The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pc98/pc98/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/8.1/sys/pc98/pc98/machdep.c 200722 2009-12-19 11:31:28Z kib $");
   42 
   43 #include "opt_atalk.h"
   44 #include "opt_compat.h"
   45 #include "opt_cpu.h"
   46 #include "opt_ddb.h"
   47 #include "opt_inet.h"
   48 #include "opt_ipx.h"
   49 #include "opt_isa.h"
   50 #include "opt_kstack_pages.h"
   51 #include "opt_maxmem.h"
   52 #include "opt_msgbuf.h"
   53 #include "opt_npx.h"
   54 #include "opt_perfmon.h"
   55 
   56 #include <sys/param.h>
   57 #include <sys/proc.h>
   58 #include <sys/systm.h>
   59 #include <sys/bio.h>
   60 #include <sys/buf.h>
   61 #include <sys/bus.h>
   62 #include <sys/callout.h>
   63 #include <sys/cons.h>
   64 #include <sys/cpu.h>
   65 #include <sys/eventhandler.h>
   66 #include <sys/exec.h>
   67 #include <sys/imgact.h>
   68 #include <sys/kdb.h>
   69 #include <sys/kernel.h>
   70 #include <sys/ktr.h>
   71 #include <sys/linker.h>
   72 #include <sys/lock.h>
   73 #include <sys/malloc.h>
   74 #include <sys/memrange.h>
   75 #include <sys/msgbuf.h>
   76 #include <sys/mutex.h>
   77 #include <sys/pcpu.h>
   78 #include <sys/ptrace.h>
   79 #include <sys/reboot.h>
   80 #include <sys/sched.h>
   81 #include <sys/signalvar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/sysent.h>
   84 #include <sys/sysproto.h>
   85 #include <sys/ucontext.h>
   86 #include <sys/vmmeter.h>
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_extern.h>
   90 #include <vm/vm_kern.h>
   91 #include <vm/vm_page.h>
   92 #include <vm/vm_map.h>
   93 #include <vm/vm_object.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/vm_param.h>
   96 
   97 #ifdef DDB
   98 #ifndef KDB
   99 #error KDB must be enabled in order for DDB to work!
  100 #endif
  101 #include <ddb/ddb.h>
  102 #include <ddb/db_sym.h>
  103 #endif
  104 
  105 #include <pc98/pc98/pc98_machdep.h>
  106 
  107 #include <net/netisr.h>
  108 
  109 #include <machine/bootinfo.h>
  110 #include <machine/clock.h>
  111 #include <machine/cpu.h>
  112 #include <machine/cputypes.h>
  113 #include <machine/intr_machdep.h>
  114 #include <machine/mca.h>
  115 #include <machine/md_var.h>
  116 #include <machine/pc/bios.h>
  117 #include <machine/pcb.h>
  118 #include <machine/pcb_ext.h>
  119 #include <machine/proc.h>
  120 #include <machine/reg.h>
  121 #include <machine/sigframe.h>
  122 #include <machine/specialreg.h>
  123 #include <machine/vm86.h>
  124 #ifdef PERFMON
  125 #include <machine/perfmon.h>
  126 #endif
  127 #ifdef SMP
  128 #include <machine/smp.h>
  129 #endif
  130 
  131 #ifdef DEV_ISA
  132 #include <i386/isa/icu.h>
  133 #endif
  134 
  135 /* Sanity check for __curthread() */
  136 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  137 
  138 extern void init386(int first);
  139 extern void dblfault_handler(void);
  140 
  141 extern void printcpuinfo(void); /* XXX header file */
  142 extern void finishidentcpu(void);
  143 extern void panicifcpuunsupported(void);
  144 extern void initializecpu(void);
  145 
  146 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  147 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  148 
  149 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  150 #define CPU_ENABLE_SSE
  151 #endif
  152 
  153 static void cpu_startup(void *);
  154 static void fpstate_drop(struct thread *td);
  155 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  156 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  157 #ifdef CPU_ENABLE_SSE
  158 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  159 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  160 #endif /* CPU_ENABLE_SSE */
  161 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  162 
  163 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  164 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  165 
  166 #ifdef DDB
  167 extern vm_offset_t ksym_start, ksym_end;
  168 #endif
  169 
  170 int     _udatasel, _ucodesel;
  171 u_int   basemem;
  172 
  173 static int      ispc98 = 1;
  174 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  175 
  176 int cold = 1;
  177 
  178 #ifdef COMPAT_43
  179 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  180 #endif
  181 #ifdef COMPAT_FREEBSD4
  182 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  183 #endif
  184 
  185 long Maxmem = 0;
  186 long realmem = 0;
  187 
  188 /*
  189  * The number of PHYSMAP entries must be one less than the number of
  190  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  191  * physical address that is accessible by ISA DMA is split into two
  192  * PHYSSEG entries.
  193  */
  194 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  195 
  196 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  197 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  198 
  199 /* must be 2 less so 0 0 can signal end of chunks */
  200 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  201 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  202 
  203 struct kva_md_info kmi;
  204 
  205 static struct trapframe proc0_tf;
  206 struct pcpu __pcpu[MAXCPU];
  207 
  208 struct mtx icu_lock;
  209 
  210 struct mem_range_softc mem_range_softc;
  211 
  212 static void
  213 cpu_startup(dummy)
  214         void *dummy;
  215 {
  216         /*
  217          * Good {morning,afternoon,evening,night}.
  218          */
  219         startrtclock();
  220         printcpuinfo();
  221         panicifcpuunsupported();
  222 #ifdef PERFMON
  223         perfmon_init();
  224 #endif
  225         printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
  226             ptoa((uintmax_t)Maxmem) / 1048576);
  227         realmem = Maxmem;
  228         /*
  229          * Display any holes after the first chunk of extended memory.
  230          */
  231         if (bootverbose) {
  232                 int indx;
  233 
  234                 printf("Physical memory chunk(s):\n");
  235                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  236                         vm_paddr_t size;
  237 
  238                         size = phys_avail[indx + 1] - phys_avail[indx];
  239                         printf(
  240                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  241                             (uintmax_t)phys_avail[indx],
  242                             (uintmax_t)phys_avail[indx + 1] - 1,
  243                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  244                 }
  245         }
  246 
  247         vm_ksubmap_init(&kmi);
  248 
  249         printf("avail memory = %ju (%ju MB)\n",
  250             ptoa((uintmax_t)cnt.v_free_count),
  251             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  252 
  253         /*
  254          * Set up buffers, so they can be used to read disk labels.
  255          */
  256         bufinit();
  257         vm_pager_bufferinit();
  258 
  259         cpu_setregs();
  260 
  261         mca_init();
  262 }
  263 
  264 /*
  265  * Send an interrupt to process.
  266  *
  267  * Stack is set up to allow sigcode stored
  268  * at top to call routine, followed by kcall
  269  * to sigreturn routine below.  After sigreturn
  270  * resets the signal mask, the stack, and the
  271  * frame pointer, it returns to the user
  272  * specified pc, psl.
  273  */
  274 #ifdef COMPAT_43
  275 static void
  276 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  277 {
  278         struct osigframe sf, *fp;
  279         struct proc *p;
  280         struct thread *td;
  281         struct sigacts *psp;
  282         struct trapframe *regs;
  283         int sig;
  284         int oonstack;
  285 
  286         td = curthread;
  287         p = td->td_proc;
  288         PROC_LOCK_ASSERT(p, MA_OWNED);
  289         sig = ksi->ksi_signo;
  290         psp = p->p_sigacts;
  291         mtx_assert(&psp->ps_mtx, MA_OWNED);
  292         regs = td->td_frame;
  293         oonstack = sigonstack(regs->tf_esp);
  294 
  295         /* Allocate space for the signal handler context. */
  296         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  297             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  298                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  299                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  300 #if defined(COMPAT_43)
  301                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  302 #endif
  303         } else
  304                 fp = (struct osigframe *)regs->tf_esp - 1;
  305 
  306         /* Translate the signal if appropriate. */
  307         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  308                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  309 
  310         /* Build the argument list for the signal handler. */
  311         sf.sf_signum = sig;
  312         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  313         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  314                 /* Signal handler installed with SA_SIGINFO. */
  315                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  316                 sf.sf_siginfo.si_signo = sig;
  317                 sf.sf_siginfo.si_code = ksi->ksi_code;
  318                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  319         } else {
  320                 /* Old FreeBSD-style arguments. */
  321                 sf.sf_arg2 = ksi->ksi_code;
  322                 sf.sf_addr = (register_t)ksi->ksi_addr;
  323                 sf.sf_ahu.sf_handler = catcher;
  324         }
  325         mtx_unlock(&psp->ps_mtx);
  326         PROC_UNLOCK(p);
  327 
  328         /* Save most if not all of trap frame. */
  329         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  330         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  331         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  332         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  333         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  334         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  335         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  336         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  337         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  338         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  339         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  340         sf.sf_siginfo.si_sc.sc_gs = rgs();
  341         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  342 
  343         /* Build the signal context to be used by osigreturn(). */
  344         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  345         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  346         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  347         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  348         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  349         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  350         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  351         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  352 
  353         /*
  354          * If we're a vm86 process, we want to save the segment registers.
  355          * We also change eflags to be our emulated eflags, not the actual
  356          * eflags.
  357          */
  358         if (regs->tf_eflags & PSL_VM) {
  359                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  360                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  361                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  362 
  363                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  364                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  365                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  366                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  367 
  368                 if (vm86->vm86_has_vme == 0)
  369                         sf.sf_siginfo.si_sc.sc_ps =
  370                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  371                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  372 
  373                 /* See sendsig() for comments. */
  374                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  375         }
  376 
  377         /*
  378          * Copy the sigframe out to the user's stack.
  379          */
  380         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  381 #ifdef DEBUG
  382                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  383 #endif
  384                 PROC_LOCK(p);
  385                 sigexit(td, SIGILL);
  386         }
  387 
  388         regs->tf_esp = (int)fp;
  389         regs->tf_eip = PS_STRINGS - szosigcode;
  390         regs->tf_eflags &= ~(PSL_T | PSL_D);
  391         regs->tf_cs = _ucodesel;
  392         regs->tf_ds = _udatasel;
  393         regs->tf_es = _udatasel;
  394         regs->tf_fs = _udatasel;
  395         load_gs(_udatasel);
  396         regs->tf_ss = _udatasel;
  397         PROC_LOCK(p);
  398         mtx_lock(&psp->ps_mtx);
  399 }
  400 #endif /* COMPAT_43 */
  401 
  402 #ifdef COMPAT_FREEBSD4
  403 static void
  404 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  405 {
  406         struct sigframe4 sf, *sfp;
  407         struct proc *p;
  408         struct thread *td;
  409         struct sigacts *psp;
  410         struct trapframe *regs;
  411         int sig;
  412         int oonstack;
  413 
  414         td = curthread;
  415         p = td->td_proc;
  416         PROC_LOCK_ASSERT(p, MA_OWNED);
  417         sig = ksi->ksi_signo;
  418         psp = p->p_sigacts;
  419         mtx_assert(&psp->ps_mtx, MA_OWNED);
  420         regs = td->td_frame;
  421         oonstack = sigonstack(regs->tf_esp);
  422 
  423         /* Save user context. */
  424         bzero(&sf, sizeof(sf));
  425         sf.sf_uc.uc_sigmask = *mask;
  426         sf.sf_uc.uc_stack = td->td_sigstk;
  427         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  428             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  429         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  430         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  431         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  432 
  433         /* Allocate space for the signal handler context. */
  434         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  435             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  436                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  437                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  438 #if defined(COMPAT_43)
  439                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  440 #endif
  441         } else
  442                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  443 
  444         /* Translate the signal if appropriate. */
  445         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  446                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  447 
  448         /* Build the argument list for the signal handler. */
  449         sf.sf_signum = sig;
  450         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  451         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  452                 /* Signal handler installed with SA_SIGINFO. */
  453                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  454                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  455 
  456                 /* Fill in POSIX parts */
  457                 sf.sf_si.si_signo = sig;
  458                 sf.sf_si.si_code = ksi->ksi_code;
  459                 sf.sf_si.si_addr = ksi->ksi_addr;
  460         } else {
  461                 /* Old FreeBSD-style arguments. */
  462                 sf.sf_siginfo = ksi->ksi_code;
  463                 sf.sf_addr = (register_t)ksi->ksi_addr;
  464                 sf.sf_ahu.sf_handler = catcher;
  465         }
  466         mtx_unlock(&psp->ps_mtx);
  467         PROC_UNLOCK(p);
  468 
  469         /*
  470          * If we're a vm86 process, we want to save the segment registers.
