
  656         inb(0x84);
  657         outb(IO_RTC, reg);
  658         inb(0x84);
  659         outb(IO_RTC + 1, val);
  660         inb(0x84);              /* XXX work around wrong order in rtcin() */
  661         splx(s);
  662 }
  663 
  664 static __inline int
  665 readrtc(int port)
  666 {
  667         return(bcd2bin(rtcin(port)));
  668 }
  669 #endif
  670 
  671 #ifdef PC98
  672 unsigned int delaycount;
  673 #define FIRST_GUESS     0x2000
  674 static void findcpuspeed(void)
  675 {
  676         int i;
  677         int remainder;
  678 
  679         /* Put counter in count down mode */
  680         outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
  681         outb(TIMER_CNTR0, 0xff);
  682         outb(TIMER_CNTR0, 0xff);
  683         for (i = FIRST_GUESS; i; i--)
  684                 ;
  685         remainder = getit();
  686         delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
  687 }
  688 #endif
  689 
  690 #ifdef PC98
  691 static u_int
  692 calibrate_clocks(void)
  693 {
  694         int     timeout;
  695         u_int   count, prev_count, tot_count;
  696         u_short sec, start_sec;
  697 
  698         if (bootverbose)
  699                 printf("Calibrating clock(s) ... ");
  700         /* Check ARTIC. */
  701         if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
  702             !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
  703                 goto fail;
  704         timeout = 100000000;
  705 
  706         /* Read the ARTIC. */
  707         sec = inw(0x5e);
  708 
  709         /* Wait for the ARTIC to changes. */
  710         start_sec = sec;
  711         for (;;) {
  712                 sec = inw(0x5e);
  713                 if (sec != start_sec)
  714                         break;
  715                 if (--timeout == 0)
  716                         goto fail;
  717         }
  718         prev_count = getit();
  719         if (prev_count == 0 || prev_count > timer0_max_count)
  720                 goto fail;
  721         tot_count = 0;
  722 
  723         if (tsc_present) 
  724                 wrmsr(0x10, 0LL);       /* XXX 0x10 is the MSR for the TSC */
  725         start_sec = sec;
  726         for (;;) {
  727                 sec = inw(0x5e);
  728                 count = getit();
  729                 if (count == 0 || count > timer0_max_count)
  730                         goto fail;
  731                 if (count > prev_count)
  732                         tot_count += prev_count - (count - timer0_max_count);
  733                 else
  734                         tot_count += prev_count - count;
  735                 prev_count = count;
  736                 if ((sec == start_sec + 1200) ||
  737                     (sec < start_sec &&
  738                         (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
  739                         break;
  740                 if (--timeout == 0)
  741                         goto fail;
  742         }
  743         /*
  744          * Read the cpu cycle counter.  The timing considerations are
  745          * similar to those for the i8254 clock.
  746          */
  747         if (tsc_present) 
  748                 tsc_freq = rdtsc();
  749 
  750         if (bootverbose) {
  751                 if (tsc_present)
  752                         printf("TSC clock: %u Hz, ", tsc_freq);
  753                 printf("i8254 clock: %u Hz\n", tot_count);
  754         }
  755         return (tot_count);
  756 
  757 fail:
  758         if (bootverbose)
  759                 printf("failed, using default i8254 clock of %u Hz\n",
  760                        timer_freq);
  761         return (timer_freq);
  762 }
  763 #else
  764 static u_int
  765 calibrate_clocks(void)
  766 {
  767         u_int64_t old_tsc;
  768         u_int count, prev_count, tot_count;
  769         int sec, start_sec, timeout;
  770 
  771         if (bootverbose)
  772                 printf("Calibrating clock(s) ... ");
  773         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
  774                 goto fail;
  775         timeout = 100000000;
  776 
  777         /* Read the mc146818A seconds counter. */
  778         for (;;) {
  779                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  780                         sec = rtcin(RTC_SEC);
  781                         break;
  782                 }
  783                 if (--timeout == 0)
  784                         goto fail;
  785         }
  786 
  787         /* Wait for the mC146818A seconds counter to change. */
  788         start_sec = sec;
  789         for (;;) {
  790                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
  791                         sec = rtcin(RTC_SEC);
  792                         if (sec != start_sec)
  793                                 break;
  794                 }
  795                 if (--timeout == 0)
  796                         goto fail;
  797         }
  798 
  799         /* Start keeping track of the i8254 counter. */
  800         prev_count = getit();
  801         if (prev_count == 0 || prev_count > timer0_max_count)
  802                 goto fail;
  803         tot_count = 0;
  804 
  805         if (tsc_present) 
  806                 old_tsc = rdtsc();
  807         else
  808                 old_tsc = 0;            /* shut up gcc */
  809 
  810         /*
  811          * Wait for the mc146818A seconds counter to change.  Read the i8254
  812          * counter for each iteration since this is convenient and only
  813          * costs a few usec of inaccuracy. The timing of the final reads
  814          * of the counters almost matches the timing of the initial reads,
  815          * so the main cause of inaccuracy is the varying latency from 
  816          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
  817          * rtcin(RTC_SEC) that returns a changed seconds count.  The
  818          * maximum inaccuracy from this cause is < 10 usec on 486's.
