The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pc98/pc98/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/8.2/sys/pc98/pc98/machdep.c 217031 2011-01-05 22:14:18Z gavin $");
   42 
   43 #include "opt_atalk.h"
   44 #include "opt_compat.h"
   45 #include "opt_cpu.h"
   46 #include "opt_ddb.h"
   47 #include "opt_inet.h"
   48 #include "opt_ipx.h"
   49 #include "opt_isa.h"
   50 #include "opt_kstack_pages.h"
   51 #include "opt_maxmem.h"
   52 #include "opt_msgbuf.h"
   53 #include "opt_npx.h"
   54 #include "opt_perfmon.h"
   55 
   56 #include <sys/param.h>
   57 #include <sys/proc.h>
   58 #include <sys/systm.h>
   59 #include <sys/bio.h>
   60 #include <sys/buf.h>
   61 #include <sys/bus.h>
   62 #include <sys/callout.h>
   63 #include <sys/cons.h>
   64 #include <sys/cpu.h>
   65 #include <sys/eventhandler.h>
   66 #include <sys/exec.h>
   67 #include <sys/imgact.h>
   68 #include <sys/kdb.h>
   69 #include <sys/kernel.h>
   70 #include <sys/ktr.h>
   71 #include <sys/linker.h>
   72 #include <sys/lock.h>
   73 #include <sys/malloc.h>
   74 #include <sys/memrange.h>
   75 #include <sys/msgbuf.h>
   76 #include <sys/mutex.h>
   77 #include <sys/pcpu.h>
   78 #include <sys/ptrace.h>
   79 #include <sys/reboot.h>
   80 #include <sys/sched.h>
   81 #include <sys/signalvar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/sysent.h>
   84 #include <sys/sysproto.h>
   85 #include <sys/ucontext.h>
   86 #include <sys/vmmeter.h>
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_extern.h>
   90 #include <vm/vm_kern.h>
   91 #include <vm/vm_page.h>
   92 #include <vm/vm_map.h>
   93 #include <vm/vm_object.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/vm_param.h>
   96 
   97 #ifdef DDB
   98 #ifndef KDB
   99 #error KDB must be enabled in order for DDB to work!
  100 #endif
  101 #include <ddb/ddb.h>
  102 #include <ddb/db_sym.h>
  103 #endif
  104 
  105 #include <pc98/pc98/pc98_machdep.h>
  106 
  107 #include <net/netisr.h>
  108 
  109 #include <machine/bootinfo.h>
  110 #include <machine/clock.h>
  111 #include <machine/cpu.h>
  112 #include <machine/cputypes.h>
  113 #include <machine/intr_machdep.h>
  114 #include <machine/mca.h>
  115 #include <machine/md_var.h>
  116 #include <machine/pc/bios.h>
  117 #include <machine/pcb.h>
  118 #include <machine/pcb_ext.h>
  119 #include <machine/proc.h>
  120 #include <machine/reg.h>
  121 #include <machine/sigframe.h>
  122 #include <machine/specialreg.h>
  123 #include <machine/vm86.h>
  124 #ifdef PERFMON
  125 #include <machine/perfmon.h>
  126 #endif
  127 #ifdef SMP
  128 #include <machine/smp.h>
  129 #endif
  130 
  131 #ifdef DEV_ISA
  132 #include <i386/isa/icu.h>
  133 #endif
  134 
  135 /* Sanity check for __curthread() */
  136 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  137 
  138 extern void init386(int first);
  139 extern void dblfault_handler(void);
  140 
  141 extern void printcpuinfo(void); /* XXX header file */
  142 extern void finishidentcpu(void);
  143 extern void panicifcpuunsupported(void);
  144 extern void initializecpu(void);
  145 
  146 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  147 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  148 
  149 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  150 #define CPU_ENABLE_SSE
  151 #endif
  152 
  153 static void cpu_startup(void *);
  154 static void fpstate_drop(struct thread *td);
  155 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  156 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  157 #ifdef CPU_ENABLE_SSE
  158 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  159 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  160 #endif /* CPU_ENABLE_SSE */
  161 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  162 
  163 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  164 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  165 
  166 #ifdef DDB
  167 extern vm_offset_t ksym_start, ksym_end;
  168 #endif
  169 
  170 int     _udatasel, _ucodesel;
  171 u_int   basemem;
  172 
  173 static int      ispc98 = 1;
  174 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  175 
  176 int cold = 1;
  177 
  178 #ifdef COMPAT_43
  179 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  180 #endif
  181 #ifdef COMPAT_FREEBSD4
  182 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  183 #endif
  184 
  185 long Maxmem = 0;
  186 long realmem = 0;
  187 
  188 /*
  189  * The number of PHYSMAP entries must be one less than the number of
  190  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  191  * physical address that is accessible by ISA DMA is split into two
  192  * PHYSSEG entries.
  193  */
  194 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  195 
  196 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  197 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  198 
  199 /* must be 2 less so 0 0 can signal end of chunks */
  200 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  201 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  202 
  203 struct kva_md_info kmi;
  204 
  205 static struct trapframe proc0_tf;
  206 struct pcpu __pcpu[MAXCPU];
  207 
  208 struct mtx icu_lock;
  209 
  210 struct mem_range_softc mem_range_softc;
  211 
  212 static void
  213 cpu_startup(dummy)
  214         void *dummy;
  215 {
  216         uintmax_t memsize;
  217 
  218         /*
  219          * Good {morning,afternoon,evening,night}.
  220          */
  221         startrtclock();
  222         printcpuinfo();
  223         panicifcpuunsupported();
  224 #ifdef PERFMON
  225         perfmon_init();
  226 #endif
  227         realmem = Maxmem;
  228 
  229         /*
  230          * Display physical memory.
  231          */
  232         memsize = ptoa((uintmax_t)Maxmem);
  233         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  234 
  235         /*
  236          * Display any holes after the first chunk of extended memory.
