The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pc98/pc98/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_atalk.h"
   44 #include "opt_compat.h"
   45 #include "opt_cpu.h"
   46 #include "opt_ddb.h"
   47 #include "opt_inet.h"
   48 #include "opt_ipx.h"
   49 #include "opt_isa.h"
   50 #include "opt_kstack_pages.h"
   51 #include "opt_maxmem.h"
   52 #include "opt_msgbuf.h"
   53 #include "opt_npx.h"
   54 #include "opt_perfmon.h"
   55 
   56 #include <sys/param.h>
   57 #include <sys/proc.h>
   58 #include <sys/systm.h>
   59 #include <sys/bio.h>
   60 #include <sys/buf.h>
   61 #include <sys/bus.h>
   62 #include <sys/callout.h>
   63 #include <sys/cons.h>
   64 #include <sys/cpu.h>
   65 #include <sys/eventhandler.h>
   66 #include <sys/exec.h>
   67 #include <sys/imgact.h>
   68 #include <sys/kdb.h>
   69 #include <sys/kernel.h>
   70 #include <sys/ktr.h>
   71 #include <sys/linker.h>
   72 #include <sys/lock.h>
   73 #include <sys/malloc.h>
   74 #include <sys/memrange.h>
   75 #include <sys/msgbuf.h>
   76 #include <sys/mutex.h>
   77 #include <sys/pcpu.h>
   78 #include <sys/ptrace.h>
   79 #include <sys/reboot.h>
   80 #include <sys/sched.h>
   81 #include <sys/signalvar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/sysent.h>
   84 #include <sys/sysproto.h>
   85 #include <sys/ucontext.h>
   86 #include <sys/vmmeter.h>
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_extern.h>
   90 #include <vm/vm_kern.h>
   91 #include <vm/vm_page.h>
   92 #include <vm/vm_map.h>
   93 #include <vm/vm_object.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/vm_param.h>
   96 
   97 #ifdef DDB
   98 #ifndef KDB
   99 #error KDB must be enabled in order for DDB to work!
  100 #endif
  101 #include <ddb/ddb.h>
  102 #include <ddb/db_sym.h>
  103 #endif
  104 
  105 #include <pc98/pc98/pc98_machdep.h>
  106 
  107 #include <net/netisr.h>
  108 
  109 #include <machine/bootinfo.h>
  110 #include <machine/clock.h>
  111 #include <machine/cpu.h>
  112 #include <machine/cputypes.h>
  113 #include <machine/intr_machdep.h>
  114 #include <machine/md_var.h>
  115 #include <machine/pc/bios.h>
  116 #include <machine/pcb.h>
  117 #include <machine/pcb_ext.h>
  118 #include <machine/proc.h>
  119 #include <machine/reg.h>
  120 #include <machine/sigframe.h>
  121 #include <machine/specialreg.h>
  122 #include <machine/vm86.h>
  123 #ifdef PERFMON
  124 #include <machine/perfmon.h>
  125 #endif
  126 #ifdef SMP
  127 #include <machine/smp.h>
  128 #endif
  129 
  130 #ifdef DEV_ISA
  131 #include <i386/isa/icu.h>
  132 #endif
  133 
  134 /* Sanity check for __curthread() */
  135 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  136 
  137 extern void init386(int first);
  138 extern void dblfault_handler(void);
  139 
  140 extern void printcpuinfo(void); /* XXX header file */
  141 extern void finishidentcpu(void);
  142 extern void panicifcpuunsupported(void);
  143 extern void initializecpu(void);
  144 
  145 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  146 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  147 
  148 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  149 #define CPU_ENABLE_SSE
  150 #endif
  151 
  152 static void cpu_startup(void *);
  153 static void fpstate_drop(struct thread *td);
  154 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  155 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  156 #ifdef CPU_ENABLE_SSE
  157 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  158 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  159 #endif /* CPU_ENABLE_SSE */
  160 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
  161 
  162 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  163 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  164 
  165 #ifdef DDB
  166 extern vm_offset_t ksym_start, ksym_end;
  167 #endif
  168 
  169 int     _udatasel, _ucodesel;
  170 u_int   basemem;
  171 
  172 static int      ispc98 = 1;
  173 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  174 
  175 int cold = 1;
  176 
  177 #ifdef COMPAT_43
  178 static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);
  179 #endif
  180 #ifdef COMPAT_FREEBSD4
  181 static void freebsd4_sendsig(sig_t catcher, int sig, sigset_t *mask,
  182     u_long code);
  183 #endif
  184 
  185 long Maxmem = 0;
  186 long realmem = 0;
  187 
  188 #define PHYSMAP_SIZE    (2 * 16)
  189 
  190 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  191 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  192 
  193 /* must be 2 less so 0 0 can signal end of chunks */
  194 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  195 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  196 
  197 struct kva_md_info kmi;
  198 
  199 static struct trapframe proc0_tf;
  200 struct pcpu __pcpu[MAXCPU];
  201 
  202 struct mtx icu_lock;
  203 
  204 struct mem_range_softc mem_range_softc;
  205 
  206 static void
  207 cpu_startup(dummy)
  208         void *dummy;
  209 {
  210         /*
  211          * Good {morning,afternoon,evening,night}.
  212          */
  213         startrtclock();
  214         printcpuinfo();
  215         panicifcpuunsupported();
  216 #ifdef PERFMON
  217         perfmon_init();
  218 #endif
  219         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  220             ptoa((uintmax_t)Maxmem) / 1048576);
  221         realmem = Maxmem;
  222         /*
  223          * Display any holes after the first chunk of extended memory.
  224          */
  225         if (bootverbose) {
  226                 int indx;
  227 
  228                 printf("Physical memory chunk(s):\n");
  229                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  230                         vm_paddr_t size;
  231 
  232                         size = phys_avail[indx + 1] - phys_avail[indx];
  233                         printf(
  234                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  235                             (uintmax_t)phys_avail[indx],
  236                             (uintmax_t)phys_avail[indx + 1] - 1,
  237                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  238                 }
  239         }
  240 
  241         vm_ksubmap_init(&kmi);
  242 
  243         printf("avail memory = %ju (%ju MB)\n",
  244             ptoa((uintmax_t)cnt.v_free_count),
  245             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  246 
  247         /*
  248          * Set up buffers, so they can be used to read disk labels.
  249          */
  250         bufinit();
  251         vm_pager_bufferinit();
  252 
  253         cpu_setregs();
  254 }
  255 
  256 /*
  257  * Send an interrupt to process.
  258  *
  259  * Stack is set up to allow sigcode stored
  260  * at top to call routine, followed by kcall
  261  * to sigreturn routine below.  After sigreturn
  262  * resets the signal mask, the stack, and the
  263  * frame pointer, it returns to the user
  264  * specified pc, psl.
  265  */
  266 #ifdef COMPAT_43
  267 static void
  268 osendsig(catcher, sig, mask, code)
  269         sig_t catcher;
  270         int sig;
  271         sigset_t *mask;
  272         u_long code;
  273 {
  274         struct osigframe sf, *fp;
  275         struct proc *p;
  276         struct thread *td;
  277         struct sigacts *psp;
  278         struct trapframe *regs;
  279         int oonstack;
  280 
  281         td = curthread;
  282         p = td->td_proc;
  283         PROC_LOCK_ASSERT(p, MA_OWNED);
  284         psp = p->p_sigacts;
  285         mtx_assert(&psp->ps_mtx, MA_OWNED);
  286         regs = td->td_frame;
  287         oonstack = sigonstack(regs->tf_esp);
  288 
  289         /* Allocate space for the signal handler context. */
  290         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  291             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  292                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  293                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  294 #if defined(COMPAT_43)
  295                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  296 #endif
  297         } else
  298                 fp = (struct osigframe *)regs->tf_esp - 1;
  299 
  300         /* Translate the signal if appropriate. */
  301         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  302                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  303 
  304         /* Build the argument list for the signal handler. */
  305         sf.sf_signum = sig;
  306         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  307         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  308                 /* Signal handler installed with SA_SIGINFO. */
  309                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  310                 sf.sf_siginfo.si_signo = sig;
  311                 sf.sf_siginfo.si_code = code;
  312                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  313         } else {
  314                 /* Old FreeBSD-style arguments. */
  315                 sf.sf_arg2 = code;
  316                 sf.sf_addr = td->td_md.md_fault_addr;
  317                 sf.sf_ahu.sf_handler = catcher;
  318         }
  319         mtx_unlock(&psp->ps_mtx);
  320         PROC_UNLOCK(p);
  321 
  322         /* Save most if not all of trap frame. */
  323         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  324         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  325         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  326         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  327         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  328         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  329         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  330         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  331         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  332         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  333         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  334         sf.sf_siginfo.si_sc.sc_gs = rgs();
  335         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  336 
  337         /* Build the signal context to be used by osigreturn(). */
  338         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  339         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  340         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  341         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  342         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  343         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  344         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  345         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  346 
  347         /*
  348          * If we're a vm86 process, we want to save the segment registers.
  349          * We also change eflags to be our emulated eflags, not the actual
  350          * eflags.
  351          */
  352         if (regs->tf_eflags & PSL_VM) {
  353                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  354                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  355                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  356 
  357                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  358                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  359                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  360                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  361 
  362                 if (vm86->vm86_has_vme == 0)
  363                         sf.sf_siginfo.si_sc.sc_ps =
  364                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  365                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  366 
  367                 /* See sendsig() for comments. */
  368                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  369         }
  370 
  371         /*
  372          * Copy the sigframe out to the user's stack.
  373          */
  374         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  375 #ifdef DEBUG
  376                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  377 #endif
  378                 PROC_LOCK(p);
  379                 sigexit(td, SIGILL);
  380         }
  381 
  382         regs->tf_esp = (int)fp;
  383         regs->tf_eip = PS_STRINGS - szosigcode;
  384         regs->tf_eflags &= ~(PSL_T | PSL_D);
  385         regs->tf_cs = _ucodesel;
  386         regs->tf_ds = _udatasel;
  387         regs->tf_es = _udatasel;
  388         regs->tf_fs = _udatasel;
  389         load_gs(_udatasel);
  390         regs->tf_ss = _udatasel;
  391         PROC_LOCK(p);
  392         mtx_lock(&psp->ps_mtx);
  393 }
  394 #endif /* COMPAT_43 */
  395 
  396 #ifdef COMPAT_FREEBSD4
  397 static void
  398 freebsd4_sendsig(catcher, sig, mask, code)
  399         sig_t catcher;
  400         int sig;
  401         sigset_t *mask;
  402         u_long code;
  403 {
  404         struct sigframe4 sf, *sfp;
  405         struct proc *p;
  406         struct thread *td;
  407         struct sigacts *psp;
  408         struct trapframe *regs;
  409         int oonstack;
  410 
  411         td = curthread;
  412         p = td->td_proc;
  413         PROC_LOCK_ASSERT(p, MA_OWNED);
  414         psp = p->p_sigacts;
  415         mtx_assert(&psp->ps_mtx, MA_OWNED);
  416         regs = td->td_frame;
  417         oonstack = sigonstack(regs->tf_esp);
  418 
  419         /* Save user context. */
  420         bzero(&sf, sizeof(sf));
  421         sf.sf_uc.uc_sigmask = *mask;
  422         sf.sf_uc.uc_stack = td->td_sigstk;
  423         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  424             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  425         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  426         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  427         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  428 
  429         /* Allocate space for the signal handler context. */
  430         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  431             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  432                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  433                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  434 #if defined(COMPAT_43)
  435                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  436 #endif
  437         } else
  438                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  439 
  440         /* Translate the signal if appropriate. */
  441         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  442                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  443 
  444         /* Build the argument list for the signal handler. */
  445         sf.sf_signum = sig;
  446         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  447         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  448                 /* Signal handler installed with SA_SIGINFO. */
  449                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  450                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  451 
  452                 /* Fill in POSIX parts */
  453                 sf.sf_si.si_signo = sig;
  454                 sf.sf_si.si_code = code;
  455                 sf.sf_si.si_addr = (void *)td->td_md.md_fault_addr;
  456         } else {
  457                 /* Old FreeBSD-style arguments. */
  458                 sf.sf_siginfo = code;
  459                 sf.sf_addr = td->td_md.md_fault_addr;
  460                 sf.sf_ahu.sf_handler = catcher;
  461         }
  462         mtx_unlock(&psp->ps_mtx);
  463         PROC_UNLOCK(p);
  464 
  465         /*
  466          * If we're a vm86 process, we want to save the segment registers.