  819          */
  820         start_sec = sec;
  821         for (;;) {
  822                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
  823                         sec = rtcin(RTC_SEC);
  824                 count = getit();
  825                 if (count == 0 || count > timer0_max_count)
  826                         goto fail;
  827                 if (count > prev_count)
  828                         tot_count += prev_count - (count - timer0_max_count);
  829                 else
  830                         tot_count += prev_count - count;
  831                 prev_count = count;
  832                 if (sec != start_sec)
  833                         break;
  834                 if (--timeout == 0)
  835                         goto fail;
  836         }
  837 
  838         /*
  839          * Read the cpu cycle counter.  The timing considerations are
  840          * similar to those for the i8254 clock.
  841          */
  842         if (tsc_present) 
  843                 tsc_freq = rdtsc() - old_tsc;
  844 
  845         if (bootverbose) {
  846                 if (tsc_present)
  847                         printf("TSC clock: %u Hz, ", tsc_freq);
  848                 printf("i8254 clock: %u Hz\n", tot_count);
  849         }
  850         return (tot_count);
  851 
  852 fail:
  853         if (bootverbose)
  854                 printf("failed, using default i8254 clock of %u Hz\n",
  855                        timer_freq);
  856         return (timer_freq);
  857 }
  858 #endif  /* !PC98 */
  859 
  860 static void
  861 set_timer_freq(u_int freq, int intr_freq)
  862 {
  863         int new_timer0_max_count;
  864 
  865         mtx_lock_spin(&clock_lock);
  866         timer_freq = freq;
  867         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
  868         if (new_timer0_max_count != timer0_max_count) {
  869                 timer0_max_count = new_timer0_max_count;
  870                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  871                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
  872                 outb(TIMER_CNTR0, timer0_max_count >> 8);
  873         }
  874         mtx_unlock_spin(&clock_lock);
  875 }
  876 
  877 static void
  878 i8254_restore(void)
  879 {
  880 
  881         mtx_lock_spin(&clock_lock);
  882         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
  883         outb(TIMER_CNTR0, timer0_max_count & 0xff);
  884         outb(TIMER_CNTR0, timer0_max_count >> 8);
  885         mtx_unlock_spin(&clock_lock);
  886 }
  887 
  888 #ifndef PC98
  889 static void
  890 rtc_restore(void)
  891 {
  892 
  893         /* Restore all of the RTC's "status" (actually, control) registers. */
  894         /* XXX locking is needed for RTC access. */
  895         writertc(RTC_STATUSB, RTCSB_24HR);
  896         writertc(RTC_STATUSA, rtc_statusa);
  897         writertc(RTC_STATUSB, rtc_statusb);
  898 }
  899 #endif
  900 
  901 /*
  902  * Restore all the timers non-atomically (XXX: should be atomically).
  903  *
  904  * This function is called from pmtimer_resume() to restore all the timers.
  905  * This should not be necessary, but there are broken laptops that do not
  906  * restore all the timers on resume.
  907  */
  908 void
  909 timer_restore(void)
  910 {
  911 
  912         i8254_restore();                /* restore timer_freq and hz */
  913 #ifndef PC98
  914         rtc_restore();                  /* reenable RTC interrupts */
  915 #endif
  916 }
  917 
  918 /*
  919  * Initialize 8254 timer 0 early so that it can be used in DELAY().
  920  * XXX initialization of other timers is unintentionally left blank.