  471          * We also change eflags to be our emulated eflags, not the actual
  472          * eflags.
  473          */
  474         if (regs->tf_eflags & PSL_VM) {
  475                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  476                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  477 
  478                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  479                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  480                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  481                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  482 
  483                 if (vm86->vm86_has_vme == 0)
  484                         sf.sf_uc.uc_mcontext.mc_eflags =
  485                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  486                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  487 
  488                 /*
  489                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  490                  * syscalls made by the signal handler.  This just avoids
  491                  * wasting time for our lazy fixup of such faults.  PSL_NT
  492                  * does nothing in vm86 mode, but vm86 programs can set it
  493                  * almost legitimately in probes for old cpu types.
  494                  */
  495                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  496         }
  497 
  498         /*
  499          * Copy the sigframe out to the user's stack.
  500          */
  501         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  502 #ifdef DEBUG
  503                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  504 #endif
  505                 PROC_LOCK(p);
  506                 sigexit(td, SIGILL);
  507         }
  508 
  509         regs->tf_esp = (int)sfp;
  510         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  511         regs->tf_eflags &= ~(PSL_T | PSL_D);
  512         regs->tf_cs = _ucodesel;
  513         regs->tf_ds = _udatasel;
  514         regs->tf_es = _udatasel;
  515         regs->tf_fs = _udatasel;
  516         regs->tf_ss = _udatasel;
  517         PROC_LOCK(p);
  518         mtx_lock(&psp->ps_mtx);
  519 }
  520 #endif  /* COMPAT_FREEBSD4 */
  521 
  522 void
  523 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  524 {
  525         struct sigframe sf, *sfp;
  526         struct proc *p;
  527         struct thread *td;
  528         struct sigacts *psp;
  529         char *sp;
  530         struct trapframe *regs;
  531         struct segment_descriptor *sdp;
  532         int sig;
  533         int oonstack;
  534 
  535         td = curthread;
  536         p = td->td_proc;
  537         PROC_LOCK_ASSERT(p, MA_OWNED);
  538         sig = ksi->ksi_signo;
  539         psp = p->p_sigacts;
  540         mtx_assert(&psp->ps_mtx, MA_OWNED);
  541 #ifdef COMPAT_FREEBSD4
  542         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  543                 freebsd4_sendsig(catcher, ksi, mask);
  544                 return;
  545         }
  546 #endif
  547 #ifdef COMPAT_43
  548         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  549                 osendsig(catcher, ksi, mask);
  550                 return;
  551         }
  552 #endif
  553         regs = td->td_frame;
  554         oonstack = sigonstack(regs->tf_esp);
  555 
  556         /* Save user context. */
  557         bzero(&sf, sizeof(sf));
  558         sf.sf_uc.uc_sigmask = *mask;
  559         sf.sf_uc.uc_stack = td->td_sigstk;
  560         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  561             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  562         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  563         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  564         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  565         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  566         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  567         fpstate_drop(td);
  568         /*
  569          * Unconditionally fill the fsbase and gsbase into the mcontext.
  570          */
  571         sdp = &td->td_pcb->pcb_gsd;
  572         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  573             sdp->sd_lobase;
  574         sdp = &td->td_pcb->pcb_fsd;
  575         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  576             sdp->sd_lobase;
  577 
  578         /* Allocate space for the signal handler context. */
  579         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  580             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  581                 sp = td->td_sigstk.ss_sp +
  582                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  583 #if defined(COMPAT_43)
  584                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  585 #endif
  586         } else
  587                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  588         /* Align to 16 bytes. */
  589         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  590 
  591         /* Translate the signal if appropriate. */
  592         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  593                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  594 
  595         /* Build the argument list for the signal handler. */
  596         sf.sf_signum = sig;
  597         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  598         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  599                 /* Signal handler installed with SA_SIGINFO. */
  600                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  601                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  602 
  603                 /* Fill in POSIX parts */
  604                 sf.sf_si = ksi->ksi_info;
  605                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  606         } else {
  607                 /* Old FreeBSD-style arguments. */
  608                 sf.sf_siginfo = ksi->ksi_code;
  609                 sf.sf_addr = (register_t)ksi->ksi_addr;
  610                 sf.sf_ahu.sf_handler = catcher;
  611         }
  612         mtx_unlock(&psp->ps_mtx);
  613         PROC_UNLOCK(p);
  614 
  615         /*
  616          * If we're a vm86 process, we want to save the segment registers.
  617          * We also change eflags to be our emulated eflags, not the actual
  618          * eflags.
  619          */
  620         if (regs->tf_eflags & PSL_VM) {
  621                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  622                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  623 
  624                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  625                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  626                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  627                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  628 
  629                 if (vm86->vm86_has_vme == 0)
  630                         sf.sf_uc.uc_mcontext.mc_eflags =
  631                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  632                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  633 
  634                 /*
  635                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  636                  * syscalls made by the signal handler.  This just avoids
  637                  * wasting time for our lazy fixup of such faults.  PSL_NT
  638                  * does nothing in vm86 mode, but vm86 programs can set it
  639                  * almost legitimately in probes for old cpu types.
  640                  */
  641                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  642         }
  643 
  644         /*
  645          * Copy the sigframe out to the user's stack.
  646          */
  647         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  648 #ifdef DEBUG
  649                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  650 #endif
  651                 PROC_LOCK(p);
  652                 sigexit(td, SIGILL);
  653         }
  654 
  655         regs->tf_esp = (int)sfp;
  656         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  657         regs->tf_eflags &= ~(PSL_T | PSL_D);
  658         regs->tf_cs = _ucodesel;
  659         regs->tf_ds = _udatasel;
  660         regs->tf_es = _udatasel;
  661         regs->tf_fs = _udatasel;
  662         regs->tf_ss = _udatasel;
  663         PROC_LOCK(p);
  664         mtx_lock(&psp->ps_mtx);
  665 }
  666 
  667 /*
  668  * System call to cleanup state after a signal
  669  * has been taken.  Reset signal mask and
  670  * stack state from context left by sendsig (above).
  671  * Return to previous pc and psl as specified by
  672  * context left by sendsig. Check carefully to
  673  * make sure that the user has not modified the
  674  * state to gain improper privileges.
  675  *
  676  * MPSAFE
  677  */
  678 #ifdef COMPAT_43
  679 int
  680 osigreturn(td, uap)
  681         struct thread *td;
  682         struct osigreturn_args /* {
  683                 struct osigcontext *sigcntxp;
  684         } */ *uap;
  685 {
  686         struct osigcontext sc;
  687         struct trapframe *regs;
  688         struct osigcontext *scp;
  689         int eflags, error;
  690         ksiginfo_t ksi;
  691 
  692         regs = td->td_frame;
  693         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  694         if (error != 0)
  695                 return (error);
  696         scp = &sc;
  697         eflags = scp->sc_ps;
  698         if (eflags & PSL_VM) {
  699                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  700                 struct vm86_kernel *vm86;
  701 
  702                 /*
  703                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  704                  * set up the vm86 area, and we can't enter vm86 mode.
  705                  */
  706                 if (td->td_pcb->pcb_ext == 0)
  707                         return (EINVAL);
  708                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  709                 if (vm86->vm86_inited == 0)
  710                         return (EINVAL);
  711 
  712                 /* Go back to user mode if both flags are set. */
  713                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  714                         ksiginfo_init_trap(&ksi);
  715                         ksi.ksi_signo = SIGBUS;
  716                         ksi.ksi_code = BUS_OBJERR;
  717                         ksi.ksi_addr = (void *)regs->tf_eip;
  718                         trapsignal(td, &ksi);
  719                 }
  720 
  721                 if (vm86->vm86_has_vme) {
  722                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  723                             (eflags & VME_USERCHANGE) | PSL_VM;
  724                 } else {
  725                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  726                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  727                             (eflags & VM_USERCHANGE) | PSL_VM;
  728                 }
  729                 tf->tf_vm86_ds = scp->sc_ds;
  730                 tf->tf_vm86_es = scp->sc_es;
  731                 tf->tf_vm86_fs = scp->sc_fs;
  732                 tf->tf_vm86_gs = scp->sc_gs;
  733                 tf->tf_ds = _udatasel;
  734                 tf->tf_es = _udatasel;
  735                 tf->tf_fs = _udatasel;
  736         } else {
  737                 /*
  738                  * Don't allow users to change privileged or reserved flags.
  739                  */
  740                 /*
  741                  * XXX do allow users to change the privileged flag PSL_RF.
  742                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  743                  * should sometimes set it there too.  tf_eflags is kept in
  744                  * the signal context during signal handling and there is no
  745                  * other place to remember it, so the PSL_RF bit may be
  746                  * corrupted by the signal handler without us knowing.
  747                  * Corruption of the PSL_RF bit at worst causes one more or
  748                  * one less debugger trap, so allowing it is fairly harmless.
  749                  */
  750                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  751                         return (EINVAL);
  752                 }
  753 
  754                 /*
  755                  * Don't allow users to load a valid privileged %cs.  Let the
  756                  * hardware check for invalid selectors, excess privilege in
  757                  * other selectors, invalid %eip's and invalid %esp's.
  758                  */
  759                 if (!CS_SECURE(scp->sc_cs)) {
  760                         ksiginfo_init_trap(&ksi);
  761                         ksi.ksi_signo = SIGBUS;
  762                         ksi.ksi_code = BUS_OBJERR;
  763                         ksi.ksi_trapno = T_PROTFLT;
  764                         ksi.ksi_addr = (void *)regs->tf_eip;
  765                         trapsignal(td, &ksi);
  766                         return (EINVAL);
  767                 }
  768                 regs->tf_ds = scp->sc_ds;
  769                 regs->tf_es = scp->sc_es;
  770                 regs->tf_fs = scp->sc_fs;
  771         }
  772 
  773         /* Restore remaining registers. */
  774         regs->tf_eax = scp->sc_eax;
  775         regs->tf_ebx = scp->sc_ebx;
  776         regs->tf_ecx = scp->sc_ecx;
  777         regs->tf_edx = scp->sc_edx;
  778         regs->tf_esi = scp->sc_esi;
  779         regs->tf_edi = scp->sc_edi;
  780         regs->tf_cs = scp->sc_cs;
  781         regs->tf_ss = scp->sc_ss;
  782         regs->tf_isp = scp->sc_isp;
  783         regs->tf_ebp = scp->sc_fp;
  784         regs->tf_esp = scp->sc_sp;
  785         regs->tf_eip = scp->sc_pc;
  786         regs->tf_eflags = eflags;
  787 
  788 #if defined(COMPAT_43)
  789         if (scp->sc_onstack & 1)
  790                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  791         else
  792                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  793 #endif
  794         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  795             SIGPROCMASK_OLD);
  796         return (EJUSTRETURN);
  797 }
  798 #endif /* COMPAT_43 */
  799 
  800 #ifdef COMPAT_FREEBSD4
  801 /*
  802  * MPSAFE
  803  */
  804 int
  805 freebsd4_sigreturn(td, uap)
  806         struct thread *td;
  807         struct freebsd4_sigreturn_args /* {
  808                 const ucontext4 *sigcntxp;
  809         } */ *uap;
  810 {
  811         struct ucontext4 uc;
  812         struct trapframe *regs;
  813         struct ucontext4 *ucp;
  814         int cs, eflags, error;
  815         ksiginfo_t ksi;
  816 
  817         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  818         if (error != 0)
  819                 return (error);
  820         ucp = &uc;
  821         regs = td->td_frame;
  822         eflags = ucp->uc_mcontext.mc_eflags;
  823         if (eflags & PSL_VM) {
  824                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  825                 struct vm86_kernel *vm86;
  826 
  827                 /*
  828                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  829                  * set up the vm86 area, and we can't enter vm86 mode.