  467          * We also change eflags to be our emulated eflags, not the actual
  468          * eflags.
  469          */
  470         if (regs->tf_eflags & PSL_VM) {
  471                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  472                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  473 
  474                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  475                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  476                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  477                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  478 
  479                 if (vm86->vm86_has_vme == 0)
  480                         sf.sf_uc.uc_mcontext.mc_eflags =
  481                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  482                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  483 
  484                 /*
  485                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  486                  * syscalls made by the signal handler.  This just avoids
  487                  * wasting time for our lazy fixup of such faults.  PSL_NT
  488                  * does nothing in vm86 mode, but vm86 programs can set it
  489                  * almost legitimately in probes for old cpu types.
  490                  */
  491                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  492         }
  493 
  494         /*
  495          * Copy the sigframe out to the user's stack.
  496          */
  497         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  498 #ifdef DEBUG
  499                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  500 #endif
  501                 PROC_LOCK(p);
  502                 sigexit(td, SIGILL);
  503         }
  504 
  505         regs->tf_esp = (int)sfp;
  506         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  507         regs->tf_eflags &= ~(PSL_T | PSL_D);
  508         regs->tf_cs = _ucodesel;
  509         regs->tf_ds = _udatasel;
  510         regs->tf_es = _udatasel;
  511         regs->tf_fs = _udatasel;
  512         regs->tf_ss = _udatasel;
  513         PROC_LOCK(p);
  514         mtx_lock(&psp->ps_mtx);
  515 }
  516 #endif  /* COMPAT_FREEBSD4 */
  517 
  518 void
  519 sendsig(catcher, sig, mask, code)
  520         sig_t catcher;
  521         int sig;
  522         sigset_t *mask;
  523         u_long code;
  524 {
  525         struct sigframe sf, *sfp;
  526         struct proc *p;
  527         struct thread *td;
  528         struct sigacts *psp;
  529         char *sp;
  530         struct trapframe *regs;
  531         int oonstack;
  532 
  533         td = curthread;
  534         p = td->td_proc;
  535         PROC_LOCK_ASSERT(p, MA_OWNED);
  536         psp = p->p_sigacts;
  537         mtx_assert(&psp->ps_mtx, MA_OWNED);
  538 #ifdef COMPAT_FREEBSD4
  539         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  540                 freebsd4_sendsig(catcher, sig, mask, code);
  541                 return;
  542         }
  543 #endif
  544 #ifdef COMPAT_43
  545         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  546                 osendsig(catcher, sig, mask, code);
  547                 return;
  548         }
  549 #endif
  550         regs = td->td_frame;
  551         oonstack = sigonstack(regs->tf_esp);
  552 
  553         /* Save user context. */
  554         bzero(&sf, sizeof(sf));
  555         sf.sf_uc.uc_sigmask = *mask;
  556         sf.sf_uc.uc_stack = td->td_sigstk;
  557         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  558             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  559         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  560         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  561         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  562         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  563         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  564         fpstate_drop(td);
  565 
  566         /* Allocate space for the signal handler context. */
  567         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  568             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  569                 sp = td->td_sigstk.ss_sp +
  570                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  571 #if defined(COMPAT_43)
  572                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  573 #endif
  574         } else
  575                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  576         /* Align to 16 bytes. */
  577         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  578 
  579         /* Translate the signal if appropriate. */
  580         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  581                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  582 
  583         /* Build the argument list for the signal handler. */
  584         sf.sf_signum = sig;
  585         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  586         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  587                 /* Signal handler installed with SA_SIGINFO. */
  588                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  589                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  590 
  591                 /* Fill in POSIX parts */
  592                 sf.sf_si.si_signo = sig;
  593                 sf.sf_si.si_code = code;
  594                 sf.sf_si.si_addr = (void *)td->td_md.md_fault_addr;
  595         } else {
  596                 /* Old FreeBSD-style arguments. */
  597                 sf.sf_siginfo = code;
  598                 sf.sf_addr = td->td_md.md_fault_addr;
  599                 sf.sf_ahu.sf_handler = catcher;
  600         }
  601         mtx_unlock(&psp->ps_mtx);
  602         PROC_UNLOCK(p);
  603 
  604         /*
  605          * If we're a vm86 process, we want to save the segment registers.
  606          * We also change eflags to be our emulated eflags, not the actual
  607          * eflags.
  608          */
  609         if (regs->tf_eflags & PSL_VM) {
  610                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  611                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  612 
  613                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  614                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  615                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  616                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  617 
  618                 if (vm86->vm86_has_vme == 0)
  619                         sf.sf_uc.uc_mcontext.mc_eflags =
  620                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  621                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  622 
  623                 /*
  624                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  625                  * syscalls made by the signal handler.  This just avoids
  626                  * wasting time for our lazy fixup of such faults.  PSL_NT
  627                  * does nothing in vm86 mode, but vm86 programs can set it
  628                  * almost legitimately in probes for old cpu types.
  629                  */
  630                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  631         }
  632 
  633         /*
  634          * Copy the sigframe out to the user's stack.
  635          */
  636         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  637 #ifdef DEBUG
  638                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  639 #endif
  640                 PROC_LOCK(p);
  641                 sigexit(td, SIGILL);
  642         }
  643 
  644         regs->tf_esp = (int)sfp;
  645         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  646         regs->tf_eflags &= ~(PSL_T | PSL_D);
  647         regs->tf_cs = _ucodesel;
  648         regs->tf_ds = _udatasel;
  649         regs->tf_es = _udatasel;
  650         regs->tf_fs = _udatasel;
  651         regs->tf_ss = _udatasel;
  652         PROC_LOCK(p);
  653         mtx_lock(&psp->ps_mtx);
  654 }
  655 
  656 /*
  657  * Build siginfo_t for SA thread
  658  */
  659 void
  660 cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
  661 {
  662         struct proc *p;
  663         struct thread *td;
  664 
  665         td = curthread;
  666         p = td->td_proc;
  667         PROC_LOCK_ASSERT(p, MA_OWNED);
  668 
  669         bzero(si, sizeof(*si));
  670         si->si_signo = sig;
  671         si->si_code = code;
  672         si->si_addr = (void *)td->td_md.md_fault_addr;
  673         /* XXXKSE fill other fields */
  674 }
  675 
  676 /*
  677  * System call to cleanup state after a signal
  678  * has been taken.  Reset signal mask and
  679  * stack state from context left by sendsig (above).
  680  * Return to previous pc and psl as specified by
  681  * context left by sendsig. Check carefully to
  682  * make sure that the user has not modified the
  683  * state to gain improper privileges.
  684  *
  685  * MPSAFE
  686  */
  687 #ifdef COMPAT_43
  688 int
  689 osigreturn(td, uap)
  690         struct thread *td;
  691         struct osigreturn_args /* {
  692                 struct osigcontext *sigcntxp;
  693         } */ *uap;
  694 {
  695         struct osigcontext sc;
  696         struct trapframe *regs;
  697         struct osigcontext *scp;
  698         struct proc *p = td->td_proc;
  699         int eflags, error;
  700 
  701         regs = td->td_frame;
  702         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  703         if (error != 0)
  704                 return (error);
  705         scp = &sc;
  706         eflags = scp->sc_ps;
  707         if (eflags & PSL_VM) {
  708                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  709                 struct vm86_kernel *vm86;
  710 
  711                 /*
  712                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  713                  * set up the vm86 area, and we can't enter vm86 mode.
  714                  */
  715                 if (td->td_pcb->pcb_ext == 0)
  716                         return (EINVAL);
  717                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  718                 if (vm86->vm86_inited == 0)
  719                         return (EINVAL);
  720 
  721                 /* Go back to user mode if both flags are set. */
  722                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
  723                         trapsignal(td, SIGBUS, 0);
  724 
  725                 if (vm86->vm86_has_vme) {
  726                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  727                             (eflags & VME_USERCHANGE) | PSL_VM;
  728                 } else {
  729                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  730                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  731                             (eflags & VM_USERCHANGE) | PSL_VM;
  732                 }
  733                 tf->tf_vm86_ds = scp->sc_ds;
  734                 tf->tf_vm86_es = scp->sc_es;
  735                 tf->tf_vm86_fs = scp->sc_fs;
  736                 tf->tf_vm86_gs = scp->sc_gs;
  737                 tf->tf_ds = _udatasel;
  738                 tf->tf_es = _udatasel;
  739                 tf->tf_fs = _udatasel;
  740         } else {
  741                 /*
  742                  * Don't allow users to change privileged or reserved flags.
  743                  */
  744                 /*
  745                  * XXX do allow users to change the privileged flag PSL_RF.
  746                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  747                  * should sometimes set it there too.  tf_eflags is kept in
  748                  * the signal context during signal handling and there is no
  749                  * other place to remember it, so the PSL_RF bit may be
  750                  * corrupted by the signal handler without us knowing.
  751                  * Corruption of the PSL_RF bit at worst causes one more or
  752                  * one less debugger trap, so allowing it is fairly harmless.
  753                  */
  754                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  755                         return (EINVAL);
  756                 }
  757 
  758                 /*
  759                  * Don't allow users to load a valid privileged %cs.  Let the
  760                  * hardware check for invalid selectors, excess privilege in
  761                  * other selectors, invalid %eip's and invalid %esp's.
  762                  */
  763                 if (!CS_SECURE(scp->sc_cs)) {
  764                         trapsignal(td, SIGBUS, T_PROTFLT);
  765                         return (EINVAL);
  766                 }
  767                 regs->tf_ds = scp->sc_ds;
  768                 regs->tf_es = scp->sc_es;
  769                 regs->tf_fs = scp->sc_fs;
  770         }
  771 
  772         /* Restore remaining registers. */
  773         regs->tf_eax = scp->sc_eax;
  774         regs->tf_ebx = scp->sc_ebx;
  775         regs->tf_ecx = scp->sc_ecx;
  776         regs->tf_edx = scp->sc_edx;
  777         regs->tf_esi = scp->sc_esi;
  778         regs->tf_edi = scp->sc_edi;
  779         regs->tf_cs = scp->sc_cs;
  780         regs->tf_ss = scp->sc_ss;
  781         regs->tf_isp = scp->sc_isp;
  782         regs->tf_ebp = scp->sc_fp;
  783         regs->tf_esp = scp->sc_sp;
  784         regs->tf_eip = scp->sc_pc;
  785         regs->tf_eflags = eflags;
  786 
  787         PROC_LOCK(p);
  788 #if defined(COMPAT_43)
  789         if (scp->sc_onstack & 1)
  790                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  791         else
  792                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  793 #endif
  794         SIGSETOLD(td->td_sigmask, scp->sc_mask);
  795         SIG_CANTMASK(td->td_sigmask);
  796         signotify(td);
  797         PROC_UNLOCK(p);
  798         return (EJUSTRETURN);
  799 }
  800 #endif /* COMPAT_43 */
  801 
  802 #ifdef COMPAT_FREEBSD4
  803 /*
  804  * MPSAFE
  805  */
  806 int
  807 freebsd4_sigreturn(td, uap)
  808         struct thread *td;
  809         struct freebsd4_sigreturn_args /* {
  810                 const ucontext4 *sigcntxp;
  811         } */ *uap;
  812 {
  813         struct ucontext4 uc;
  814         struct proc *p = td->td_proc;
  815         struct trapframe *regs;
  816         const struct ucontext4 *ucp;
  817         int cs, eflags, error;
  818 
  819         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  820         if (error != 0)
  821                 return (error);
  822         ucp = &uc;
  823         regs = td->td_frame;
  824         eflags = ucp->uc_mcontext.mc_eflags;
  825         if (eflags & PSL_VM) {
  826                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  827                 struct vm86_kernel *vm86;
  828 
  829                 /*
  830                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  831                  * set up the vm86 area, and we can't enter vm86 mode.
