The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pc98/pc98/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_atalk.h"
   44 #include "opt_compat.h"
   45 #include "opt_cpu.h"
   46 #include "opt_ddb.h"
   47 #include "opt_inet.h"
   48 #include "opt_ipx.h"
   49 #include "opt_isa.h"
   50 #include "opt_kstack_pages.h"
   51 #include "opt_maxmem.h"
   52 #include "opt_msgbuf.h"
   53 #include "opt_npx.h"
   54 #include "opt_perfmon.h"
   55 
   56 #include <sys/param.h>
   57 #include <sys/proc.h>
   58 #include <sys/systm.h>
   59 #include <sys/bio.h>
   60 #include <sys/buf.h>
   61 #include <sys/bus.h>
   62 #include <sys/callout.h>
   63 #include <sys/clock.h>
   64 #include <sys/cons.h>
   65 #include <sys/cpu.h>
   66 #include <sys/eventhandler.h>
   67 #include <sys/exec.h>
   68 #include <sys/imgact.h>
   69 #include <sys/kdb.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/linker.h>
   73 #include <sys/lock.h>
   74 #include <sys/malloc.h>
   75 #include <sys/memrange.h>
   76 #include <sys/msgbuf.h>
   77 #include <sys/mutex.h>
   78 #include <sys/pcpu.h>
   79 #include <sys/ptrace.h>
   80 #include <sys/reboot.h>
   81 #include <sys/sched.h>
   82 #include <sys/signalvar.h>
   83 #include <sys/sysctl.h>
   84 #include <sys/sysent.h>
   85 #include <sys/sysproto.h>
   86 #include <sys/ucontext.h>
   87 #include <sys/vmmeter.h>
   88 
   89 #include <vm/vm.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/vm_param.h>
   97 
   98 #ifdef DDB
   99 #ifndef KDB
  100 #error KDB must be enabled in order for DDB to work!
  101 #endif
  102 #include <ddb/ddb.h>
  103 #include <ddb/db_sym.h>
  104 #endif
  105 
  106 #include <pc98/pc98/pc98_machdep.h>
  107 
  108 #include <net/netisr.h>
  109 
  110 #include <machine/bootinfo.h>
  111 #include <machine/clock.h>
  112 #include <machine/cpu.h>
  113 #include <machine/cputypes.h>
  114 #include <machine/intr_machdep.h>
  115 #include <machine/mca.h>
  116 #include <machine/md_var.h>
  117 #include <machine/pc/bios.h>
  118 #include <machine/pcb.h>
  119 #include <machine/pcb_ext.h>
  120 #include <machine/proc.h>
  121 #include <machine/reg.h>
  122 #include <machine/sigframe.h>
  123 #include <machine/specialreg.h>
  124 #include <machine/vm86.h>
  125 #ifdef PERFMON
  126 #include <machine/perfmon.h>
  127 #endif
  128 #ifdef SMP
  129 #include <machine/smp.h>
  130 #endif
  131 
  132 #ifdef DEV_ISA
  133 #include <i386/isa/icu.h>
  134 #endif
  135 
  136 /* Sanity check for __curthread() */
  137 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  138 
  139 extern void init386(int first);
  140 extern void dblfault_handler(void);
  141 
  142 extern void printcpuinfo(void); /* XXX header file */
  143 extern void finishidentcpu(void);
  144 extern void panicifcpuunsupported(void);
  145 extern void initializecpu(void);
  146 
  147 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  148 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  149 
  150 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  151 #define CPU_ENABLE_SSE
  152 #endif
  153 
  154 static void cpu_startup(void *);
  155 static void fpstate_drop(struct thread *td);
  156 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  157 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  158 #ifdef CPU_ENABLE_SSE
  159 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  160 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  161 #endif /* CPU_ENABLE_SSE */
  162 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  163 
  164 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  165 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  166 
  167 #ifdef DDB
  168 extern vm_offset_t ksym_start, ksym_end;
  169 #endif
  170 
  171 int     _udatasel, _ucodesel;
  172 u_int   basemem;
  173 
  174 static int      ispc98 = 1;
  175 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  176 
  177 int cold = 1;
  178 
  179 #ifdef COMPAT_43
  180 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  181 #endif
  182 #ifdef COMPAT_FREEBSD4
  183 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  184 #endif
  185 
  186 long Maxmem = 0;
  187 long realmem = 0;
  188 
  189 /*
  190  * The number of PHYSMAP entries must be one less than the number of
  191  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  192  * physical address that is accessible by ISA DMA is split into two
  193  * PHYSSEG entries.
  194  */
  195 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  196 
  197 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  198 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  199 
  200 /* must be 2 less so 0 0 can signal end of chunks */
  201 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  202 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  203 
  204 struct kva_md_info kmi;
  205 
  206 static struct trapframe proc0_tf;
  207 struct pcpu __pcpu[MAXCPU];
  208 
  209 struct mtx icu_lock;
  210 
  211 struct mem_range_softc mem_range_softc;
  212 
  213 static void
  214 cpu_startup(dummy)
  215         void *dummy;
  216 {
  217         /*
  218          * Good {morning,afternoon,evening,night}.
  219          */
  220         startrtclock();
  221         printcpuinfo();
  222         panicifcpuunsupported();
  223 #ifdef PERFMON
  224         perfmon_init();
  225 #endif
  226         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  227             ptoa((uintmax_t)Maxmem) / 1048576);
  228         realmem = Maxmem;
  229         /*
  230          * Display any holes after the first chunk of extended memory.
  231          */
  232         if (bootverbose) {
  233                 int indx;
  234 
  235                 printf("Physical memory chunk(s):\n");
  236                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  237                         vm_paddr_t size;
  238 
  239                         size = phys_avail[indx + 1] - phys_avail[indx];
  240                         printf(
  241                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  242                             (uintmax_t)phys_avail[indx],
  243                             (uintmax_t)phys_avail[indx + 1] - 1,
  244                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  245                 }
  246         }
  247 
  248         vm_ksubmap_init(&kmi);
  249 
  250         printf("avail memory = %ju (%ju MB)\n",
  251             ptoa((uintmax_t)cnt.v_free_count),
  252             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  253 
  254         /*
  255          * Set up buffers, so they can be used to read disk labels.
  256          */
  257         bufinit();
  258         vm_pager_bufferinit();
  259 
  260         cpu_setregs();
  261 }
  262 
  263 /*
  264  * Send an interrupt to process.
  265  *
  266  * Stack is set up to allow sigcode stored
  267  * at top to call routine, followed by kcall
  268  * to sigreturn routine below.  After sigreturn
  269  * resets the signal mask, the stack, and the
  270  * frame pointer, it returns to the user
  271  * specified pc, psl.
  272  */
  273 #ifdef COMPAT_43
  274 static void
  275 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  276 {
  277         struct osigframe sf, *fp;
  278         struct proc *p;
  279         struct thread *td;
  280         struct sigacts *psp;
  281         struct trapframe *regs;
  282         int sig;
  283         int oonstack;
  284 
  285         td = curthread;
  286         p = td->td_proc;
  287         PROC_LOCK_ASSERT(p, MA_OWNED);
  288         sig = ksi->ksi_signo;
  289         psp = p->p_sigacts;
  290         mtx_assert(&psp->ps_mtx, MA_OWNED);
  291         regs = td->td_frame;
  292         oonstack = sigonstack(regs->tf_esp);
  293 
  294         /* Allocate space for the signal handler context. */
  295         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  296             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  297                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  298                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  299 #if defined(COMPAT_43)
  300                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  301 #endif
  302         } else
  303                 fp = (struct osigframe *)regs->tf_esp - 1;
  304 
  305         /* Translate the signal if appropriate. */
  306         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  307                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  308 
  309         /* Build the argument list for the signal handler. */
  310         sf.sf_signum = sig;
  311         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  312         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  313         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  314                 /* Signal handler installed with SA_SIGINFO. */
  315                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  316                 sf.sf_siginfo.si_signo = sig;
  317                 sf.sf_siginfo.si_code = ksi->ksi_code;
  318                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  319                 sf.sf_addr = 0;
  320         } else {
  321                 /* Old FreeBSD-style arguments. */
  322                 sf.sf_arg2 = ksi->ksi_code;
  323                 sf.sf_addr = (register_t)ksi->ksi_addr;
  324                 sf.sf_ahu.sf_handler = catcher;
  325         }
  326         mtx_unlock(&psp->ps_mtx);
  327         PROC_UNLOCK(p);
  328 
  329         /* Save most if not all of trap frame. */
  330         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  331         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  332         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  333         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  334         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  335         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  336         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  337         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  338         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  339         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  340         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  341         sf.sf_siginfo.si_sc.sc_gs = rgs();
  342         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  343 
  344         /* Build the signal context to be used by osigreturn(). */
  345         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  346         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  347         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  348         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  349         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  350         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  351         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  352         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  353 
  354         /*
  355          * If we're a vm86 process, we want to save the segment registers.
  356          * We also change eflags to be our emulated eflags, not the actual
  357          * eflags.
  358          */
  359         if (regs->tf_eflags & PSL_VM) {
  360                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  361                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  362                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  363 
  364                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  365                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  366                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  367                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  368 
  369                 if (vm86->vm86_has_vme == 0)
  370                         sf.sf_siginfo.si_sc.sc_ps =
  371                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  372                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  373 
  374                 /* See sendsig() for comments. */
  375                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  376         }
  377 
  378         /*
  379          * Copy the sigframe out to the user's stack.
  380          */
  381         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  382 #ifdef DEBUG
  383                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  384 #endif
  385                 PROC_LOCK(p);
  386                 sigexit(td, SIGILL);
  387         }
  388 
  389         regs->tf_esp = (int)fp;
  390         regs->tf_eip = PS_STRINGS - szosigcode;
  391         regs->tf_eflags &= ~(PSL_T | PSL_D);
  392         regs->tf_cs = _ucodesel;
  393         regs->tf_ds = _udatasel;
  394         regs->tf_es = _udatasel;
  395         regs->tf_fs = _udatasel;
  396         load_gs(_udatasel);
  397         regs->tf_ss = _udatasel;
  398         PROC_LOCK(p);
  399         mtx_lock(&psp->ps_mtx);
  400 }
  401 #endif /* COMPAT_43 */
  402 
  403 #ifdef COMPAT_FREEBSD4
  404 static void
  405 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  406 {
  407         struct sigframe4 sf, *sfp;
  408         struct proc *p;
  409         struct thread *td;
  410         struct sigacts *psp;
  411         struct trapframe *regs;
  412         int sig;
  413         int oonstack;
  414 
  415         td = curthread;
  416         p = td->td_proc;
  417         PROC_LOCK_ASSERT(p, MA_OWNED);
  418         sig = ksi->ksi_signo;
  419         psp = p->p_sigacts;
  420         mtx_assert(&psp->ps_mtx, MA_OWNED);
  421         regs = td->td_frame;
  422         oonstack = sigonstack(regs->tf_esp);
  423 
  424         /* Save user context. */
  425         bzero(&sf, sizeof(sf));
  426         sf.sf_uc.uc_sigmask = *mask;
  427         sf.sf_uc.uc_stack = td->td_sigstk;
  428         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  429             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  430         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  431         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  432         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  433         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  434             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  435         bzero(sf.sf_uc.uc_mcontext.__spare__,
  436             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  437         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  438 
  439         /* Allocate space for the signal handler context. */
  440         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  441             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  442                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  443                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  444 #if defined(COMPAT_43)
  445                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  446 #endif
  447         } else
  448                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  449 
  450         /* Translate the signal if appropriate. */
  451         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  452                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  453 
  454         /* Build the argument list for the signal handler. */
  455         sf.sf_signum = sig;
  456         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  457         bzero(&sf.sf_si, sizeof(sf.sf_si));
  458         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  459                 /* Signal handler installed with SA_SIGINFO. */
  460                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  461                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  462 
  463                 /* Fill in POSIX parts */
  464                 sf.sf_si.si_signo = sig;
  465                 sf.sf_si.si_code = ksi->ksi_code;
  466                 sf.sf_si.si_addr = ksi->ksi_addr;
  467         } else {
  468                 /* Old FreeBSD-style arguments. */
  469                 sf.sf_siginfo = ksi->ksi_code;
  470                 sf.sf_addr = (register_t)ksi->ksi_addr;
  471                 sf.sf_ahu.sf_handler = catcher;
  472         }
  473         mtx_unlock(&psp->ps_mtx);
  474         PROC_UNLOCK(p);
  475 
  476         /*
  477          * If we're a vm86 process, we want to save the segment registers.