  830                  */
  831                 if (td->td_pcb->pcb_ext == 0)
  832                         return (EINVAL);
  833                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  834                 if (vm86->vm86_inited == 0)
  835                         return (EINVAL);
  836 
  837                 /* Go back to user mode if both flags are set. */
  838                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  839                         ksiginfo_init_trap(&ksi);
  840                         ksi.ksi_signo = SIGBUS;
  841                         ksi.ksi_code = BUS_OBJERR;
  842                         ksi.ksi_addr = (void *)regs->tf_eip;
  843                         trapsignal(td, &ksi);
  844                 }
  845                 if (vm86->vm86_has_vme) {
  846                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  847                             (eflags & VME_USERCHANGE) | PSL_VM;
  848                 } else {
  849                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  850                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  851                             (eflags & VM_USERCHANGE) | PSL_VM;
  852                 }
  853                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  854                 tf->tf_eflags = eflags;
  855                 tf->tf_vm86_ds = tf->tf_ds;
  856                 tf->tf_vm86_es = tf->tf_es;
  857                 tf->tf_vm86_fs = tf->tf_fs;
  858                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  859                 tf->tf_ds = _udatasel;
  860                 tf->tf_es = _udatasel;
  861                 tf->tf_fs = _udatasel;
  862         } else {
  863                 /*
  864                  * Don't allow users to change privileged or reserved flags.
  865                  */
  866                 /*
  867                  * XXX do allow users to change the privileged flag PSL_RF.
  868                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  869                  * should sometimes set it there too.  tf_eflags is kept in
  870                  * the signal context during signal handling and there is no
  871                  * other place to remember it, so the PSL_RF bit may be
  872                  * corrupted by the signal handler without us knowing.
  873                  * Corruption of the PSL_RF bit at worst causes one more or
  874                  * one less debugger trap, so allowing it is fairly harmless.
  875                  */
  876                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  877                         printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
  878                         return (EINVAL);
  879                 }
  880 
  881                 /*
  882                  * Don't allow users to load a valid privileged %cs.  Let the
  883                  * hardware check for invalid selectors, excess privilege in
  884                  * other selectors, invalid %eip's and invalid %esp's.
  885                  */
  886                 cs = ucp->uc_mcontext.mc_cs;
  887                 if (!CS_SECURE(cs)) {
  888                         printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
  889                         ksiginfo_init_trap(&ksi);
  890                         ksi.ksi_signo = SIGBUS;
  891                         ksi.ksi_code = BUS_OBJERR;
  892                         ksi.ksi_trapno = T_PROTFLT;
  893                         ksi.ksi_addr = (void *)regs->tf_eip;
  894                         trapsignal(td, &ksi);
  895                         return (EINVAL);
  896                 }
  897 
  898                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  899         }
  900 
  901 #if defined(COMPAT_43)
  902         if (ucp->uc_mcontext.mc_onstack & 1)
  903                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  904         else
  905                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  906 #endif
  907         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  908         return (EJUSTRETURN);
  909 }
  910 #endif  /* COMPAT_FREEBSD4 */
  911 
  912 /*
  913  * MPSAFE
  914  */
  915 int
  916 sigreturn(td, uap)
  917         struct thread *td;
  918         struct sigreturn_args /* {
  919                 const struct __ucontext *sigcntxp;
  920         } */ *uap;
  921 {
  922         ucontext_t uc;
  923         struct trapframe *regs;
  924         ucontext_t *ucp;
  925         int cs, eflags, error, ret;
  926         ksiginfo_t ksi;
  927 
  928         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  929         if (error != 0)
  930                 return (error);
  931         ucp = &uc;
  932         regs = td->td_frame;
  933         eflags = ucp->uc_mcontext.mc_eflags;
  934         if (eflags & PSL_VM) {
  935                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  936                 struct vm86_kernel *vm86;
  937 
  938                 /*
  939                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  940                  * set up the vm86 area, and we can't enter vm86 mode.
  941                  */
  942                 if (td->td_pcb->pcb_ext == 0)
  943                         return (EINVAL);
  944                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  945                 if (vm86->vm86_inited == 0)
  946                         return (EINVAL);
  947 
  948                 /* Go back to user mode if both flags are set. */
  949                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  950                         ksiginfo_init_trap(&ksi);
  951                         ksi.ksi_signo = SIGBUS;
  952                         ksi.ksi_code = BUS_OBJERR;
  953                         ksi.ksi_addr = (void *)regs->tf_eip;
  954                         trapsignal(td, &ksi);
  955                 }
  956 
  957                 if (vm86->vm86_has_vme) {
  958                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  959                             (eflags & VME_USERCHANGE) | PSL_VM;
  960                 } else {
  961                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  962                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  963                             (eflags & VM_USERCHANGE) | PSL_VM;
  964                 }
  965                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  966                 tf->tf_eflags = eflags;
  967                 tf->tf_vm86_ds = tf->tf_ds;
  968                 tf->tf_vm86_es = tf->tf_es;
  969                 tf->tf_vm86_fs = tf->tf_fs;
  970                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  971                 tf->tf_ds = _udatasel;
  972                 tf->tf_es = _udatasel;
  973                 tf->tf_fs = _udatasel;
  974         } else {
  975                 /*
  976                  * Don't allow users to change privileged or reserved flags.
  977                  */
  978                 /*
  979                  * XXX do allow users to change the privileged flag PSL_RF.
  980                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  981                  * should sometimes set it there too.  tf_eflags is kept in
  982                  * the signal context during signal handling and there is no
  983                  * other place to remember it, so the PSL_RF bit may be
  984                  * corrupted by the signal handler without us knowing.
  985                  * Corruption of the PSL_RF bit at worst causes one more or
  986                  * one less debugger trap, so allowing it is fairly harmless.
  987                  */
  988                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  989                         printf("sigreturn: eflags = 0x%x\n", eflags);
  990                         return (EINVAL);
  991                 }
  992 
  993                 /*
  994                  * Don't allow users to load a valid privileged %cs.  Let the
  995                  * hardware check for invalid selectors, excess privilege in
  996                  * other selectors, invalid %eip's and invalid %esp's.
  997                  */
  998                 cs = ucp->uc_mcontext.mc_cs;
  999                 if (!CS_SECURE(cs)) {
 1000                         printf("sigreturn: cs = 0x%x\n", cs);
 1001                         ksiginfo_init_trap(&ksi);
 1002                         ksi.ksi_signo = SIGBUS;
 1003                         ksi.ksi_code = BUS_OBJERR;
 1004                         ksi.ksi_trapno = T_PROTFLT;
 1005                         ksi.ksi_addr = (void *)regs->tf_eip;
 1006                         trapsignal(td, &ksi);
 1007                         return (EINVAL);
 1008                 }
 1009 
 1010                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1011                 if (ret != 0)
 1012                         return (ret);
 1013                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1014         }
 1015 
 1016 #if defined(COMPAT_43)
 1017         if (ucp->uc_mcontext.mc_onstack & 1)
 1018                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1019         else
 1020                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1021 #endif
 1022         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1023 
 1024         return (EJUSTRETURN);
 1025 }
 1026 
 1027 /*
 1028  * Machine dependent boot() routine
 1029  *
 1030  * I haven't seen anything to put here yet
 1031  * Possibly some stuff might be grafted back here from boot()
 1032  */
 1033 void
 1034 cpu_boot(int howto)
 1035 {
 1036 }
 1037 
 1038 /*
 1039  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1040  * be made coherent later.
 1041  */
 1042 void
 1043 cpu_flush_dcache(void *ptr, size_t len)
 1044 {
 1045         /* Not applicable */
 1046 }
 1047 
 1048 /* Get current clock frequency for the given cpu id. */
 1049 int
 1050 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1051 {
 1052         register_t reg;
 1053         uint64_t tsc1, tsc2;
 1054 
 1055         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1056                 return (EINVAL);
 1057         if (!tsc_present)
 1058                 return (EOPNOTSUPP);
 1059 
 1060         /* If we're booting, trust the rate calibrated moments ago. */
 1061         if (cold) {
 1062                 *rate = tsc_freq;
 1063                 return (0);
 1064         }
 1065 
 1066 #ifdef SMP
 1067         /* Schedule ourselves on the indicated cpu. */
 1068         thread_lock(curthread);
 1069         sched_bind(curthread, cpu_id);
 1070         thread_unlock(curthread);
 1071 #endif
 1072 
 1073         /* Calibrate by measuring a short delay. */
 1074         reg = intr_disable();
 1075         tsc1 = rdtsc();
 1076         DELAY(1000);
 1077         tsc2 = rdtsc();
 1078         intr_restore(reg);
 1079 
 1080 #ifdef SMP
 1081         thread_lock(curthread);
 1082         sched_unbind(curthread);
 1083         thread_unlock(curthread);
 1084 #endif
 1085 
 1086         /*
 1087          * Calculate the difference in readings, convert to Mhz, and
 1088          * subtract 0.5% of the total.  Empirical testing has shown that
 1089          * overhead in DELAY() works out to approximately this value.
 1090          */
 1091         tsc2 -= tsc1;
 1092         *rate = tsc2 * 1000 - tsc2 * 5;
 1093         return (0);
 1094 }
 1095 
 1096 /*
 1097  * Shutdown the CPU as much as possible
 1098  */
 1099 void
 1100 cpu_halt(void)
 1101 {
 1102         for (;;)
 1103                 __asm__ ("hlt");
 1104 }
 1105 
 1106 /*
 1107  * Hook to idle the CPU when possible.  In the SMP case we default to
 1108  * off because a halted cpu will not currently pick up a new thread in the
 1109  * run queue until the next timer tick.  If turned on this will result in
 1110  * approximately a 4.2% loss in real time performance in buildworld tests
 1111  * (but improves user and sys times oddly enough), and saves approximately
 1112  * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
 1113  *
 1114  * XXX we need to have a cpu mask of idle cpus and generate an IPI or
 1115  * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
 1116  * Then we can have our cake and eat it too.
 1117  *
 1118  * XXX I'm turning it on for SMP as well by default for now.  It seems to
 1119  * help lock contention somewhat, and this is critical for HTT. -Peter
 1120  */
 1121 static int      cpu_idle_hlt = 1;
 1122 TUNABLE_INT("machdep.cpu_idle_hlt", &cpu_idle_hlt);
 1123 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
 1124     &cpu_idle_hlt, 0, "Idle loop HLT enable");
 1125 
 1126 static void
 1127 cpu_idle_default(void)
 1128 {
 1129         /*
 1130          * we must absolutely guarentee that hlt is the
 1131          * absolute next instruction after sti or we
 1132          * introduce a timing window.
 1133          */
 1134         __asm __volatile("sti; hlt");
 1135 }
 1136 
 1137 /*
 1138  * Note that we have to be careful here to avoid a race between checking
 1139  * sched_runnable() and actually halting.  If we don't do this, we may waste
 1140  * the time between calling hlt and the next interrupt even though there
 1141  * is a runnable process.
 1142  */
 1143 void
 1144 cpu_idle(int busy)
 1145 {
 1146 
 1147 #ifdef SMP
 1148         if (mp_grab_cpu_hlt())
 1149                 return;
 1150 #endif
 1151 
 1152         if (cpu_idle_hlt) {
 1153                 disable_intr();
 1154                 if (sched_runnable())
 1155                         enable_intr();
 1156                 else
 1157                         (*cpu_idle_hook)();
 1158         }
 1159 }
 1160 
 1161 int
 1162 cpu_idle_wakeup(int cpu)
 1163 {
 1164 
 1165         return (0);
 1166 }
 1167 
 1168 /* Other subsystems (e.g., ACPI) can hook this later. */
 1169 void (*cpu_idle_hook)(void) = cpu_idle_default;
 1170 
 1171 /*
 1172  * Reset registers to default values on exec.