  921  */
  922 void
  923 startrtclock()
  924 {
  925         u_int delta, freq;
  926 
  927 #ifdef PC98
  928         findcpuspeed();
  929         if (pc98_machine_type & M_8M)
  930                 timer_freq = 1996800L; /* 1.9968 MHz */
  931         else
  932                 timer_freq = 2457600L; /* 2.4576 MHz */
  933 #endif /* PC98 */
  934 
  935         if (cpu_feature & CPUID_TSC)
  936                 tsc_present = 1;
  937         else
  938                 tsc_present = 0;
  939 
  940 #ifndef PC98
  941         writertc(RTC_STATUSA, rtc_statusa);
  942         writertc(RTC_STATUSB, RTCSB_24HR);
  943 #endif
  944 
  945         set_timer_freq(timer_freq, hz);
  946         freq = calibrate_clocks();
  947 #ifdef CLK_CALIBRATION_LOOP
  948         if (bootverbose) {
  949                 printf(
  950                 "Press a key on the console to abort clock calibration\n");
  951                 while (cncheckc() == -1)
  952                         calibrate_clocks();
  953         }
  954 #endif
  955 
  956         /*
  957          * Use the calibrated i8254 frequency if it seems reasonable.
  958          * Otherwise use the default, and don't use the calibrated i586
  959          * frequency.
  960          */
  961         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
  962         if (delta < timer_freq / 100) {
  963 #ifndef CLK_USE_I8254_CALIBRATION
  964                 if (bootverbose)
  965                         printf(
  966 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
  967                 freq = timer_freq;
  968 #endif
  969                 timer_freq = freq;
  970         } else {
  971                 if (bootverbose)
  972                         printf(
  973                     "%d Hz differs from default of %d Hz by more than 1%%\n",
  974                                freq, timer_freq);
  975                 tsc_freq = 0;
  976         }
  977 
  978         set_timer_freq(timer_freq, hz);
  979         i8254_timecounter.tc_frequency = timer_freq;
  980         tc_init(&i8254_timecounter);
  981 
  982 #ifndef CLK_USE_TSC_CALIBRATION
  983         if (tsc_freq != 0) {
  984                 if (bootverbose)
  985                         printf(
  986 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
  987                 tsc_freq = 0;
  988         }
  989 #endif
  990         if (tsc_present && tsc_freq == 0) {
  991                 /*
  992                  * Calibration of the i586 clock relative to the mc146818A
  993                  * clock failed.  Do a less accurate calibration relative
  994                  * to the i8254 clock.
  995                  */
  996                 u_int64_t old_tsc = rdtsc();
  997 
  998                 DELAY(1000000);
  999                 tsc_freq = rdtsc() - old_tsc;
 1000 #ifdef CLK_USE_TSC_CALIBRATION
 1001                 if (bootverbose)
 1002                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
 1003 #endif
 1004         }
 1005 
 1006 #if !defined(SMP)
 1007         /*
 1008          * We can not use the TSC in SMP mode, until we figure out a
 1009          * cheap (impossible), reliable and precise (yeah right!)  way
 1010          * to synchronize the TSCs of all the CPUs.
 1011          * Curse Intel for leaving the counter out of the I/O APIC.
 1012          */
 1013 
 1014         /*
 1015          * We can not use the TSC if we support APM. Precise timekeeping
 1016          * on an APM'ed machine is at best a fools pursuit, since 
 1017          * any and all of the time spent in various SMM code can't 
 1018          * be reliably accounted for.  Reading the RTC is your only
 1019          * source of reliable time info.  The i8254 looses too of course
 1020          * but we need to have some kind of time...
 1021          * We don't know at this point whether APM is going to be used
 1022          * or not, nor when it might be activated.  Play it safe.