  478          * We also change eflags to be our emulated eflags, not the actual
  479          * eflags.
  480          */
  481         if (regs->tf_eflags & PSL_VM) {
  482                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  483                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  484 
  485                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  486                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  487                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  488                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  489 
  490                 if (vm86->vm86_has_vme == 0)
  491                         sf.sf_uc.uc_mcontext.mc_eflags =
  492                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  493                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  494 
  495                 /*
  496                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  497                  * syscalls made by the signal handler.  This just avoids
  498                  * wasting time for our lazy fixup of such faults.  PSL_NT
  499                  * does nothing in vm86 mode, but vm86 programs can set it
  500                  * almost legitimately in probes for old cpu types.
  501                  */
  502                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  503         }
  504 
  505         /*
  506          * Copy the sigframe out to the user's stack.
  507          */
  508         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  509 #ifdef DEBUG
  510                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  511 #endif
  512                 PROC_LOCK(p);
  513                 sigexit(td, SIGILL);
  514         }
  515 
  516         regs->tf_esp = (int)sfp;
  517         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  518         regs->tf_eflags &= ~(PSL_T | PSL_D);
  519         regs->tf_cs = _ucodesel;
  520         regs->tf_ds = _udatasel;
  521         regs->tf_es = _udatasel;
  522         regs->tf_fs = _udatasel;
  523         regs->tf_ss = _udatasel;
  524         PROC_LOCK(p);
  525         mtx_lock(&psp->ps_mtx);
  526 }
  527 #endif  /* COMPAT_FREEBSD4 */
  528 
  529 void
  530 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  531 {
  532         struct sigframe sf, *sfp;
  533         struct proc *p;
  534         struct thread *td;
  535         struct sigacts *psp;
  536         char *sp;
  537         struct trapframe *regs;
  538         int sig;
  539         int oonstack;
  540 
  541         td = curthread;
  542         p = td->td_proc;
  543         PROC_LOCK_ASSERT(p, MA_OWNED);
  544         sig = ksi->ksi_signo;
  545         psp = p->p_sigacts;
  546         mtx_assert(&psp->ps_mtx, MA_OWNED);
  547 #ifdef COMPAT_FREEBSD4
  548         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  549                 freebsd4_sendsig(catcher, ksi, mask);
  550                 return;
  551         }
  552 #endif
  553 #ifdef COMPAT_43
  554         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  555                 osendsig(catcher, ksi, mask);
  556                 return;
  557         }
  558 #endif
  559         regs = td->td_frame;
  560         oonstack = sigonstack(regs->tf_esp);
  561 
  562         /* Save user context. */
  563         bzero(&sf, sizeof(sf));
  564         sf.sf_uc.uc_sigmask = *mask;
  565         sf.sf_uc.uc_stack = td->td_sigstk;
  566         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  567             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  568         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  569         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  570         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  571         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  572         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  573         fpstate_drop(td);
  574         bzero(sf.sf_uc.uc_mcontext.mc_spare1,
  575             sizeof(sf.sf_uc.uc_mcontext.mc_spare1));
  576         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  577             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  578         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  579 
  580         /* Allocate space for the signal handler context. */
  581         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  582             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  583                 sp = td->td_sigstk.ss_sp +
  584                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  585 #if defined(COMPAT_43)
  586                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  587 #endif
  588         } else
  589                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  590         /* Align to 16 bytes. */
  591         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  592 
  593         /* Translate the signal if appropriate. */
  594         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  595                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  596 
  597         /* Build the argument list for the signal handler. */
  598         sf.sf_signum = sig;
  599         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  600         bzero(&sf.sf_si, sizeof(sf.sf_si));
  601         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  602                 /* Signal handler installed with SA_SIGINFO. */
  603                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  604                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  605 
  606                 /* Fill in POSIX parts */
  607                 sf.sf_si = ksi->ksi_info;
  608                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  609         } else {
  610                 /* Old FreeBSD-style arguments. */
  611                 sf.sf_siginfo = ksi->ksi_code;
  612                 sf.sf_addr = (register_t)ksi->ksi_addr;
  613                 sf.sf_ahu.sf_handler = catcher;
  614         }
  615         mtx_unlock(&psp->ps_mtx);
  616         PROC_UNLOCK(p);
  617 
  618         /*
  619          * If we're a vm86 process, we want to save the segment registers.
  620          * We also change eflags to be our emulated eflags, not the actual
  621          * eflags.
  622          */
  623         if (regs->tf_eflags & PSL_VM) {
  624                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  625                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  626 
  627                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  628                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  629                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  630                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  631 
  632                 if (vm86->vm86_has_vme == 0)
  633                         sf.sf_uc.uc_mcontext.mc_eflags =
  634                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  635                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  636 
  637                 /*
  638                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  639                  * syscalls made by the signal handler.  This just avoids
  640                  * wasting time for our lazy fixup of such faults.  PSL_NT
  641                  * does nothing in vm86 mode, but vm86 programs can set it
  642                  * almost legitimately in probes for old cpu types.
  643                  */
  644                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  645         }
  646 
  647         /*
  648          * Copy the sigframe out to the user's stack.
  649          */
  650         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  651 #ifdef DEBUG
  652                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  653 #endif
  654                 PROC_LOCK(p);
  655                 sigexit(td, SIGILL);
  656         }
  657 
  658         regs->tf_esp = (int)sfp;
  659         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  660         regs->tf_eflags &= ~(PSL_T | PSL_D);
  661         regs->tf_cs = _ucodesel;
  662         regs->tf_ds = _udatasel;
  663         regs->tf_es = _udatasel;
  664         regs->tf_fs = _udatasel;
  665         regs->tf_ss = _udatasel;
  666         PROC_LOCK(p);
  667         mtx_lock(&psp->ps_mtx);
  668 }
  669 
  670 /*
  671  * System call to cleanup state after a signal
  672  * has been taken.  Reset signal mask and
  673  * stack state from context left by sendsig (above).
  674  * Return to previous pc and psl as specified by
  675  * context left by sendsig. Check carefully to
  676  * make sure that the user has not modified the
  677  * state to gain improper privileges.
  678  *
  679  * MPSAFE
  680  */
  681 #ifdef COMPAT_43
  682 int
  683 osigreturn(td, uap)
  684         struct thread *td;
  685         struct osigreturn_args /* {
  686                 struct osigcontext *sigcntxp;
  687         } */ *uap;
  688 {
  689         struct osigcontext sc;
  690         struct trapframe *regs;
  691         struct osigcontext *scp;
  692         struct proc *p = td->td_proc;
  693         int eflags, error;
  694         ksiginfo_t ksi;
  695 
  696         regs = td->td_frame;
  697         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  698         if (error != 0)
  699                 return (error);
  700         scp = &sc;
  701         eflags = scp->sc_ps;
  702         if (eflags & PSL_VM) {
  703                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  704                 struct vm86_kernel *vm86;
  705 
  706                 /*
  707                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  708                  * set up the vm86 area, and we can't enter vm86 mode.
  709                  */
  710                 if (td->td_pcb->pcb_ext == 0)
  711                         return (EINVAL);
  712                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  713                 if (vm86->vm86_inited == 0)
  714                         return (EINVAL);
  715 
  716                 /* Go back to user mode if both flags are set. */
  717                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  718                         ksiginfo_init_trap(&ksi);
  719                         ksi.ksi_signo = SIGBUS;
  720                         ksi.ksi_code = BUS_OBJERR;
  721                         ksi.ksi_addr = (void *)regs->tf_eip;
  722                         trapsignal(td, &ksi);
  723                 }
  724 
  725                 if (vm86->vm86_has_vme) {
  726                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  727                             (eflags & VME_USERCHANGE) | PSL_VM;
  728                 } else {
  729                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  730                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  731                             (eflags & VM_USERCHANGE) | PSL_VM;
  732                 }
  733                 tf->tf_vm86_ds = scp->sc_ds;
  734                 tf->tf_vm86_es = scp->sc_es;
  735                 tf->tf_vm86_fs = scp->sc_fs;
  736                 tf->tf_vm86_gs = scp->sc_gs;
  737                 tf->tf_ds = _udatasel;
  738                 tf->tf_es = _udatasel;
  739                 tf->tf_fs = _udatasel;
  740         } else {
  741                 /*
  742                  * Don't allow users to change privileged or reserved flags.
  743                  */
  744                 /*
  745                  * XXX do allow users to change the privileged flag PSL_RF.
  746                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  747                  * should sometimes set it there too.  tf_eflags is kept in
  748                  * the signal context during signal handling and there is no
  749                  * other place to remember it, so the PSL_RF bit may be
  750                  * corrupted by the signal handler without us knowing.
  751                  * Corruption of the PSL_RF bit at worst causes one more or
  752                  * one less debugger trap, so allowing it is fairly harmless.
  753                  */
  754                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  755                         return (EINVAL);
  756                 }
  757 
  758                 /*
  759                  * Don't allow users to load a valid privileged %cs.  Let the
  760                  * hardware check for invalid selectors, excess privilege in
  761                  * other selectors, invalid %eip's and invalid %esp's.
  762                  */
  763                 if (!CS_SECURE(scp->sc_cs)) {
  764                         ksiginfo_init_trap(&ksi);
  765                         ksi.ksi_signo = SIGBUS;
  766                         ksi.ksi_code = BUS_OBJERR;
  767                         ksi.ksi_trapno = T_PROTFLT;
  768                         ksi.ksi_addr = (void *)regs->tf_eip;
  769                         trapsignal(td, &ksi);
  770                         return (EINVAL);
  771                 }
  772                 regs->tf_ds = scp->sc_ds;
  773                 regs->tf_es = scp->sc_es;
  774                 regs->tf_fs = scp->sc_fs;
  775         }
  776 
  777         /* Restore remaining registers. */
  778         regs->tf_eax = scp->sc_eax;
  779         regs->tf_ebx = scp->sc_ebx;
  780         regs->tf_ecx = scp->sc_ecx;
  781         regs->tf_edx = scp->sc_edx;
  782         regs->tf_esi = scp->sc_esi;
  783         regs->tf_edi = scp->sc_edi;
  784         regs->tf_cs = scp->sc_cs;
  785         regs->tf_ss = scp->sc_ss;
  786         regs->tf_isp = scp->sc_isp;
  787         regs->tf_ebp = scp->sc_fp;
  788         regs->tf_esp = scp->sc_sp;
  789         regs->tf_eip = scp->sc_pc;
  790         regs->tf_eflags = eflags;
  791 
  792         PROC_LOCK(p);
  793 #if defined(COMPAT_43)
  794         if (scp->sc_onstack & 1)
  795                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  796         else
  797                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  798 #endif
  799         SIGSETOLD(td->td_sigmask, scp->sc_mask);
  800         SIG_CANTMASK(td->td_sigmask);
  801         signotify(td);
  802         PROC_UNLOCK(p);
  803         return (EJUSTRETURN);
  804 }
  805 #endif /* COMPAT_43 */
  806 
  807 #ifdef COMPAT_FREEBSD4
  808 /*
  809  * MPSAFE
  810  */
  811 int
  812 freebsd4_sigreturn(td, uap)
  813         struct thread *td;
  814         struct freebsd4_sigreturn_args /* {
  815                 const ucontext4 *sigcntxp;
  816         } */ *uap;
  817 {
  818         struct ucontext4 uc;
  819         struct proc *p = td->td_proc;
  820         struct trapframe *regs;
  821         const struct ucontext4 *ucp;
  822         int cs, eflags, error;
  823         ksiginfo_t ksi;
  824 
  825         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  826         if (error != 0)
  827                 return (error);
  828         ucp = &uc;
  829         regs = td->td_frame;
  830         eflags = ucp->uc_mcontext.mc_eflags;
  831         if (eflags & PSL_VM) {
  832                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  833                 struct vm86_kernel *vm86;
  834 
  835                 /*
  836                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  837                  * set up the vm86 area, and we can't enter vm86 mode.