  237          */
  238         if (bootverbose) {
  239                 int indx;
  240 
  241                 printf("Physical memory chunk(s):\n");
  242                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  243                         vm_paddr_t size;
  244 
  245                         size = phys_avail[indx + 1] - phys_avail[indx];
  246                         printf(
  247                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  248                             (uintmax_t)phys_avail[indx],
  249                             (uintmax_t)phys_avail[indx + 1] - 1,
  250                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  251                 }
  252         }
  253 
  254         vm_ksubmap_init(&kmi);
  255 
  256         printf("avail memory = %ju (%ju MB)\n",
  257             ptoa((uintmax_t)cnt.v_free_count),
  258             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  259 
  260         /*
  261          * Set up buffers, so they can be used to read disk labels.
  262          */
  263         bufinit();
  264         vm_pager_bufferinit();
  265         cpu_setregs();
  266 }
  267 
  268 /*
  269  * Send an interrupt to process.
  270  *
  271  * Stack is set up to allow sigcode stored
  272  * at top to call routine, followed by kcall
  273  * to sigreturn routine below.  After sigreturn
  274  * resets the signal mask, the stack, and the
  275  * frame pointer, it returns to the user
  276  * specified pc, psl.
  277  */
  278 #ifdef COMPAT_43
  279 static void
  280 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  281 {
  282         struct osigframe sf, *fp;
  283         struct proc *p;
  284         struct thread *td;
  285         struct sigacts *psp;
  286         struct trapframe *regs;
  287         int sig;
  288         int oonstack;
  289 
  290         td = curthread;
  291         p = td->td_proc;
  292         PROC_LOCK_ASSERT(p, MA_OWNED);
  293         sig = ksi->ksi_signo;
  294         psp = p->p_sigacts;
  295         mtx_assert(&psp->ps_mtx, MA_OWNED);
  296         regs = td->td_frame;
  297         oonstack = sigonstack(regs->tf_esp);
  298 
  299         /* Allocate space for the signal handler context. */
  300         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  301             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  302                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  303                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  304 #if defined(COMPAT_43)
  305                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  306 #endif
  307         } else
  308                 fp = (struct osigframe *)regs->tf_esp - 1;
  309 
  310         /* Translate the signal if appropriate. */
  311         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  312                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  313 
  314         /* Build the argument list for the signal handler. */
  315         sf.sf_signum = sig;
  316         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  317         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  318                 /* Signal handler installed with SA_SIGINFO. */
  319                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  320                 sf.sf_siginfo.si_signo = sig;
  321                 sf.sf_siginfo.si_code = ksi->ksi_code;
  322                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  323         } else {
  324                 /* Old FreeBSD-style arguments. */
  325                 sf.sf_arg2 = ksi->ksi_code;
  326                 sf.sf_addr = (register_t)ksi->ksi_addr;
  327                 sf.sf_ahu.sf_handler = catcher;
  328         }
  329         mtx_unlock(&psp->ps_mtx);
  330         PROC_UNLOCK(p);
  331 
  332         /* Save most if not all of trap frame. */
  333         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  334         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  335         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  336         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  337         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  338         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  339         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  340         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  341         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  342         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  343         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  344         sf.sf_siginfo.si_sc.sc_gs = rgs();
  345         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  346 
  347         /* Build the signal context to be used by osigreturn(). */
  348         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  349         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  350         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  351         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  352         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  353         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  354         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  355         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  356 
  357         /*
  358          * If we're a vm86 process, we want to save the segment registers.
  359          * We also change eflags to be our emulated eflags, not the actual
  360          * eflags.
  361          */
  362         if (regs->tf_eflags & PSL_VM) {
  363                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  364                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  365                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  366 
  367                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  368                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  369                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  370                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  371 
  372                 if (vm86->vm86_has_vme == 0)
  373                         sf.sf_siginfo.si_sc.sc_ps =
  374                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  375                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  376 
  377                 /* See sendsig() for comments. */
  378                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  379         }
  380 
  381         /*
  382          * Copy the sigframe out to the user's stack.
  383          */
  384         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  385 #ifdef DEBUG
  386                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  387 #endif
  388                 PROC_LOCK(p);
  389                 sigexit(td, SIGILL);
  390         }
  391 
  392         regs->tf_esp = (int)fp;
  393         regs->tf_eip = PS_STRINGS - szosigcode;
  394         regs->tf_eflags &= ~(PSL_T | PSL_D);
  395         regs->tf_cs = _ucodesel;
  396         regs->tf_ds = _udatasel;
  397         regs->tf_es = _udatasel;
  398         regs->tf_fs = _udatasel;
  399         load_gs(_udatasel);
  400         regs->tf_ss = _udatasel;
  401         PROC_LOCK(p);
  402         mtx_lock(&psp->ps_mtx);
  403 }
  404 #endif /* COMPAT_43 */
  405 
  406 #ifdef COMPAT_FREEBSD4
  407 static void
  408 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  409 {
  410         struct sigframe4 sf, *sfp;
  411         struct proc *p;
  412         struct thread *td;
  413         struct sigacts *psp;
  414         struct trapframe *regs;
  415         int sig;
  416         int oonstack;
  417 
  418         td = curthread;
  419         p = td->td_proc;
  420         PROC_LOCK_ASSERT(p, MA_OWNED);
  421         sig = ksi->ksi_signo;
  422         psp = p->p_sigacts;
  423         mtx_assert(&psp->ps_mtx, MA_OWNED);
  424         regs = td->td_frame;
  425         oonstack = sigonstack(regs->tf_esp);
  426 
  427         /* Save user context. */
  428         bzero(&sf, sizeof(sf));
  429         sf.sf_uc.uc_sigmask = *mask;
  430         sf.sf_uc.uc_stack = td->td_sigstk;
  431         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  432             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  433         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  434         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  435         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  436 
  437         /* Allocate space for the signal handler context. */
  438         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  439             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  440                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  441                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  442 #if defined(COMPAT_43)
  443                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  444 #endif
  445         } else
  446                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  447 
  448         /* Translate the signal if appropriate. */
  449         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  450                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  451 
  452         /* Build the argument list for the signal handler. */
  453         sf.sf_signum = sig;
  454         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  455         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  456                 /* Signal handler installed with SA_SIGINFO. */
  457                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  458                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  459 
  460                 /* Fill in POSIX parts */
  461                 sf.sf_si.si_signo = sig;
  462                 sf.sf_si.si_code = ksi->ksi_code;
  463                 sf.sf_si.si_addr = ksi->ksi_addr;
  464         } else {
  465                 /* Old FreeBSD-style arguments. */
  466                 sf.sf_siginfo = ksi->ksi_code;
  467                 sf.sf_addr = (register_t)ksi->ksi_addr;
  468                 sf.sf_ahu.sf_handler = catcher;
  469         }
  470         mtx_unlock(&psp->ps_mtx);
  471         PROC_UNLOCK(p);
  472 
  473         /*
  474          * If we're a vm86 process, we want to save the segment registers.