  832                  */
  833                 if (td->td_pcb->pcb_ext == 0)
  834                         return (EINVAL);
  835                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  836                 if (vm86->vm86_inited == 0)
  837                         return (EINVAL);
  838 
  839                 /* Go back to user mode if both flags are set. */
  840                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
  841                         trapsignal(td, SIGBUS, 0);
  842 
  843                 if (vm86->vm86_has_vme) {
  844                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  845                             (eflags & VME_USERCHANGE) | PSL_VM;
  846                 } else {
  847                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  848                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  849                             (eflags & VM_USERCHANGE) | PSL_VM;
  850                 }
  851                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  852                 tf->tf_eflags = eflags;
  853                 tf->tf_vm86_ds = tf->tf_ds;
  854                 tf->tf_vm86_es = tf->tf_es;
  855                 tf->tf_vm86_fs = tf->tf_fs;
  856                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  857                 tf->tf_ds = _udatasel;
  858                 tf->tf_es = _udatasel;
  859                 tf->tf_fs = _udatasel;
  860         } else {
  861                 /*
  862                  * Don't allow users to change privileged or reserved flags.
  863                  */
  864                 /*
  865                  * XXX do allow users to change the privileged flag PSL_RF.
  866                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  867                  * should sometimes set it there too.  tf_eflags is kept in
  868                  * the signal context during signal handling and there is no
  869                  * other place to remember it, so the PSL_RF bit may be
  870                  * corrupted by the signal handler without us knowing.
  871                  * Corruption of the PSL_RF bit at worst causes one more or
  872                  * one less debugger trap, so allowing it is fairly harmless.
  873                  */
  874                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  875                         printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
  876                         return (EINVAL);
  877                 }
  878 
  879                 /*
  880                  * Don't allow users to load a valid privileged %cs.  Let the
  881                  * hardware check for invalid selectors, excess privilege in
  882                  * other selectors, invalid %eip's and invalid %esp's.
  883                  */
  884                 cs = ucp->uc_mcontext.mc_cs;
  885                 if (!CS_SECURE(cs)) {
  886                         printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
  887                         trapsignal(td, SIGBUS, T_PROTFLT);
  888                         return (EINVAL);
  889                 }
  890 
  891                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  892         }
  893 
  894         PROC_LOCK(p);
  895 #if defined(COMPAT_43)
  896         if (ucp->uc_mcontext.mc_onstack & 1)
  897                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  898         else
  899                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  900 #endif
  901 
  902         td->td_sigmask = ucp->uc_sigmask;
  903         SIG_CANTMASK(td->td_sigmask);
  904         signotify(td);
  905         PROC_UNLOCK(p);
  906         return (EJUSTRETURN);
  907 }
  908 #endif  /* COMPAT_FREEBSD4 */
  909 
  910 /*
  911  * MPSAFE
  912  */
  913 int
  914 sigreturn(td, uap)
  915         struct thread *td;
  916         struct sigreturn_args /* {
  917                 const __ucontext *sigcntxp;
  918         } */ *uap;
  919 {
  920         ucontext_t uc;
  921         struct proc *p = td->td_proc;
  922         struct trapframe *regs;
  923         const ucontext_t *ucp;
  924         int cs, eflags, error, ret;
  925 
  926         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  927         if (error != 0)
  928                 return (error);
  929         ucp = &uc;
  930         regs = td->td_frame;
  931         eflags = ucp->uc_mcontext.mc_eflags;
  932         if (eflags & PSL_VM) {
  933                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  934                 struct vm86_kernel *vm86;
  935 
  936                 /*
  937                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  938                  * set up the vm86 area, and we can't enter vm86 mode.
  939                  */
  940                 if (td->td_pcb->pcb_ext == 0)
  941                         return (EINVAL);
  942                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  943                 if (vm86->vm86_inited == 0)
  944                         return (EINVAL);
  945 
  946                 /* Go back to user mode if both flags are set. */
  947                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
  948                         trapsignal(td, SIGBUS, 0);
  949 
  950                 if (vm86->vm86_has_vme) {
  951                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  952                             (eflags & VME_USERCHANGE) | PSL_VM;
  953                 } else {
  954                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  955                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  956                             (eflags & VM_USERCHANGE) | PSL_VM;
  957                 }
  958                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  959                 tf->tf_eflags = eflags;
  960                 tf->tf_vm86_ds = tf->tf_ds;
  961                 tf->tf_vm86_es = tf->tf_es;
  962                 tf->tf_vm86_fs = tf->tf_fs;
  963                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  964                 tf->tf_ds = _udatasel;
  965                 tf->tf_es = _udatasel;
  966                 tf->tf_fs = _udatasel;
  967         } else {
  968                 /*
  969                  * Don't allow users to change privileged or reserved flags.
  970                  */
  971                 /*
  972                  * XXX do allow users to change the privileged flag PSL_RF.
  973                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  974                  * should sometimes set it there too.  tf_eflags is kept in
  975                  * the signal context during signal handling and there is no
  976                  * other place to remember it, so the PSL_RF bit may be
  977                  * corrupted by the signal handler without us knowing.
  978                  * Corruption of the PSL_RF bit at worst causes one more or
  979                  * one less debugger trap, so allowing it is fairly harmless.
  980                  */
  981                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  982                         printf("sigreturn: eflags = 0x%x\n", eflags);
  983                         return (EINVAL);
  984                 }
  985 
  986                 /*
  987                  * Don't allow users to load a valid privileged %cs.  Let the
  988                  * hardware check for invalid selectors, excess privilege in
  989                  * other selectors, invalid %eip's and invalid %esp's.
  990                  */
  991                 cs = ucp->uc_mcontext.mc_cs;
  992                 if (!CS_SECURE(cs)) {
  993                         printf("sigreturn: cs = 0x%x\n", cs);
  994                         trapsignal(td, SIGBUS, T_PROTFLT);
  995                         return (EINVAL);
  996                 }
  997 
  998                 ret = set_fpcontext(td, &ucp->uc_mcontext);
  999                 if (ret != 0)
 1000                         return (ret);
 1001                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1002         }
 1003 
 1004         PROC_LOCK(p);
 1005 #if defined(COMPAT_43)
 1006         if (ucp->uc_mcontext.mc_onstack & 1)
 1007                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1008         else
 1009                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1010 #endif
 1011 
 1012         td->td_sigmask = ucp->uc_sigmask;
 1013         SIG_CANTMASK(td->td_sigmask);
 1014         signotify(td);
 1015         PROC_UNLOCK(p);
 1016         return (EJUSTRETURN);
 1017 }
 1018 
 1019 /*
 1020  * Machine dependent boot() routine
 1021  *
 1022  * I haven't seen anything to put here yet
 1023  * Possibly some stuff might be grafted back here from boot()
 1024  */
 1025 void
 1026 cpu_boot(int howto)
 1027 {
 1028 }
 1029 
 1030 /* Get current clock frequency for the given cpu id. */
 1031 int
 1032 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1033 {
 1034         register_t reg;
 1035         uint64_t tsc1, tsc2;
 1036 
 1037         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1038                 return (EINVAL);
 1039         if (!tsc_present)
 1040                 return (EOPNOTSUPP);
 1041 
 1042         /* If we're booting, trust the rate calibrated moments ago. */
 1043         if (cold) {
 1044                 *rate = tsc_freq;
 1045                 return (0);
 1046         }
 1047 
 1048 #ifdef SMP
 1049         /* Schedule ourselves on the indicated cpu. */
 1050         mtx_lock_spin(&sched_lock);
 1051         sched_bind(curthread, cpu_id);
 1052         mtx_unlock_spin(&sched_lock);
 1053 #endif
 1054 
 1055         /* Calibrate by measuring a short delay. */
 1056         reg = intr_disable();
 1057         tsc1 = rdtsc();
 1058         DELAY(1000);
 1059         tsc2 = rdtsc();
 1060         intr_restore(reg);
 1061 
 1062 #ifdef SMP
 1063         mtx_lock_spin(&sched_lock);
 1064         sched_unbind(curthread);
 1065         mtx_unlock_spin(&sched_lock);
 1066 #endif
 1067 
 1068         /*
 1069          * Calculate the difference in readings, convert to Mhz, and
 1070          * subtract 0.5% of the total.  Empirical testing has shown that
 1071          * overhead in DELAY() works out to approximately this value.
 1072          */
 1073         tsc2 -= tsc1;
 1074         *rate = tsc2 * 1000 - tsc2 * 5;
 1075         return (0);
 1076 }
 1077 
 1078 /*
 1079  * Shutdown the CPU as much as possible
 1080  */
 1081 void
 1082 cpu_halt(void)
 1083 {
 1084         for (;;)
 1085                 __asm__ ("hlt");
 1086 }
 1087 
 1088 /*
 1089  * Hook to idle the CPU when possible.  In the SMP case we default to
 1090  * off because a halted cpu will not currently pick up a new thread in the
 1091  * run queue until the next timer tick.  If turned on this will result in
 1092  * approximately a 4.2% loss in real time performance in buildworld tests
 1093  * (but improves user and sys times oddly enough), and saves approximately
 1094  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
 1095  *
 1096  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
 1097  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
 1098  * Then we can have our cake and eat it too.
 1099  *
 1100  * XXX I'm turning it on for SMP as well by default for now.  It seems to
 1101  * help lock contention somewhat, and this is critical for HTT. -Peter
 1102  */
 1103 static int      cpu_idle_hlt = 1;
 1104 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
 1105     &cpu_idle_hlt, 0, "Idle loop HLT enable");
 1106 
 1107 static void
 1108 cpu_idle_default(void)
 1109 {
 1110         /*
 1111          * we must absolutely guarentee that hlt is the
 1112          * absolute next instruction after sti or we
 1113          * introduce a timing window.
 1114          */
 1115         __asm __volatile("sti; hlt");
 1116 }
 1117 
 1118 /*
 1119  * Note that we have to be careful here to avoid a race between checking
 1120  * sched_runnable() and actually halting.  If we don't do this, we may waste
 1121  * the time between calling hlt and the next interrupt even though there
 1122  * is a runnable process.
 1123  */
 1124 void
 1125 cpu_idle(void)
 1126 {
 1127 
 1128 #ifdef SMP
 1129         if (mp_grab_cpu_hlt())
 1130                 return;
 1131 #endif
 1132 
 1133         if (cpu_idle_hlt) {
 1134                 disable_intr();
 1135                 if (sched_runnable())
 1136                         enable_intr();
 1137                 else
 1138                         (*cpu_idle_hook)();
 1139         }
 1140 }
 1141 
 1142 /* Other subsystems (e.g., ACPI) can hook this later. */
 1143 void (*cpu_idle_hook)(void) = cpu_idle_default;
 1144 
 1145 /*
 1146  * Clear registers on exec
 1147  */
 1148 void
 1149 exec_setregs(td, entry, stack, ps_strings)
 1150         struct thread *td;
 1151         u_long entry;
 1152         u_long stack;
 1153         u_long ps_strings;
 1154 {
 1155         struct trapframe *regs = td->td_frame;
 1156         struct pcb *pcb = td->td_pcb;
 1157 
 1158         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1159         pcb->pcb_gs = _udatasel;
 1160         load_gs(_udatasel);
 1161 
 1162         if (td->td_proc->p_md.md_ldt)
 1163                 user_ldt_free(td);
 1164   
 1165         bzero((char *)regs, sizeof(struct trapframe));
 1166         regs->tf_eip = entry;
 1167         regs->tf_esp = stack;
 1168         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1169         regs->tf_ss = _udatasel;
 1170         regs->tf_ds = _udatasel;
 1171         regs->tf_es = _udatasel;
 1172         regs->tf_fs = _udatasel;
 1173         regs->tf_cs = _ucodesel;
 1174 
 1175         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1176         regs->tf_ebx = ps_strings;
 1177 
 1178         /*
 1179          * Reset the hardware debug registers if they were in use.