  838                  */
  839                 if (td->td_pcb->pcb_ext == 0)
  840                         return (EINVAL);
  841                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  842                 if (vm86->vm86_inited == 0)
  843                         return (EINVAL);
  844 
  845                 /* Go back to user mode if both flags are set. */
  846                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  847                         ksiginfo_init_trap(&ksi);
  848                         ksi.ksi_signo = SIGBUS;
  849                         ksi.ksi_code = BUS_OBJERR;
  850                         ksi.ksi_addr = (void *)regs->tf_eip;
  851                         trapsignal(td, &ksi);
  852                 }
  853                 if (vm86->vm86_has_vme) {
  854                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  855                             (eflags & VME_USERCHANGE) | PSL_VM;
  856                 } else {
  857                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  858                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  859                             (eflags & VM_USERCHANGE) | PSL_VM;
  860                 }
  861                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  862                 tf->tf_eflags = eflags;
  863                 tf->tf_vm86_ds = tf->tf_ds;
  864                 tf->tf_vm86_es = tf->tf_es;
  865                 tf->tf_vm86_fs = tf->tf_fs;
  866                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  867                 tf->tf_ds = _udatasel;
  868                 tf->tf_es = _udatasel;
  869                 tf->tf_fs = _udatasel;
  870         } else {
  871                 /*
  872                  * Don't allow users to change privileged or reserved flags.
  873                  */
  874                 /*
  875                  * XXX do allow users to change the privileged flag PSL_RF.
  876                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  877                  * should sometimes set it there too.  tf_eflags is kept in
  878                  * the signal context during signal handling and there is no
  879                  * other place to remember it, so the PSL_RF bit may be
  880                  * corrupted by the signal handler without us knowing.
  881                  * Corruption of the PSL_RF bit at worst causes one more or
  882                  * one less debugger trap, so allowing it is fairly harmless.
  883                  */
  884                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  885                         printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
  886                         return (EINVAL);
  887                 }
  888 
  889                 /*
  890                  * Don't allow users to load a valid privileged %cs.  Let the
  891                  * hardware check for invalid selectors, excess privilege in
  892                  * other selectors, invalid %eip's and invalid %esp's.
  893                  */
  894                 cs = ucp->uc_mcontext.mc_cs;
  895                 if (!CS_SECURE(cs)) {
  896                         printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
  897                         ksiginfo_init_trap(&ksi);
  898                         ksi.ksi_signo = SIGBUS;
  899                         ksi.ksi_code = BUS_OBJERR;
  900                         ksi.ksi_trapno = T_PROTFLT;
  901                         ksi.ksi_addr = (void *)regs->tf_eip;
  902                         trapsignal(td, &ksi);
  903                         return (EINVAL);
  904                 }
  905 
  906                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  907         }
  908 
  909         PROC_LOCK(p);
  910 #if defined(COMPAT_43)
  911         if (ucp->uc_mcontext.mc_onstack & 1)
  912                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  913         else
  914                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  915 #endif
  916 
  917         td->td_sigmask = ucp->uc_sigmask;
  918         SIG_CANTMASK(td->td_sigmask);
  919         signotify(td);
  920         PROC_UNLOCK(p);
  921         return (EJUSTRETURN);
  922 }
  923 #endif  /* COMPAT_FREEBSD4 */
  924 
  925 /*
  926  * MPSAFE
  927  */
  928 int
  929 sigreturn(td, uap)
  930         struct thread *td;
  931         struct sigreturn_args /* {
  932                 const struct __ucontext *sigcntxp;
  933         } */ *uap;
  934 {
  935         ucontext_t uc;
  936         struct proc *p = td->td_proc;
  937         struct trapframe *regs;
  938         const ucontext_t *ucp;
  939         int cs, eflags, error, ret;
  940         ksiginfo_t ksi;
  941 
  942         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  943         if (error != 0)
  944                 return (error);
  945         ucp = &uc;
  946         regs = td->td_frame;
  947         eflags = ucp->uc_mcontext.mc_eflags;
  948         if (eflags & PSL_VM) {
  949                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  950                 struct vm86_kernel *vm86;
  951 
  952                 /*
  953                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  954                  * set up the vm86 area, and we can't enter vm86 mode.
  955                  */
  956                 if (td->td_pcb->pcb_ext == 0)
  957                         return (EINVAL);
  958                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  959                 if (vm86->vm86_inited == 0)
  960                         return (EINVAL);
  961 
  962                 /* Go back to user mode if both flags are set. */
  963                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  964                         ksiginfo_init_trap(&ksi);
  965                         ksi.ksi_signo = SIGBUS;
  966                         ksi.ksi_code = BUS_OBJERR;
  967                         ksi.ksi_addr = (void *)regs->tf_eip;
  968                         trapsignal(td, &ksi);
  969                 }
  970 
  971                 if (vm86->vm86_has_vme) {
  972                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  973                             (eflags & VME_USERCHANGE) | PSL_VM;
  974                 } else {
  975                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  976                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  977                             (eflags & VM_USERCHANGE) | PSL_VM;
  978                 }
  979                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  980                 tf->tf_eflags = eflags;
  981                 tf->tf_vm86_ds = tf->tf_ds;
  982                 tf->tf_vm86_es = tf->tf_es;
  983                 tf->tf_vm86_fs = tf->tf_fs;
  984                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  985                 tf->tf_ds = _udatasel;
  986                 tf->tf_es = _udatasel;
  987                 tf->tf_fs = _udatasel;
  988         } else {
  989                 /*
  990                  * Don't allow users to change privileged or reserved flags.
  991                  */
  992                 /*
  993                  * XXX do allow users to change the privileged flag PSL_RF.
  994                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  995                  * should sometimes set it there too.  tf_eflags is kept in
  996                  * the signal context during signal handling and there is no
  997                  * other place to remember it, so the PSL_RF bit may be
  998                  * corrupted by the signal handler without us knowing.
  999                  * Corruption of the PSL_RF bit at worst causes one more or
 1000                  * one less debugger trap, so allowing it is fairly harmless.
 1001                  */
 1002                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
 1003                         printf("sigreturn: eflags = 0x%x\n", eflags);
 1004                         return (EINVAL);
 1005                 }
 1006 
 1007                 /*
 1008                  * Don't allow users to load a valid privileged %cs.  Let the
 1009                  * hardware check for invalid selectors, excess privilege in
 1010                  * other selectors, invalid %eip's and invalid %esp's.
 1011                  */
 1012                 cs = ucp->uc_mcontext.mc_cs;
 1013                 if (!CS_SECURE(cs)) {
 1014                         printf("sigreturn: cs = 0x%x\n", cs);
 1015                         ksiginfo_init_trap(&ksi);
 1016                         ksi.ksi_signo = SIGBUS;
 1017                         ksi.ksi_code = BUS_OBJERR;
 1018                         ksi.ksi_trapno = T_PROTFLT;
 1019                         ksi.ksi_addr = (void *)regs->tf_eip;
 1020                         trapsignal(td, &ksi);
 1021                         return (EINVAL);
 1022                 }
 1023 
 1024                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1025                 if (ret != 0)
 1026                         return (ret);
 1027                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1028         }
 1029 
 1030         PROC_LOCK(p);
 1031 #if defined(COMPAT_43)
 1032         if (ucp->uc_mcontext.mc_onstack & 1)
 1033                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1034         else
 1035                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1036 #endif
 1037 
 1038         td->td_sigmask = ucp->uc_sigmask;
 1039         SIG_CANTMASK(td->td_sigmask);
 1040         signotify(td);
 1041         PROC_UNLOCK(p);
 1042         return (EJUSTRETURN);
 1043 }
 1044 
 1045 /*
 1046  * Machine dependent boot() routine
 1047  *
 1048  * I haven't seen anything to put here yet
 1049  * Possibly some stuff might be grafted back here from boot()
 1050  */
 1051 void
 1052 cpu_boot(int howto)
 1053 {
 1054 }
 1055 
 1056 /* Get current clock frequency for the given cpu id. */
 1057 int
 1058 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1059 {
 1060         register_t reg;
 1061         uint64_t tsc1, tsc2;
 1062 
 1063         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1064                 return (EINVAL);
 1065         if (!tsc_present)
 1066                 return (EOPNOTSUPP);
 1067 
 1068         /* If we're booting, trust the rate calibrated moments ago. */
 1069         if (cold) {
 1070                 *rate = tsc_freq;
 1071                 return (0);
 1072         }
 1073 
 1074 #ifdef SMP
 1075         /* Schedule ourselves on the indicated cpu. */
 1076         thread_lock(curthread);
 1077         sched_bind(curthread, cpu_id);
 1078         thread_unlock(curthread);
 1079 #endif
 1080 
 1081         /* Calibrate by measuring a short delay. */
 1082         reg = intr_disable();
 1083         tsc1 = rdtsc();
 1084         DELAY(1000);
 1085         tsc2 = rdtsc();
 1086         intr_restore(reg);
 1087 
 1088 #ifdef SMP
 1089         thread_lock(curthread);
 1090         sched_unbind(curthread);
 1091         thread_unlock(curthread);
 1092 #endif
 1093 
 1094         /*
 1095          * Calculate the difference in readings, convert to Mhz, and
 1096          * subtract 0.5% of the total.  Empirical testing has shown that
 1097          * overhead in DELAY() works out to approximately this value.
 1098          */
 1099         tsc2 -= tsc1;
 1100         *rate = tsc2 * 1000 - tsc2 * 5;
 1101         return (0);
 1102 }
 1103 
 1104 /*
 1105  * Shutdown the CPU as much as possible
 1106  */
 1107 void
 1108 cpu_halt(void)
 1109 {
 1110         for (;;)
 1111                 __asm__ ("hlt");
 1112 }
 1113 
 1114 /*
 1115  * Hook to idle the CPU when possible.  In the SMP case we default to
 1116  * off because a halted cpu will not currently pick up a new thread in the
 1117  * run queue until the next timer tick.  If turned on this will result in
 1118  * approximately a 4.2% loss in real time performance in buildworld tests
 1119  * (but improves user and sys times oddly enough), and saves approximately
 1120  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
 1121  *
 1122  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
 1123  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
 1124  * Then we can have our cake and eat it too.
 1125  *
 1126  * XXX I'm turning it on for SMP as well by default for now.  It seems to
 1127  * help lock contention somewhat, and this is critical for HTT. -Peter
 1128  */
 1129 static int      cpu_idle_hlt = 1;
 1130 TUNABLE_INT("machdep.cpu_idle_hlt", &cpu_idle_hlt);
 1131 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
 1132     &cpu_idle_hlt, 0, "Idle loop HLT enable");
 1133 
 1134 static void
 1135 cpu_idle_default(void)
 1136 {
 1137         /*
 1138          * we must absolutely guarentee that hlt is the
 1139          * absolute next instruction after sti or we
 1140          * introduce a timing window.
 1141          */
 1142         __asm __volatile("sti; hlt");
 1143 }
 1144 
 1145 /*
 1146  * Note that we have to be careful here to avoid a race between checking
 1147  * sched_runnable() and actually halting.  If we don't do this, we may waste
 1148  * the time between calling hlt and the next interrupt even though there
 1149  * is a runnable process.
 1150  */
 1151 void
 1152 cpu_idle(void)
 1153 {
 1154 
 1155 #ifdef SMP
 1156         if (mp_grab_cpu_hlt())
 1157                 return;
 1158 #endif
 1159 
 1160         if (cpu_idle_hlt) {
 1161                 disable_intr();
 1162                 if (sched_runnable())
 1163                         enable_intr();
 1164                 else
 1165                         (*cpu_idle_hook)();
 1166         }
 1167 }
 1168 
 1169 /* Other subsystems (e.g., ACPI) can hook this later. */
 1170 void (*cpu_idle_hook)(void) = cpu_idle_default;
 1171 
 1172 /*
 1173  * Reset registers to default values on exec.