  475          * We also change eflags to be our emulated eflags, not the actual
  476          * eflags.
  477          */
  478         if (regs->tf_eflags & PSL_VM) {
  479                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  480                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  481 
  482                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  483                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  484                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  485                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  486 
  487                 if (vm86->vm86_has_vme == 0)
  488                         sf.sf_uc.uc_mcontext.mc_eflags =
  489                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  490                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  491 
  492                 /*
  493                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  494                  * syscalls made by the signal handler.  This just avoids
  495                  * wasting time for our lazy fixup of such faults.  PSL_NT
  496                  * does nothing in vm86 mode, but vm86 programs can set it
  497                  * almost legitimately in probes for old cpu types.
  498                  */
  499                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  500         }
  501 
  502         /*
  503          * Copy the sigframe out to the user's stack.
  504          */
  505         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  506 #ifdef DEBUG
  507                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  508 #endif
  509                 PROC_LOCK(p);
  510                 sigexit(td, SIGILL);
  511         }
  512 
  513         regs->tf_esp = (int)sfp;
  514         regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
  515         regs->tf_eflags &= ~(PSL_T | PSL_D);
  516         regs->tf_cs = _ucodesel;
  517         regs->tf_ds = _udatasel;
  518         regs->tf_es = _udatasel;
  519         regs->tf_fs = _udatasel;
  520         regs->tf_ss = _udatasel;
  521         PROC_LOCK(p);
  522         mtx_lock(&psp->ps_mtx);
  523 }
  524 #endif  /* COMPAT_FREEBSD4 */
  525 
  526 void
  527 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  528 {
  529         struct sigframe sf, *sfp;
  530         struct proc *p;
  531         struct thread *td;
  532         struct sigacts *psp;
  533         char *sp;
  534         struct trapframe *regs;
  535         struct segment_descriptor *sdp;
  536         int sig;
  537         int oonstack;
  538 
  539         td = curthread;
  540         p = td->td_proc;
  541         PROC_LOCK_ASSERT(p, MA_OWNED);
  542         sig = ksi->ksi_signo;
  543         psp = p->p_sigacts;
  544         mtx_assert(&psp->ps_mtx, MA_OWNED);
  545 #ifdef COMPAT_FREEBSD4
  546         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  547                 freebsd4_sendsig(catcher, ksi, mask);
  548                 return;
  549         }
  550 #endif
  551 #ifdef COMPAT_43
  552         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  553                 osendsig(catcher, ksi, mask);
  554                 return;
  555         }
  556 #endif
  557         regs = td->td_frame;
  558         oonstack = sigonstack(regs->tf_esp);
  559 
  560         /* Save user context. */
  561         bzero(&sf, sizeof(sf));
  562         sf.sf_uc.uc_sigmask = *mask;
  563         sf.sf_uc.uc_stack = td->td_sigstk;
  564         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  565             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  566         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  567         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  568         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  569         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  570         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  571         fpstate_drop(td);
  572         /*
  573          * Unconditionally fill the fsbase and gsbase into the mcontext.
  574          */
  575         sdp = &td->td_pcb->pcb_fsd;
  576         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  577             sdp->sd_lobase;
  578         sdp = &td->td_pcb->pcb_gsd;
  579         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  580             sdp->sd_lobase;
  581 
  582         /* Allocate space for the signal handler context. */
  583         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  584             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  585                 sp = td->td_sigstk.ss_sp +
  586                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  587 #if defined(COMPAT_43)
  588                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  589 #endif
  590         } else
  591                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  592         /* Align to 16 bytes. */
  593         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  594 
  595         /* Translate the signal if appropriate. */
  596         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  597                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  598 
  599         /* Build the argument list for the signal handler. */
  600         sf.sf_signum = sig;
  601         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  602         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  603                 /* Signal handler installed with SA_SIGINFO. */
  604                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  605                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  606 
  607                 /* Fill in POSIX parts */
  608                 sf.sf_si = ksi->ksi_info;
  609                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  610         } else {
  611                 /* Old FreeBSD-style arguments. */
  612                 sf.sf_siginfo = ksi->ksi_code;
  613                 sf.sf_addr = (register_t)ksi->ksi_addr;
  614                 sf.sf_ahu.sf_handler = catcher;
  615         }
  616         mtx_unlock(&psp->ps_mtx);
  617         PROC_UNLOCK(p);
  618 
  619         /*
  620          * If we're a vm86 process, we want to save the segment registers.
  621          * We also change eflags to be our emulated eflags, not the actual
  622          * eflags.
  623          */
  624         if (regs->tf_eflags & PSL_VM) {
  625                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  626                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  627 
  628                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  629                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  630                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  631                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  632 
  633                 if (vm86->vm86_has_vme == 0)
  634                         sf.sf_uc.uc_mcontext.mc_eflags =
  635                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  636                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  637 
  638                 /*
  639                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  640                  * syscalls made by the signal handler.  This just avoids
  641                  * wasting time for our lazy fixup of such faults.  PSL_NT
  642                  * does nothing in vm86 mode, but vm86 programs can set it
  643                  * almost legitimately in probes for old cpu types.