 1180          * They won't have any meaning for the newly exec'd process.  
 1181          */
 1182         if (pcb->pcb_flags & PCB_DBREGS) {
 1183                 pcb->pcb_dr0 = 0;
 1184                 pcb->pcb_dr1 = 0;
 1185                 pcb->pcb_dr2 = 0;
 1186                 pcb->pcb_dr3 = 0;
 1187                 pcb->pcb_dr6 = 0;
 1188                 pcb->pcb_dr7 = 0;
 1189                 if (pcb == PCPU_GET(curpcb)) {
 1190                         /*
 1191                          * Clear the debug registers on the running
 1192                          * CPU, otherwise they will end up affecting
 1193                          * the next process we switch to.
 1194                          */
 1195                         reset_dbregs();
 1196                 }
 1197                 pcb->pcb_flags &= ~PCB_DBREGS;
 1198         }
 1199 
 1200         /*
 1201          * Initialize the math emulator (if any) for the current process.
 1202          * Actually, just clear the bit that says that the emulator has
 1203          * been initialized.  Initialization is delayed until the process
 1204          * traps to the emulator (if it is done at all) mainly because
 1205          * emulators don't provide an entry point for initialization.
 1206          */
 1207         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1208 
 1209         /*
 1210          * Drop the FP state if we hold it, so that the process gets a
 1211          * clean FP state if it uses the FPU again.
 1212          */
 1213         fpstate_drop(td);
 1214 
 1215         /*
 1216          * XXX - Linux emulator
 1217          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1218          * on it.
 1219          */
 1220         td->td_retval[1] = 0;
 1221 }
 1222 
 1223 void
 1224 cpu_setregs(void)
 1225 {
 1226         unsigned int cr0;
 1227 
 1228         cr0 = rcr0();
 1229 
 1230         /*
 1231          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1232          *
 1233          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1234          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1235          * bit to control the trap, because setting the CR0_EM bit does
 1236          * not cause WAIT instructions to trap.  It's important to trap
 1237          * WAIT instructions - otherwise the "wait" variants of no-wait
 1238          * control instructions would degenerate to the "no-wait" variants
 1239          * after FP context switches but work correctly otherwise.  It's
 1240          * particularly important to trap WAITs when there is no NPX -
 1241          * otherwise the "wait" variants would always degenerate.
 1242          *
 1243          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1244          * Setting it should fail or do nothing on lesser processors.
 1245          */
 1246         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1247         load_cr0(cr0);
 1248         load_gs(_udatasel);
 1249 }
 1250 
 1251 static int
 1252 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
 1253 {
 1254         int error;
 1255         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
 1256                 req);
 1257         if (!error && req->newptr)
 1258                 resettodr();
 1259         return (error);
 1260 }
 1261 
 1262 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
 1263         &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
 1264 
 1265 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
 1266         CTLFLAG_RW, &disable_rtc_set, 0, "");
 1267 
 1268 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo, 
 1269         CTLFLAG_RD, &bootinfo, bootinfo, "");
 1270 
 1271 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
 1272         CTLFLAG_RW, &wall_cmos_clock, 0, "");
 1273 
 1274 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1275 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1276         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1277 
 1278 /*
 1279  * Initialize 386 and configure to run kernel
 1280  */
 1281 
 1282 /*
 1283  * Initialize segments & interrupt table
 1284  */
 1285 
 1286 int _default_ldt;
 1287 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1288 static struct gate_descriptor idt0[NIDT];
 1289 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1290 union descriptor ldt[NLDT];             /* local descriptor table */
 1291 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1292 
 1293 int private_tss;                        /* flag indicating private tss */
 1294 
 1295 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1296 extern int has_f00f_bug;
 1297 #endif
 1298 
 1299 static struct i386tss dblfault_tss;
 1300 static char dblfault_stack[PAGE_SIZE];
 1301 
 1302 extern  vm_offset_t     proc0kstack;
 1303 
 1304 
 1305 /*
 1306  * software prototypes -- in more palatable form.
 1307  *
 1308  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1309  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1310  */
 1311 struct soft_segment_descriptor gdt_segs[] = {
 1312 /* GNULL_SEL    0 Null Descriptor */
 1313 {       0x0,                    /* segment base address  */
 1314         0x0,                    /* length */
 1315         0,                      /* segment type */
 1316         0,                      /* segment descriptor priority level */
 1317         0,                      /* segment descriptor present */
 1318         0, 0,
 1319         0,                      /* default 32 vs 16 bit size */
 1320         0                       /* limit granularity (byte/page units)*/ },
 1321 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1322 {       0x0,                    /* segment base address  */
 1323         0xfffff,                /* length - all address space */
 1324         SDT_MEMRWA,             /* segment type */
 1325         0,                      /* segment descriptor priority level */
 1326         1,                      /* segment descriptor present */
 1327         0, 0,
 1328         1,                      /* default 32 vs 16 bit size */
 1329         1                       /* limit granularity (byte/page units)*/ },
 1330 /* GUFS_SEL     2 %fs Descriptor for user */
 1331 {       0x0,                    /* segment base address  */
 1332         0xfffff,                /* length - all address space */
 1333         SDT_MEMRWA,             /* segment type */
 1334         SEL_UPL,                /* segment descriptor priority level */
 1335         1,                      /* segment descriptor present */
 1336         0, 0,
 1337         1,                      /* default 32 vs 16 bit size */
 1338         1                       /* limit granularity (byte/page units)*/ },
 1339 /* GUGS_SEL     3 %gs Descriptor for user */
 1340 {       0x0,                    /* segment base address  */
 1341         0xfffff,                /* length - all address space */
 1342         SDT_MEMRWA,             /* segment type */
 1343         SEL_UPL,                /* segment descriptor priority level */
 1344         1,                      /* segment descriptor present */
 1345         0, 0,
 1346         1,                      /* default 32 vs 16 bit size */
 1347         1                       /* limit granularity (byte/page units)*/ },
 1348 /* GCODE_SEL    4 Code Descriptor for kernel */
 1349 {       0x0,                    /* segment base address  */
 1350         0xfffff,                /* length - all address space */
 1351         SDT_MEMERA,             /* segment type */
 1352         0,                      /* segment descriptor priority level */
 1353         1,                      /* segment descriptor present */
 1354         0, 0,
 1355         1,                      /* default 32 vs 16 bit size */
 1356         1                       /* limit granularity (byte/page units)*/ },
 1357 /* GDATA_SEL    5 Data Descriptor for kernel */
 1358 {       0x0,                    /* segment base address  */
 1359         0xfffff,                /* length - all address space */
 1360         SDT_MEMRWA,             /* segment type */
 1361         0,                      /* segment descriptor priority level */
 1362         1,                      /* segment descriptor present */
 1363         0, 0,
 1364         1,                      /* default 32 vs 16 bit size */
 1365         1                       /* limit granularity (byte/page units)*/ },
 1366 /* GUCODE_SEL   6 Code Descriptor for user */
 1367 {       0x0,                    /* segment base address  */
 1368         0xfffff,                /* length - all address space */
 1369         SDT_MEMERA,             /* segment type */
 1370         SEL_UPL,                /* segment descriptor priority level */
 1371         1,                      /* segment descriptor present */
 1372         0, 0,
 1373         1,                      /* default 32 vs 16 bit size */
 1374         1                       /* limit granularity (byte/page units)*/ },
 1375 /* GUDATA_SEL   7 Data Descriptor for user */
 1376 {       0x0,                    /* segment base address  */
 1377         0xfffff,                /* length - all address space */
 1378         SDT_MEMRWA,             /* segment type */
 1379         SEL_UPL,                /* segment descriptor priority level */
 1380         1,                      /* segment descriptor present */
 1381         0, 0,
 1382         1,                      /* default 32 vs 16 bit size */
 1383         1                       /* limit granularity (byte/page units)*/ },
 1384 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1385 {       0x400,                  /* segment base address */
 1386         0xfffff,                /* length */
 1387         SDT_MEMRWA,             /* segment type */
 1388         0,                      /* segment descriptor priority level */
 1389         1,                      /* segment descriptor present */
 1390         0, 0,
 1391         1,                      /* default 32 vs 16 bit size */
 1392         1                       /* limit granularity (byte/page units)*/ },
 1393 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1394 {
 1395         0x0,                    /* segment base address */
 1396         sizeof(struct i386tss)-1,/* length  */
 1397         SDT_SYS386TSS,          /* segment type */
 1398         0,                      /* segment descriptor priority level */
 1399         1,                      /* segment descriptor present */
 1400         0, 0,
 1401         0,                      /* unused - default 32 vs 16 bit size */
 1402         0                       /* limit granularity (byte/page units)*/ },
 1403 /* GLDT_SEL     10 LDT Descriptor */
 1404 {       (int) ldt,              /* segment base address  */
 1405         sizeof(ldt)-1,          /* length - all address space */
 1406         SDT_SYSLDT,             /* segment type */
 1407         SEL_UPL,                /* segment descriptor priority level */
 1408         1,                      /* segment descriptor present */
 1409         0, 0,
 1410         0,                      /* unused - default 32 vs 16 bit size */
 1411         0                       /* limit granularity (byte/page units)*/ },
 1412 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1413 {       (int) ldt,              /* segment base address  */
 1414         (512 * sizeof(union descriptor)-1),             /* length */
 1415         SDT_SYSLDT,             /* segment type */
 1416         0,                      /* segment descriptor priority level */
 1417         1,                      /* segment descriptor present */
 1418         0, 0,
 1419         0,                      /* unused - default 32 vs 16 bit size */
 1420         0                       /* limit granularity (byte/page units)*/ },
 1421 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1422 {       (int) &dblfault_tss,    /* segment base address  */
 1423         sizeof(struct i386tss)-1,/* length - all address space */
 1424         SDT_SYS386TSS,          /* segment type */
 1425         0,                      /* segment descriptor priority level */
 1426         1,                      /* segment descriptor present */
 1427         0, 0,
 1428         0,                      /* unused - default 32 vs 16 bit size */
 1429         0                       /* limit granularity (byte/page units)*/ },
 1430 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1431 {       0,                      /* segment base address (overwritten)  */
 1432         0xfffff,                /* length */
 1433         SDT_MEMERA,             /* segment type */
 1434         0,                      /* segment descriptor priority level */
 1435         1,                      /* segment descriptor present */
 1436         0, 0,
 1437         0,                      /* default 32 vs 16 bit size */
 1438         1                       /* limit granularity (byte/page units)*/ },
 1439 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1440 {       0,                      /* segment base address (overwritten)  */
 1441         0xfffff,                /* length */
 1442         SDT_MEMERA,             /* segment type */
 1443         0,                      /* segment descriptor priority level */
 1444         1,                      /* segment descriptor present */
 1445         0, 0,
 1446         0,                      /* default 32 vs 16 bit size */
 1447         1                       /* limit granularity (byte/page units)*/ },
 1448 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1449 {       0,                      /* segment base address (overwritten) */
 1450         0xfffff,                /* length */
 1451         SDT_MEMRWA,             /* segment type */
 1452         0,                      /* segment descriptor priority level */
 1453         1,                      /* segment descriptor present */
 1454         0, 0,
 1455         1,                      /* default 32 vs 16 bit size */
 1456         1                       /* limit granularity (byte/page units)*/ },
 1457 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1458 {       0,                      /* segment base address (overwritten) */