 1174  */
 1175 void
 1176 exec_setregs(td, entry, stack, ps_strings)
 1177         struct thread *td;
 1178         u_long entry;
 1179         u_long stack;
 1180         u_long ps_strings;
 1181 {
 1182         struct trapframe *regs = td->td_frame;
 1183         struct pcb *pcb = td->td_pcb;
 1184 
 1185         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1186         pcb->pcb_gs = _udatasel;
 1187         load_gs(_udatasel);
 1188 
 1189         mtx_lock_spin(&dt_lock);
 1190         if (td->td_proc->p_md.md_ldt)
 1191                 user_ldt_free(td);
 1192         else
 1193                 mtx_unlock_spin(&dt_lock);
 1194   
 1195         bzero((char *)regs, sizeof(struct trapframe));
 1196         regs->tf_eip = entry;
 1197         regs->tf_esp = stack;
 1198         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1199         regs->tf_ss = _udatasel;
 1200         regs->tf_ds = _udatasel;
 1201         regs->tf_es = _udatasel;
 1202         regs->tf_fs = _udatasel;
 1203         regs->tf_cs = _ucodesel;
 1204 
 1205         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1206         regs->tf_ebx = ps_strings;
 1207 
 1208         /*
 1209          * Reset the hardware debug registers if they were in use.
 1210          * They won't have any meaning for the newly exec'd process.  
 1211          */
 1212         if (pcb->pcb_flags & PCB_DBREGS) {
 1213                 pcb->pcb_dr0 = 0;
 1214                 pcb->pcb_dr1 = 0;
 1215                 pcb->pcb_dr2 = 0;
 1216                 pcb->pcb_dr3 = 0;
 1217                 pcb->pcb_dr6 = 0;
 1218                 pcb->pcb_dr7 = 0;
 1219                 if (pcb == PCPU_GET(curpcb)) {
 1220                         /*
 1221                          * Clear the debug registers on the running
 1222                          * CPU, otherwise they will end up affecting
 1223                          * the next process we switch to.
 1224                          */
 1225                         reset_dbregs();
 1226                 }
 1227                 pcb->pcb_flags &= ~PCB_DBREGS;
 1228         }
 1229 
 1230         /*
 1231          * Initialize the math emulator (if any) for the current process.
 1232          * Actually, just clear the bit that says that the emulator has
 1233          * been initialized.  Initialization is delayed until the process
 1234          * traps to the emulator (if it is done at all) mainly because
 1235          * emulators don't provide an entry point for initialization.
 1236          */
 1237         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1238         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1239 
 1240         /*
 1241          * Drop the FP state if we hold it, so that the process gets a
 1242          * clean FP state if it uses the FPU again.
 1243          */
 1244         fpstate_drop(td);
 1245 
 1246         /*
 1247          * XXX - Linux emulator
 1248          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1249          * on it.
 1250          */
 1251         td->td_retval[1] = 0;
 1252 }
 1253 
 1254 void
 1255 cpu_setregs(void)
 1256 {
 1257         unsigned int cr0;
 1258 
 1259         cr0 = rcr0();
 1260 
 1261         /*
 1262          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1263          *
 1264          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1265          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1266          * bit to control the trap, because setting the CR0_EM bit does
 1267          * not cause WAIT instructions to trap.  It's important to trap
 1268          * WAIT instructions - otherwise the "wait" variants of no-wait
 1269          * control instructions would degenerate to the "no-wait" variants
 1270          * after FP context switches but work correctly otherwise.  It's
 1271          * particularly important to trap WAITs when there is no NPX -
 1272          * otherwise the "wait" variants would always degenerate.
 1273          *
 1274          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1275          * Setting it should fail or do nothing on lesser processors.
 1276          */
 1277         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1278         load_cr0(cr0);
 1279         load_gs(_udatasel);
 1280 }
 1281 
 1282 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1283 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1284         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1285 
 1286 /*
 1287  * Initialize 386 and configure to run kernel
 1288  */
 1289 
 1290 /*
 1291  * Initialize segments & interrupt table
 1292  */
 1293 
 1294 int _default_ldt;
 1295 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1296 static struct gate_descriptor idt0[NIDT];
 1297 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1298 union descriptor ldt[NLDT];             /* local descriptor table */
 1299 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1300 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1301 
 1302 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1303 extern int has_f00f_bug;
 1304 #endif
 1305 
 1306 static struct i386tss dblfault_tss;
 1307 static char dblfault_stack[PAGE_SIZE];
 1308 
 1309 extern  vm_offset_t     proc0kstack;
 1310 
 1311 
 1312 /*
 1313  * software prototypes -- in more palatable form.
 1314  *
 1315  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1316  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1317  */
 1318 struct soft_segment_descriptor gdt_segs[] = {
 1319 /* GNULL_SEL    0 Null Descriptor */
 1320 {       0x0,                    /* segment base address  */
 1321         0x0,                    /* length */
 1322         0,                      /* segment type */
 1323         0,                      /* segment descriptor priority level */
 1324         0,                      /* segment descriptor present */
 1325         0, 0,
 1326         0,                      /* default 32 vs 16 bit size */
 1327         0                       /* limit granularity (byte/page units)*/ },
 1328 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1329 {       0x0,                    /* segment base address  */
 1330         0xfffff,                /* length - all address space */
 1331         SDT_MEMRWA,             /* segment type */
 1332         0,                      /* segment descriptor priority level */
 1333         1,                      /* segment descriptor present */
 1334         0, 0,
 1335         1,                      /* default 32 vs 16 bit size */
 1336         1                       /* limit granularity (byte/page units)*/ },
 1337 /* GUFS_SEL     2 %fs Descriptor for user */
 1338 {       0x0,                    /* segment base address  */
 1339         0xfffff,                /* length - all address space */
 1340         SDT_MEMRWA,             /* segment type */
 1341         SEL_UPL,                /* segment descriptor priority level */
 1342         1,                      /* segment descriptor present */
 1343         0, 0,
 1344         1,                      /* default 32 vs 16 bit size */
 1345         1                       /* limit granularity (byte/page units)*/ },
 1346 /* GUGS_SEL     3 %gs Descriptor for user */
 1347 {       0x0,                    /* segment base address  */
 1348         0xfffff,                /* length - all address space */
 1349         SDT_MEMRWA,             /* segment type */
 1350         SEL_UPL,                /* segment descriptor priority level */
 1351         1,                      /* segment descriptor present */
 1352         0, 0,
 1353         1,                      /* default 32 vs 16 bit size */
 1354         1                       /* limit granularity (byte/page units)*/ },
 1355 /* GCODE_SEL    4 Code Descriptor for kernel */
 1356 {       0x0,                    /* segment base address  */
 1357         0xfffff,                /* length - all address space */
 1358         SDT_MEMERA,             /* segment type */
 1359         0,                      /* segment descriptor priority level */
 1360         1,                      /* segment descriptor present */
 1361         0, 0,
 1362         1,                      /* default 32 vs 16 bit size */
 1363         1                       /* limit granularity (byte/page units)*/ },
 1364 /* GDATA_SEL    5 Data Descriptor for kernel */
 1365 {       0x0,                    /* segment base address  */
 1366         0xfffff,                /* length - all address space */
 1367         SDT_MEMRWA,             /* segment type */
 1368         0,                      /* segment descriptor priority level */
 1369         1,                      /* segment descriptor present */
 1370         0, 0,
 1371         1,                      /* default 32 vs 16 bit size */
 1372         1                       /* limit granularity (byte/page units)*/ },
 1373 /* GUCODE_SEL   6 Code Descriptor for user */
 1374 {       0x0,                    /* segment base address  */
 1375         0xfffff,                /* length - all address space */
 1376         SDT_MEMERA,             /* segment type */
 1377         SEL_UPL,                /* segment descriptor priority level */
 1378         1,                      /* segment descriptor present */
 1379         0, 0,
 1380         1,                      /* default 32 vs 16 bit size */
 1381         1                       /* limit granularity (byte/page units)*/ },
 1382 /* GUDATA_SEL   7 Data Descriptor for user */
 1383 {       0x0,                    /* segment base address  */
 1384         0xfffff,                /* length - all address space */
 1385         SDT_MEMRWA,             /* segment type */
 1386         SEL_UPL,                /* segment descriptor priority level */
 1387         1,                      /* segment descriptor present */
 1388         0, 0,
 1389         1,                      /* default 32 vs 16 bit size */
 1390         1                       /* limit granularity (byte/page units)*/ },
 1391 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1392 {       0x400,                  /* segment base address */
 1393         0xfffff,                /* length */
 1394         SDT_MEMRWA,             /* segment type */
 1395         0,                      /* segment descriptor priority level */
 1396         1,                      /* segment descriptor present */
 1397         0, 0,
 1398         1,                      /* default 32 vs 16 bit size */
 1399         1                       /* limit granularity (byte/page units)*/ },
 1400 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1401 {
 1402         0x0,                    /* segment base address */
 1403         sizeof(struct i386tss)-1,/* length  */
 1404         SDT_SYS386TSS,          /* segment type */
 1405         0,                      /* segment descriptor priority level */
 1406         1,                      /* segment descriptor present */
 1407         0, 0,
 1408         0,                      /* unused - default 32 vs 16 bit size */
 1409         0                       /* limit granularity (byte/page units)*/ },
 1410 /* GLDT_SEL     10 LDT Descriptor */
 1411 {       (int) ldt,              /* segment base address  */
 1412         sizeof(ldt)-1,          /* length - all address space */
 1413         SDT_SYSLDT,             /* segment type */
 1414         SEL_UPL,                /* segment descriptor priority level */
 1415         1,                      /* segment descriptor present */
 1416         0, 0,
 1417         0,                      /* unused - default 32 vs 16 bit size */
 1418         0                       /* limit granularity (byte/page units)*/ },
 1419 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1420 {       (int) ldt,              /* segment base address  */
 1421         (512 * sizeof(union descriptor)-1),             /* length */
 1422         SDT_SYSLDT,             /* segment type */
 1423         0,                      /* segment descriptor priority level */
 1424         1,                      /* segment descriptor present */
 1425         0, 0,
 1426         0,                      /* unused - default 32 vs 16 bit size */
 1427         0                       /* limit granularity (byte/page units)*/ },
 1428 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1429 {       (int) &dblfault_tss,    /* segment base address  */
 1430         sizeof(struct i386tss)-1,/* length - all address space */
 1431         SDT_SYS386TSS,          /* segment type */
 1432         0,                      /* segment descriptor priority level */
 1433         1,                      /* segment descriptor present */
 1434         0, 0,
 1435         0,                      /* unused - default 32 vs 16 bit size */
 1436         0                       /* limit granularity (byte/page units)*/ },
 1437 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1438 {       0,                      /* segment base address (overwritten)  */
 1439         0xfffff,                /* length */
 1440         SDT_MEMERA,             /* segment type */
 1441         0,                      /* segment descriptor priority level */
 1442         1,                      /* segment descriptor present */
 1443         0, 0,
 1444         0,                      /* default 32 vs 16 bit size */
 1445         1                       /* limit granularity (byte/page units)*/ },
 1446 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1447 {       0,                      /* segment base address (overwritten)  */
 1448         0xfffff,                /* length */
 1449         SDT_MEMERA,             /* segment type */
 1450         0,                      /* segment descriptor priority level */
 1451         1,                      /* segment descriptor present */
 1452         0, 0,
 1453         0,                      /* default 32 vs 16 bit size */
 1454         1                       /* limit granularity (byte/page units)*/ },
 1455 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1456 {       0,                      /* segment base address (overwritten) */
 1457         0xfffff,                /* length */
 1458         SDT_MEMRWA,             /* segment type */
 1459         0,                      /* segment descriptor priority level */
 1460         1,                      /* segment descriptor present */
 1461         0, 0,
 1462         1,                      /* default 32 vs 16 bit size */
 1463         1                       /* limit granularity (byte/page units)*/ },
 1464 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1465 {       0,                      /* segment base address (overwritten) */