  644                  */
  645                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  646         }
  647 
  648         /*
  649          * Copy the sigframe out to the user's stack.
  650          */
  651         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  652 #ifdef DEBUG
  653                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  654 #endif
  655                 PROC_LOCK(p);
  656                 sigexit(td, SIGILL);
  657         }
  658 
  659         regs->tf_esp = (int)sfp;
  660         regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
  661         regs->tf_eflags &= ~(PSL_T | PSL_D);
  662         regs->tf_cs = _ucodesel;
  663         regs->tf_ds = _udatasel;
  664         regs->tf_es = _udatasel;
  665         regs->tf_fs = _udatasel;
  666         regs->tf_ss = _udatasel;
  667         PROC_LOCK(p);
  668         mtx_lock(&psp->ps_mtx);
  669 }
  670 
  671 /*
  672  * System call to cleanup state after a signal
  673  * has been taken.  Reset signal mask and
  674  * stack state from context left by sendsig (above).
  675  * Return to previous pc and psl as specified by
  676  * context left by sendsig. Check carefully to
  677  * make sure that the user has not modified the
  678  * state to gain improper privileges.
  679  *
  680  * MPSAFE
  681  */
  682 #ifdef COMPAT_43
  683 int
  684 osigreturn(td, uap)
  685         struct thread *td;
  686         struct osigreturn_args /* {
  687                 struct osigcontext *sigcntxp;
  688         } */ *uap;
  689 {
  690         struct osigcontext sc;
  691         struct trapframe *regs;
  692         struct osigcontext *scp;
  693         int eflags, error;
  694         ksiginfo_t ksi;
  695 
  696         regs = td->td_frame;
  697         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  698         if (error != 0)
  699                 return (error);
  700         scp = &sc;
  701         eflags = scp->sc_ps;
  702         if (eflags & PSL_VM) {
  703                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  704                 struct vm86_kernel *vm86;
  705 
  706                 /*
  707                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  708                  * set up the vm86 area, and we can't enter vm86 mode.
  709                  */
  710                 if (td->td_pcb->pcb_ext == 0)
  711                         return (EINVAL);
  712                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  713                 if (vm86->vm86_inited == 0)
  714                         return (EINVAL);
  715 
  716                 /* Go back to user mode if both flags are set. */
  717                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  718                         ksiginfo_init_trap(&ksi);
  719                         ksi.ksi_signo = SIGBUS;
  720                         ksi.ksi_code = BUS_OBJERR;
  721                         ksi.ksi_addr = (void *)regs->tf_eip;
  722                         trapsignal(td, &ksi);
  723                 }
  724 
  725                 if (vm86->vm86_has_vme) {
  726                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  727                             (eflags & VME_USERCHANGE) | PSL_VM;
  728                 } else {
  729                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  730                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  731                             (eflags & VM_USERCHANGE) | PSL_VM;
  732                 }
  733                 tf->tf_vm86_ds = scp->sc_ds;
  734                 tf->tf_vm86_es = scp->sc_es;
  735                 tf->tf_vm86_fs = scp->sc_fs;
  736                 tf->tf_vm86_gs = scp->sc_gs;
  737                 tf->tf_ds = _udatasel;
  738                 tf->tf_es = _udatasel;
  739                 tf->tf_fs = _udatasel;
  740         } else {
  741                 /*
  742                  * Don't allow users to change privileged or reserved flags.
  743                  */
  744                 /*
  745                  * XXX do allow users to change the privileged flag PSL_RF.
  746                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  747                  * should sometimes set it there too.  tf_eflags is kept in
  748                  * the signal context during signal handling and there is no
  749                  * other place to remember it, so the PSL_RF bit may be
  750                  * corrupted by the signal handler without us knowing.
  751                  * Corruption of the PSL_RF bit at worst causes one more or
  752                  * one less debugger trap, so allowing it is fairly harmless.
  753                  */
  754                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  755                         return (EINVAL);
  756                 }
  757 
  758                 /*
  759                  * Don't allow users to load a valid privileged %cs.  Let the
  760                  * hardware check for invalid selectors, excess privilege in
  761                  * other selectors, invalid %eip's and invalid %esp's.
  762                  */
  763                 if (!CS_SECURE(scp->sc_cs)) {
  764                         ksiginfo_init_trap(&ksi);
  765                         ksi.ksi_signo = SIGBUS;
  766                         ksi.ksi_code = BUS_OBJERR;
  767                         ksi.ksi_trapno = T_PROTFLT;
  768                         ksi.ksi_addr = (void *)regs->tf_eip;
  769                         trapsignal(td, &ksi);
  770                         return (EINVAL);
  771                 }
  772                 regs->tf_ds = scp->sc_ds;
  773                 regs->tf_es = scp->sc_es;
  774                 regs->tf_fs = scp->sc_fs;
  775         }
  776 
  777         /* Restore remaining registers. */
  778         regs->tf_eax = scp->sc_eax;
  779         regs->tf_ebx = scp->sc_ebx;
  780         regs->tf_ecx = scp->sc_ecx;
  781         regs->tf_edx = scp->sc_edx;
  782         regs->tf_esi = scp->sc_esi;
  783         regs->tf_edi = scp->sc_edi;
  784         regs->tf_cs = scp->sc_cs;
  785         regs->tf_ss = scp->sc_ss;
  786         regs->tf_isp = scp->sc_isp;
  787         regs->tf_ebp = scp->sc_fp;
  788         regs->tf_esp = scp->sc_sp;
  789         regs->tf_eip = scp->sc_pc;
  790         regs->tf_eflags = eflags;
  791 
  792 #if defined(COMPAT_43)
  793         if (scp->sc_onstack & 1)
  794                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  795         else
  796                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  797 #endif
  798         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  799             SIGPROCMASK_OLD);
  800         return (EJUSTRETURN);
  801 }
  802 #endif /* COMPAT_43 */
  803 
  804 #ifdef COMPAT_FREEBSD4
  805 /*
  806  * MPSAFE
  807  */
  808 int
  809 freebsd4_sigreturn(td, uap)
  810         struct thread *td;
  811         struct freebsd4_sigreturn_args /* {
  812                 const ucontext4 *sigcntxp;
  813         } */ *uap;
  814 {
  815         struct ucontext4 uc;
  816         struct trapframe *regs;
  817         struct ucontext4 *ucp;
  818         int cs, eflags, error;
  819         ksiginfo_t ksi;
  820 
  821         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  822         if (error != 0)
  823                 return (error);
  824         ucp = &uc;
  825         regs = td->td_frame;
  826         eflags = ucp->uc_mcontext.mc_eflags;
  827         if (eflags & PSL_VM) {
  828                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  829                 struct vm86_kernel *vm86;
  830 
  831                 /*
  832                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  833                  * set up the vm86 area, and we can't enter vm86 mode.