 1173  */
 1174 void
 1175 exec_setregs(td, entry, stack, ps_strings)
 1176         struct thread *td;
 1177         u_long entry;
 1178         u_long stack;
 1179         u_long ps_strings;
 1180 {
 1181         struct trapframe *regs = td->td_frame;
 1182         struct pcb *pcb = td->td_pcb;
 1183 
 1184         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1185         pcb->pcb_gs = _udatasel;
 1186         load_gs(_udatasel);
 1187 
 1188         mtx_lock_spin(&dt_lock);
 1189         if (td->td_proc->p_md.md_ldt)
 1190                 user_ldt_free(td);
 1191         else
 1192                 mtx_unlock_spin(&dt_lock);
 1193   
 1194         bzero((char *)regs, sizeof(struct trapframe));
 1195         regs->tf_eip = entry;
 1196         regs->tf_esp = stack;
 1197         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1198         regs->tf_ss = _udatasel;
 1199         regs->tf_ds = _udatasel;
 1200         regs->tf_es = _udatasel;
 1201         regs->tf_fs = _udatasel;
 1202         regs->tf_cs = _ucodesel;
 1203 
 1204         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1205         regs->tf_ebx = ps_strings;
 1206 
 1207         /*
 1208          * Reset the hardware debug registers if they were in use.
 1209          * They won't have any meaning for the newly exec'd process.  
 1210          */
 1211         if (pcb->pcb_flags & PCB_DBREGS) {
 1212                 pcb->pcb_dr0 = 0;
 1213                 pcb->pcb_dr1 = 0;
 1214                 pcb->pcb_dr2 = 0;
 1215                 pcb->pcb_dr3 = 0;
 1216                 pcb->pcb_dr6 = 0;
 1217                 pcb->pcb_dr7 = 0;
 1218                 if (pcb == PCPU_GET(curpcb)) {
 1219                         /*
 1220                          * Clear the debug registers on the running
 1221                          * CPU, otherwise they will end up affecting
 1222                          * the next process we switch to.
 1223                          */
 1224                         reset_dbregs();
 1225                 }
 1226                 pcb->pcb_flags &= ~PCB_DBREGS;
 1227         }
 1228 
 1229         /*
 1230          * Initialize the math emulator (if any) for the current process.
 1231          * Actually, just clear the bit that says that the emulator has
 1232          * been initialized.  Initialization is delayed until the process
 1233          * traps to the emulator (if it is done at all) mainly because
 1234          * emulators don't provide an entry point for initialization.
 1235          */
 1236         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1237         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1238 
 1239         /*
 1240          * Drop the FP state if we hold it, so that the process gets a
 1241          * clean FP state if it uses the FPU again.
 1242          */
 1243         fpstate_drop(td);
 1244 
 1245         /*
 1246          * XXX - Linux emulator
 1247          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1248          * on it.
 1249          */
 1250         td->td_retval[1] = 0;
 1251 }
 1252 
 1253 void
 1254 cpu_setregs(void)
 1255 {
 1256         unsigned int cr0;
 1257 
 1258         cr0 = rcr0();
 1259 
 1260         /*
 1261          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1262          *
 1263          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1264          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1265          * bit to control the trap, because setting the CR0_EM bit does
 1266          * not cause WAIT instructions to trap.  It's important to trap
 1267          * WAIT instructions - otherwise the "wait" variants of no-wait
 1268          * control instructions would degenerate to the "no-wait" variants
 1269          * after FP context switches but work correctly otherwise.  It's
 1270          * particularly important to trap WAITs when there is no NPX -
 1271          * otherwise the "wait" variants would always degenerate.
 1272          *
 1273          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1274          * Setting it should fail or do nothing on lesser processors.
 1275          */
 1276         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1277         load_cr0(cr0);
 1278         load_gs(_udatasel);
 1279 }
 1280 
 1281 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1282 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1283         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1284 
 1285 /*
 1286  * Initialize 386 and configure to run kernel
 1287  */
 1288 
 1289 /*
 1290  * Initialize segments & interrupt table
 1291  */
 1292 
 1293 int _default_ldt;
 1294 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1295 static struct gate_descriptor idt0[NIDT];
 1296 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1297 union descriptor ldt[NLDT];             /* local descriptor table */
 1298 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1299 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1300 
 1301 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1302 extern int has_f00f_bug;
 1303 #endif
 1304 
 1305 static struct i386tss dblfault_tss;
 1306 static char dblfault_stack[PAGE_SIZE];
 1307 
 1308 extern  vm_offset_t     proc0kstack;
 1309 
 1310 
 1311 /*
 1312  * software prototypes -- in more palatable form.
 1313  *
 1314  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1315  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1316  */
 1317 struct soft_segment_descriptor gdt_segs[] = {
 1318 /* GNULL_SEL    0 Null Descriptor */
 1319 {       .ssd_base = 0x0,
 1320         .ssd_limit = 0x0,
 1321         .ssd_type = 0,
 1322         .ssd_dpl = 0,
 1323         .ssd_p = 0,
 1324         .ssd_xx = 0, .ssd_xx1 = 0,
 1325         .ssd_def32 = 0,
 1326         .ssd_gran = 0           },
 1327 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1328 {       .ssd_base = 0x0,
 1329         .ssd_limit = 0xfffff,
 1330         .ssd_type = SDT_MEMRWA,
 1331         .ssd_dpl = 0,
 1332         .ssd_p = 1,
 1333         .ssd_xx = 0, .ssd_xx1 = 0,
 1334         .ssd_def32 = 1,
 1335         .ssd_gran = 1           },
 1336 /* GUFS_SEL     2 %fs Descriptor for user */
 1337 {       .ssd_base = 0x0,
 1338         .ssd_limit = 0xfffff,
 1339         .ssd_type = SDT_MEMRWA,
 1340         .ssd_dpl = SEL_UPL,
 1341         .ssd_p = 1,
 1342         .ssd_xx = 0, .ssd_xx1 = 0,
 1343         .ssd_def32 = 1,
 1344         .ssd_gran = 1           },
 1345 /* GUGS_SEL     3 %gs Descriptor for user */
 1346 {       .ssd_base = 0x0,
 1347         .ssd_limit = 0xfffff,
 1348         .ssd_type = SDT_MEMRWA,
 1349         .ssd_dpl = SEL_UPL,
 1350         .ssd_p = 1,
 1351         .ssd_xx = 0, .ssd_xx1 = 0,
 1352         .ssd_def32 = 1,
 1353         .ssd_gran = 1           },
 1354 /* GCODE_SEL    4 Code Descriptor for kernel */
 1355 {       .ssd_base = 0x0,
 1356         .ssd_limit = 0xfffff,
 1357         .ssd_type = SDT_MEMERA,
 1358         .ssd_dpl = 0,
 1359         .ssd_p = 1,
 1360         .ssd_xx = 0, .ssd_xx1 = 0,
 1361         .ssd_def32 = 1,
 1362         .ssd_gran = 1           },
 1363 /* GDATA_SEL    5 Data Descriptor for kernel */
 1364 {       .ssd_base = 0x0,
 1365         .ssd_limit = 0xfffff,
 1366         .ssd_type = SDT_MEMRWA,
 1367         .ssd_dpl = 0,
 1368         .ssd_p = 1,
 1369         .ssd_xx = 0, .ssd_xx1 = 0,
 1370         .ssd_def32 = 1,
 1371         .ssd_gran = 1           },
 1372 /* GUCODE_SEL   6 Code Descriptor for user */
 1373 {       .ssd_base = 0x0,
 1374         .ssd_limit = 0xfffff,
 1375         .ssd_type = SDT_MEMERA,
 1376         .ssd_dpl = SEL_UPL,
 1377         .ssd_p = 1,
 1378         .ssd_xx = 0, .ssd_xx1 = 0,
 1379         .ssd_def32 = 1,
 1380         .ssd_gran = 1           },
 1381 /* GUDATA_SEL   7 Data Descriptor for user */
 1382 {       .ssd_base = 0x0,
 1383         .ssd_limit = 0xfffff,
 1384         .ssd_type = SDT_MEMRWA,
 1385         .ssd_dpl = SEL_UPL,
 1386         .ssd_p = 1,
 1387         .ssd_xx = 0, .ssd_xx1 = 0,
 1388         .ssd_def32 = 1,
 1389         .ssd_gran = 1           },
 1390 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1391 {       .ssd_base = 0x400,
 1392         .ssd_limit = 0xfffff,
 1393         .ssd_type = SDT_MEMRWA,
 1394         .ssd_dpl = 0,
 1395         .ssd_p = 1,
 1396         .ssd_xx = 0, .ssd_xx1 = 0,
 1397         .ssd_def32 = 1,
 1398         .ssd_gran = 1           },
 1399 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1400 {
 1401         .ssd_base = 0x0,
 1402         .ssd_limit = sizeof(struct i386tss)-1,
 1403         .ssd_type = SDT_SYS386TSS,
 1404         .ssd_dpl = 0,
 1405         .ssd_p = 1,
 1406         .ssd_xx = 0, .ssd_xx1 = 0,
 1407         .ssd_def32 = 0,
 1408         .ssd_gran = 0           },
 1409 /* GLDT_SEL     10 LDT Descriptor */
 1410 {       .ssd_base = (int) ldt,
 1411         .ssd_limit = sizeof(ldt)-1,
 1412         .ssd_type = SDT_SYSLDT,
 1413         .ssd_dpl = SEL_UPL,
 1414         .ssd_p = 1,
 1415         .ssd_xx = 0, .ssd_xx1 = 0,
 1416         .ssd_def32 = 0,
 1417         .ssd_gran = 0           },
 1418 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1419 {       .ssd_base = (int) ldt,
 1420         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1421         .ssd_type = SDT_SYSLDT,
 1422         .ssd_dpl = 0,
 1423         .ssd_p = 1,
 1424         .ssd_xx = 0, .ssd_xx1 = 0,
 1425         .ssd_def32 = 0,
 1426         .ssd_gran = 0           },
 1427 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1428 {       .ssd_base = (int) &dblfault_tss,
 1429         .ssd_limit = sizeof(struct i386tss)-1,
 1430         .ssd_type = SDT_SYS386TSS,
 1431         .ssd_dpl = 0,
 1432         .ssd_p = 1,
 1433         .ssd_xx = 0, .ssd_xx1 = 0,
 1434         .ssd_def32 = 0,
 1435         .ssd_gran = 0           },
 1436 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1437 {       .ssd_base = 0,
 1438         .ssd_limit = 0xfffff,
 1439         .ssd_type = SDT_MEMERA,
 1440         .ssd_dpl = 0,
 1441         .ssd_p = 1,
 1442         .ssd_xx = 0, .ssd_xx1 = 0,
 1443         .ssd_def32 = 0,
 1444         .ssd_gran = 1           },
 1445 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1446 {       .ssd_base = 0,
 1447         .ssd_limit = 0xfffff,
 1448         .ssd_type = SDT_MEMERA,
 1449         .ssd_dpl = 0,
 1450         .ssd_p = 1,
 1451         .ssd_xx = 0, .ssd_xx1 = 0,
 1452         .ssd_def32 = 0,
 1453         .ssd_gran = 1           },
 1454 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1455 {       .ssd_base = 0,
 1456         .ssd_limit = 0xfffff,
 1457         .ssd_type = SDT_MEMRWA,
 1458         .ssd_dpl = 0,
 1459         .ssd_p = 1,
 1460         .ssd_xx = 0, .ssd_xx1 = 0,
 1461         .ssd_def32 = 1,
 1462         .ssd_gran = 1           },
 1463 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1464 {       .ssd_base = 0,
 1465         .ssd_limit = 0xfffff,
 1466         .ssd_type = SDT_MEMRWA,
 1467         .ssd_dpl = 0,
 1468         .ssd_p = 1,
 1469         .ssd_xx = 0, .ssd_xx1 = 0,
 1470         .ssd_def32 = 0,
 1471         .ssd_gran = 1           },
 1472 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1473 {       .ssd_base = 0,
 1474         .ssd_limit = 0xfffff,
 1475         .ssd_type = SDT_MEMRWA,
 1476         .ssd_dpl = 0,
 1477         .ssd_p = 1,