 1466         0xfffff,                /* length */
 1467         SDT_MEMRWA,             /* segment type */
 1468         0,                      /* segment descriptor priority level */
 1469         1,                      /* segment descriptor present */
 1470         0, 0,
 1471         0,                      /* default 32 vs 16 bit size */
 1472         1                       /* limit granularity (byte/page units)*/ },
 1473 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1474 {       0,                      /* segment base address (overwritten) */
 1475         0xfffff,                /* length */
 1476         SDT_MEMRWA,             /* segment type */
 1477         0,                      /* segment descriptor priority level */
 1478         1,                      /* segment descriptor present */
 1479         0, 0,
 1480         0,                      /* default 32 vs 16 bit size */
 1481         1                       /* limit granularity (byte/page units)*/ },
 1482 /* GNDIS_SEL    18 NDIS Descriptor */
 1483 {       0x0,                    /* segment base address  */
 1484         0x0,                    /* length */
 1485         0,                      /* segment type */
 1486         0,                      /* segment descriptor priority level */
 1487         0,                      /* segment descriptor present */
 1488         0, 0,
 1489         0,                      /* default 32 vs 16 bit size */
 1490         0                       /* limit granularity (byte/page units)*/ },
 1491 };
 1492 
 1493 static struct soft_segment_descriptor ldt_segs[] = {
 1494         /* Null Descriptor - overwritten by call gate */
 1495 {       0x0,                    /* segment base address  */
 1496         0x0,                    /* length - all address space */
 1497         0,                      /* segment type */
 1498         0,                      /* segment descriptor priority level */
 1499         0,                      /* segment descriptor present */
 1500         0, 0,
 1501         0,                      /* default 32 vs 16 bit size */
 1502         0                       /* limit granularity (byte/page units)*/ },
 1503         /* Null Descriptor - overwritten by call gate */
 1504 {       0x0,                    /* segment base address  */
 1505         0x0,                    /* length - all address space */
 1506         0,                      /* segment type */
 1507         0,                      /* segment descriptor priority level */
 1508         0,                      /* segment descriptor present */
 1509         0, 0,
 1510         0,                      /* default 32 vs 16 bit size */
 1511         0                       /* limit granularity (byte/page units)*/ },
 1512         /* Null Descriptor - overwritten by call gate */
 1513 {       0x0,                    /* segment base address  */
 1514         0x0,                    /* length - all address space */
 1515         0,                      /* segment type */
 1516         0,                      /* segment descriptor priority level */
 1517         0,                      /* segment descriptor present */
 1518         0, 0,
 1519         0,                      /* default 32 vs 16 bit size */
 1520         0                       /* limit granularity (byte/page units)*/ },
 1521         /* Code Descriptor for user */
 1522 {       0x0,                    /* segment base address  */
 1523         0xfffff,                /* length - all address space */
 1524         SDT_MEMERA,             /* segment type */
 1525         SEL_UPL,                /* segment descriptor priority level */
 1526         1,                      /* segment descriptor present */
 1527         0, 0,
 1528         1,                      /* default 32 vs 16 bit size */
 1529         1                       /* limit granularity (byte/page units)*/ },
 1530         /* Null Descriptor - overwritten by call gate */
 1531 {       0x0,                    /* segment base address  */
 1532         0x0,                    /* length - all address space */
 1533         0,                      /* segment type */
 1534         0,                      /* segment descriptor priority level */
 1535         0,                      /* segment descriptor present */
 1536         0, 0,
 1537         0,                      /* default 32 vs 16 bit size */
 1538         0                       /* limit granularity (byte/page units)*/ },
 1539         /* Data Descriptor for user */
 1540 {       0x0,                    /* segment base address  */
 1541         0xfffff,                /* length - all address space */
 1542         SDT_MEMRWA,             /* segment type */
 1543         SEL_UPL,                /* segment descriptor priority level */
 1544         1,                      /* segment descriptor present */
 1545         0, 0,
 1546         1,                      /* default 32 vs 16 bit size */
 1547         1                       /* limit granularity (byte/page units)*/ },
 1548 };
 1549 
 1550 void
 1551 setidt(idx, func, typ, dpl, selec)
 1552         int idx;
 1553         inthand_t *func;
 1554         int typ;
 1555         int dpl;
 1556         int selec;
 1557 {
 1558         struct gate_descriptor *ip;
 1559 
 1560         ip = idt + idx;
 1561         ip->gd_looffset = (int)func;
 1562         ip->gd_selector = selec;
 1563         ip->gd_stkcpy = 0;
 1564         ip->gd_xx = 0;
 1565         ip->gd_type = typ;
 1566         ip->gd_dpl = dpl;
 1567         ip->gd_p = 1;
 1568         ip->gd_hioffset = ((int)func)>>16 ;
 1569 }
 1570 
 1571 extern inthand_t
 1572         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1573         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1574         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1575         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1576         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1577 
 1578 #ifdef DDB
 1579 /*
 1580  * Display the index and function name of any IDT entries that don't use
 1581  * the default 'rsvd' entry point.
 1582  */
 1583 DB_SHOW_COMMAND(idt, db_show_idt)
 1584 {
 1585         struct gate_descriptor *ip;
 1586         int idx;
 1587         uintptr_t func;
 1588 
 1589         ip = idt;
 1590         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1591                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1592                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1593                         db_printf("%3d\t", idx);
 1594                         db_printsym(func, DB_STGY_PROC);
 1595                         db_printf("\n");
 1596                 }
 1597                 ip++;
 1598         }
 1599 }
 1600 
 1601 /* Show privileged registers. */
 1602 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1603 {
 1604         uint64_t idtr, gdtr;
 1605 
 1606         idtr = ridt();
 1607         db_printf("idtr\t0x%08x/%04x\n",
 1608             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1609         gdtr = rgdt();
 1610         db_printf("gdtr\t0x%08x/%04x\n",
 1611             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1612         db_printf("ldtr\t0x%04x\n", rldt());
 1613         db_printf("tr\t0x%04x\n", rtr());
 1614         db_printf("cr0\t0x%08x\n", rcr0());
 1615         db_printf("cr2\t0x%08x\n", rcr2());
 1616         db_printf("cr3\t0x%08x\n", rcr3());
 1617         db_printf("cr4\t0x%08x\n", rcr4());
 1618 }
 1619 #endif
 1620 
 1621 void
 1622 sdtossd(sd, ssd)
 1623         struct segment_descriptor *sd;
 1624         struct soft_segment_descriptor *ssd;
 1625 {
 1626         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1627         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1628         ssd->ssd_type  = sd->sd_type;
 1629         ssd->ssd_dpl   = sd->sd_dpl;
 1630         ssd->ssd_p     = sd->sd_p;
 1631         ssd->ssd_def32 = sd->sd_def32;
 1632         ssd->ssd_gran  = sd->sd_gran;
 1633 }
 1634 
 1635 static void
 1636 basemem_setup(void)
 1637 {
 1638         vm_paddr_t pa;
 1639         pt_entry_t *pte;
 1640         int i;
 1641 
 1642         if (basemem > 640) {
 1643                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1644                         basemem);
 1645                 basemem = 640;
 1646         }
 1647 
 1648         /*
 1649          * XXX if biosbasemem is now < 640, there is a `hole'
 1650          * between the end of base memory and the start of
 1651          * ISA memory.  The hole may be empty or it may
 1652          * contain BIOS code or data.  Map it read/write so
 1653          * that the BIOS can write to it.  (Memory from 0 to
 1654          * the physical end of the kernel is mapped read-only
 1655          * to begin with and then parts of it are remapped.
 1656          * The parts that aren't remapped form holes that
 1657          * remain read-only and are unused by the kernel.
 1658          * The base memory area is below the physical end of
 1659          * the kernel and right now forms a read-only hole.
 1660          * The part of it from PAGE_SIZE to
 1661          * (trunc_page(biosbasemem * 1024) - 1) will be
 1662          * remapped and used by the kernel later.)
 1663          *
 1664          * This code is similar to the code used in
 1665          * pmap_mapdev, but since no memory needs to be
 1666          * allocated we simply change the mapping.
 1667          */
 1668         for (pa = trunc_page(basemem * 1024);
 1669              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1670                 pmap_kenter(KERNBASE + pa, pa);
 1671 
 1672         /*
 1673          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 1674          * the vm86 page table so that vm86 can scribble on them using
 1675          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 1676          * page 0, at least as initialized here?
 1677          */
 1678         pte = (pt_entry_t *)vm86paddr;
 1679         for (i = basemem / 4; i < 160; i++)
 1680                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1681 }
 1682 
 1683 /*
 1684  * Populate the (physmap) array with base/bound pairs describing the
 1685  * available physical memory in the system, then test this memory and
 1686  * build the phys_avail array describing the actually-available memory.
 1687  *
 1688  * If we cannot accurately determine the physical memory map, then use
 1689  * value from the 0xE801 call, and failing that, the RTC.
 1690  *
 1691  * Total memory size may be set by the kernel environment variable
 1692  * hw.physmem or the compile-time define MAXMEM.
 1693  *
 1694  * XXX first should be vm_paddr_t.
 1695  */
 1696 static void
 1697 getmemsize(int first)
 1698 {
 1699         int off, physmap_idx, pa_indx, da_indx;
 1700         u_long physmem_tunable, memtest;
 1701         vm_paddr_t physmap[PHYSMAP_SIZE];
 1702         pt_entry_t *pte;
 1703         quad_t dcons_addr, dcons_size;
 1704         int i;
 1705         int pg_n;
 1706         u_int extmem;
 1707         u_int under16;
 1708         vm_paddr_t pa;
 1709 
 1710         bzero(physmap, sizeof(physmap));
 1711 
 1712         /* XXX - some of EPSON machines can't use PG_N */
 1713         pg_n = PG_N;
 1714         if (pc98_machine_type & M_EPSON_PC98) {
 1715                 switch (epson_machine_id) {
 1716 #ifdef WB_CACHE
 1717                 default:
 1718 #endif
 1719                 case EPSON_PC486_HX:
 1720                 case EPSON_PC486_HG:
 1721                 case EPSON_PC486_HA:
 1722                         pg_n = 0;
 1723                         break;
 1724                 }
 1725         }
 1726 
 1727         under16 = pc98_getmemsize(&basemem, &extmem);
 1728         basemem_setup();
 1729 
 1730         physmap[0] = 0;
 1731         physmap[1] = basemem * 1024;
 1732         physmap_idx = 2;
 1733         physmap[physmap_idx] = 0x100000;
 1734         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1735 
 1736         /*
 1737          * Now, physmap contains a map of physical memory.
 1738          */
 1739 
 1740 #ifdef SMP
 1741         /* make hole for AP bootstrap code */
 1742         physmap[1] = mp_bootaddress(physmap[1]);
 1743 #endif
 1744 
 1745         /*
 1746          * Maxmem isn't the "maximum memory", it's one larger than the
 1747          * highest page of the physical address space.  It should be
 1748          * called something like "Maxphyspage".  We may adjust this 
 1749          * based on ``hw.physmem'' and the results of the memory test.
 1750          */
 1751         Maxmem = atop(physmap[physmap_idx + 1]);
 1752 
 1753 #ifdef MAXMEM
 1754         Maxmem = MAXMEM / 4;
 1755 #endif
 1756 
 1757         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1758                 Maxmem = atop(physmem_tunable);
 1759 
 1760         /*
 1761          * By default keep the memtest enabled.  Use a general name so that
 1762          * one could eventually do more with the code than just disable it.
 1763          */
 1764         memtest = 1;
 1765         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1766 
 1767         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1768             (boothowto & RB_VERBOSE))
 1769                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1770 
 1771         /*
 1772          * If Maxmem has been increased beyond what the system has detected,
 1773          * extend the last memory segment to the new limit.
 1774          */ 
 1775         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1776                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1777 
 1778         /*
 1779          * We need to divide chunk if Maxmem is larger than 16MB and
 1780          * under 16MB area is not full of memory.
 1781          * (1) system area (15-16MB region) is cut off
 1782          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 1783          */
 1784         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 1785                 /* 15M - 16M region is cut off, so need to divide chunk */
 1786                 physmap[physmap_idx + 1] = under16 * 1024;
 1787                 physmap_idx += 2;
 1788                 physmap[physmap_idx] = 0x1000000;
 1789                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 1790         }
 1791 
 1792         /* call pmap initialization to make new kernel address space */
 1793         pmap_bootstrap(first);
 1794 
 1795         /*
 1796          * Size up each available chunk of physical memory.