 1023          */
 1024         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
 1025                 if (bootverbose)
 1026                         printf("TSC initialization skipped: APM enabled.\n");
 1027                 return;
 1028         }
 1029 
 1030         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
 1031                 tsc_timecounter.tc_frequency = tsc_freq;
 1032                 tc_init(&tsc_timecounter);
 1033         }
 1034 
 1035 #endif /* !defined(SMP) */
 1036 }
 1037 
 1038 #ifdef PC98
 1039 static void
 1040 rtc_serialcombit(int i)
 1041 {
 1042         outb(IO_RTC, ((i&0x01)<<5)|0x07);
 1043         DELAY(1);
 1044         outb(IO_RTC, ((i&0x01)<<5)|0x17);
 1045         DELAY(1);
 1046         outb(IO_RTC, ((i&0x01)<<5)|0x07);
 1047         DELAY(1);
 1048 }
 1049 
 1050 static void
 1051 rtc_serialcom(int i)
 1052 {
 1053         rtc_serialcombit(i&0x01);
 1054         rtc_serialcombit((i&0x02)>>1);
 1055         rtc_serialcombit((i&0x04)>>2);
 1056         rtc_serialcombit((i&0x08)>>3);
 1057         outb(IO_RTC, 0x07);
 1058         DELAY(1);
 1059         outb(IO_RTC, 0x0f);
 1060         DELAY(1);
 1061         outb(IO_RTC, 0x07);
 1062         DELAY(1);
 1063 }
 1064 
 1065 static void
 1066 rtc_outb(int val)
 1067 {
 1068         int s;
 1069         int sa = 0;
 1070 
 1071         for (s=0;s<8;s++) {
 1072             sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
 1073             outb(IO_RTC, sa);           /* set DI & CLK 0 */
 1074             DELAY(1);
 1075             outb(IO_RTC, sa | 0x10);    /* CLK 1 */
 1076             DELAY(1);
 1077         }
 1078         outb(IO_RTC, sa & 0xef);        /* CLK 0 */
 1079 }
 1080 
 1081 static int
 1082 rtc_inb(void)
 1083 {
 1084         int s;
 1085         int sa = 0;
 1086 
 1087         for (s=0;s<8;s++) {
 1088             sa |= ((inb(0x33) & 0x01) << s);
 1089             outb(IO_RTC, 0x17); /* CLK 1 */
 1090             DELAY(1);
 1091             outb(IO_RTC, 0x07); /* CLK 0 */
 1092             DELAY(2);
 1093         }
 1094         return sa;
 1095 }
 1096 #endif /* PC-98 */
 1097 
 1098 /*
 1099  * Initialize the time of day register, based on the time base which is, e.g.
 1100  * from a filesystem.
 1101  */
 1102 void
 1103 inittodr(time_t base)
 1104 {
 1105         unsigned long   sec, days;
 1106         int             year, month;
 1107         int             y, m, s;
 1108         struct timespec ts;
 1109 #ifdef PC98
 1110         int             second, min, hour;
 1111 #endif
 1112 
 1113         if (base) {
 1114                 s = splclock();
 1115                 ts.tv_sec = base;
 1116                 ts.tv_nsec = 0;
 1117                 tc_setclock(&ts);
 1118                 splx(s);
 1119         }
 1120 
 1121 #ifdef PC98
 1122         rtc_serialcom(0x03);    /* Time Read */
 1123         rtc_serialcom(0x01);    /* Register shift command. */
 1124         DELAY(20);
 1125 
 1126         second = bcd2bin(rtc_inb() & 0xff);     /* sec */
 1127         min = bcd2bin(rtc_inb() & 0xff);        /* min */
 1128         hour = bcd2bin(rtc_inb() & 0xff);       /* hour */
 1129         days = bcd2bin(rtc_inb() & 0xff) - 1;   /* date */
 1130 
 1131         month = (rtc_inb() >> 4) & 0x0f;        /* month */
 1132         for (m = 1; m < month; m++)
 1133                 days += daysinmonth[m-1];
 1134         year = bcd2bin(rtc_inb() & 0xff) + 1900;        /* year */
 1135         /* 2000 year problem */
 1136         if (year < 1995)
 1137                 year += 100;
 1138         if (year < 1970)
 1139                 goto wrong_time;
 1140         for (y = 1970; y < year; y++)
 1141                 days += DAYSPERYEAR + LEAPYEAR(y);
 1142         if ((month > 2) && LEAPYEAR(year))
 1143                 days ++;
 1144         sec = ((( days * 24 +
 1145                   hour) * 60 +
 1146                   min) * 60 +
 1147                   second);
 1148         /* sec now contains the number of seconds, since Jan 1 1970,
 1149            in the local time zone */
 1150 
 1151         s = splhigh();
 1152 #else   /* IBM-PC */
 1153         /* Look if we have a RTC present and the time is valid */
 1154         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
 1155                 goto wrong_time;
 1156 
 1157         /* wait for time update to complete */
 1158         /* If RTCSA_TUP is zero, we have at least 244us before next update */
 1159         s = splhigh();
 1160         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
 1161                 splx(s);
 1162                 s = splhigh();
 1163         }
 1164 
 1165         days = 0;
 1166 #ifdef USE_RTC_CENTURY
 1167         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
 1168 #else
 1169         year = readrtc(RTC_YEAR) + 1900;
 1170         if (year < 1970)
 1171                 year += 100;
 1172 #endif
 1173         if (year < 1970) {
 1174                 splx(s);
 1175                 goto wrong_time;