 1478         .ssd_xx = 0, .ssd_xx1 = 0,
 1479         .ssd_def32 = 0,
 1480         .ssd_gran = 1           },
 1481 /* GNDIS_SEL    18 NDIS Descriptor */
 1482 {       .ssd_base = 0x0,
 1483         .ssd_limit = 0x0,
 1484         .ssd_type = 0,
 1485         .ssd_dpl = 0,
 1486         .ssd_p = 0,
 1487         .ssd_xx = 0, .ssd_xx1 = 0,
 1488         .ssd_def32 = 0,
 1489         .ssd_gran = 0           },
 1490 };
 1491 
 1492 static struct soft_segment_descriptor ldt_segs[] = {
 1493         /* Null Descriptor - overwritten by call gate */
 1494 {       .ssd_base = 0x0,
 1495         .ssd_limit = 0x0,
 1496         .ssd_type = 0,
 1497         .ssd_dpl = 0,
 1498         .ssd_p = 0,
 1499         .ssd_xx = 0, .ssd_xx1 = 0,
 1500         .ssd_def32 = 0,
 1501         .ssd_gran = 0           },
 1502         /* Null Descriptor - overwritten by call gate */
 1503 {       .ssd_base = 0x0,
 1504         .ssd_limit = 0x0,
 1505         .ssd_type = 0,
 1506         .ssd_dpl = 0,
 1507         .ssd_p = 0,
 1508         .ssd_xx = 0, .ssd_xx1 = 0,
 1509         .ssd_def32 = 0,
 1510         .ssd_gran = 0           },
 1511         /* Null Descriptor - overwritten by call gate */
 1512 {       .ssd_base = 0x0,
 1513         .ssd_limit = 0x0,
 1514         .ssd_type = 0,
 1515         .ssd_dpl = 0,
 1516         .ssd_p = 0,
 1517         .ssd_xx = 0, .ssd_xx1 = 0,
 1518         .ssd_def32 = 0,
 1519         .ssd_gran = 0           },
 1520         /* Code Descriptor for user */
 1521 {       .ssd_base = 0x0,
 1522         .ssd_limit = 0xfffff,
 1523         .ssd_type = SDT_MEMERA,
 1524         .ssd_dpl = SEL_UPL,
 1525         .ssd_p = 1,
 1526         .ssd_xx = 0, .ssd_xx1 = 0,
 1527         .ssd_def32 = 1,
 1528         .ssd_gran = 1           },
 1529         /* Null Descriptor - overwritten by call gate */
 1530 {       .ssd_base = 0x0,
 1531         .ssd_limit = 0x0,
 1532         .ssd_type = 0,
 1533         .ssd_dpl = 0,
 1534         .ssd_p = 0,
 1535         .ssd_xx = 0, .ssd_xx1 = 0,
 1536         .ssd_def32 = 0,
 1537         .ssd_gran = 0           },
 1538         /* Data Descriptor for user */
 1539 {       .ssd_base = 0x0,
 1540         .ssd_limit = 0xfffff,
 1541         .ssd_type = SDT_MEMRWA,
 1542         .ssd_dpl = SEL_UPL,
 1543         .ssd_p = 1,
 1544         .ssd_xx = 0, .ssd_xx1 = 0,
 1545         .ssd_def32 = 1,
 1546         .ssd_gran = 1           },
 1547 };
 1548 
 1549 void
 1550 setidt(idx, func, typ, dpl, selec)
 1551         int idx;
 1552         inthand_t *func;
 1553         int typ;
 1554         int dpl;
 1555         int selec;
 1556 {
 1557         struct gate_descriptor *ip;
 1558 
 1559         ip = idt + idx;
 1560         ip->gd_looffset = (int)func;
 1561         ip->gd_selector = selec;
 1562         ip->gd_stkcpy = 0;
 1563         ip->gd_xx = 0;
 1564         ip->gd_type = typ;
 1565         ip->gd_dpl = dpl;
 1566         ip->gd_p = 1;
 1567         ip->gd_hioffset = ((int)func)>>16 ;
 1568 }
 1569 
 1570 extern inthand_t
 1571         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1572         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1573         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1574         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1575         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1576 
 1577 #ifdef DDB
 1578 /*
 1579  * Display the index and function name of any IDT entries that don't use
 1580  * the default 'rsvd' entry point.
 1581  */
 1582 DB_SHOW_COMMAND(idt, db_show_idt)
 1583 {
 1584         struct gate_descriptor *ip;
 1585         int idx;
 1586         uintptr_t func;
 1587 
 1588         ip = idt;
 1589         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1590                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1591                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1592                         db_printf("%3d\t", idx);
 1593                         db_printsym(func, DB_STGY_PROC);
 1594                         db_printf("\n");
 1595                 }
 1596                 ip++;
 1597         }
 1598 }
 1599 
 1600 /* Show privileged registers. */
 1601 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1602 {
 1603         uint64_t idtr, gdtr;
 1604 
 1605         idtr = ridt();
 1606         db_printf("idtr\t0x%08x/%04x\n",
 1607             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1608         gdtr = rgdt();
 1609         db_printf("gdtr\t0x%08x/%04x\n",
 1610             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1611         db_printf("ldtr\t0x%04x\n", rldt());
 1612         db_printf("tr\t0x%04x\n", rtr());
 1613         db_printf("cr0\t0x%08x\n", rcr0());
 1614         db_printf("cr2\t0x%08x\n", rcr2());
 1615         db_printf("cr3\t0x%08x\n", rcr3());
 1616         db_printf("cr4\t0x%08x\n", rcr4());
 1617 }
 1618 #endif
 1619 
 1620 void
 1621 sdtossd(sd, ssd)
 1622         struct segment_descriptor *sd;
 1623         struct soft_segment_descriptor *ssd;
 1624 {
 1625         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1626         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1627         ssd->ssd_type  = sd->sd_type;
 1628         ssd->ssd_dpl   = sd->sd_dpl;
 1629         ssd->ssd_p     = sd->sd_p;
 1630         ssd->ssd_def32 = sd->sd_def32;
 1631         ssd->ssd_gran  = sd->sd_gran;
 1632 }
 1633 
 1634 /*
 1635  * Populate the (physmap) array with base/bound pairs describing the
 1636  * available physical memory in the system, then test this memory and
 1637  * build the phys_avail array describing the actually-available memory.
 1638  *
 1639  * If we cannot accurately determine the physical memory map, then use
 1640  * value from the 0xE801 call, and failing that, the RTC.
 1641  *
 1642  * Total memory size may be set by the kernel environment variable
 1643  * hw.physmem or the compile-time define MAXMEM.
 1644  *
 1645  * XXX first should be vm_paddr_t.
 1646  */
 1647 static void
 1648 getmemsize(int first)
 1649 {
 1650         int i, off, physmap_idx, pa_indx, da_indx;
 1651         int pg_n;
 1652         u_long physmem_tunable;
 1653         u_int extmem, under16;
 1654         vm_paddr_t pa, physmap[PHYSMAP_SIZE];
 1655         pt_entry_t *pte;
 1656         quad_t dcons_addr, dcons_size;
 1657 
 1658         bzero(physmap, sizeof(physmap));
 1659 
 1660         /* XXX - some of EPSON machines can't use PG_N */
 1661         pg_n = PG_N;
 1662         if (pc98_machine_type & M_EPSON_PC98) {
 1663                 switch (epson_machine_id) {
 1664 #ifdef WB_CACHE
 1665                 default:
 1666 #endif
 1667                 case EPSON_PC486_HX:
 1668                 case EPSON_PC486_HG:
 1669                 case EPSON_PC486_HA:
 1670                         pg_n = 0;
 1671                         break;
 1672                 }
 1673         }
 1674 
 1675         /*
 1676          * Perform "base memory" related probes & setup
 1677          */
 1678         under16 = pc98_getmemsize(&basemem, &extmem);
 1679         if (basemem > 640) {
 1680                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1681                         basemem);
 1682                 basemem = 640;
 1683         }
 1684 
 1685         /*
 1686          * XXX if biosbasemem is now < 640, there is a `hole'
 1687          * between the end of base memory and the start of
 1688          * ISA memory.  The hole may be empty or it may
 1689          * contain BIOS code or data.  Map it read/write so
 1690          * that the BIOS can write to it.  (Memory from 0 to
 1691          * the physical end of the kernel is mapped read-only
 1692          * to begin with and then parts of it are remapped.
 1693          * The parts that aren't remapped form holes that
 1694          * remain read-only and are unused by the kernel.
 1695          * The base memory area is below the physical end of
 1696          * the kernel and right now forms a read-only hole.
 1697          * The part of it from PAGE_SIZE to
 1698          * (trunc_page(biosbasemem * 1024) - 1) will be
 1699          * remapped and used by the kernel later.)
 1700          *
 1701          * This code is similar to the code used in
 1702          * pmap_mapdev, but since no memory needs to be
 1703          * allocated we simply change the mapping.
 1704          */
 1705         for (pa = trunc_page(basemem * 1024);
 1706              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1707                 pmap_kenter(KERNBASE + pa, pa);
 1708 
 1709         /*
 1710          * if basemem != 640, map pages r/w into vm86 page table so 
 1711          * that the bios can scribble on it.
 1712          */
 1713         pte = (pt_entry_t *)vm86paddr;
 1714         for (i = basemem / 4; i < 160; i++)
 1715                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1716 
 1717         physmap[0] = 0;
 1718         physmap[1] = basemem * 1024;
 1719         physmap_idx = 2;
 1720         physmap[physmap_idx] = 0x100000;
 1721         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1722 
 1723         /*
 1724          * Now, physmap contains a map of physical memory.
 1725          */
 1726 
 1727 #ifdef SMP
 1728         /* make hole for AP bootstrap code */
 1729         physmap[1] = mp_bootaddress(physmap[1]);
 1730 #endif
 1731 
 1732         /*
 1733          * Maxmem isn't the "maximum memory", it's one larger than the
 1734          * highest page of the physical address space.  It should be
 1735          * called something like "Maxphyspage".  We may adjust this 
 1736          * based on ``hw.physmem'' and the results of the memory test.
 1737          */
 1738         Maxmem = atop(physmap[physmap_idx + 1]);
 1739 
 1740 #ifdef MAXMEM
 1741         Maxmem = MAXMEM / 4;
 1742 #endif
 1743 
 1744         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1745                 Maxmem = atop(physmem_tunable);
 1746 
 1747         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1748             (boothowto & RB_VERBOSE))
 1749                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1750 
 1751         /*
 1752          * If Maxmem has been increased beyond what the system has detected,
 1753          * extend the last memory segment to the new limit.
 1754          */ 
 1755         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1756                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1757 
 1758         /*
 1759          * We need to divide chunk if Maxmem is larger than 16MB and
 1760          * under 16MB area is not full of memory.
 1761          * (1) system area (15-16MB region) is cut off
 1762          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 1763          */
 1764         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 1765                 /* 15M - 16M region is cut off, so need to divide chunk */
 1766                 physmap[physmap_idx + 1] = under16 * 1024;
 1767                 physmap_idx += 2;
 1768                 physmap[physmap_idx] = 0x1000000;
 1769                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 1770         }
 1771 
 1772         /* call pmap initialization to make new kernel address space */
 1773         pmap_bootstrap(first);
 1774 
 1775         /*
 1776          * Size up each available chunk of physical memory.