 1797          */
 1798         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1799         pa_indx = 0;
 1800         da_indx = 1;
 1801         phys_avail[pa_indx++] = physmap[0];
 1802         phys_avail[pa_indx] = physmap[0];
 1803         dump_avail[da_indx] = physmap[0];
 1804         pte = CMAP1;
 1805 
 1806         /*
 1807          * Get dcons buffer address
 1808          */
 1809         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1810             getenv_quad("dcons.size", &dcons_size) == 0)
 1811                 dcons_addr = 0;
 1812 
 1813         /*
 1814          * physmap is in bytes, so when converting to page boundaries,
 1815          * round up the start address and round down the end address.
 1816          */
 1817         for (i = 0; i <= physmap_idx; i += 2) {
 1818                 vm_paddr_t end;
 1819 
 1820                 end = ptoa((vm_paddr_t)Maxmem);
 1821                 if (physmap[i + 1] < end)
 1822                         end = trunc_page(physmap[i + 1]);
 1823                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1824                         int tmp, page_bad, full;
 1825                         int *ptr = (int *)CADDR1;
 1826 
 1827                         full = FALSE;
 1828                         /*
 1829                          * block out kernel memory as not available.
 1830                          */
 1831                         if (pa >= KERNLOAD && pa < first)
 1832                                 goto do_dump_avail;
 1833 
 1834                         /*
 1835                          * block out dcons buffer
 1836                          */
 1837                         if (dcons_addr > 0
 1838                             && pa >= trunc_page(dcons_addr)
 1839                             && pa < dcons_addr + dcons_size)
 1840                                 goto do_dump_avail;
 1841 
 1842                         page_bad = FALSE;
 1843                         if (memtest == 0)
 1844                                 goto skip_memtest;
 1845 
 1846                         /*
 1847                          * map page into kernel: valid, read/write,non-cacheable
 1848                          */
 1849                         *pte = pa | PG_V | PG_RW | pg_n;
 1850                         invltlb();
 1851 
 1852                         tmp = *(int *)ptr;
 1853                         /*
 1854                          * Test for alternating 1's and 0's
 1855                          */
 1856                         *(volatile int *)ptr = 0xaaaaaaaa;
 1857                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1858                                 page_bad = TRUE;
 1859                         /*
 1860                          * Test for alternating 0's and 1's
 1861                          */
 1862                         *(volatile int *)ptr = 0x55555555;
 1863                         if (*(volatile int *)ptr != 0x55555555)
 1864                                 page_bad = TRUE;
 1865                         /*
 1866                          * Test for all 1's
 1867                          */
 1868                         *(volatile int *)ptr = 0xffffffff;
 1869                         if (*(volatile int *)ptr != 0xffffffff)
 1870                                 page_bad = TRUE;
 1871                         /*
 1872                          * Test for all 0's
 1873                          */
 1874                         *(volatile int *)ptr = 0x0;
 1875                         if (*(volatile int *)ptr != 0x0)
 1876                                 page_bad = TRUE;
 1877                         /*
 1878                          * Restore original value.
 1879                          */
 1880                         *(int *)ptr = tmp;
 1881 
 1882 skip_memtest:
 1883                         /*
 1884                          * Adjust array of valid/good pages.
 1885                          */
 1886                         if (page_bad == TRUE)
 1887                                 continue;
 1888                         /*
 1889                          * If this good page is a continuation of the
 1890                          * previous set of good pages, then just increase
 1891                          * the end pointer. Otherwise start a new chunk.
 1892                          * Note that "end" points one higher than end,
 1893                          * making the range >= start and < end.
 1894                          * If we're also doing a speculative memory
 1895                          * test and we at or past the end, bump up Maxmem
 1896                          * so that we keep going. The first bad page
 1897                          * will terminate the loop.
 1898                          */
 1899                         if (phys_avail[pa_indx] == pa) {
 1900                                 phys_avail[pa_indx] += PAGE_SIZE;
 1901                         } else {
 1902                                 pa_indx++;
 1903                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1904                                         printf(
 1905                 "Too many holes in the physical address space, giving up\n");
 1906                                         pa_indx--;
 1907                                         full = TRUE;
 1908                                         goto do_dump_avail;
 1909                                 }
 1910                                 phys_avail[pa_indx++] = pa;     /* start */
 1911                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1912                         }
 1913                         physmem++;
 1914 do_dump_avail:
 1915                         if (dump_avail[da_indx] == pa) {
 1916                                 dump_avail[da_indx] += PAGE_SIZE;
 1917                         } else {
 1918                                 da_indx++;
 1919                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1920                                         da_indx--;
 1921                                         goto do_next;
 1922                                 }
 1923                                 dump_avail[da_indx++] = pa;     /* start */
 1924                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1925                         }
 1926 do_next:
 1927                         if (full)
 1928                                 break;
 1929                 }
 1930         }
 1931         *pte = 0;
 1932         invltlb();
 1933 
 1934         /*
 1935          * XXX
 1936          * The last chunk must contain at least one page plus the message
 1937          * buffer to avoid complicating other code (message buffer address
 1938          * calculation, etc.).
 1939          */
 1940         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1941             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1942                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1943                 phys_avail[pa_indx--] = 0;
 1944                 phys_avail[pa_indx--] = 0;
 1945         }
 1946 
 1947         Maxmem = atop(phys_avail[pa_indx]);
 1948 
 1949         /* Trim off space for the message buffer. */
 1950         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1951 
 1952         /* Map the message buffer. */
 1953         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1954                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 1955                     off);
 1956 }
 1957 
 1958 void
 1959 init386(first)
 1960         int first;
 1961 {
 1962         struct gate_descriptor *gdp;
 1963         int gsel_tss, metadata_missing, x;
 1964         struct pcpu *pc;
 1965 
 1966         thread0.td_kstack = proc0kstack;
 1967         thread0.td_pcb = (struct pcb *)
 1968            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1969 
 1970         /*
 1971          * This may be done better later if it gets more high level
 1972          * components in it. If so just link td->td_proc here.
 1973          */
 1974         proc_linkup0(&proc0, &thread0);
 1975 
 1976         /*
 1977          * Initialize DMAC
 1978          */
 1979         pc98_init_dmac();
 1980 
 1981         metadata_missing = 0;
 1982         if (bootinfo.bi_modulep) {
 1983                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 1984                 preload_bootstrap_relocate(KERNBASE);
 1985         } else {
 1986                 metadata_missing = 1;
 1987         }
 1988         if (envmode == 1)
 1989                 kern_envp = static_env;
 1990         else if (bootinfo.bi_envp)
 1991                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 1992 
 1993         /* Init basic tunables, hz etc */
 1994         init_param1();
 1995 
 1996         /*
 1997          * Make gdt memory segments.  All segments cover the full 4GB
 1998          * of address space and permissions are enforced at page level.
 1999          */
 2000         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2001         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2002         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2003         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2004         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2005         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2006 
 2007         pc = &__pcpu[0];
 2008         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2009         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2010         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2011 
 2012         for (x = 0; x < NGDT; x++)
 2013                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2014 
 2015         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2016         r_gdt.rd_base =  (int) gdt;
 2017         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2018         lgdt(&r_gdt);
 2019 
 2020         pcpu_init(pc, 0, sizeof(struct pcpu));
 2021         PCPU_SET(prvspace, pc);
 2022         PCPU_SET(curthread, &thread0);
 2023         PCPU_SET(curpcb, thread0.td_pcb);
 2024 
 2025         /*
 2026          * Initialize mutexes.
 2027          *
 2028          * icu_lock: in order to allow an interrupt to occur in a critical
 2029          *           section, to set pcpu->ipending (etc...) properly, we
 2030          *           must be able to get the icu lock, so it can't be
 2031          *           under witness.
 2032          */
 2033         mutex_init();
 2034         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2035 
 2036         /* make ldt memory segments */
 2037         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2038         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2039         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2040                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2041 
 2042         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2043         lldt(_default_ldt);
 2044         PCPU_SET(currentldt, _default_ldt);
 2045 
 2046         /* exceptions */
 2047         for (x = 0; x < NIDT; x++)
 2048                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2049                     GSEL(GCODE_SEL, SEL_KPL));
 2050         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2051             GSEL(GCODE_SEL, SEL_KPL));
 2052         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2053             GSEL(GCODE_SEL, SEL_KPL));
 2054         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2055             GSEL(GCODE_SEL, SEL_KPL));
 2056         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2057             GSEL(GCODE_SEL, SEL_KPL));
 2058         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2059             GSEL(GCODE_SEL, SEL_KPL));
 2060         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2061             GSEL(GCODE_SEL, SEL_KPL));
 2062         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2063             GSEL(GCODE_SEL, SEL_KPL));
 2064         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2065             , GSEL(GCODE_SEL, SEL_KPL));
 2066         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2067         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2068             GSEL(GCODE_SEL, SEL_KPL));
 2069         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2070             GSEL(GCODE_SEL, SEL_KPL));
 2071         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2072             GSEL(GCODE_SEL, SEL_KPL));
 2073         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2074             GSEL(GCODE_SEL, SEL_KPL));
 2075         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2076             GSEL(GCODE_SEL, SEL_KPL));
 2077         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2078             GSEL(GCODE_SEL, SEL_KPL));
 2079         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2080             GSEL(GCODE_SEL, SEL_KPL));
 2081         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2082             GSEL(GCODE_SEL, SEL_KPL));
 2083         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2084             GSEL(GCODE_SEL, SEL_KPL));
 2085         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2086             GSEL(GCODE_SEL, SEL_KPL));
 2087         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2088             GSEL(GCODE_SEL, SEL_KPL));
 2089 
 2090         r_idt.rd_limit = sizeof(idt0) - 1;
 2091         r_idt.rd_base = (int) idt;
 2092         lidt(&r_idt);
 2093 
 2094         /*
 2095          * Initialize the i8254 before the console so that console
 2096          * initialization can use DELAY().
 2097          */
 2098         i8254_init();
 2099 
 2100         /*
 2101          * Initialize the console before we print anything out.