  834                  */
  835                 if (td->td_pcb->pcb_ext == 0)
  836                         return (EINVAL);
  837                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  838                 if (vm86->vm86_inited == 0)
  839                         return (EINVAL);
  840 
  841                 /* Go back to user mode if both flags are set. */
  842                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  843                         ksiginfo_init_trap(&ksi);
  844                         ksi.ksi_signo = SIGBUS;
  845                         ksi.ksi_code = BUS_OBJERR;
  846                         ksi.ksi_addr = (void *)regs->tf_eip;
  847                         trapsignal(td, &ksi);
  848                 }
  849                 if (vm86->vm86_has_vme) {
  850                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  851                             (eflags & VME_USERCHANGE) | PSL_VM;
  852                 } else {
  853                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  854                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  855                             (eflags & VM_USERCHANGE) | PSL_VM;
  856                 }
  857                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  858                 tf->tf_eflags = eflags;
  859                 tf->tf_vm86_ds = tf->tf_ds;
  860                 tf->tf_vm86_es = tf->tf_es;
  861                 tf->tf_vm86_fs = tf->tf_fs;
  862                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  863                 tf->tf_ds = _udatasel;
  864                 tf->tf_es = _udatasel;
  865                 tf->tf_fs = _udatasel;
  866         } else {
  867                 /*
  868                  * Don't allow users to change privileged or reserved flags.
  869                  */
  870                 /*
  871                  * XXX do allow users to change the privileged flag PSL_RF.
  872                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  873                  * should sometimes set it there too.  tf_eflags is kept in
  874                  * the signal context during signal handling and there is no
  875                  * other place to remember it, so the PSL_RF bit may be
  876                  * corrupted by the signal handler without us knowing.
  877                  * Corruption of the PSL_RF bit at worst causes one more or
  878                  * one less debugger trap, so allowing it is fairly harmless.
  879                  */
  880                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  881                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  882                             td->td_proc->p_pid, td->td_name, eflags);
  883                         return (EINVAL);
  884                 }
  885 
  886                 /*
  887                  * Don't allow users to load a valid privileged %cs.  Let the
  888                  * hardware check for invalid selectors, excess privilege in
  889                  * other selectors, invalid %eip's and invalid %esp's.
  890                  */
  891                 cs = ucp->uc_mcontext.mc_cs;
  892                 if (!CS_SECURE(cs)) {
  893                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  894                             td->td_proc->p_pid, td->td_name, cs);
  895                         ksiginfo_init_trap(&ksi);
  896                         ksi.ksi_signo = SIGBUS;
  897                         ksi.ksi_code = BUS_OBJERR;
  898                         ksi.ksi_trapno = T_PROTFLT;
  899                         ksi.ksi_addr = (void *)regs->tf_eip;
  900                         trapsignal(td, &ksi);
  901                         return (EINVAL);
  902                 }
  903 
  904                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  905         }
  906 
  907 #if defined(COMPAT_43)
  908         if (ucp->uc_mcontext.mc_onstack & 1)
  909                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  910         else
  911                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  912 #endif
  913         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  914         return (EJUSTRETURN);
  915 }
  916 #endif  /* COMPAT_FREEBSD4 */
  917 
  918 /*
  919  * MPSAFE
  920  */
  921 int
  922 sigreturn(td, uap)
  923         struct thread *td;
  924         struct sigreturn_args /* {
  925                 const struct __ucontext *sigcntxp;
  926         } */ *uap;
  927 {
  928         ucontext_t uc;
  929         struct trapframe *regs;
  930         ucontext_t *ucp;
  931         int cs, eflags, error, ret;
  932         ksiginfo_t ksi;
  933 
  934         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  935         if (error != 0)
  936                 return (error);
  937         ucp = &uc;
  938         regs = td->td_frame;
  939         eflags = ucp->uc_mcontext.mc_eflags;
  940         if (eflags & PSL_VM) {
  941                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  942                 struct vm86_kernel *vm86;
  943 
  944                 /*
  945                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  946                  * set up the vm86 area, and we can't enter vm86 mode.
  947                  */
  948                 if (td->td_pcb->pcb_ext == 0)
  949                         return (EINVAL);
  950                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  951                 if (vm86->vm86_inited == 0)
  952                         return (EINVAL);
  953 
  954                 /* Go back to user mode if both flags are set. */
  955                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  956                         ksiginfo_init_trap(&ksi);
  957                         ksi.ksi_signo = SIGBUS;
  958                         ksi.ksi_code = BUS_OBJERR;
  959                         ksi.ksi_addr = (void *)regs->tf_eip;
  960                         trapsignal(td, &ksi);
  961                 }
  962 
  963                 if (vm86->vm86_has_vme) {
  964                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  965                             (eflags & VME_USERCHANGE) | PSL_VM;
  966                 } else {
  967                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  968                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  969                             (eflags & VM_USERCHANGE) | PSL_VM;
  970                 }
  971                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  972                 tf->tf_eflags = eflags;
  973                 tf->tf_vm86_ds = tf->tf_ds;
  974                 tf->tf_vm86_es = tf->tf_es;
  975                 tf->tf_vm86_fs = tf->tf_fs;
  976                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  977                 tf->tf_ds = _udatasel;
  978                 tf->tf_es = _udatasel;
  979                 tf->tf_fs = _udatasel;
  980         } else {
  981                 /*
  982                  * Don't allow users to change privileged or reserved flags.