 1777          */
 1778         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1779         pa_indx = 0;
 1780         da_indx = 1;
 1781         phys_avail[pa_indx++] = physmap[0];
 1782         phys_avail[pa_indx] = physmap[0];
 1783         dump_avail[da_indx] = physmap[0];
 1784         pte = CMAP1;
 1785 
 1786         /*
 1787          * Get dcons buffer address
 1788          */
 1789         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1790             getenv_quad("dcons.size", &dcons_size) == 0)
 1791                 dcons_addr = 0;
 1792 
 1793         /*
 1794          * physmap is in bytes, so when converting to page boundaries,
 1795          * round up the start address and round down the end address.
 1796          */
 1797         for (i = 0; i <= physmap_idx; i += 2) {
 1798                 vm_paddr_t end;
 1799 
 1800                 end = ptoa((vm_paddr_t)Maxmem);
 1801                 if (physmap[i + 1] < end)
 1802                         end = trunc_page(physmap[i + 1]);
 1803                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1804                         int tmp, page_bad, full;
 1805                         int *ptr = (int *)CADDR1;
 1806 
 1807                         full = FALSE;
 1808                         /*
 1809                          * block out kernel memory as not available.
 1810                          */
 1811                         if (pa >= KERNLOAD && pa < first)
 1812                                 goto do_dump_avail;
 1813 
 1814                         /*
 1815                          * block out dcons buffer
 1816                          */
 1817                         if (dcons_addr > 0
 1818                             && pa >= trunc_page(dcons_addr)
 1819                             && pa < dcons_addr + dcons_size)
 1820                                 goto do_dump_avail;
 1821 
 1822                         page_bad = FALSE;
 1823 
 1824                         /*
 1825                          * map page into kernel: valid, read/write,non-cacheable
 1826                          */
 1827                         *pte = pa | PG_V | PG_RW | pg_n;
 1828                         invltlb();
 1829 
 1830                         tmp = *(int *)ptr;
 1831                         /*
 1832                          * Test for alternating 1's and 0's
 1833                          */
 1834                         *(volatile int *)ptr = 0xaaaaaaaa;
 1835                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1836                                 page_bad = TRUE;
 1837                         /*
 1838                          * Test for alternating 0's and 1's
 1839                          */
 1840                         *(volatile int *)ptr = 0x55555555;
 1841                         if (*(volatile int *)ptr != 0x55555555)
 1842                                 page_bad = TRUE;
 1843                         /*
 1844                          * Test for all 1's
 1845                          */
 1846                         *(volatile int *)ptr = 0xffffffff;
 1847                         if (*(volatile int *)ptr != 0xffffffff)
 1848                                 page_bad = TRUE;
 1849                         /*
 1850                          * Test for all 0's
 1851                          */
 1852                         *(volatile int *)ptr = 0x0;
 1853                         if (*(volatile int *)ptr != 0x0)
 1854                                 page_bad = TRUE;
 1855                         /*
 1856                          * Restore original value.
 1857                          */
 1858                         *(int *)ptr = tmp;
 1859 
 1860                         /*
 1861                          * Adjust array of valid/good pages.
 1862                          */
 1863                         if (page_bad == TRUE)
 1864                                 continue;
 1865                         /*
 1866                          * If this good page is a continuation of the
 1867                          * previous set of good pages, then just increase
 1868                          * the end pointer. Otherwise start a new chunk.
 1869                          * Note that "end" points one higher than end,
 1870                          * making the range >= start and < end.
 1871                          * If we're also doing a speculative memory
 1872                          * test and we at or past the end, bump up Maxmem
 1873                          * so that we keep going. The first bad page
 1874                          * will terminate the loop.
 1875                          */
 1876                         if (phys_avail[pa_indx] == pa) {
 1877                                 phys_avail[pa_indx] += PAGE_SIZE;
 1878                         } else {
 1879                                 pa_indx++;
 1880                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 1881                                         printf(
 1882                 "Too many holes in the physical address space, giving up\n");
 1883                                         pa_indx--;
 1884                                         full = TRUE;
 1885                                         goto do_dump_avail;
 1886                                 }
 1887                                 phys_avail[pa_indx++] = pa;     /* start */
 1888                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 1889                         }
 1890                         physmem++;
 1891 do_dump_avail:
 1892                         if (dump_avail[da_indx] == pa) {
 1893                                 dump_avail[da_indx] += PAGE_SIZE;
 1894                         } else {
 1895                                 da_indx++;
 1896                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 1897                                         da_indx--;
 1898                                         goto do_next;
 1899                                 }
 1900                                 dump_avail[da_indx++] = pa;     /* start */
 1901                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 1902                         }
 1903 do_next:
 1904                         if (full)
 1905                                 break;
 1906                 }
 1907         }
 1908         *pte = 0;
 1909         invltlb();
 1910 
 1911         /*
 1912          * XXX
 1913          * The last chunk must contain at least one page plus the message
 1914          * buffer to avoid complicating other code (message buffer address
 1915          * calculation, etc.).
 1916          */
 1917         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 1918             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 1919                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 1920                 phys_avail[pa_indx--] = 0;
 1921                 phys_avail[pa_indx--] = 0;
 1922         }
 1923 
 1924         Maxmem = atop(phys_avail[pa_indx]);
 1925 
 1926         /* Trim off space for the message buffer. */
 1927         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 1928 
 1929         /* Map the message buffer. */
 1930         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 1931                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 1932                     off);
 1933 }
 1934 
 1935 void
 1936 init386(first)
 1937         int first;
 1938 {
 1939         struct gate_descriptor *gdp;
 1940         int gsel_tss, metadata_missing, x;
 1941         struct pcpu *pc;
 1942         int pa;
 1943 
 1944         thread0.td_kstack = proc0kstack;
 1945         thread0.td_pcb = (struct pcb *)
 1946            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 1947 
 1948         /*
 1949          * This may be done better later if it gets more high level
 1950          * components in it. If so just link td->td_proc here.
 1951          */
 1952         proc_linkup0(&proc0, &thread0);
 1953 
 1954         /*
 1955          * Initialize DMAC
 1956          */
 1957         pc98_init_dmac();
 1958 
 1959         metadata_missing = 0;
 1960         if (bootinfo.bi_modulep) {
 1961                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 1962                 preload_bootstrap_relocate(KERNBASE);
 1963         } else {
 1964                 metadata_missing = 1;
 1965         }
 1966         if (envmode == 1)
 1967                 kern_envp = static_env;
 1968         else if (bootinfo.bi_envp)
 1969                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 1970 
 1971         /* Init basic tunables, hz etc */
 1972         init_param1();
 1973 
 1974         /*
 1975          * Make gdt memory segments.  All segments cover the full 4GB
 1976          * of address space and permissions are enforced at page level.
 1977          */
 1978         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 1979         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 1980         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 1981         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 1982         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 1983         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 1984 
 1985         pc = &__pcpu[0];
 1986         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 1987         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 1988         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 1989 
 1990         for (x = 0; x < NGDT; x++)
 1991                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 1992 
 1993         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 1994         r_gdt.rd_base =  (int) gdt;
 1995         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 1996         lgdt(&r_gdt);
 1997 
 1998         pcpu_init(pc, 0, sizeof(struct pcpu));
 1999         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2000                 pmap_kenter(pa + KERNBASE, pa);
 2001         dpcpu_init((void *)(first + KERNBASE), 0);
 2002         first += DPCPU_SIZE;
 2003 
 2004         PCPU_SET(prvspace, pc);
 2005         PCPU_SET(curthread, &thread0);
 2006         PCPU_SET(curpcb, thread0.td_pcb);
 2007 
 2008         /*
 2009          * Initialize mutexes.
 2010          *
 2011          * icu_lock: in order to allow an interrupt to occur in a critical
 2012          *           section, to set pcpu->ipending (etc...) properly, we
 2013          *           must be able to get the icu lock, so it can't be
 2014          *           under witness.
 2015          */
 2016         mutex_init();
 2017         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2018 
 2019         /* make ldt memory segments */
 2020         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2021         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2022         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2023                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2024 
 2025         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2026         lldt(_default_ldt);
 2027         PCPU_SET(currentldt, _default_ldt);
 2028 
 2029         /* exceptions */
 2030         for (x = 0; x < NIDT; x++)
 2031                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2032                     GSEL(GCODE_SEL, SEL_KPL));
 2033         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2034             GSEL(GCODE_SEL, SEL_KPL));
 2035         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2036             GSEL(GCODE_SEL, SEL_KPL));
 2037         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2038             GSEL(GCODE_SEL, SEL_KPL));
 2039         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2040             GSEL(GCODE_SEL, SEL_KPL));
 2041         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2042             GSEL(GCODE_SEL, SEL_KPL));
 2043         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2044             GSEL(GCODE_SEL, SEL_KPL));
 2045         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2046             GSEL(GCODE_SEL, SEL_KPL));
 2047         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2048             , GSEL(GCODE_SEL, SEL_KPL));
 2049         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2050         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2051             GSEL(GCODE_SEL, SEL_KPL));
 2052         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2053             GSEL(GCODE_SEL, SEL_KPL));
 2054         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2055             GSEL(GCODE_SEL, SEL_KPL));
 2056         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2057             GSEL(GCODE_SEL, SEL_KPL));
 2058         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2059             GSEL(GCODE_SEL, SEL_KPL));
 2060         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2061             GSEL(GCODE_SEL, SEL_KPL));
 2062         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2063             GSEL(GCODE_SEL, SEL_KPL));
 2064         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2065             GSEL(GCODE_SEL, SEL_KPL));
 2066         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2067             GSEL(GCODE_SEL, SEL_KPL));
 2068         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2069             GSEL(GCODE_SEL, SEL_KPL));
 2070         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2071             GSEL(GCODE_SEL, SEL_KPL));
 2072 
 2073         r_idt.rd_limit = sizeof(idt0) - 1;
 2074         r_idt.rd_base = (int) idt;
 2075         lidt(&r_idt);
 2076 
 2077         /*
 2078          * Initialize the i8254 before the console so that console
 2079          * initialization can use DELAY().
 2080          */
 2081         i8254_init();
 2082 
 2083         /*
 2084          * Initialize the console before we print anything out.