 1176         }
 1177         month = readrtc(RTC_MONTH);
 1178         for (m = 1; m < month; m++)
 1179                 days += daysinmonth[m-1];
 1180         if ((month > 2) && LEAPYEAR(year))
 1181                 days ++;
 1182         days += readrtc(RTC_DAY) - 1;
 1183         for (y = 1970; y < year; y++)
 1184                 days += DAYSPERYEAR + LEAPYEAR(y);
 1185         sec = ((( days * 24 +
 1186                   readrtc(RTC_HRS)) * 60 +
 1187                   readrtc(RTC_MIN)) * 60 +
 1188                   readrtc(RTC_SEC));
 1189         /* sec now contains the number of seconds, since Jan 1 1970,
 1190            in the local time zone */
 1191 #endif
 1192 
 1193         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
 1194 
 1195         y = time_second - sec;
 1196         if (y <= -2 || y >= 2) {
 1197                 /* badly off, adjust it */
 1198                 ts.tv_sec = sec;
 1199                 ts.tv_nsec = 0;
 1200                 tc_setclock(&ts);
 1201         }
 1202         splx(s);
 1203         return;
 1204 
 1205 wrong_time:
 1206         printf("Invalid time in real time clock.\n");
 1207         printf("Check and reset the date immediately!\n");
 1208 }
 1209 
 1210 /*
 1211  * Write system time back to RTC
 1212  */
 1213 void
 1214 resettodr()
 1215 {
 1216         unsigned long   tm;
 1217         int             y, m, s;
 1218 #ifdef PC98
 1219         int             wd;
 1220 #endif
 1221 
 1222         if (disable_rtc_set)
 1223                 return;
 1224 
 1225         s = splclock();
 1226         tm = time_second;
 1227         splx(s);
 1228 
 1229 #ifdef PC98
 1230         rtc_serialcom(0x01);    /* Register shift command. */
 1231 
 1232         /* Calculate local time to put in RTC */
 1233 
 1234         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
 1235 
 1236         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Seconds */
 1237         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Minutes */
 1238         rtc_outb(bin2bcd(tm%24)); tm /= 24;     /* Write back Hours   */
 1239 
 1240         /* We have now the days since 01-01-1970 in tm */
 1241         wd = (tm+4)%7;
 1242         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
 1243              tm >= m;
 1244              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
 1245              tm -= m;
 1246 
 1247         /* Now we have the years in y and the day-of-the-year in tm */
 1248         for (m = 0; ; m++) {
 1249                 int ml;
 1250 
 1251                 ml = daysinmonth[m];
 1252                 if (m == 1 && LEAPYEAR(y))
 1253                         ml++;
 1254                 if (tm < ml)
 1255                         break;
 1256                 tm -= ml;
 1257         }
 1258 
 1259         m++;
 1260         rtc_outb(bin2bcd(tm+1));                /* Write back Day     */
 1261         rtc_outb((m << 4) | wd);                /* Write back Month & Weekday  */
 1262         rtc_outb(bin2bcd(y%100));               /* Write back Year    */
 1263 
 1264         rtc_serialcom(0x02);    /* Time set & Counter hold command. */
 1265         rtc_serialcom(0x00);    /* Register hold command. */
 1266 #else
 1267         /* Disable RTC updates and interrupts. */
 1268         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
 1269 
 1270         /* Calculate local time to put in RTC */
 1271 
 1272         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
 1273 
 1274         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
 1275         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
 1276         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
 1277 
 1278         /* We have now the days since 01-01-1970 in tm */
 1279         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
 1280         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
 1281              tm >= m;
 1282              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
 1283              tm -= m;
 1284 
 1285         /* Now we have the years in y and the day-of-the-year in tm */
 1286         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
 1287 #ifdef USE_RTC_CENTURY
 1288         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
 1289 #endif
 1290         for (m = 0; ; m++) {
 1291                 int ml;
 1292 
 1293                 ml = daysinmonth[m];
 1294                 if (m == 1 && LEAPYEAR(y))
 1295                         ml++;
 1296                 if (tm < ml)
 1297                         break;
 1298                 tm -= ml;
 1299         }
 1300 
 1301         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
 1302         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
 1303 
 1304         /* Reenable RTC updates and interrupts. */
 1305         writertc(RTC_STATUSB, rtc_statusb);
 1306 #endif /* PC98 */
 1307 }
 1308 
 1309 
 1310 /*
 1311  * Start both clocks running.