  983                  */
  984                 /*
  985                  * XXX do allow users to change the privileged flag PSL_RF.
  986                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  987                  * should sometimes set it there too.  tf_eflags is kept in
  988                  * the signal context during signal handling and there is no
  989                  * other place to remember it, so the PSL_RF bit may be
  990                  * corrupted by the signal handler without us knowing.
  991                  * Corruption of the PSL_RF bit at worst causes one more or
  992                  * one less debugger trap, so allowing it is fairly harmless.
  993                  */
  994                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  995                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
  996                             td->td_proc->p_pid, td->td_name, eflags);
  997                         return (EINVAL);
  998                 }
  999 
 1000                 /*
 1001                  * Don't allow users to load a valid privileged %cs.  Let the
 1002                  * hardware check for invalid selectors, excess privilege in
 1003                  * other selectors, invalid %eip's and invalid %esp's.
 1004                  */
 1005                 cs = ucp->uc_mcontext.mc_cs;
 1006                 if (!CS_SECURE(cs)) {
 1007                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1008                             td->td_proc->p_pid, td->td_name, cs);
 1009                         ksiginfo_init_trap(&ksi);
 1010                         ksi.ksi_signo = SIGBUS;
 1011                         ksi.ksi_code = BUS_OBJERR;
 1012                         ksi.ksi_trapno = T_PROTFLT;
 1013                         ksi.ksi_addr = (void *)regs->tf_eip;
 1014                         trapsignal(td, &ksi);
 1015                         return (EINVAL);
 1016                 }
 1017 
 1018                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1019                 if (ret != 0)
 1020                         return (ret);
 1021                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1022         }
 1023 
 1024 #if defined(COMPAT_43)
 1025         if (ucp->uc_mcontext.mc_onstack & 1)
 1026                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1027         else
 1028                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1029 #endif
 1030 
 1031         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1032         return (EJUSTRETURN);
 1033 }
 1034 
 1035 /*
 1036  * Machine dependent boot() routine
 1037  *
 1038  * I haven't seen anything to put here yet
 1039  * Possibly some stuff might be grafted back here from boot()
 1040  */
 1041 void
 1042 cpu_boot(int howto)
 1043 {
 1044 }
 1045 
 1046 /*
 1047  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1048  * be made coherent later.
 1049  */
 1050 void
 1051 cpu_flush_dcache(void *ptr, size_t len)
 1052 {
 1053         /* Not applicable */
 1054 }
 1055 
 1056 /* Get current clock frequency for the given cpu id. */
 1057 int
 1058 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1059 {
 1060         register_t reg;
 1061         uint64_t tsc1, tsc2;
 1062 
 1063         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1064                 return (EINVAL);
 1065         if (!tsc_present)
 1066                 return (EOPNOTSUPP);
 1067 
 1068         /* If we're booting, trust the rate calibrated moments ago. */
 1069         if (cold) {
 1070                 *rate = tsc_freq;
 1071                 return (0);
 1072         }
 1073 
 1074 #ifdef SMP
 1075         /* Schedule ourselves on the indicated cpu. */
 1076         thread_lock(curthread);
 1077         sched_bind(curthread, cpu_id);
 1078         thread_unlock(curthread);
 1079 #endif
 1080 
 1081         /* Calibrate by measuring a short delay. */
 1082         reg = intr_disable();
 1083         tsc1 = rdtsc();
 1084         DELAY(1000);
 1085         tsc2 = rdtsc();
 1086         intr_restore(reg);
 1087 
 1088 #ifdef SMP
 1089         thread_lock(curthread);
 1090         sched_unbind(curthread);
 1091         thread_unlock(curthread);
 1092 #endif
 1093 
 1094         /*
 1095          * Calculate the difference in readings, convert to Mhz, and
 1096          * subtract 0.5% of the total.  Empirical testing has shown that
 1097          * overhead in DELAY() works out to approximately this value.
 1098          */
 1099         tsc2 -= tsc1;
 1100         *rate = tsc2 * 1000 - tsc2 * 5;
 1101         return (0);
 1102 }
 1103 
 1104 
 1105 /*
 1106  * Shutdown the CPU as much as possible
 1107  */
 1108 void
 1109 cpu_halt(void)
 1110 {
 1111         for (;;)
 1112                 __asm__ ("hlt");
 1113 }
 1114 
 1115 static void
 1116 cpu_idle_hlt(int busy)
 1117 {
 1118         /*
 1119          * we must absolutely guarentee that hlt is the next instruction
 1120          * after sti or we introduce a timing window.
 1121          */
 1122         disable_intr();
 1123         if (sched_runnable())
 1124                 enable_intr();
 1125         else
 1126                 __asm __volatile("sti; hlt");
 1127 }
 1128 
 1129 static void
 1130 cpu_idle_spin(int busy)
 1131 {
 1132         return;
 1133 }
 1134 
 1135 void (*cpu_idle_fn)(int) = cpu_idle_hlt;
 1136 
 1137 void
 1138 cpu_idle(int busy)
 1139 {
 1140 #if defined(SMP)
 1141         if (mp_grab_cpu_hlt())
 1142                 return;
 1143 #endif
 1144         cpu_idle_fn(busy);
 1145 }
 1146 
 1147 /*
 1148  * mwait cpu power states.  Lower 4 bits are sub-states.