 2085          */
 2086         cninit();
 2087 
 2088         if (metadata_missing)
 2089                 printf("WARNING: loader(8) metadata is missing!\n");
 2090 
 2091 #ifdef DEV_ISA
 2092         atpic_startup();
 2093 #endif
 2094 
 2095 #ifdef DDB
 2096         ksym_start = bootinfo.bi_symtab;
 2097         ksym_end = bootinfo.bi_esymtab;
 2098 #endif
 2099 
 2100         kdb_init();
 2101 
 2102 #ifdef KDB
 2103         if (boothowto & RB_KDB)
 2104                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2105 #endif
 2106 
 2107         finishidentcpu();       /* Final stage of CPU initialization */
 2108         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2109             GSEL(GCODE_SEL, SEL_KPL));
 2110         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2111             GSEL(GCODE_SEL, SEL_KPL));
 2112         initializecpu();        /* Initialize CPU registers */
 2113 
 2114         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2115         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2116         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2117             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2118         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2119         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2120         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2121         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2122         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2123         ltr(gsel_tss);
 2124 
 2125         /* pointer to selector slot for %fs/%gs */
 2126         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2127 
 2128         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2129             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2130         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2131             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2132         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2133         dblfault_tss.tss_eip = (int)dblfault_handler;
 2134         dblfault_tss.tss_eflags = PSL_KERNEL;
 2135         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2136             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2137         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2138         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2139         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2140 
 2141         vm86_initialize();
 2142         getmemsize(first);
 2143         init_param2(physmem);
 2144 
 2145         /* now running on new page tables, configured,and u/iom is accessible */
 2146 
 2147         msgbufinit(msgbufp, MSGBUF_SIZE);
 2148 
 2149         /* make a call gate to reenter kernel with */
 2150         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2151 
 2152         x = (int) &IDTVEC(lcall_syscall);
 2153         gdp->gd_looffset = x;
 2154         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2155         gdp->gd_stkcpy = 1;
 2156         gdp->gd_type = SDT_SYS386CGT;
 2157         gdp->gd_dpl = SEL_UPL;
 2158         gdp->gd_p = 1;
 2159         gdp->gd_hioffset = x >> 16;
 2160 
 2161         /* XXX does this work? */
 2162         /* XXX yes! */
 2163         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2164         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2165 
 2166         /* transfer to user mode */
 2167 
 2168         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2169         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2170 
 2171         /* setup proc 0's pcb */
 2172         thread0.td_pcb->pcb_flags = 0;
 2173         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2174         thread0.td_pcb->pcb_ext = 0;
 2175         thread0.td_frame = &proc0_tf;
 2176 }
 2177 
 2178 void
 2179 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2180 {
 2181 
 2182 }
 2183 
 2184 void
 2185 spinlock_enter(void)
 2186 {
 2187         struct thread *td;
 2188 
 2189         td = curthread;
 2190         if (td->td_md.md_spinlock_count == 0)
 2191                 td->td_md.md_saved_flags = intr_disable();
 2192         td->td_md.md_spinlock_count++;
 2193         critical_enter();
 2194 }
 2195 
 2196 void
 2197 spinlock_exit(void)
 2198 {
 2199         struct thread *td;
 2200 
 2201         td = curthread;
 2202         critical_exit();
 2203         td->td_md.md_spinlock_count--;
 2204         if (td->td_md.md_spinlock_count == 0)
 2205                 intr_restore(td->td_md.md_saved_flags);
 2206 }
 2207 
 2208 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2209 static void f00f_hack(void *unused);
 2210 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 2211 
 2212 static void
 2213 f00f_hack(void *unused)
 2214 {
 2215         struct gate_descriptor *new_idt;
 2216         vm_offset_t tmp;
 2217 
 2218         if (!has_f00f_bug)
 2219                 return;
 2220 
 2221         GIANT_REQUIRED;
 2222 
 2223         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2224 
 2225         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 2226         if (tmp == 0)
 2227                 panic("kmem_alloc returned 0");
 2228 
 2229         /* Put the problematic entry (#6) at the end of the lower page. */
 2230         new_idt = (struct gate_descriptor*)
 2231             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2232         bcopy(idt, new_idt, sizeof(idt0));
 2233         r_idt.rd_base = (u_int)new_idt;
 2234         lidt(&r_idt);
 2235         idt = new_idt;
 2236         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 2237                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 2238                 panic("vm_map_protect failed");
 2239 }
 2240 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2241 
 2242 /*
 2243  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2244  * we want to start a backtrace from the function that caused us to enter
 2245  * the debugger. We have the context in the trapframe, but base the trace
 2246  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2247  * enough for a backtrace.
 2248  */
 2249 void
 2250 makectx(struct trapframe *tf, struct pcb *pcb)
 2251 {
 2252 
 2253         pcb->pcb_edi = tf->tf_edi;
 2254         pcb->pcb_esi = tf->tf_esi;
 2255         pcb->pcb_ebp = tf->tf_ebp;
 2256         pcb->pcb_ebx = tf->tf_ebx;
 2257         pcb->pcb_eip = tf->tf_eip;
 2258         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2259 }
 2260 
 2261 int
 2262 ptrace_set_pc(struct thread *td, u_long addr)
 2263 {
 2264 
 2265         td->td_frame->tf_eip = addr;
 2266         return (0);
 2267 }
 2268 
 2269 int
 2270 ptrace_single_step(struct thread *td)
 2271 {
 2272         td->td_frame->tf_eflags |= PSL_T;
 2273         return (0);
 2274 }
 2275 
 2276 int
 2277 ptrace_clear_single_step(struct thread *td)
 2278 {
 2279         td->td_frame->tf_eflags &= ~PSL_T;
 2280         return (0);
 2281 }
 2282 
 2283 int
 2284 fill_regs(struct thread *td, struct reg *regs)
 2285 {
 2286         struct pcb *pcb;
 2287         struct trapframe *tp;
 2288 
 2289         tp = td->td_frame;
 2290         pcb = td->td_pcb;
 2291         regs->r_fs = tp->tf_fs;
 2292         regs->r_es = tp->tf_es;
 2293         regs->r_ds = tp->tf_ds;
 2294         regs->r_edi = tp->tf_edi;
 2295         regs->r_esi = tp->tf_esi;
 2296         regs->r_ebp = tp->tf_ebp;
 2297         regs->r_ebx = tp->tf_ebx;
 2298         regs->r_edx = tp->tf_edx;
 2299         regs->r_ecx = tp->tf_ecx;
 2300         regs->r_eax = tp->tf_eax;
 2301         regs->r_eip = tp->tf_eip;
 2302         regs->r_cs = tp->tf_cs;
 2303         regs->r_eflags = tp->tf_eflags;
 2304         regs->r_esp = tp->tf_esp;
 2305         regs->r_ss = tp->tf_ss;
 2306         regs->r_gs = pcb->pcb_gs;
 2307         return (0);
 2308 }
 2309 
 2310 int
 2311 set_regs(struct thread *td, struct reg *regs)
 2312 {
 2313         struct pcb *pcb;
 2314         struct trapframe *tp;
 2315 
 2316         tp = td->td_frame;
 2317         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2318             !CS_SECURE(regs->r_cs))
 2319                 return (EINVAL);
 2320         pcb = td->td_pcb;
 2321         tp->tf_fs = regs->r_fs;
 2322         tp->tf_es = regs->r_es;
 2323         tp->tf_ds = regs->r_ds;
 2324         tp->tf_edi = regs->r_edi;
 2325         tp->tf_esi = regs->r_esi;
 2326         tp->tf_ebp = regs->r_ebp;
 2327         tp->tf_ebx = regs->r_ebx;
 2328         tp->tf_edx = regs->r_edx;
 2329         tp->tf_ecx = regs->r_ecx;
 2330         tp->tf_eax = regs->r_eax;
 2331         tp->tf_eip = regs->r_eip;
 2332         tp->tf_cs = regs->r_cs;
 2333         tp->tf_eflags = regs->r_eflags;
 2334         tp->tf_esp = regs->r_esp;
 2335         tp->tf_ss = regs->r_ss;
 2336         pcb->pcb_gs = regs->r_gs;
 2337         return (0);
 2338 }
 2339 
 2340 #ifdef CPU_ENABLE_SSE
 2341 static void
 2342 fill_fpregs_xmm(sv_xmm, sv_87)
 2343         struct savexmm *sv_xmm;
 2344         struct save87 *sv_87;
 2345 {
 2346         register struct env87 *penv_87 = &sv_87->sv_env;
 2347         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2348         int i;
 2349 
 2350         bzero(sv_87, sizeof(*sv_87));
 2351 
 2352         /* FPU control/status */
 2353         penv_87->en_cw = penv_xmm->en_cw;
 2354         penv_87->en_sw = penv_xmm->en_sw;
 2355         penv_87->en_tw = penv_xmm->en_tw;
 2356         penv_87->en_fip = penv_xmm->en_fip;
 2357         penv_87->en_fcs = penv_xmm->en_fcs;
 2358         penv_87->en_opcode = penv_xmm->en_opcode;
 2359         penv_87->en_foo = penv_xmm->en_foo;
 2360         penv_87->en_fos = penv_xmm->en_fos;
 2361 
 2362         /* FPU registers */
 2363         for (i = 0; i < 8; ++i)
 2364                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 2365 }
 2366 
 2367 static void
 2368 set_fpregs_xmm(sv_87, sv_xmm)
 2369         struct save87 *sv_87;
 2370         struct savexmm *sv_xmm;
 2371 {
 2372         register struct env87 *penv_87 = &sv_87->sv_env;
 2373         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2374         int i;
 2375 
 2376         /* FPU control/status */
 2377         penv_xmm->en_cw = penv_87->en_cw;
 2378         penv_xmm->en_sw = penv_87->en_sw;
 2379         penv_xmm->en_tw = penv_87->en_tw;
 2380         penv_xmm->en_fip = penv_87->en_fip;
 2381         penv_xmm->en_fcs = penv_87->en_fcs;
 2382         penv_xmm->en_opcode = penv_87->en_opcode;
 2383         penv_xmm->en_foo = penv_87->en_foo;
 2384         penv_xmm->en_fos = penv_87->en_fos;
 2385 
 2386         /* FPU registers */
 2387         for (i = 0; i < 8; ++i)
 2388                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 2389 }
 2390 #endif /* CPU_ENABLE_SSE */
 2391 
 2392 int
 2393 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2394 {
 2395 #ifdef CPU_ENABLE_SSE
 2396         if (cpu_fxsr) {
 2397                 fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
 2398                                                 (struct save87 *)fpregs);
 2399                 return (0);
 2400         }
 2401 #endif /* CPU_ENABLE_SSE */
 2402         bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
 2403         return (0);
 2404 }
 2405 
 2406 int
 2407 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2408 {
 2409 #ifdef CPU_ENABLE_SSE
 2410         if (cpu_fxsr) {
 2411                 set_fpregs_xmm((struct save87 *)fpregs,
 2412                                            &td->td_pcb->pcb_save.sv_xmm);
 2413                 return (0);
 2414         }
 2415 #endif /* CPU_ENABLE_SSE */
 2416         bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
 2417         return (0);
 2418 }
 2419 
 2420 /*
 2421  * Get machine context.
 2422  */
 2423 int
 2424 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2425 {
 2426         struct trapframe *tp;
 2427         struct segment_descriptor *sdp;
 2428 
 2429         tp = td->td_frame;
 2430 
 2431         PROC_LOCK(curthread->td_proc);
 2432         mcp->mc_onstack = sigonstack(tp->tf_esp);
 2433         PROC_UNLOCK(curthread->td_proc);
 2434         mcp->mc_gs = td->td_pcb->pcb_gs;
 2435         mcp->mc_fs = tp->tf_fs;
 2436         mcp->mc_es = tp->tf_es;
 2437         mcp->mc_ds = tp->tf_ds;
 2438         mcp->mc_edi = tp->tf_edi;
 2439         mcp->mc_esi = tp->tf_esi;
 2440         mcp->mc_ebp = tp->tf_ebp;
 2441         mcp->mc_isp = tp->tf_isp;
 2442         mcp->mc_eflags = tp->tf_eflags;
 2443         if (flags & GET_MC_CLEAR_RET) {
 2444                 mcp->mc_eax = 0;
 2445                 mcp->mc_edx = 0;
 2446                 mcp->mc_eflags &= ~PSL_C;
 2447         } else {
 2448                 mcp->mc_eax = tp->tf_eax;
 2449                 mcp->mc_edx = tp->tf_edx;
 2450         }
 2451         mcp->mc_ebx = tp->tf_ebx;
 2452         mcp->mc_ecx = tp->tf_ecx;
 2453         mcp->mc_eip = tp->tf_eip;
 2454         mcp->mc_cs = tp->tf_cs;
 2455         mcp->mc_esp = tp->tf_esp;
 2456         mcp->mc_ss = tp->tf_ss;
 2457         mcp->mc_len = sizeof(*mcp);
 2458         get_fpcontext(td, mcp);
 2459         sdp = &td->td_pcb->pcb_gsd;
 2460         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 2461         sdp = &td->td_pcb->pcb_fsd;
 2462         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 2463 
 2464         return (0);
 2465 }
 2466 
 2467 /*
 2468  * Set machine context.
 2469  *
 2470  * However, we don't set any but the user modifiable flags, and we won't
 2471  * touch the cs selector.