 1312  */
 1313 void
 1314 cpu_initclocks()
 1315 {
 1316 #ifndef PC98
 1317         int diag;
 1318 #endif
 1319 #ifdef APIC_IO
 1320         int apic_8254_trial;
 1321         void *clkdesc;
 1322 #endif /* APIC_IO */
 1323         register_t crit;
 1324 
 1325 #ifndef PC98
 1326         if (statclock_disable) {
 1327                 /*
 1328                  * The stat interrupt mask is different without the
 1329                  * statistics clock.  Also, don't set the interrupt
 1330                  * flag which would normally cause the RTC to generate
 1331                  * interrupts.
 1332                  */
 1333                 rtc_statusb = RTCSB_24HR;
 1334         } else {
 1335                 /* Setting stathz to nonzero early helps avoid races. */
 1336                 stathz = RTC_NOPROFRATE;
 1337                 profhz = RTC_PROFRATE;
 1338         }
 1339 #endif
 1340 
 1341         /* Finish initializing 8253 timer 0. */
 1342 #ifdef APIC_IO
 1343 
 1344         apic_8254_intr = isa_apic_irq(0);
 1345         apic_8254_trial = 0;
 1346         if (apic_8254_intr >= 0 ) {
 1347                 if (apic_int_type(0, 0) == 3)
 1348                         apic_8254_trial = 1;
 1349         } else {
 1350                 /* look for ExtInt on pin 0 */
 1351                 if (apic_int_type(0, 0) == 3) {
 1352                         apic_8254_intr = apic_irq(0, 0);
 1353                         setup_8254_mixed_mode();
 1354                 } else 
 1355                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
 1356         }
 1357 
 1358         inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
 1359             INTR_TYPE_CLK | INTR_FAST, &clkdesc);
 1360         crit = intr_disable();
 1361         mtx_lock_spin(&icu_lock);
 1362         INTREN(1 << apic_8254_intr);
 1363         mtx_unlock_spin(&icu_lock);
 1364         intr_restore(crit);
 1365 
 1366 #else /* APIC_IO */
 1367 
 1368         /*
 1369          * XXX Check the priority of this interrupt handler.  I
 1370          * couldn't find anything suitable in the BSD/OS code (grog,
 1371          * 19 July 2000).
 1372          */
 1373         inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
 1374             INTR_TYPE_CLK | INTR_FAST, NULL);
 1375         crit = intr_disable();
 1376         mtx_lock_spin(&icu_lock);
 1377         INTREN(IRQ0);
 1378         mtx_unlock_spin(&icu_lock);
 1379         intr_restore(crit);
 1380 
 1381 #endif /* APIC_IO */
 1382 
 1383 #ifndef PC98
 1384         /* Initialize RTC. */
 1385         writertc(RTC_STATUSA, rtc_statusa);
 1386         writertc(RTC_STATUSB, RTCSB_24HR);
 1387 
 1388         /* Don't bother enabling the statistics clock. */
 1389         if (statclock_disable)
 1390                 return;
 1391         diag = rtcin(RTC_DIAG);
 1392         if (diag != 0)
 1393                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
 1394 #endif /* !PC98 */
 1395 
 1396 #ifndef PC98
 1397 #ifdef APIC_IO
 1398         if (isa_apic_irq(8) != 8)
 1399                 panic("APIC RTC != 8");
 1400 #endif /* APIC_IO */
 1401 
 1402         inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
 1403             INTR_TYPE_CLK | INTR_FAST, NULL);
 1404 
 1405         crit = intr_disable();
 1406         mtx_lock_spin(&icu_lock);
 1407 #ifdef APIC_IO
 1408         INTREN(APIC_IRQ8);
 1409 #else
 1410         INTREN(IRQ8);
 1411 #endif /* APIC_IO */
 1412         mtx_unlock_spin(&icu_lock);
 1413         intr_restore(crit);
 1414 
 1415         writertc(RTC_STATUSB, rtc_statusb);
 1416 #endif /* PC98 */
 1417 
 1418 #ifdef APIC_IO
 1419         if (apic_8254_trial) {
 1420 
 1421                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
 1422                 while (read_intr_count(8) < 6)
 1423                         ;       /* nothing */
 1424                 if (read_intr_count(apic_8254_intr) < 3) {
 1425                         /* 
 1426                          * The MP table is broken.