 1149  */
 1150 #define MWAIT_C0        0xf0
 1151 #define MWAIT_C1        0x00
 1152 #define MWAIT_C2        0x10
 1153 #define MWAIT_C3        0x20
 1154 #define MWAIT_C4        0x30
 1155 
 1156 #define MWAIT_DISABLED  0x0
 1157 #define MWAIT_WOKEN     0x1
 1158 #define MWAIT_WAITING   0x2
 1159 
 1160 static void
 1161 cpu_idle_mwait(int busy)
 1162 {
 1163         int *mwait;
 1164 
 1165         mwait = (int *)PCPU_PTR(monitorbuf);
 1166         *mwait = MWAIT_WAITING;
 1167         if (sched_runnable())
 1168                 return;
 1169         cpu_monitor(mwait, 0, 0);
 1170         if (*mwait == MWAIT_WAITING)
 1171                 cpu_mwait(0, MWAIT_C1);
 1172 }
 1173 
 1174 static void
 1175 cpu_idle_mwait_hlt(int busy)
 1176 {
 1177         int *mwait;
 1178 
 1179         mwait = (int *)PCPU_PTR(monitorbuf);
 1180         if (busy == 0) {
 1181                 *mwait = MWAIT_DISABLED;
 1182                 cpu_idle_hlt(busy);
 1183                 return;
 1184         }
 1185         *mwait = MWAIT_WAITING;
 1186         if (sched_runnable())
 1187                 return;
 1188         cpu_monitor(mwait, 0, 0);
 1189         if (*mwait == MWAIT_WAITING)
 1190                 cpu_mwait(0, MWAIT_C1);
 1191 }
 1192 
 1193 int
 1194 cpu_idle_wakeup(int cpu)
 1195 {
 1196         struct pcpu *pcpu;
 1197         int *mwait;
 1198 
 1199         if (cpu_idle_fn == cpu_idle_spin)
 1200                 return (1);
 1201         if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
 1202                 return (0);
 1203         pcpu = pcpu_find(cpu);
 1204         mwait = (int *)pcpu->pc_monitorbuf;
 1205         /*
 1206          * This doesn't need to be atomic since missing the race will
 1207          * simply result in unnecessary IPIs.
 1208          */
 1209         if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
 1210                 return (0);
 1211         *mwait = MWAIT_WOKEN;
 1212 
 1213         return (1);
 1214 }
 1215 
 1216 /*
 1217  * Ordered by speed/power consumption.
 1218  */
 1219 struct {
 1220         void    *id_fn;
 1221         char    *id_name;
 1222 } idle_tbl[] = {
 1223         { cpu_idle_spin, "spin" },
 1224         { cpu_idle_mwait, "mwait" },
 1225         { cpu_idle_mwait_hlt, "mwait_hlt" },
 1226         { cpu_idle_hlt, "hlt" },
 1227         { NULL, NULL }
 1228 };
 1229 
 1230 static int
 1231 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1232 {
 1233         char *avail, *p;
 1234         int error;
 1235         int i;
 1236 
 1237         avail = malloc(256, M_TEMP, M_WAITOK);
 1238         p = avail;
 1239         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1240                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1241                     (cpu_feature2 & CPUID2_MON) == 0)
 1242                         continue;
 1243                 p += sprintf(p, "%s, ", idle_tbl[i].id_name);
 1244         }
 1245         error = sysctl_handle_string(oidp, avail, 0, req);
 1246         free(avail, M_TEMP);
 1247         return (error);
 1248 }
 1249 
 1250 static int
 1251 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1252 {
 1253         char buf[16];
 1254         int error;
 1255         char *p;
 1256         int i;
 1257 
 1258         p = "unknown";
 1259         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1260                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1261                         p = idle_tbl[i].id_name;
 1262                         break;
 1263                 }
 1264         }
 1265         strncpy(buf, p, sizeof(buf));
 1266         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1267         if (error != 0 || req->newptr == NULL)
 1268                 return (error);
 1269         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1270                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1271                     (cpu_feature2 & CPUID2_MON) == 0)
 1272                         continue;
 1273                 if (strcmp(idle_tbl[i].id_name, buf))
 1274                         continue;
 1275                 cpu_idle_fn = idle_tbl[i].id_fn;
 1276                 return (0);
 1277         }
 1278         return (EINVAL);
 1279 }
 1280 
 1281 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1282     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1283 
 1284 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1285     idle_sysctl, "A", "currently selected idle function");
 1286 
 1287 /*
 1288  * Reset registers to default values on exec.
 1289  */
 1290 void
 1291 exec_setregs(td, entry, stack, ps_strings)
 1292         struct thread *td;
 1293         u_long entry;
 1294         u_long stack;
 1295         u_long ps_strings;
 1296 {
 1297         struct trapframe *regs = td->td_frame;
 1298         struct pcb *pcb = td->td_pcb;
 1299 
 1300         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1301         pcb->pcb_gs = _udatasel;
 1302         load_gs(_udatasel);
 1303 
 1304         mtx_lock_spin(&dt_lock);
 1305         if (td->td_proc->p_md.md_ldt)
 1306                 user_ldt_free(td);
 1307         else
 1308                 mtx_unlock_spin(&dt_lock);
 1309   
 1310         bzero((char *)regs, sizeof(struct trapframe));
 1311         regs->tf_eip = entry;
 1312         regs->tf_esp = stack;
 1313         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1314         regs->tf_ss = _udatasel;
 1315         regs->tf_ds = _udatasel;
 1316         regs->tf_es = _udatasel;
 1317         regs->tf_fs = _udatasel;
 1318         regs->tf_cs = _ucodesel;
 1319 
 1320         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1321         regs->tf_ebx = ps_strings;
 1322 
 1323         /*
 1324          * Reset the hardware debug registers if they were in use.
 1325          * They won't have any meaning for the newly exec'd process.  
 1326          */
 1327         if (pcb->pcb_flags & PCB_DBREGS) {
 1328                 pcb->pcb_dr0 = 0;
 1329                 pcb->pcb_dr1 = 0;
 1330                 pcb->pcb_dr2 = 0;
 1331                 pcb->pcb_dr3 = 0;
 1332                 pcb->pcb_dr6 = 0;
 1333                 pcb->pcb_dr7 = 0;
 1334                 if (pcb == PCPU_GET(curpcb)) {
 1335                         /*
 1336                          * Clear the debug registers on the running
 1337                          * CPU, otherwise they will end up affecting
 1338                          * the next process we switch to.