 2102          */
 2103         cninit();
 2104 
 2105         if (metadata_missing)
 2106                 printf("WARNING: loader(8) metadata is missing!\n");
 2107 
 2108 #ifdef DEV_ISA
 2109         atpic_startup();
 2110 #endif
 2111 
 2112 #ifdef DDB
 2113         ksym_start = bootinfo.bi_symtab;
 2114         ksym_end = bootinfo.bi_esymtab;
 2115 #endif
 2116 
 2117         kdb_init();
 2118 
 2119 #ifdef KDB
 2120         if (boothowto & RB_KDB)
 2121                 kdb_enter_why(KDB_WHY_BOOTFLAGS,
 2122                     "Boot flags requested debugger");
 2123 #endif
 2124 
 2125         finishidentcpu();       /* Final stage of CPU initialization */
 2126         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2127             GSEL(GCODE_SEL, SEL_KPL));
 2128         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2129             GSEL(GCODE_SEL, SEL_KPL));
 2130         initializecpu();        /* Initialize CPU registers */
 2131 
 2132         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2133         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2134         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2135             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2136         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2137         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2138         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2139         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2140         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2141         ltr(gsel_tss);
 2142 
 2143         /* pointer to selector slot for %fs/%gs */
 2144         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2145 
 2146         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2147             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2148         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2149             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2150         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2151         dblfault_tss.tss_eip = (int)dblfault_handler;
 2152         dblfault_tss.tss_eflags = PSL_KERNEL;
 2153         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2154             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2155         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2156         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2157         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2158 
 2159         vm86_initialize();
 2160         getmemsize(first);
 2161         init_param2(physmem);
 2162 
 2163         /* now running on new page tables, configured,and u/iom is accessible */
 2164 
 2165         msgbufinit(msgbufp, MSGBUF_SIZE);
 2166 
 2167         /* make a call gate to reenter kernel with */
 2168         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2169 
 2170         x = (int) &IDTVEC(lcall_syscall);
 2171         gdp->gd_looffset = x;
 2172         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2173         gdp->gd_stkcpy = 1;
 2174         gdp->gd_type = SDT_SYS386CGT;
 2175         gdp->gd_dpl = SEL_UPL;
 2176         gdp->gd_p = 1;
 2177         gdp->gd_hioffset = x >> 16;
 2178 
 2179         /* XXX does this work? */
 2180         /* XXX yes! */
 2181         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2182         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2183 
 2184         /* transfer to user mode */
 2185 
 2186         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2187         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2188 
 2189         /* setup proc 0's pcb */
 2190         thread0.td_pcb->pcb_flags = 0;
 2191         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2192         thread0.td_pcb->pcb_ext = 0;
 2193         thread0.td_frame = &proc0_tf;
 2194 }
 2195 
 2196 void
 2197 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2198 {
 2199 
 2200 }
 2201 
 2202 void
 2203 spinlock_enter(void)
 2204 {
 2205         struct thread *td;
 2206         register_t flags;
 2207 
 2208         td = curthread;
 2209         if (td->td_md.md_spinlock_count == 0) {
 2210                 flags = intr_disable();
 2211                 td->td_md.md_spinlock_count = 1;
 2212                 td->td_md.md_saved_flags = flags;
 2213         } else
 2214                 td->td_md.md_spinlock_count++;
 2215         critical_enter();
 2216 }
 2217 
 2218 void
 2219 spinlock_exit(void)
 2220 {
 2221         struct thread *td;
 2222         register_t flags;
 2223 
 2224         td = curthread;
 2225         critical_exit();
 2226         flags = td->td_md.md_saved_flags;
 2227         td->td_md.md_spinlock_count--;
 2228         if (td->td_md.md_spinlock_count == 0)
 2229                 intr_restore(flags);
 2230 }
 2231 
 2232 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2233 static void f00f_hack(void *unused);
 2234 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 2235 
 2236 static void
 2237 f00f_hack(void *unused)
 2238 {
 2239         struct gate_descriptor *new_idt;
 2240         vm_offset_t tmp;
 2241 
 2242         if (!has_f00f_bug)
 2243                 return;
 2244 
 2245         GIANT_REQUIRED;
 2246 
 2247         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2248 
 2249         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 2250         if (tmp == 0)
 2251                 panic("kmem_alloc returned 0");
 2252 
 2253         /* Put the problematic entry (#6) at the end of the lower page. */
 2254         new_idt = (struct gate_descriptor*)
 2255             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2256         bcopy(idt, new_idt, sizeof(idt0));
 2257         r_idt.rd_base = (u_int)new_idt;
 2258         lidt(&r_idt);
 2259         idt = new_idt;
 2260         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 2261                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 2262                 panic("vm_map_protect failed");
 2263 }
 2264 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2265 
 2266 /*
 2267  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2268  * we want to start a backtrace from the function that caused us to enter
 2269  * the debugger. We have the context in the trapframe, but base the trace
 2270  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2271  * enough for a backtrace.
 2272  */
 2273 void
 2274 makectx(struct trapframe *tf, struct pcb *pcb)
 2275 {
 2276 
 2277         pcb->pcb_edi = tf->tf_edi;
 2278         pcb->pcb_esi = tf->tf_esi;
 2279         pcb->pcb_ebp = tf->tf_ebp;
 2280         pcb->pcb_ebx = tf->tf_ebx;
 2281         pcb->pcb_eip = tf->tf_eip;
 2282         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2283 }
 2284 
 2285 int
 2286 ptrace_set_pc(struct thread *td, u_long addr)
 2287 {
 2288 
 2289         td->td_frame->tf_eip = addr;
 2290         return (0);
 2291 }
 2292 
 2293 int
 2294 ptrace_single_step(struct thread *td)
 2295 {
 2296         td->td_frame->tf_eflags |= PSL_T;
 2297         return (0);
 2298 }
 2299 
 2300 int
 2301 ptrace_clear_single_step(struct thread *td)
 2302 {
 2303         td->td_frame->tf_eflags &= ~PSL_T;
 2304         return (0);
 2305 }
 2306 
 2307 int
 2308 fill_regs(struct thread *td, struct reg *regs)
 2309 {
 2310         struct pcb *pcb;
 2311         struct trapframe *tp;
 2312 
 2313         tp = td->td_frame;
 2314         pcb = td->td_pcb;
 2315         regs->r_fs = tp->tf_fs;
 2316         regs->r_es = tp->tf_es;
 2317         regs->r_ds = tp->tf_ds;
 2318         regs->r_edi = tp->tf_edi;
 2319         regs->r_esi = tp->tf_esi;
 2320         regs->r_ebp = tp->tf_ebp;
 2321         regs->r_ebx = tp->tf_ebx;
 2322         regs->r_edx = tp->tf_edx;
 2323         regs->r_ecx = tp->tf_ecx;
 2324         regs->r_eax = tp->tf_eax;
 2325         regs->r_eip = tp->tf_eip;
 2326         regs->r_cs = tp->tf_cs;
 2327         regs->r_eflags = tp->tf_eflags;
 2328         regs->r_esp = tp->tf_esp;
 2329         regs->r_ss = tp->tf_ss;
 2330         regs->r_gs = pcb->pcb_gs;
 2331         return (0);
 2332 }
 2333 
 2334 int
 2335 set_regs(struct thread *td, struct reg *regs)
 2336 {
 2337         struct pcb *pcb;
 2338         struct trapframe *tp;
 2339 
 2340         tp = td->td_frame;
 2341         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2342             !CS_SECURE(regs->r_cs))
 2343                 return (EINVAL);
 2344         pcb = td->td_pcb;
 2345         tp->tf_fs = regs->r_fs;
 2346         tp->tf_es = regs->r_es;
 2347         tp->tf_ds = regs->r_ds;
 2348         tp->tf_edi = regs->r_edi;
 2349         tp->tf_esi = regs->r_esi;
 2350         tp->tf_ebp = regs->r_ebp;
 2351         tp->tf_ebx = regs->r_ebx;
 2352         tp->tf_edx = regs->r_edx;
 2353         tp->tf_ecx = regs->r_ecx;
 2354         tp->tf_eax = regs->r_eax;
 2355         tp->tf_eip = regs->r_eip;
 2356         tp->tf_cs = regs->r_cs;
 2357         tp->tf_eflags = regs->r_eflags;
 2358         tp->tf_esp = regs->r_esp;
 2359         tp->tf_ss = regs->r_ss;
 2360         pcb->pcb_gs = regs->r_gs;
 2361         return (0);
 2362 }
 2363 
 2364 #ifdef CPU_ENABLE_SSE
 2365 static void
 2366 fill_fpregs_xmm(sv_xmm, sv_87)
 2367         struct savexmm *sv_xmm;
 2368         struct save87 *sv_87;
 2369 {
 2370         register struct env87 *penv_87 = &sv_87->sv_env;
 2371         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2372         int i;
 2373 
 2374         bzero(sv_87, sizeof(*sv_87));
 2375 
 2376         /* FPU control/status */
 2377         penv_87->en_cw = penv_xmm->en_cw;
 2378         penv_87->en_sw = penv_xmm->en_sw;
 2379         penv_87->en_tw = penv_xmm->en_tw;
 2380         penv_87->en_fip = penv_xmm->en_fip;
 2381         penv_87->en_fcs = penv_xmm->en_fcs;
 2382         penv_87->en_opcode = penv_xmm->en_opcode;
 2383         penv_87->en_foo = penv_xmm->en_foo;
 2384         penv_87->en_fos = penv_xmm->en_fos;
 2385 
 2386         /* FPU registers */
 2387         for (i = 0; i < 8; ++i)
 2388                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 2389 }
 2390 
 2391 static void
 2392 set_fpregs_xmm(sv_87, sv_xmm)
 2393         struct save87 *sv_87;
 2394         struct savexmm *sv_xmm;
 2395 {
 2396         register struct env87 *penv_87 = &sv_87->sv_env;
 2397         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2398         int i;
 2399 
 2400         /* FPU control/status */
 2401         penv_xmm->en_cw = penv_87->en_cw;
 2402         penv_xmm->en_sw = penv_87->en_sw;
 2403         penv_xmm->en_tw = penv_87->en_tw;
 2404         penv_xmm->en_fip = penv_87->en_fip;
 2405         penv_xmm->en_fcs = penv_87->en_fcs;
 2406         penv_xmm->en_opcode = penv_87->en_opcode;
 2407         penv_xmm->en_foo = penv_87->en_foo;
 2408         penv_xmm->en_fos = penv_87->en_fos;
 2409 
 2410         /* FPU registers */
 2411         for (i = 0; i < 8; ++i)
 2412                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 2413 }
 2414 #endif /* CPU_ENABLE_SSE */
 2415 
 2416 int
 2417 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2418 {
 2419 #ifdef CPU_ENABLE_SSE
 2420         if (cpu_fxsr) {
 2421                 fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
 2422                                                 (struct save87 *)fpregs);
 2423                 return (0);
 2424         }
 2425 #endif /* CPU_ENABLE_SSE */
 2426         bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
 2427         return (0);
 2428 }
 2429 
 2430 int
 2431 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2432 {
 2433 #ifdef CPU_ENABLE_SSE
 2434         if (cpu_fxsr) {
 2435                 set_fpregs_xmm((struct save87 *)fpregs,
 2436                                            &td->td_pcb->pcb_save.sv_xmm);
 2437                 return (0);
 2438         }
 2439 #endif /* CPU_ENABLE_SSE */
 2440         bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
 2441         return (0);
 2442 }
 2443 
 2444 /*
 2445  * Get machine context.
 2446  */
 2447 int
 2448 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2449 {
 2450         struct trapframe *tp;
 2451 
 2452         tp = td->td_frame;
 2453 
 2454         PROC_LOCK(curthread->td_proc);
 2455         mcp->mc_onstack = sigonstack(tp->tf_esp);
 2456         PROC_UNLOCK(curthread->td_proc);
 2457         mcp->mc_gs = td->td_pcb->pcb_gs;
 2458         mcp->mc_fs = tp->tf_fs;
 2459         mcp->mc_es = tp->tf_es;
 2460         mcp->mc_ds = tp->tf_ds;
 2461         mcp->mc_edi = tp->tf_edi;
 2462         mcp->mc_esi = tp->tf_esi;
 2463         mcp->mc_ebp = tp->tf_ebp;
 2464         mcp->mc_isp = tp->tf_isp;
 2465         mcp->mc_eflags = tp->tf_eflags;
 2466         if (flags & GET_MC_CLEAR_RET) {
 2467                 mcp->mc_eax = 0;
 2468                 mcp->mc_edx = 0;
 2469                 mcp->mc_eflags &= ~PSL_C;
 2470         } else {
 2471                 mcp->mc_eax = tp->tf_eax;
 2472                 mcp->mc_edx = tp->tf_edx;
 2473         }
 2474         mcp->mc_ebx = tp->tf_ebx;
 2475         mcp->mc_ecx = tp->tf_ecx;
 2476         mcp->mc_eip = tp->tf_eip;
 2477         mcp->mc_cs = tp->tf_cs;
 2478         mcp->mc_esp = tp->tf_esp;
 2479         mcp->mc_ss = tp->tf_ss;
 2480         mcp->mc_len = sizeof(*mcp);
 2481         get_fpcontext(td, mcp);
 2482         bzero(mcp->mc_spare1, sizeof(mcp->mc_spare1));
 2483         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 2484         return (0);
 2485 }
 2486 
 2487 /*
 2488  * Set machine context.
 2489  *
 2490  * However, we don't set any but the user modifiable flags, and we won't
 2491  * touch the cs selector.