 2472  */
 2473 int
 2474 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2475 {
 2476         struct trapframe *tp;
 2477         int eflags, ret;
 2478 
 2479         tp = td->td_frame;
 2480         if (mcp->mc_len != sizeof(*mcp))
 2481                 return (EINVAL);
 2482         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 2483             (tp->tf_eflags & ~PSL_USERCHANGE);
 2484         if ((ret = set_fpcontext(td, mcp)) == 0) {
 2485                 tp->tf_fs = mcp->mc_fs;
 2486                 tp->tf_es = mcp->mc_es;
 2487                 tp->tf_ds = mcp->mc_ds;
 2488                 tp->tf_edi = mcp->mc_edi;
 2489                 tp->tf_esi = mcp->mc_esi;
 2490                 tp->tf_ebp = mcp->mc_ebp;
 2491                 tp->tf_ebx = mcp->mc_ebx;
 2492                 tp->tf_edx = mcp->mc_edx;
 2493                 tp->tf_ecx = mcp->mc_ecx;
 2494                 tp->tf_eax = mcp->mc_eax;
 2495                 tp->tf_eip = mcp->mc_eip;
 2496                 tp->tf_eflags = eflags;
 2497                 tp->tf_esp = mcp->mc_esp;
 2498                 tp->tf_ss = mcp->mc_ss;
 2499                 td->td_pcb->pcb_gs = mcp->mc_gs;
 2500                 ret = 0;
 2501         }
 2502         return (ret);
 2503 }
 2504 
 2505 static void
 2506 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2507 {
 2508 #ifndef DEV_NPX
 2509         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 2510         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 2511 #else
 2512         union savefpu *addr;
 2513 
 2514         /*
 2515          * XXX mc_fpstate might be misaligned, since its declaration is not
 2516          * unportabilized using __attribute__((aligned(16))) like the
 2517          * declaration of struct savemm, and anyway, alignment doesn't work
 2518          * for auto variables since we don't use gcc's pessimal stack
 2519          * alignment.  Work around this by abusing the spare fields after
 2520          * mcp->mc_fpstate.
 2521          *
 2522          * XXX unpessimize most cases by only aligning when fxsave might be
 2523          * called, although this requires knowing too much about
 2524          * npxgetregs()'s internals.
 2525          */
 2526         addr = (union savefpu *)&mcp->mc_fpstate;
 2527         if (td == PCPU_GET(fpcurthread) &&
 2528 #ifdef CPU_ENABLE_SSE
 2529             cpu_fxsr &&
 2530 #endif
 2531             ((uintptr_t)(void *)addr & 0xF)) {
 2532                 do
 2533                         addr = (void *)((char *)addr + 4);
 2534                 while ((uintptr_t)(void *)addr & 0xF);
 2535         }
 2536         mcp->mc_ownedfp = npxgetregs(td, addr);
 2537         if (addr != (union savefpu *)&mcp->mc_fpstate) {
 2538                 bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 2539                 bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
 2540         }
 2541         mcp->mc_fpformat = npxformat();
 2542 #endif
 2543 }
 2544 
 2545 static int
 2546 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2547 {
 2548         union savefpu *addr;
 2549 
 2550         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2551                 return (0);
 2552         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 2553             mcp->mc_fpformat != _MC_FPFMT_XMM)
 2554                 return (EINVAL);
 2555         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2556                 /* We don't care what state is left in the FPU or PCB. */
 2557                 fpstate_drop(td);
 2558         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2559             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2560                 /* XXX align as above. */
 2561                 addr = (union savefpu *)&mcp->mc_fpstate;
 2562                 if (td == PCPU_GET(fpcurthread) &&
 2563 #ifdef CPU_ENABLE_SSE
 2564                     cpu_fxsr &&
 2565 #endif
 2566                     ((uintptr_t)(void *)addr & 0xF)) {
 2567                         do
 2568                                 addr = (void *)((char *)addr + 4);
 2569                         while ((uintptr_t)(void *)addr & 0xF);
 2570                         bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
 2571                 }
 2572 #ifdef DEV_NPX
 2573 #ifdef CPU_ENABLE_SSE
 2574                 if (cpu_fxsr)
 2575                         addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
 2576 #endif
 2577                 /*
 2578                  * XXX we violate the dubious requirement that npxsetregs()
 2579                  * be called with interrupts disabled.
 2580                  */
 2581                 npxsetregs(td, addr);
 2582 #endif
 2583                 /*
 2584                  * Don't bother putting things back where they were in the
 2585                  * misaligned case, since we know that the caller won't use
 2586                  * them again.
 2587                  */
 2588         } else
 2589                 return (EINVAL);
 2590         return (0);
 2591 }
 2592 
 2593 static void
 2594 fpstate_drop(struct thread *td)
 2595 {
 2596         register_t s;
 2597 
 2598         s = intr_disable();
 2599 #ifdef DEV_NPX
 2600         if (PCPU_GET(fpcurthread) == td)
 2601                 npxdrop();
 2602 #endif
 2603         /*
 2604          * XXX force a full drop of the npx.  The above only drops it if we
 2605          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 2606          *
 2607          * XXX I don't much like npxgetregs()'s semantics of doing a full
 2608          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2609          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2610          * sendsig() is the only caller of npxgetregs()... perhaps we just
 2611          * have too many layers.
 2612          */
 2613         curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
 2614         intr_restore(s);
 2615 }
 2616 
 2617 int
 2618 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2619 {
 2620         struct pcb *pcb;
 2621 
 2622         if (td == NULL) {
 2623                 dbregs->dr[0] = rdr0();
 2624                 dbregs->dr[1] = rdr1();
 2625                 dbregs->dr[2] = rdr2();
 2626                 dbregs->dr[3] = rdr3();
 2627                 dbregs->dr[4] = rdr4();
 2628                 dbregs->dr[5] = rdr5();
 2629                 dbregs->dr[6] = rdr6();
 2630                 dbregs->dr[7] = rdr7();
 2631         } else {
 2632                 pcb = td->td_pcb;
 2633                 dbregs->dr[0] = pcb->pcb_dr0;
 2634                 dbregs->dr[1] = pcb->pcb_dr1;
 2635                 dbregs->dr[2] = pcb->pcb_dr2;
 2636                 dbregs->dr[3] = pcb->pcb_dr3;
 2637                 dbregs->dr[4] = 0;
 2638                 dbregs->dr[5] = 0;
 2639                 dbregs->dr[6] = pcb->pcb_dr6;
 2640                 dbregs->dr[7] = pcb->pcb_dr7;
 2641         }
 2642         return (0);
 2643 }
 2644 
 2645 int
 2646 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2647 {
 2648         struct pcb *pcb;
 2649         int i;
 2650 
 2651         if (td == NULL) {
 2652                 load_dr0(dbregs->dr[0]);
 2653                 load_dr1(dbregs->dr[1]);
 2654                 load_dr2(dbregs->dr[2]);
 2655                 load_dr3(dbregs->dr[3]);
 2656                 load_dr4(dbregs->dr[4]);
 2657                 load_dr5(dbregs->dr[5]);
 2658                 load_dr6(dbregs->dr[6]);
 2659                 load_dr7(dbregs->dr[7]);
 2660         } else {
 2661                 /*
 2662                  * Don't let an illegal value for dr7 get set.  Specifically,
 2663                  * check for undefined settings.  Setting these bit patterns
 2664                  * result in undefined behaviour and can lead to an unexpected
 2665                  * TRCTRAP.
 2666                  */
 2667                 for (i = 0; i < 4; i++) {
 2668                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2669                                 return (EINVAL);
 2670                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 2671                                 return (EINVAL);
 2672                 }
 2673                 
 2674                 pcb = td->td_pcb;
 2675                 
 2676                 /*
 2677                  * Don't let a process set a breakpoint that is not within the
 2678                  * process's address space.  If a process could do this, it
 2679                  * could halt the system by setting a breakpoint in the kernel
 2680                  * (if ddb was enabled).  Thus, we need to check to make sure
 2681                  * that no breakpoints are being enabled for addresses outside
 2682                  * process's address space.
 2683                  *
 2684                  * XXX - what about when the watched area of the user's
 2685                  * address space is written into from within the kernel
 2686                  * ... wouldn't that still cause a breakpoint to be generated
 2687                  * from within kernel mode?
 2688                  */
 2689 
 2690                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2691                         /* dr0 is enabled */
 2692                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2693                                 return (EINVAL);
 2694                 }
 2695                         
 2696                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2697                         /* dr1 is enabled */
 2698                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2699                                 return (EINVAL);
 2700                 }
 2701                         
 2702                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2703                         /* dr2 is enabled */
 2704                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2705                                 return (EINVAL);
 2706                 }
 2707                         
 2708                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2709                         /* dr3 is enabled */
 2710                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2711                                 return (EINVAL);
 2712                 }
 2713 
 2714                 pcb->pcb_dr0 = dbregs->dr[0];
 2715                 pcb->pcb_dr1 = dbregs->dr[1];
 2716                 pcb->pcb_dr2 = dbregs->dr[2];
 2717                 pcb->pcb_dr3 = dbregs->dr[3];
 2718                 pcb->pcb_dr6 = dbregs->dr[6];
 2719                 pcb->pcb_dr7 = dbregs->dr[7];
 2720 
 2721                 pcb->pcb_flags |= PCB_DBREGS;
 2722         }
 2723 
 2724         return (0);
 2725 }
 2726 
 2727 /*
 2728  * Return > 0 if a hardware breakpoint has been hit, and the
 2729  * breakpoint was in user space.  Return 0, otherwise.
 2730  */
 2731 int
 2732 user_dbreg_trap(void)
 2733 {
 2734         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 2735         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 2736         int nbp;            /* number of breakpoints that triggered */
 2737         caddr_t addr[4];    /* breakpoint addresses */
 2738         int i;
 2739         
 2740         dr7 = rdr7();
 2741         if ((dr7 & 0x000000ff) == 0) {
 2742                 /*
 2743                  * all GE and LE bits in the dr7 register are zero,
 2744                  * thus the trap couldn't have been caused by the
 2745                  * hardware debug registers
 2746                  */
 2747                 return 0;
 2748         }
 2749 
 2750         nbp = 0;
 2751         dr6 = rdr6();
 2752         bp = dr6 & 0x0000000f;
 2753 
 2754         if (!bp) {
 2755                 /*
 2756                  * None of the breakpoint bits are set meaning this
 2757                  * trap was not caused by any of the debug registers
 2758                  */
 2759                 return 0;
 2760         }
 2761 
 2762         /*
 2763          * at least one of the breakpoints were hit, check to see
 2764          * which ones and if any of them are user space addresses
 2765          */
 2766 
 2767         if (bp & 0x01) {
 2768                 addr[nbp++] = (caddr_t)rdr0();
 2769         }
 2770         if (bp & 0x02) {
 2771                 addr[nbp++] = (caddr_t)rdr1();
 2772         }
 2773         if (bp & 0x04) {
 2774                 addr[nbp++] = (caddr_t)rdr2();
 2775         }
 2776         if (bp & 0x08) {
 2777                 addr[nbp++] = (caddr_t)rdr3();
 2778         }
 2779 
 2780         for (i = 0; i < nbp; i++) {
 2781                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2782                         /*
 2783                          * addr[i] is in user space
 2784                          */
 2785                         return nbp;
 2786                 }
 2787         }
 2788 
 2789         /*
 2790          * None of the breakpoints are in user space.
 2791          */
 2792         return 0;
 2793 }
 2794 
 2795 #ifdef KDB
 2796 
 2797 /*
 2798  * Provide inb() and outb() as functions.  They are normally only available as
 2799  * inline functions, thus cannot be called from the debugger.
 2800  */
 2801 
 2802 /* silence compiler warnings */
 2803 u_char inb_(u_short);
 2804 void outb_(u_short, u_char);
 2805 
 2806 u_char
 2807 inb_(u_short port)
 2808 {
 2809         return inb(port);
 2810 }
 2811 
 2812 void
 2813 outb_(u_short port, u_char data)
 2814 {
 2815         outb(port, data);
 2816 }
 2817 
 2818 #endif /* KDB */

Cache object: 13d9e45a412cc54372da0c6bc684af1a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.