 1459         0xfffff,                /* length */
 1460         SDT_MEMRWA,             /* segment type */
 1461         0,                      /* segment descriptor priority level */
 1462         1,                      /* segment descriptor present */
 1463         0, 0,
 1464         0,                      /* default 32 vs 16 bit size */
 1465         1                       /* limit granularity (byte/page units)*/ },
 1466 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1467 {       0,                      /* segment base address (overwritten) */
 1468         0xfffff,                /* length */
 1469         SDT_MEMRWA,             /* segment type */
 1470         0,                      /* segment descriptor priority level */
 1471         1,                      /* segment descriptor present */
 1472         0, 0,
 1473         0,                      /* default 32 vs 16 bit size */
 1474         1                       /* limit granularity (byte/page units)*/ },
 1475 /* GNDIS_SEL    18 NDIS Descriptor */
 1476 {       0x0,                    /* segment base address  */
 1477         0x0,                    /* length */
 1478         0,                      /* segment type */
 1479         0,                      /* segment descriptor priority level */
 1480         0,                      /* segment descriptor present */
 1481         0, 0,
 1482         0,                      /* default 32 vs 16 bit size */
 1483         0                       /* limit granularity (byte/page units)*/ },
 1484 };
 1485 
 1486 static struct soft_segment_descriptor ldt_segs[] = {
 1487         /* Null Descriptor - overwritten by call gate */
 1488 {       0x0,                    /* segment base address  */
 1489         0x0,                    /* length - all address space */
 1490         0,                      /* segment type */
 1491         0,                      /* segment descriptor priority level */
 1492         0,                      /* segment descriptor present */
 1493         0, 0,
 1494         0,                      /* default 32 vs 16 bit size */
 1495         0                       /* limit granularity (byte/page units)*/ },
 1496         /* Null Descriptor - overwritten by call gate */
 1497 {       0x0,                    /* segment base address  */
 1498         0x0,                    /* length - all address space */
 1499         0,                      /* segment type */
 1500         0,                      /* segment descriptor priority level */
 1501         0,                      /* segment descriptor present */
 1502         0, 0,
 1503         0,                      /* default 32 vs 16 bit size */
 1504         0                       /* limit granularity (byte/page units)*/ },
 1505         /* Null Descriptor - overwritten by call gate */
 1506 {       0x0,                    /* segment base address  */
 1507         0x0,                    /* length - all address space */
 1508         0,                      /* segment type */
 1509         0,                      /* segment descriptor priority level */
 1510         0,                      /* segment descriptor present */
 1511         0, 0,
 1512         0,                      /* default 32 vs 16 bit size */
 1513         0                       /* limit granularity (byte/page units)*/ },
 1514         /* Code Descriptor for user */
 1515 {       0x0,                    /* segment base address  */
 1516         0xfffff,                /* length - all address space */
 1517         SDT_MEMERA,             /* segment type */
 1518         SEL_UPL,                /* segment descriptor priority level */
 1519         1,                      /* segment descriptor present */
 1520         0, 0,
 1521         1,                      /* default 32 vs 16 bit size */
 1522         1                       /* limit granularity (byte/page units)*/ },
 1523         /* Null Descriptor - overwritten by call gate */
 1524 {       0x0,                    /* segment base address  */
 1525         0x0,                    /* length - all address space */
 1526         0,                      /* segment type */
 1527         0,                      /* segment descriptor priority level */
 1528         0,                      /* segment descriptor present */
 1529         0, 0,
 1530         0,                      /* default 32 vs 16 bit size */
 1531         0                       /* limit granularity (byte/page units)*/ },
 1532         /* Data Descriptor for user */
 1533 {       0x0,                    /* segment base address  */
 1534         0xfffff,                /* length - all address space */
 1535         SDT_MEMRWA,             /* segment type */
 1536         SEL_UPL,                /* segment descriptor priority level */
 1537         1,                      /* segment descriptor present */
 1538         0, 0,
 1539         1,                      /* default 32 vs 16 bit size */
 1540         1                       /* limit granularity (byte/page units)*/ },
 1541 };
 1542 
 1543 void
 1544 setidt(idx, func, typ, dpl, selec)
 1545         int idx;
 1546         inthand_t *func;
 1547         int typ;
 1548         int dpl;
 1549         int selec;
 1550 {
 1551         struct gate_descriptor *ip;
 1552 
 1553         ip = idt + idx;
 1554         ip->gd_looffset = (int)func;
 1555         ip->gd_selector = selec;
 1556         ip->gd_stkcpy = 0;
 1557         ip->gd_xx = 0;
 1558         ip->gd_type = typ;
 1559         ip->gd_dpl = dpl;
 1560         ip->gd_p = 1;
 1561         ip->gd_hioffset = ((int)func)>>16 ;
 1562 }
 1563 
 1564 #define IDTVEC(name)    __CONCAT(X,name)
 1565 
 1566 extern inthand_t
 1567         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1568         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1569         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1570         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1571         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1572 
 1573 #ifdef DDB
 1574 /*
 1575  * Display the index and function name of any IDT entries that don't use
 1576  * the default 'rsvd' entry point.
 1577  */
 1578 DB_SHOW_COMMAND(idt, db_show_idt)
 1579 {
 1580         struct gate_descriptor *ip;
 1581         int idx, quit;
 1582         uintptr_t func;
 1583 
 1584         ip = idt;
 1585         db_setup_paging(db_simple_pager, &quit, db_lines_per_page);
 1586         for (idx = 0, quit = 0; idx < NIDT; idx++) {
 1587                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1588                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1589                         db_printf("%3d\t", idx);
 1590                         db_printsym(func, DB_STGY_PROC);
 1591                         db_printf("\n");
 1592                 }
 1593                 ip++;
 1594         }
 1595 }
 1596 #endif
 1597 
 1598 void
 1599 sdtossd(sd, ssd)
 1600         struct segment_descriptor *sd;
 1601         struct soft_segment_descriptor *ssd;
 1602 {
 1603         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1604         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1605         ssd->ssd_type  = sd->sd_type;
 1606         ssd->ssd_dpl   = sd->sd_dpl;
 1607         ssd->ssd_p     = sd->sd_p;
 1608         ssd->ssd_def32 = sd->sd_def32;
 1609         ssd->ssd_gran  = sd->sd_gran;
 1610 }
 1611 
 1612 /*
 1613  * Populate the (physmap) array with base/bound pairs describing the
 1614  * available physical memory in the system, then test this memory and
 1615  * build the phys_avail array describing the actually-available memory.
 1616  *
 1617  * If we cannot accurately determine the physical memory map, then use
 1618  * value from the 0xE801 call, and failing that, the RTC.
 1619  *
 1620  * Total memory size may be set by the kernel environment variable
 1621  * hw.physmem or the compile-time define MAXMEM.
 1622  *
 1623  * XXX first should be vm_paddr_t.
 1624  */
 1625 static void
 1626 getmemsize(int first)
 1627 {
 1628         int i, physmap_idx, pa_indx, da_indx;
 1629         int pg_n;
 1630         u_long physmem_tunable;
 1631         u_int extmem, under16;
 1632         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1633         pt_entry_t *pte;
 1634         quad_t dcons_addr, dcons_size;
 1635 
 1636         bzero(physmap, sizeof(physmap));
 1637 
 1638         /* XXX - some of EPSON machines can't use PG_N */
 1639         pg_n = PG_N;
 1640         if (pc98_machine_type & M_EPSON_PC98) {
 1641                 switch (epson_machine_id) {
 1642 #ifdef WB_CACHE
 1643                 default:
 1644 #endif
 1645                 case EPSON_PC486_HX:
 1646                 case EPSON_PC486_HG:
 1647                 case EPSON_PC486_HA:
 1648                         pg_n = 0;
 1649                         break;
 1650                 }
 1651         }
 1652 
 1653         /*
 1654          * Perform "base memory" related probes & setup
 1655          */
 1656         under16 = pc98_getmemsize(&basemem, &extmem);
 1657         if (basemem > 640) {
 1658                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1659                         basemem);
 1660                 basemem = 640;
 1661         }
 1662 
 1663         /*
 1664          * XXX if biosbasemem is now < 640, there is a `hole'
 1665          * between the end of base memory and the start of
 1666          * ISA memory.  The hole may be empty or it may
 1667          * contain BIOS code or data.  Map it read/write so
 1668          * that the BIOS can write to it.  (Memory from 0 to
 1669          * the physical end of the kernel is mapped read-only
 1670          * to begin with and then parts of it are remapped.
 1671          * The parts that aren't remapped form holes that
 1672          * remain read-only and are unused by the kernel.
 1673          * The base memory area is below the physical end of
 1674          * the kernel and right now forms a read-only hole.
 1675          * The part of it from PAGE_SIZE to
 1676          * (trunc_page(biosbasemem * 1024) - 1) will be
 1677          * remapped and used by the kernel later.)
 1678          *
 1679          * This code is similar to the code used in
 1680          * pmap_mapdev, but since no memory needs to be
 1681          * allocated we simply change the mapping.
 1682          */
 1683         for (pa = trunc_page(basemem * 1024);
 1684              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1685                 pmap_kenter(KERNBASE + pa, pa);
 1686 
 1687         /*
 1688          * if basemem != 640, map pages r/w into vm86 page table so 
 1689          * that the bios can scribble on it.
 1690          */
 1691         pte = (pt_entry_t *)vm86paddr;
 1692         for (i = basemem / 4; i < 160; i++)
 1693                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1694 
 1695         physmap[0] = 0;
 1696         physmap[1] = basemem * 1024;
 1697         physmap_idx = 2;
 1698         physmap[physmap_idx] = 0x100000;
 1699         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1700 
 1701         /*
 1702          * Now, physmap contains a map of physical memory.
 1703          */
 1704 
 1705 #ifdef SMP
 1706         /* make hole for AP bootstrap code */
 1707         physmap[1] = mp_bootaddress(physmap[1]);
 1708 #endif
 1709 
 1710         /*
 1711          * Maxmem isn't the "maximum memory", it's one larger than the
 1712          * highest page of the physical address space.  It should be
 1713          * called something like "Maxphyspage".  We may adjust this 
 1714          * based on ``hw.physmem'' and the results of the memory test.
 1715          */
 1716         Maxmem = atop(physmap[physmap_idx + 1]);
 1717 
 1718 #ifdef MAXMEM
 1719         Maxmem = MAXMEM / 4;
 1720 #endif
 1721 
 1722         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1723                 Maxmem = atop(physmem_tunable);
 1724 
 1725         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1726             (boothowto & RB_VERBOSE))
 1727                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1728 
 1729         /*
 1730          * If Maxmem has been increased beyond what the system has detected,
 1731          * extend the last memory segment to the new limit.
 1732          */ 
 1733         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1734                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1735 
 1736         /*
 1737          * We need to divide chunk if Maxmem is larger than 16MB and
 1738          * under 16MB area is not full of memory.
 1739          * (1) system area (15-16MB region) is cut off
 1740          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 1741          */
 1742         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 1743                 /* 15M - 16M region is cut off, so need to divide chunk */
 1744                 physmap[physmap_idx + 1] = under16 * 1024;
 1745                 physmap_idx += 2;
 1746                 physmap[physmap_idx] = 0x1000000;
 1747                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 1748         }
 1749 
 1750         /* call pmap initialization to make new kernel address space */
 1751         pmap_bootstrap(first, 0);
 1752 
 1753         /*
 1754          * Size up each available chunk of physical memory.
 1755          */
 1756         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1757         pa_indx = 0;
 1758         da_indx = 1;
 1759         phys_avail[pa_indx++] = physmap[0];
 1760         phys_avail[pa_indx] = physmap[0];
 1761         dump_avail[da_indx] = physmap[0];
 1762         pte = CMAP1;
 1763 
 1764         /*
 1765          * Get dcons buffer address
 1766          */
 1767         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1768             getenv_quad("dcons.size", &dcons_size) == 0)
 1769                 dcons_addr = 0;
 1770 
 1771         /*
 1772          * physmap is in bytes, so when converting to page boundaries,
 1773          * round up the start address and round down the end address.