 1427                          * The 8254 was not connected to the specified pin
 1428                          * on the IO APIC.
 1429                          * Workaround: Limited variant of mixed mode.
 1430                          */
 1431 
 1432                         crit = intr_disable();
 1433                         mtx_lock_spin(&icu_lock);
 1434                         INTRDIS(1 << apic_8254_intr);
 1435                         mtx_unlock_spin(&icu_lock);
 1436                         intr_restore(crit);
 1437                         inthand_remove(clkdesc);
 1438                         printf("APIC_IO: Broken MP table detected: "
 1439                                "8254 is not connected to "
 1440                                "IOAPIC #%d intpin %d\n",
 1441                                int_to_apicintpin[apic_8254_intr].ioapic,
 1442                                int_to_apicintpin[apic_8254_intr].int_pin);
 1443                         /* 
 1444                          * Revoke current ISA IRQ 0 assignment and 
 1445                          * configure a fallback interrupt routing from
 1446                          * the 8254 Timer via the 8259 PIC to the
 1447                          * an ExtInt interrupt line on IOAPIC #0 intpin 0.
 1448                          * We reuse the low level interrupt handler number.
 1449                          */
 1450                         if (apic_irq(0, 0) < 0) {
 1451                                 revoke_apic_irq(apic_8254_intr);
 1452                                 assign_apic_irq(0, 0, apic_8254_intr);
 1453                         }
 1454                         apic_8254_intr = apic_irq(0, 0);
 1455                         setup_8254_mixed_mode();
 1456                         inthand_add("clk", apic_8254_intr,
 1457                                     (driver_intr_t *)clkintr, NULL,
 1458                                     INTR_TYPE_CLK | INTR_FAST, NULL);
 1459                         crit = intr_disable();
 1460                         mtx_lock_spin(&icu_lock);
 1461                         INTREN(1 << apic_8254_intr);
 1462                         mtx_unlock_spin(&icu_lock);
 1463                         intr_restore(crit);
 1464                 }
 1465                 
 1466         }
 1467         if (apic_int_type(0, 0) != 3 ||
 1468             int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
 1469             int_to_apicintpin[apic_8254_intr].int_pin != 0)
 1470                 printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
 1471                        int_to_apicintpin[apic_8254_intr].ioapic,
 1472                        int_to_apicintpin[apic_8254_intr].int_pin);
 1473         else
 1474                 printf("APIC_IO: "
 1475                        "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
 1476 #endif
 1477         
 1478 }
 1479 
 1480 #ifdef APIC_IO
 1481 static u_long
 1482 read_intr_count(int vec)
 1483 {
 1484         u_long *up;
 1485         up = intr_countp[vec];
 1486         if (up)
 1487                 return *up;
 1488         return 0UL;
 1489 }
 1490 
 1491 static void 
 1492 setup_8254_mixed_mode()
 1493 {
 1494         /*
 1495          * Allow 8254 timer to INTerrupt 8259:
 1496          *  re-initialize master 8259:
 1497          *   reset; prog 4 bytes, single ICU, edge triggered
 1498          */
 1499         outb(IO_ICU1, 0x13);
 1500 #ifdef PC98
 1501         outb(IO_ICU1 + 2, NRSVIDT);     /* start vector (unused) */
 1502         outb(IO_ICU1 + 2, 0x00);        /* ignore slave */
 1503         outb(IO_ICU1 + 2, 0x03);        /* auto EOI, 8086 */
 1504         outb(IO_ICU1 + 2, 0xfe);        /* unmask INT0 */
 1505 #else
 1506         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
 1507         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
 1508         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
 1509         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
 1510 #endif  
 1511         
 1512         /* program IO APIC for type 3 INT on INT0 */
 1513         if (ext_int_setup(0, 0) < 0)
 1514                 panic("8254 redirect via APIC pin0 impossible!");
 1515 }
 1516 #endif
 1517 
 1518 void
 1519 setstatclockrate(int newhz)
 1520 {
 1521 #ifndef PC98
 1522         if (newhz == RTC_PROFRATE)
 1523                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
 1524         else
 1525                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
 1526         writertc(RTC_STATUSA, rtc_statusa);
 1527 #endif
 1528 }
 1529 
 1530 static int
 1531 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
 1532 {
 1533         int error;
 1534         u_int freq;
 1535 
 1536         /*
 1537          * Use `i8254' instead of `timer' in external names because `timer'
 1538          * is is too generic.  Should use it everywhere.