 2492  */
 2493 int
 2494 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2495 {
 2496         struct trapframe *tp;
 2497         int eflags, ret;
 2498 
 2499         tp = td->td_frame;
 2500         if (mcp->mc_len != sizeof(*mcp))
 2501                 return (EINVAL);
 2502         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 2503             (tp->tf_eflags & ~PSL_USERCHANGE);
 2504         if ((ret = set_fpcontext(td, mcp)) == 0) {
 2505                 tp->tf_fs = mcp->mc_fs;
 2506                 tp->tf_es = mcp->mc_es;
 2507                 tp->tf_ds = mcp->mc_ds;
 2508                 tp->tf_edi = mcp->mc_edi;
 2509                 tp->tf_esi = mcp->mc_esi;
 2510                 tp->tf_ebp = mcp->mc_ebp;
 2511                 tp->tf_ebx = mcp->mc_ebx;
 2512                 tp->tf_edx = mcp->mc_edx;
 2513                 tp->tf_ecx = mcp->mc_ecx;
 2514                 tp->tf_eax = mcp->mc_eax;
 2515                 tp->tf_eip = mcp->mc_eip;
 2516                 tp->tf_eflags = eflags;
 2517                 tp->tf_esp = mcp->mc_esp;
 2518                 tp->tf_ss = mcp->mc_ss;
 2519                 td->td_pcb->pcb_gs = mcp->mc_gs;
 2520                 ret = 0;
 2521         }
 2522         return (ret);
 2523 }
 2524 
 2525 static void
 2526 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2527 {
 2528 #ifndef DEV_NPX
 2529         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 2530         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 2531         bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 2532 #else
 2533         union savefpu *addr;
 2534 
 2535         /*
 2536          * XXX mc_fpstate might be misaligned, since its declaration is not
 2537          * unportabilized using __attribute__((aligned(16))) like the
 2538          * declaration of struct savemm, and anyway, alignment doesn't work
 2539          * for auto variables since we don't use gcc's pessimal stack
 2540          * alignment.  Work around this by abusing the spare fields after
 2541          * mcp->mc_fpstate.
 2542          *
 2543          * XXX unpessimize most cases by only aligning when fxsave might be
 2544          * called, although this requires knowing too much about
 2545          * npxgetregs()'s internals.
 2546          */
 2547         addr = (union savefpu *)&mcp->mc_fpstate;
 2548         if (td == PCPU_GET(fpcurthread) &&
 2549 #ifdef CPU_ENABLE_SSE
 2550             cpu_fxsr &&
 2551 #endif
 2552             ((uintptr_t)(void *)addr & 0xF)) {
 2553                 do
 2554                         addr = (void *)((char *)addr + 4);
 2555                 while ((uintptr_t)(void *)addr & 0xF);
 2556         }
 2557         mcp->mc_ownedfp = npxgetregs(td, addr);
 2558         if (addr != (union savefpu *)&mcp->mc_fpstate) {
 2559                 bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 2560                 bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
 2561         }
 2562         mcp->mc_fpformat = npxformat();
 2563 #endif
 2564 }
 2565 
 2566 static int
 2567 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2568 {
 2569         union savefpu *addr;
 2570 
 2571         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2572                 return (0);
 2573         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 2574             mcp->mc_fpformat != _MC_FPFMT_XMM)
 2575                 return (EINVAL);
 2576         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2577                 /* We don't care what state is left in the FPU or PCB. */
 2578                 fpstate_drop(td);
 2579         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2580             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2581                 /* XXX align as above. */
 2582                 addr = (union savefpu *)&mcp->mc_fpstate;
 2583                 if (td == PCPU_GET(fpcurthread) &&
 2584 #ifdef CPU_ENABLE_SSE
 2585                     cpu_fxsr &&
 2586 #endif
 2587                     ((uintptr_t)(void *)addr & 0xF)) {
 2588                         do
 2589                                 addr = (void *)((char *)addr + 4);
 2590                         while ((uintptr_t)(void *)addr & 0xF);
 2591                         bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
 2592                 }
 2593 #ifdef DEV_NPX
 2594 #ifdef CPU_ENABLE_SSE
 2595                 if (cpu_fxsr)
 2596                         addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2597 #endif
 2598                 /*
 2599                  * XXX we violate the dubious requirement that npxsetregs()
 2600                  * be called with interrupts disabled.
 2601                  */
 2602                 npxsetregs(td, addr);
 2603 #endif
 2604                 /*
 2605                  * Don't bother putting things back where they were in the
 2606                  * misaligned case, since we know that the caller won't use
 2607                  * them again.
 2608                  */
 2609         } else
 2610                 return (EINVAL);
 2611         return (0);
 2612 }
 2613 
 2614 static void
 2615 fpstate_drop(struct thread *td)
 2616 {
 2617         register_t s;
 2618 
 2619         s = intr_disable();
 2620 #ifdef DEV_NPX
 2621         if (PCPU_GET(fpcurthread) == td)
 2622                 npxdrop();
 2623 #endif
 2624         /*
 2625          * XXX force a full drop of the npx.  The above only drops it if we
 2626          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 2627          *
 2628          * XXX I don't much like npxgetregs()'s semantics of doing a full
 2629          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2630          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2631          * sendsig() is the only caller of npxgetregs()... perhaps we just
 2632          * have too many layers.
 2633          */
 2634         curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 2635         intr_restore(s);
 2636 }
 2637 
 2638 int
 2639 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2640 {
 2641         struct pcb *pcb;
 2642 
 2643         if (td == NULL) {
 2644                 dbregs->dr[0] = rdr0();
 2645                 dbregs->dr[1] = rdr1();
 2646                 dbregs->dr[2] = rdr2();
 2647                 dbregs->dr[3] = rdr3();
 2648                 dbregs->dr[4] = rdr4();
 2649                 dbregs->dr[5] = rdr5();
 2650                 dbregs->dr[6] = rdr6();
 2651                 dbregs->dr[7] = rdr7();
 2652         } else {
 2653                 pcb = td->td_pcb;
 2654                 dbregs->dr[0] = pcb->pcb_dr0;
 2655                 dbregs->dr[1] = pcb->pcb_dr1;
 2656                 dbregs->dr[2] = pcb->pcb_dr2;
 2657                 dbregs->dr[3] = pcb->pcb_dr3;
 2658                 dbregs->dr[4] = 0;
 2659                 dbregs->dr[5] = 0;
 2660                 dbregs->dr[6] = pcb->pcb_dr6;
 2661                 dbregs->dr[7] = pcb->pcb_dr7;
 2662         }
 2663         return (0);
 2664 }
 2665 
 2666 int
 2667 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2668 {
 2669         struct pcb *pcb;
 2670         int i;
 2671 
 2672         if (td == NULL) {
 2673                 load_dr0(dbregs->dr[0]);
 2674                 load_dr1(dbregs->dr[1]);
 2675                 load_dr2(dbregs->dr[2]);
 2676                 load_dr3(dbregs->dr[3]);
 2677                 load_dr4(dbregs->dr[4]);
 2678                 load_dr5(dbregs->dr[5]);
 2679                 load_dr6(dbregs->dr[6]);
 2680                 load_dr7(dbregs->dr[7]);
 2681         } else {
 2682                 /*
 2683                  * Don't let an illegal value for dr7 get set.  Specifically,
 2684                  * check for undefined settings.  Setting these bit patterns
 2685                  * result in undefined behaviour and can lead to an unexpected
 2686                  * TRCTRAP.
 2687                  */
 2688                 for (i = 0; i < 4; i++) {
 2689                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2690                                 return (EINVAL);
 2691                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 2692                                 return (EINVAL);
 2693                 }
 2694                 
 2695                 pcb = td->td_pcb;
 2696                 
 2697                 /*
 2698                  * Don't let a process set a breakpoint that is not within the
 2699                  * process's address space.  If a process could do this, it
 2700                  * could halt the system by setting a breakpoint in the kernel
 2701                  * (if ddb was enabled).  Thus, we need to check to make sure
 2702                  * that no breakpoints are being enabled for addresses outside
 2703                  * process's address space.
 2704                  *
 2705                  * XXX - what about when the watched area of the user's
 2706                  * address space is written into from within the kernel
 2707                  * ... wouldn't that still cause a breakpoint to be generated
 2708                  * from within kernel mode?
 2709                  */
 2710 
 2711                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2712                         /* dr0 is enabled */
 2713                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2714                                 return (EINVAL);
 2715                 }
 2716                         
 2717                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2718                         /* dr1 is enabled */
 2719                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2720                                 return (EINVAL);
 2721                 }
 2722                         
 2723                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2724                         /* dr2 is enabled */
 2725                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2726                                 return (EINVAL);
 2727                 }
 2728                         
 2729                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2730                         /* dr3 is enabled */
 2731                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2732                                 return (EINVAL);
 2733                 }
 2734 
 2735                 pcb->pcb_dr0 = dbregs->dr[0];
 2736                 pcb->pcb_dr1 = dbregs->dr[1];
 2737                 pcb->pcb_dr2 = dbregs->dr[2];
 2738                 pcb->pcb_dr3 = dbregs->dr[3];
 2739                 pcb->pcb_dr6 = dbregs->dr[6];
 2740                 pcb->pcb_dr7 = dbregs->dr[7];
 2741 
 2742                 pcb->pcb_flags |= PCB_DBREGS;
 2743         }
 2744 
 2745         return (0);
 2746 }
 2747 
 2748 /*
 2749  * Return > 0 if a hardware breakpoint has been hit, and the
 2750  * breakpoint was in user space.  Return 0, otherwise.
 2751  */
 2752 int
 2753 user_dbreg_trap(void)
 2754 {
 2755         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 2756         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 2757         int nbp;            /* number of breakpoints that triggered */
 2758         caddr_t addr[4];    /* breakpoint addresses */
 2759         int i;
 2760         
 2761         dr7 = rdr7();
 2762         if ((dr7 & 0x000000ff) == 0) {
 2763                 /*
 2764                  * all GE and LE bits in the dr7 register are zero,
 2765                  * thus the trap couldn't have been caused by the
 2766                  * hardware debug registers
 2767                  */
 2768                 return 0;
 2769         }
 2770 
 2771         nbp = 0;
 2772         dr6 = rdr6();
 2773         bp = dr6 & 0x0000000f;
 2774 
 2775         if (!bp) {
 2776                 /*
 2777                  * None of the breakpoint bits are set meaning this
 2778                  * trap was not caused by any of the debug registers
 2779                  */
 2780                 return 0;
 2781         }
 2782 
 2783         /*
 2784          * at least one of the breakpoints were hit, check to see
 2785          * which ones and if any of them are user space addresses
 2786          */
 2787 
 2788         if (bp & 0x01) {
 2789                 addr[nbp++] = (caddr_t)rdr0();
 2790         }
 2791         if (bp & 0x02) {
 2792                 addr[nbp++] = (caddr_t)rdr1();
 2793         }
 2794         if (bp & 0x04) {
 2795                 addr[nbp++] = (caddr_t)rdr2();
 2796         }
 2797         if (bp & 0x08) {
 2798                 addr[nbp++] = (caddr_t)rdr3();
 2799         }
 2800 
 2801         for (i = 0; i < nbp; i++) {
 2802                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2803                         /*
 2804                          * addr[i] is in user space
 2805                          */
 2806                         return nbp;
 2807                 }
 2808         }
 2809 
 2810         /*
 2811          * None of the breakpoints are in user space.
 2812          */
 2813         return 0;
 2814 }
 2815 
 2816 #ifdef KDB
 2817 
 2818 /*
 2819  * Provide inb() and outb() as functions.  They are normally only
 2820  * available as macros calling inlined functions, thus cannot be
 2821  * called from the debugger.
 2822  *
 2823  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
 2824  */
 2825 
 2826 #undef inb
 2827 #undef outb
 2828 
 2829 /* silence compiler warnings */
 2830 u_char inb(u_int);
 2831 void outb(u_int, u_char);
 2832 
 2833 u_char
 2834 inb(u_int port)
 2835 {
 2836         u_char  data;
 2837         /*
 2838          * We use %%dx and not %1 here because i/o is done at %dx and not at
 2839          * %edx, while gcc generates inferior code (movw instead of movl)
 2840          * if we tell it to load (u_short) port.
 2841          */
 2842         __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
 2843         return (data);
 2844 }
 2845 
 2846 void
 2847 outb(u_int port, u_char data)
 2848 {
 2849         u_char  al;
 2850         /*
 2851          * Use an unnecessary assignment to help gcc's register allocator.
 2852          * This make a large difference for gcc-1.40 and a tiny difference
 2853          * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
 2854          * best results.  gcc-2.6.0 can't handle this.
 2855          */
 2856         al = data;
 2857         __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
 2858 }
 2859 
 2860 #endif /* KDB */

Cache object: 7a12cde0166ab1145237568555eff2f5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.