 1774          */
 1775         for (i = 0; i <= physmap_idx; i += 2) {
 1776                 vm_paddr_t end;
 1777 
 1778                 end = ptoa((vm_paddr_t)Maxmem);
 1779                 if (physmap[i + 1] < end)
 1780                         end = trunc_page(physmap[i + 1]);
 1781                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1782                         int tmp, page_bad, full;
 1783                         int *ptr = (int *)CADDR1;
 1784 
 1785                         full = FALSE;
 1786                         /*
 1787                          * block out kernel memory as not available.
 1788                          */
 1789                         if (pa >= KERNLOAD && pa < first)
 1790                                 goto do_dump_avail;
 1791 
 1792                         /*
 1793                          * block out dcons buffer
 1794                          */
 1795                         if (dcons_addr > 0
 1796                             && pa >= trunc_page(dcons_addr)
 1797                             && pa < dcons_addr + dcons_size)
 1798                                 goto do_dump_avail;
 1799 
 1800                         page_bad = FALSE;
 1801 
 1802                         /*
 1803                          * map page into kernel: valid, read/write,non-cacheable
 1804                          */
 1805                         *pte = pa | PG_V | PG_RW | pg_n;
 1806                         invltlb();
 1807 
 1808                         tmp = *(int *)ptr;
 1809                         /*
 1810                          * Test for alternating 1's and 0's
 1811                          */
 1812                         *(volatile int *)ptr = 0xaaaaaaaa;
 1813                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1814                                 page_bad = TRUE;
 1815                         /*
 1816                          * Test for alternating 0's and 1's
 1817                          */
 1818                         *(volatile int *)ptr = 0x55555555;
 1819                         if (*(volatile int *)ptr != 0x55555555)
 1820                                 page_bad = TRUE;
 1821                         /*
 1822                          * Test for all 1's
 1823                          */
 1824                         *(volatile int *)ptr = 0xffffffff;
 1825                         if (*(volatile int *)ptr != 0xffffffff)
 1826                                 page_bad = TRUE;
 1827                         /*
 1828                          * Test for all 0's
 1829                          */
 1830                         *(volatile int *)ptr = 0x0;
 1831                         if (*(volatile int *)ptr != 0x0)
 1832                                 page_bad = TRUE;
 1833                         /*
 1834                          * Restore original value.
 1835                          */
 1836                         *(int *)ptr = tmp;
 1837 
 1838                         /*
 1839                          * Adjust array of valid/good pages.
 1840                          */
 1841                         if (page_bad == TRUE)
 1842                                 continue;
 1843                         /*
 1844                          * If this good page is a continuation of the
 1845                          * previous set of good pages, then just increase
 1846                          * the end pointer. Otherwise start a new chunk.
 1847                          * Note that "end" points one higher than end,
 1848                          * making the range >= start and < end.
 1849                          * If we're also doing a speculative memory
 1850                          * test and we at or past the end, bump up Maxmem
 1851                          * so that we keep going. The first bad page
 1852                          * will terminate the loop.
 1853                          */
 1854                         if (phys_avail[pa_indx] == pa) {
 1855                                 phys_avail[pa_indx] += PAGE_SIZE;
 1856                         } else {
 1857                                 pa_indx++;
 1858                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1859                                         printf(
 1860                 "Too many holes in the physical address space, giving up\n");
 1861                                         pa_indx--;
 1862                                         full = TRUE;
 1863                                         goto do_dump_avail;
 1864                                 }
 1865                                 phys_avail[pa_indx++] = pa;     /* start */
 1866                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1867                         }
 1868                         physmem++;
 1869 do_dump_avail:
 1870                         if (dump_avail[da_indx] == pa) {
 1871                                 dump_avail[da_indx] += PAGE_SIZE;
 1872                         } else {
 1873                                 da_indx++;
 1874                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1875                                         da_indx--;
 1876                                         goto do_next;
 1877                                 }
 1878                                 dump_avail[da_indx++] = pa;     /* start */
 1879                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1880                         }
 1881 do_next:
 1882                         if (full)
 1883                                 break;
 1884                 }
 1885         }
 1886         *pte = 0;
 1887         invltlb();
 1888 
 1889         /*
 1890          * XXX
 1891          * The last chunk must contain at least one page plus the message
 1892          * buffer to avoid complicating other code (message buffer address
 1893          * calculation, etc.).
 1894          */
 1895         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1896             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1897                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1898                 phys_avail[pa_indx--] = 0;
 1899                 phys_avail[pa_indx--] = 0;
 1900         }
 1901 
 1902         Maxmem = atop(phys_avail[pa_indx]);
 1903 
 1904         /* Trim off space for the message buffer. */
 1905         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1906 
 1907         avail_end = phys_avail[pa_indx];
 1908 }
 1909 
 1910 void
 1911 init386(first)
 1912         int first;
 1913 {
 1914         struct gate_descriptor *gdp;
 1915         int gsel_tss, metadata_missing, off, x;
 1916         struct pcpu *pc;
 1917 
 1918         thread0.td_kstack = proc0kstack;
 1919         thread0.td_pcb = (struct pcb *)
 1920            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1921 
 1922         /*
 1923          * This may be done better later if it gets more high level
 1924          * components in it. If so just link td->td_proc here.
 1925          */
 1926         proc_linkup(&proc0, &ksegrp0, &thread0);
 1927 
 1928         /*
 1929          * Initialize DMAC
 1930          */
 1931         pc98_init_dmac();
 1932 
 1933         metadata_missing = 0;
 1934         if (bootinfo.bi_modulep) {
 1935                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 1936                 preload_bootstrap_relocate(KERNBASE);
 1937         } else {
 1938                 metadata_missing = 1;
 1939         }
 1940         if (envmode == 1)
 1941                 kern_envp = static_env;
 1942         else if (bootinfo.bi_envp)
 1943                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 1944 
 1945         /* Init basic tunables, hz etc */
 1946         init_param1();
 1947 
 1948         /*
 1949          * Make gdt memory segments.  All segments cover the full 4GB
 1950          * of address space and permissions are enforced at page level.
 1951          */
 1952         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 1953         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 1954         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 1955         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 1956         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 1957         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 1958 
 1959         pc = &__pcpu[0];
 1960         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 1961         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 1962         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 1963 
 1964         for (x = 0; x < NGDT; x++)
 1965                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 1966 
 1967         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1968         r_gdt.rd_base =  (int) gdt;
 1969         lgdt(&r_gdt);
 1970 
 1971         pcpu_init(pc, 0, sizeof(struct pcpu));
 1972         PCPU_SET(prvspace, pc);
 1973         PCPU_SET(curthread, &thread0);
 1974         PCPU_SET(curpcb, thread0.td_pcb);
 1975 
 1976         /*
 1977          * Initialize mutexes.
 1978          *
 1979          * icu_lock: in order to allow an interrupt to occur in a critical
 1980          *           section, to set pcpu->ipending (etc...) properly, we
 1981          *           must be able to get the icu lock, so it can't be
 1982          *           under witness.
 1983          */
 1984         mutex_init();
 1985         mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
 1986         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
 1987 
 1988         /* make ldt memory segments */
 1989         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 1990         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 1991         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 1992                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 1993 
 1994         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 1995         lldt(_default_ldt);
 1996         PCPU_SET(currentldt, _default_ldt);
 1997 
 1998         /* exceptions */
 1999         for (x = 0; x < NIDT; x++)
 2000                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2001                     GSEL(GCODE_SEL, SEL_KPL));
 2002         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2003             GSEL(GCODE_SEL, SEL_KPL));
 2004         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2005             GSEL(GCODE_SEL, SEL_KPL));
 2006         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2007             GSEL(GCODE_SEL, SEL_KPL));
 2008         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2009             GSEL(GCODE_SEL, SEL_KPL));
 2010         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2011             GSEL(GCODE_SEL, SEL_KPL));
 2012         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2013             GSEL(GCODE_SEL, SEL_KPL));
 2014         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2015             GSEL(GCODE_SEL, SEL_KPL));
 2016         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2017             , GSEL(GCODE_SEL, SEL_KPL));
 2018         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2019         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2020             GSEL(GCODE_SEL, SEL_KPL));
 2021         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2022             GSEL(GCODE_SEL, SEL_KPL));
 2023         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2024             GSEL(GCODE_SEL, SEL_KPL));
 2025         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2026             GSEL(GCODE_SEL, SEL_KPL));
 2027         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2028             GSEL(GCODE_SEL, SEL_KPL));
 2029         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2030             GSEL(GCODE_SEL, SEL_KPL));
 2031         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2032             GSEL(GCODE_SEL, SEL_KPL));
 2033         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2034             GSEL(GCODE_SEL, SEL_KPL));
 2035         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2036             GSEL(GCODE_SEL, SEL_KPL));
 2037         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2038             GSEL(GCODE_SEL, SEL_KPL));
 2039         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2040             GSEL(GCODE_SEL, SEL_KPL));
 2041 
 2042         r_idt.rd_limit = sizeof(idt0) - 1;
 2043         r_idt.rd_base = (int) idt;
 2044         lidt(&r_idt);
 2045 
 2046         /*
 2047          * Initialize the console before we print anything out.
 2048          */
 2049         cninit();
 2050 
 2051         if (metadata_missing)
 2052                 printf("WARNING: loader(8) metadata is missing!\n");
 2053 
 2054 #ifdef DEV_ISA
 2055         atpic_startup();
 2056 #endif
 2057 
 2058 #ifdef DDB
 2059         ksym_start = bootinfo.bi_symtab;
 2060         ksym_end = bootinfo.bi_esymtab;
 2061 #endif
 2062 
 2063         kdb_init();
 2064 
 2065 #ifdef KDB
 2066         if (boothowto & RB_KDB)
 2067                 kdb_enter("Boot flags requested debugger");
 2068 #endif
 2069 
 2070         finishidentcpu();       /* Final stage of CPU initialization */
 2071         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2072             GSEL(GCODE_SEL, SEL_KPL));
 2073         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2074             GSEL(GCODE_SEL, SEL_KPL));
 2075         initializecpu();        /* Initialize CPU registers */
 2076 
 2077         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2078         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2079         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2080             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2081         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2082         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2083         private_tss = 0;
 2084         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2085         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2086         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2087         ltr(gsel_tss);
 2088 
 2089         /* pointer to selector slot for %fs/%gs */
 2090         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2091 
 2092         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2093             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2094         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2095             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2096         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2097         dblfault_tss.tss_eip = (int)dblfault_handler;
 2098         dblfault_tss.tss_eflags = PSL_KERNEL;
 2099         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2100             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2101         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2102         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2103         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2104 
 2105         vm86_initialize();
 2106         getmemsize(first);
 2107         init_param2(physmem);
 2108 
 2109         /* now running on new page tables, configured,and u/iom is accessible */
 2110 
 2111         /* Map the message buffer. */
 2112         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 2113                 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
 2114 
 2115         msgbufinit(msgbufp, MSGBUF_SIZE);
 2116 
 2117         /* make a call gate to reenter kernel with */
 2118         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2119 
 2120         x = (int) &IDTVEC(lcall_syscall);
 2121         gdp->gd_looffset = x;
 2122         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2123         gdp->gd_stkcpy = 1;
 2124         gdp->gd_type = SDT_SYS386CGT;
 2125         gdp->gd_dpl = SEL_UPL;
 2126         gdp->gd_p = 1;
 2127         gdp->gd_hioffset = x >> 16;
 2128 
 2129         /* XXX does this work? */
 2130         /* XXX yes! */
 2131         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2132         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2133 
 2134         /* transfer to user mode */
 2135 
 2136         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2137         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2138 
 2139         /* setup proc 0's pcb */
 2140         thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
 2141         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2142         thread0.td_pcb->pcb_ext = 0;
 2143         thread0.td_frame = &proc0_tf;
 2144 }
 2145 
 2146 void
 2147 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2148 {
 2149 
 2150 }
 2151 
 2152 void
 2153 spinlock_enter(void)
 2154 {
 2155         struct thread *td;
 2156 
 2157         td = curthread;
 2158         if (td->td_md.md_spinlock_count == 0)
 2159                 td->td_md.md_saved_flags = intr_disable();
 2160         td->td_md.md_spinlock_count++;
 2161         critical_enter();
 2162 }
 2163 
 2164 void
 2165 spinlock_exit(void)
 2166 {
 2167         struct thread *td;
 2168 
 2169         td = curthread;
 2170         critical_exit();
 2171         td->td_md.md_spinlock_count--;
 2172         if (td->td_md.md_spinlock_count == 0)
 2173                 intr_restore(td->td_md.md_saved_flags);
 2174 }
 2175 
 2176 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2177 static void f00f_hack(void *unused);
 2178 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL)
 2179 
 2180 static void
 2181 f00f_hack(void *unused)
 2182 {
 2183         struct gate_descriptor *new_idt;
 2184         vm_offset_t tmp;
 2185 
 2186         if (!has_f00f_bug)
 2187                 return;
 2188 
 2189         GIANT_REQUIRED;
 2190 
 2191         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2192 
 2193         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 2194         if (tmp == 0)
 2195                 panic("kmem_alloc returned 0");
 2196 
 2197         /* Put the problematic entry (#6) at the end of the lower page. */
 2198         new_idt = (struct gate_descriptor*)
 2199             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2200         bcopy(idt, new_idt, sizeof(idt0));
 2201         r_idt.rd_base = (u_int)new_idt;
 2202         lidt(&r_idt);
 2203         idt = new_idt;
 2204         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 2205                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 2206                 panic("vm_map_protect failed");
 2207 }
 2208 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2209 
 2210 /*
 2211  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2212  * we want to start a backtrace from the function that caused us to enter
 2213  * the debugger. We have the context in the trapframe, but base the trace
 2214  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2215  * enough for a backtrace.