 1539          */
 1540         freq = timer_freq;
 1541         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
 1542         if (error == 0 && req->newptr != NULL) {
 1543                 if (timer0_state != RELEASED)
 1544                         return (EBUSY); /* too much trouble to handle */
 1545                 set_timer_freq(freq, hz);
 1546                 i8254_timecounter.tc_frequency = freq;
 1547         }
 1548         return (error);
 1549 }
 1550 
 1551 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
 1552     0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
 1553 
 1554 static int
 1555 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
 1556 {
 1557         int error;
 1558         u_int freq;
 1559 
 1560         if (tsc_timecounter.tc_frequency == 0)
 1561                 return (EOPNOTSUPP);
 1562         freq = tsc_freq;
 1563         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
 1564         if (error == 0 && req->newptr != NULL) {
 1565                 tsc_freq = freq;
 1566                 tsc_timecounter.tc_frequency = tsc_freq;
 1567         }
 1568         return (error);
 1569 }
 1570 
 1571 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
 1572     0, sizeof(u_int), sysctl_machdep_tsc_freq, "IU", "");
 1573 
 1574 static unsigned
 1575 i8254_get_timecount(struct timecounter *tc)
 1576 {
 1577         u_int count;
 1578         u_int high, low;
 1579         u_int eflags;
 1580 
 1581         eflags = read_eflags();
 1582         mtx_lock_spin(&clock_lock);
 1583 
 1584         /* Select timer0 and latch counter value. */
 1585         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
 1586 
 1587         low = inb(TIMER_CNTR0);
 1588         high = inb(TIMER_CNTR0);
 1589         count = timer0_max_count - ((high << 8) | low);
 1590         if (count < i8254_lastcount ||
 1591             (!i8254_ticked && (clkintr_pending ||
 1592             ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
 1593 #ifdef APIC_IO
 1594 #define lapic_irr1      ((volatile u_int *)&lapic)[0x210 / 4]   /* XXX XXX */
 1595             /* XXX this assumes that apic_8254_intr is < 24. */
 1596             (lapic_irr1 & (1 << apic_8254_intr))))
 1597 #else
 1598             (inb(IO_ICU1) & 1)))
 1599 #endif
 1600             )) {
 1601                 i8254_ticked = 1;
 1602                 i8254_offset += timer0_max_count;
 1603         }
 1604         i8254_lastcount = count;
 1605         count += i8254_offset;
 1606         mtx_unlock_spin(&clock_lock);
 1607         return (count);
 1608 }
 1609 
 1610 static unsigned
 1611 tsc_get_timecount(struct timecounter *tc)
 1612 {
 1613         return (rdtsc());
 1614 }
 1615 
 1616 #ifdef DEV_ISA
 1617 /*
 1618  * Attach to the ISA PnP descriptors for the timer and realtime clock.
 1619  */
 1620 static struct isa_pnp_id attimer_ids[] = {
 1621         { 0x0001d041 /* PNP0100 */, "AT timer" },
 1622         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
 1623         { 0 }
 1624 };
 1625 
 1626 static int
 1627 attimer_probe(device_t dev)
 1628 {
 1629         int result;
 1630         
 1631         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
 1632                 device_quiet(dev);
 1633         return(result);
 1634 }
 1635 
 1636 static int
 1637 attimer_attach(device_t dev)
 1638 {
 1639         return(0);
 1640 }
 1641 
 1642 static device_method_t attimer_methods[] = {
 1643         /* Device interface */
 1644         DEVMETHOD(device_probe,         attimer_probe),
 1645         DEVMETHOD(device_attach,        attimer_attach),
 1646         DEVMETHOD(device_detach,        bus_generic_detach),
 1647         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1648         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
 1649         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
 1650         { 0, 0 }
 1651 };
 1652 
 1653 static driver_t attimer_driver = {
 1654         "attimer",
 1655         attimer_methods,
 1656         1,              /* no softc */
 1657 };
 1658 
 1659 static devclass_t attimer_devclass;
 1660 
 1661 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
 1662 #ifndef PC98
 1663 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
 1664 #endif
 1665 #endif /* DEV_ISA */

Cache object: 3929de2ebe3f1f0fe5bca351bc3171c7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.