 2216  */
 2217 void
 2218 makectx(struct trapframe *tf, struct pcb *pcb)
 2219 {
 2220 
 2221         pcb->pcb_edi = tf->tf_edi;
 2222         pcb->pcb_esi = tf->tf_esi;
 2223         pcb->pcb_ebp = tf->tf_ebp;
 2224         pcb->pcb_ebx = tf->tf_ebx;
 2225         pcb->pcb_eip = tf->tf_eip;
 2226         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2227 }
 2228 
 2229 int
 2230 ptrace_set_pc(struct thread *td, u_long addr)
 2231 {
 2232 
 2233         td->td_frame->tf_eip = addr;
 2234         return (0);
 2235 }
 2236 
 2237 int
 2238 ptrace_single_step(struct thread *td)
 2239 {
 2240         td->td_frame->tf_eflags |= PSL_T;
 2241         return (0);
 2242 }
 2243 
 2244 int
 2245 ptrace_clear_single_step(struct thread *td)
 2246 {
 2247         td->td_frame->tf_eflags &= ~PSL_T;
 2248         return (0);
 2249 }
 2250 
 2251 int
 2252 fill_regs(struct thread *td, struct reg *regs)
 2253 {
 2254         struct pcb *pcb;
 2255         struct trapframe *tp;
 2256 
 2257         tp = td->td_frame;
 2258         pcb = td->td_pcb;
 2259         regs->r_fs = tp->tf_fs;
 2260         regs->r_es = tp->tf_es;
 2261         regs->r_ds = tp->tf_ds;
 2262         regs->r_edi = tp->tf_edi;
 2263         regs->r_esi = tp->tf_esi;
 2264         regs->r_ebp = tp->tf_ebp;
 2265         regs->r_ebx = tp->tf_ebx;
 2266         regs->r_edx = tp->tf_edx;
 2267         regs->r_ecx = tp->tf_ecx;
 2268         regs->r_eax = tp->tf_eax;
 2269         regs->r_eip = tp->tf_eip;
 2270         regs->r_cs = tp->tf_cs;
 2271         regs->r_eflags = tp->tf_eflags;
 2272         regs->r_esp = tp->tf_esp;
 2273         regs->r_ss = tp->tf_ss;
 2274         regs->r_gs = pcb->pcb_gs;
 2275         return (0);
 2276 }
 2277 
 2278 int
 2279 set_regs(struct thread *td, struct reg *regs)
 2280 {
 2281         struct pcb *pcb;
 2282         struct trapframe *tp;
 2283 
 2284         tp = td->td_frame;
 2285         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2286             !CS_SECURE(regs->r_cs))
 2287                 return (EINVAL);
 2288         pcb = td->td_pcb;
 2289         tp->tf_fs = regs->r_fs;
 2290         tp->tf_es = regs->r_es;
 2291         tp->tf_ds = regs->r_ds;
 2292         tp->tf_edi = regs->r_edi;
 2293         tp->tf_esi = regs->r_esi;
 2294         tp->tf_ebp = regs->r_ebp;
 2295         tp->tf_ebx = regs->r_ebx;
 2296         tp->tf_edx = regs->r_edx;
 2297         tp->tf_ecx = regs->r_ecx;
 2298         tp->tf_eax = regs->r_eax;
 2299         tp->tf_eip = regs->r_eip;
 2300         tp->tf_cs = regs->r_cs;
 2301         tp->tf_eflags = regs->r_eflags;
 2302         tp->tf_esp = regs->r_esp;
 2303         tp->tf_ss = regs->r_ss;
 2304         pcb->pcb_gs = regs->r_gs;
 2305         return (0);
 2306 }
 2307 
 2308 #ifdef CPU_ENABLE_SSE
 2309 static void
 2310 fill_fpregs_xmm(sv_xmm, sv_87)
 2311         struct savexmm *sv_xmm;
 2312         struct save87 *sv_87;
 2313 {
 2314         register struct env87 *penv_87 = &sv_87->sv_env;
 2315         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2316         int i;
 2317 
 2318         bzero(sv_87, sizeof(*sv_87));
 2319 
 2320         /* FPU control/status */
 2321         penv_87->en_cw = penv_xmm->en_cw;
 2322         penv_87->en_sw = penv_xmm->en_sw;
 2323         penv_87->en_tw = penv_xmm->en_tw;
 2324         penv_87->en_fip = penv_xmm->en_fip;
 2325         penv_87->en_fcs = penv_xmm->en_fcs;
 2326         penv_87->en_opcode = penv_xmm->en_opcode;
 2327         penv_87->en_foo = penv_xmm->en_foo;
 2328         penv_87->en_fos = penv_xmm->en_fos;
 2329 
 2330         /* FPU registers */
 2331         for (i = 0; i < 8; ++i)
 2332                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 2333 }
 2334 
 2335 static void
 2336 set_fpregs_xmm(sv_87, sv_xmm)
 2337         struct save87 *sv_87;
 2338         struct savexmm *sv_xmm;
 2339 {
 2340         register struct env87 *penv_87 = &sv_87->sv_env;
 2341         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2342         int i;
 2343 
 2344         /* FPU control/status */
 2345         penv_xmm->en_cw = penv_87->en_cw;
 2346         penv_xmm->en_sw = penv_87->en_sw;
 2347         penv_xmm->en_tw = penv_87->en_tw;
 2348         penv_xmm->en_fip = penv_87->en_fip;
 2349         penv_xmm->en_fcs = penv_87->en_fcs;
 2350         penv_xmm->en_opcode = penv_87->en_opcode;
 2351         penv_xmm->en_foo = penv_87->en_foo;
 2352         penv_xmm->en_fos = penv_87->en_fos;
 2353 
 2354         /* FPU registers */
 2355         for (i = 0; i < 8; ++i)
 2356                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 2357 }
 2358 #endif /* CPU_ENABLE_SSE */
 2359 
 2360 int
 2361 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2362 {
 2363 #ifdef CPU_ENABLE_SSE
 2364         if (cpu_fxsr) {
 2365                 fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
 2366                                                 (struct save87 *)fpregs);
 2367                 return (0);
 2368         }
 2369 #endif /* CPU_ENABLE_SSE */
 2370         bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
 2371         return (0);
 2372 }
 2373 
 2374 int
 2375 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2376 {
 2377 #ifdef CPU_ENABLE_SSE
 2378         if (cpu_fxsr) {
 2379                 set_fpregs_xmm((struct save87 *)fpregs,
 2380                                            &td->td_pcb->pcb_save.sv_xmm);
 2381                 return (0);
 2382         }
 2383 #endif /* CPU_ENABLE_SSE */
 2384         bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
 2385         return (0);
 2386 }
 2387 
 2388 /*
 2389  * Get machine context.
 2390  */
 2391 int
 2392 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2393 {
 2394         struct trapframe *tp;
 2395 
 2396         tp = td->td_frame;
 2397 
 2398         PROC_LOCK(curthread->td_proc);
 2399         mcp->mc_onstack = sigonstack(tp->tf_esp);
 2400         PROC_UNLOCK(curthread->td_proc);
 2401         mcp->mc_gs = td->td_pcb->pcb_gs;
 2402         mcp->mc_fs = tp->tf_fs;
 2403         mcp->mc_es = tp->tf_es;
 2404         mcp->mc_ds = tp->tf_ds;
 2405         mcp->mc_edi = tp->tf_edi;
 2406         mcp->mc_esi = tp->tf_esi;
 2407         mcp->mc_ebp = tp->tf_ebp;
 2408         mcp->mc_isp = tp->tf_isp;
 2409         mcp->mc_eflags = tp->tf_eflags;
 2410         if (flags & GET_MC_CLEAR_RET) {
 2411                 mcp->mc_eax = 0;
 2412                 mcp->mc_edx = 0;
 2413                 mcp->mc_eflags &= ~PSL_C;
 2414         } else {
 2415                 mcp->mc_eax = tp->tf_eax;
 2416                 mcp->mc_edx = tp->tf_edx;
 2417         }
 2418         mcp->mc_ebx = tp->tf_ebx;
 2419         mcp->mc_ecx = tp->tf_ecx;
 2420         mcp->mc_eip = tp->tf_eip;
 2421         mcp->mc_cs = tp->tf_cs;
 2422         mcp->mc_esp = tp->tf_esp;
 2423         mcp->mc_ss = tp->tf_ss;
 2424         mcp->mc_len = sizeof(*mcp);
 2425         get_fpcontext(td, mcp);
 2426         return (0);
 2427 }
 2428 
 2429 /*
 2430  * Set machine context.
 2431  *
 2432  * However, we don't set any but the user modifiable flags, and we won't
 2433  * touch the cs selector.
 2434  */
 2435 int
 2436 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2437 {
 2438         struct trapframe *tp;
 2439         int eflags, ret;
 2440 
 2441         tp = td->td_frame;
 2442         if (mcp->mc_len != sizeof(*mcp))
 2443                 return (EINVAL);
 2444         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 2445             (tp->tf_eflags & ~PSL_USERCHANGE);
 2446         if ((ret = set_fpcontext(td, mcp)) == 0) {
 2447                 tp->tf_fs = mcp->mc_fs;
 2448                 tp->tf_es = mcp->mc_es;
 2449                 tp->tf_ds = mcp->mc_ds;
 2450                 tp->tf_edi = mcp->mc_edi;
 2451                 tp->tf_esi = mcp->mc_esi;
 2452                 tp->tf_ebp = mcp->mc_ebp;
 2453                 tp->tf_ebx = mcp->mc_ebx;
 2454                 tp->tf_edx = mcp->mc_edx;
 2455                 tp->tf_ecx = mcp->mc_ecx;
 2456                 tp->tf_eax = mcp->mc_eax;
 2457                 tp->tf_eip = mcp->mc_eip;
 2458                 tp->tf_eflags = eflags;
 2459                 tp->tf_esp = mcp->mc_esp;
 2460                 tp->tf_ss = mcp->mc_ss;
 2461                 td->td_pcb->pcb_gs = mcp->mc_gs;
 2462                 ret = 0;
 2463         }
 2464         return (ret);
 2465 }
 2466 
 2467 static void
 2468 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2469 {
 2470 #ifndef DEV_NPX
 2471         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 2472         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 2473 #else
 2474         union savefpu *addr;
 2475 
 2476         /*
 2477          * XXX mc_fpstate might be misaligned, since its declaration is not
 2478          * unportabilized using __attribute__((aligned(16))) like the
 2479          * declaration of struct savemm, and anyway, alignment doesn't work
 2480          * for auto variables since we don't use gcc's pessimal stack
 2481          * alignment.  Work around this by abusing the spare fields after
 2482          * mcp->mc_fpstate.
 2483          *
 2484          * XXX unpessimize most cases by only aligning when fxsave might be
 2485          * called, although this requires knowing too much about
 2486          * npxgetregs()'s internals.
 2487          */
 2488         addr = (union savefpu *)&mcp->mc_fpstate;
 2489         if (td == PCPU_GET(fpcurthread) &&
 2490 #ifdef CPU_ENABLE_SSE
 2491             cpu_fxsr &&
 2492 #endif
 2493             ((uintptr_t)(void *)addr & 0xF)) {
 2494                 do
 2495                         addr = (void *)((char *)addr + 4);
 2496                 while ((uintptr_t)(void *)addr & 0xF);
 2497         }
 2498         mcp->mc_ownedfp = npxgetregs(td, addr);
 2499         if (addr != (union savefpu *)&mcp->mc_fpstate) {
 2500                 bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 2501                 bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
 2502         }
 2503         mcp->mc_fpformat = npxformat();
 2504 #endif
 2505 }
 2506 
 2507 static int
 2508 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2509 {
 2510         union savefpu *addr;
 2511 
 2512         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2513                 return (0);
 2514         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 2515             mcp->mc_fpformat != _MC_FPFMT_XMM)
 2516                 return (EINVAL);
 2517         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2518                 /* We don't care what state is left in the FPU or PCB. */
 2519                 fpstate_drop(td);
 2520         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2521             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2522                 /* XXX align as above. */
 2523                 addr = (union savefpu *)&mcp->mc_fpstate;
 2524                 if (td == PCPU_GET(fpcurthread) &&
 2525 #ifdef CPU_ENABLE_SSE
 2526                     cpu_fxsr &&
 2527 #endif
 2528                     ((uintptr_t)(void *)addr & 0xF)) {
 2529                         do
 2530                                 addr = (void *)((char *)addr + 4);
 2531                         while ((uintptr_t)(void *)addr & 0xF);
 2532                         bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
 2533                 }
 2534 #ifdef DEV_NPX
 2535                 /*
 2536                  * XXX we violate the dubious requirement that npxsetregs()
 2537                  * be called with interrupts disabled.
 2538                  */
 2539                 npxsetregs(td, addr);
 2540 #endif
 2541                 /*
 2542                  * Don't bother putting things back where they were in the
 2543                  * misaligned case, since we know that the caller won't use
 2544                  * them again.
 2545                  */
 2546         } else
 2547                 return (EINVAL);
 2548         return (0);
 2549 }
 2550 
 2551 static void
 2552 fpstate_drop(struct thread *td)
 2553 {
 2554         register_t s;
 2555 
 2556         s = intr_disable();
 2557 #ifdef DEV_NPX
 2558         if (PCPU_GET(fpcurthread) == td)
 2559                 npxdrop();
 2560 #endif
 2561         /*
 2562          * XXX force a full drop of the npx.  The above only drops it if we
 2563          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 2564          *
 2565          * XXX I don't much like npxgetregs()'s semantics of doing a full
 2566          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2567          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2568          * sendsig() is the only caller of npxgetregs()... perhaps we just
 2569          * have too many layers.
 2570          */
 2571         curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 2572         intr_restore(s);
 2573 }
 2574 
 2575 int
 2576 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2577 {
 2578         struct pcb *pcb;
 2579 
 2580         if (td == NULL) {
 2581                 dbregs->dr[0] = rdr0();
 2582                 dbregs->dr[1] = rdr1();
 2583                 dbregs->dr[2] = rdr2();
 2584                 dbregs->dr[3] = rdr3();
 2585                 dbregs->dr[4] = rdr4();
 2586                 dbregs->dr[5] = rdr5();
 2587                 dbregs->dr[6] = rdr6();
 2588                 dbregs->dr[7] = rdr7();
 2589         } else {
 2590                 pcb = td->td_pcb;
 2591                 dbregs->dr[0] = pcb->pcb_dr0;
 2592                 dbregs->dr[1] = pcb->pcb_dr1;
 2593                 dbregs->dr[2] = pcb->pcb_dr2;
 2594                 dbregs->dr[3] = pcb->pcb_dr3;
 2595                 dbregs->dr[4] = 0;
 2596                 dbregs->dr[5] = 0;
 2597                 dbregs->dr[6] = pcb->pcb_dr6;
 2598                 dbregs->dr[7] = pcb->pcb_dr7;
 2599         }
 2600         return (0);
 2601 }
 2602 
 2603 int
 2604 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2605 {
 2606         struct pcb *pcb;
 2607         int i;
 2608         u_int32_t mask1, mask2;
 2609 
 2610         if (td == NULL) {
 2611                 load_dr0(dbregs->dr[0]);
 2612                 load_dr1(dbregs->dr[1]);
 2613                 load_dr2(dbregs->dr[2]);
 2614                 load_dr3(dbregs->dr[3]);
 2615                 load_dr4(dbregs->dr[4]);
 2616                 load_dr5(dbregs->dr[5]);
 2617                 load_dr6(dbregs->dr[6]);
 2618                 load_dr7(dbregs->dr[7]);
 2619         } else {
 2620                 /*
 2621                  * Don't let an illegal value for dr7 get set.  Specifically,
 2622                  * check for undefined settings.  Setting these bit patterns
 2623                  * result in undefined behaviour and can lead to an unexpected
 2624                  * TRCTRAP.
 2625                  */
 2626                 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8; 
 2627                      i++, mask1 <<= 2, mask2 <<= 2)
 2628                         if ((dbregs->dr[7] & mask1) == mask2)
 2629                                 return (EINVAL);
 2630                 
 2631                 pcb = td->td_pcb;
 2632                 
 2633                 /*
 2634                  * Don't let a process set a breakpoint that is not within the
 2635                  * process's address space.  If a process could do this, it
 2636                  * could halt the system by setting a breakpoint in the kernel
 2637                  * (if ddb was enabled).  Thus, we need to check to make sure
 2638                  * that no breakpoints are being enabled for addresses outside
 2639                  * process's address space.
 2640                  *
 2641                  * XXX - what about when the watched area of the user's
 2642                  * address space is written into from within the kernel
 2643                  * ... wouldn't that still cause a breakpoint to be generated
 2644                  * from within kernel mode?
 2645                  */
 2646 
 2647                 if (dbregs->dr[7] & 0x3) {
 2648                         /* dr0 is enabled */
 2649                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2650                                 return (EINVAL);
 2651                 }
 2652                         
 2653                 if (dbregs->dr[7] & (0x3<<2)) {
 2654                         /* dr1 is enabled */
 2655                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2656                                 return (EINVAL);
 2657                 }
 2658                         
 2659                 if (dbregs->dr[7] & (0x3<<4)) {
 2660                         /* dr2 is enabled */
 2661                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2662                                 return (EINVAL);
 2663                 }
 2664                         
 2665                 if (dbregs->dr[7] & (0x3<<6)) {
 2666                         /* dr3 is enabled */
 2667                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2668                                 return (EINVAL);
 2669                 }
 2670 
 2671                 pcb->pcb_dr0 = dbregs->dr[0];
 2672                 pcb->pcb_dr1 = dbregs->dr[1];
 2673                 pcb->pcb_dr2 = dbregs->dr[2];
 2674                 pcb->pcb_dr3 = dbregs->dr[3];
 2675                 pcb->pcb_dr6 = dbregs->dr[6];
 2676                 pcb->pcb_dr7 = dbregs->dr[7];
 2677 
 2678                 pcb->pcb_flags |= PCB_DBREGS;
 2679         }
 2680 
 2681         return (0);
 2682 }
 2683 
 2684 /*
 2685  * Return > 0 if a hardware breakpoint has been hit, and the
 2686  * breakpoint was in user space.  Return 0, otherwise.
 2687  */
 2688 int
 2689 user_dbreg_trap(void)
 2690 {
 2691         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 2692         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 2693         int nbp;            /* number of breakpoints that triggered */
 2694         caddr_t addr[4];    /* breakpoint addresses */
 2695         int i;
 2696         
 2697         dr7 = rdr7();
 2698         if ((dr7 & 0x000000ff) == 0) {
 2699                 /*
 2700                  * all GE and LE bits in the dr7 register are zero,
 2701                  * thus the trap couldn't have been caused by the
 2702                  * hardware debug registers
 2703                  */
 2704                 return 0;
 2705         }
 2706 
 2707         nbp = 0;
 2708         dr6 = rdr6();
 2709         bp = dr6 & 0x0000000f;
 2710 
 2711         if (!bp) {
 2712                 /*
 2713                  * None of the breakpoint bits are set meaning this
 2714                  * trap was not caused by any of the debug registers
 2715                  */
 2716                 return 0;
 2717         }
 2718 
 2719         /*
 2720          * at least one of the breakpoints were hit, check to see
 2721          * which ones and if any of them are user space addresses
 2722          */
 2723 
 2724         if (bp & 0x01) {
 2725                 addr[nbp++] = (caddr_t)rdr0();
 2726         }
 2727         if (bp & 0x02) {
 2728                 addr[nbp++] = (caddr_t)rdr1();
 2729         }
 2730         if (bp & 0x04) {
 2731                 addr[nbp++] = (caddr_t)rdr2();
 2732         }
 2733         if (bp & 0x08) {
 2734                 addr[nbp++] = (caddr_t)rdr3();
 2735         }
 2736 
 2737         for (i=0; i<nbp; i++) {
 2738                 if (addr[i] <
 2739                     (caddr_t)VM_MAXUSER_ADDRESS) {
 2740                         /*
 2741                          * addr[i] is in user space
 2742                          */
 2743                         return nbp;
 2744                 }
 2745         }
 2746 
 2747         /*
 2748          * None of the breakpoints are in user space.
 2749          */
 2750         return 0;
 2751 }
 2752 
 2753 #ifdef KDB
 2754 
 2755 /*
 2756  * Provide inb() and outb() as functions.  They are normally only
 2757  * available as macros calling inlined functions, thus cannot be
 2758  * called from the debugger.
 2759  *
 2760  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 2761  */
 2762 
 2763 #undef inb
 2764 #undef outb
 2765 
 2766 /* silence compiler warnings */
 2767 u_char inb(u_int);
 2768 void outb(u_int, u_char);
 2769 
 2770 u_char
 2771 inb(u_int port)
 2772 {
 2773         u_char  data;
 2774         /*
 2775          * We use %%dx and not %1 here because i/o is done at %dx and not at
 2776          * %edx, while gcc generates inferior code (movw instead of movl)
 2777          * if we tell it to load (u_short) port.
 2778          */
 2779         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 2780         return (data);
 2781 }
 2782 
 2783 void
 2784 outb(u_int port, u_char data)
 2785 {
 2786         u_char  al;
 2787         /*
 2788          * Use an unnecessary assignment to help gcc's register allocator.
 2789          * This make a large difference for gcc-1.40 and a tiny difference
 2790          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 2791          * best results.  gcc-2.6.0 can't handle this.
 2792          */
 2793         al = data;
 2794         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 2795 }
 2796 
 2797 #endif /* KDB */

Cache object: 42e159c8197b86ba91ea119df4c86eb6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.