 1339                          */
 1340                         reset_dbregs();
 1341                 }
 1342                 pcb->pcb_flags &= ~PCB_DBREGS;
 1343         }
 1344 
 1345         /*
 1346          * Initialize the math emulator (if any) for the current process.
 1347          * Actually, just clear the bit that says that the emulator has
 1348          * been initialized.  Initialization is delayed until the process
 1349          * traps to the emulator (if it is done at all) mainly because
 1350          * emulators don't provide an entry point for initialization.
 1351          */
 1352         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1353         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1354 
 1355         /*
 1356          * Drop the FP state if we hold it, so that the process gets a
 1357          * clean FP state if it uses the FPU again.
 1358          */
 1359         fpstate_drop(td);
 1360 
 1361         /*
 1362          * XXX - Linux emulator
 1363          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1364          * on it.
 1365          */
 1366         td->td_retval[1] = 0;
 1367 }
 1368 
 1369 void
 1370 cpu_setregs(void)
 1371 {
 1372         unsigned int cr0;
 1373 
 1374         cr0 = rcr0();
 1375 
 1376         /*
 1377          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1378          *
 1379          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1380          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1381          * bit to control the trap, because setting the CR0_EM bit does
 1382          * not cause WAIT instructions to trap.  It's important to trap
 1383          * WAIT instructions - otherwise the "wait" variants of no-wait
 1384          * control instructions would degenerate to the "no-wait" variants
 1385          * after FP context switches but work correctly otherwise.  It's
 1386          * particularly important to trap WAITs when there is no NPX -
 1387          * otherwise the "wait" variants would always degenerate.
 1388          *
 1389          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1390          * Setting it should fail or do nothing on lesser processors.
 1391          */
 1392         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1393         load_cr0(cr0);
 1394         load_gs(_udatasel);
 1395 }
 1396 
 1397 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1398 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1399         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1400 
 1401 /*
 1402  * Initialize 386 and configure to run kernel
 1403  */
 1404 
 1405 /*
 1406  * Initialize segments & interrupt table
 1407  */
 1408 
 1409 int _default_ldt;
 1410 
 1411 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1412 union descriptor ldt[NLDT];             /* local descriptor table */
 1413 static struct gate_descriptor idt0[NIDT];
 1414 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1415 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1416 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1417 
 1418 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1419 extern int has_f00f_bug;
 1420 #endif
 1421 
 1422 static struct i386tss dblfault_tss;
 1423 static char dblfault_stack[PAGE_SIZE];
 1424 
 1425 extern  vm_offset_t     proc0kstack;
 1426 
 1427 
 1428 /*
 1429  * software prototypes -- in more palatable form.
 1430  *
 1431  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1432  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1433  */
 1434 struct soft_segment_descriptor gdt_segs[] = {
 1435 /* GNULL_SEL    0 Null Descriptor */
 1436 {       .ssd_base = 0x0,
 1437         .ssd_limit = 0x0,
 1438         .ssd_type = 0,
 1439         .ssd_dpl = SEL_KPL,
 1440         .ssd_p = 0,
 1441         .ssd_xx = 0, .ssd_xx1 = 0,
 1442         .ssd_def32 = 0,
 1443         .ssd_gran = 0           },
 1444 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1445 {       .ssd_base = 0x0,
 1446         .ssd_limit = 0xfffff,
 1447         .ssd_type = SDT_MEMRWA,
 1448         .ssd_dpl = SEL_KPL,
 1449         .ssd_p = 1,
 1450         .ssd_xx = 0, .ssd_xx1 = 0,
 1451         .ssd_def32 = 1,
 1452         .ssd_gran = 1           },
 1453 /* GUFS_SEL     2 %fs Descriptor for user */
 1454 {       .ssd_base = 0x0,
 1455         .ssd_limit = 0xfffff,
 1456         .ssd_type = SDT_MEMRWA,
 1457         .ssd_dpl = SEL_UPL,
 1458         .ssd_p = 1,
 1459         .ssd_xx = 0, .ssd_xx1 = 0,
 1460         .ssd_def32 = 1,
 1461         .ssd_gran = 1           },
 1462 /* GUGS_SEL     3 %gs Descriptor for user */
 1463 {       .ssd_base = 0x0,
 1464         .ssd_limit = 0xfffff,
 1465         .ssd_type = SDT_MEMRWA,
 1466         .ssd_dpl = SEL_UPL,
 1467         .ssd_p = 1,
 1468         .ssd_xx = 0, .ssd_xx1 = 0,
 1469         .ssd_def32 = 1,
 1470         .ssd_gran = 1           },
 1471 /* GCODE_SEL    4 Code Descriptor for kernel */
 1472 {       .ssd_base = 0x0,
 1473         .ssd_limit = 0xfffff,
 1474         .ssd_type = SDT_MEMERA,
 1475         .ssd_dpl = SEL_KPL,
 1476         .ssd_p = 1,
 1477         .ssd_xx = 0, .ssd_xx1 = 0,
 1478         .ssd_def32 = 1,
 1479         .ssd_gran = 1           },
 1480 /* GDATA_SEL    5 Data Descriptor for kernel */
 1481 {       .ssd_base = 0x0,
 1482         .ssd_limit = 0xfffff,
 1483         .ssd_type = SDT_MEMRWA,
 1484         .ssd_dpl = SEL_KPL,
 1485         .ssd_p = 1,
 1486         .ssd_xx = 0, .ssd_xx1 = 0,
 1487         .ssd_def32 = 1,
 1488         .ssd_gran = 1           },
 1489 /* GUCODE_SEL   6 Code Descriptor for user */
 1490 {       .ssd_base = 0x0,
 1491         .ssd_limit = 0xfffff,
 1492         .ssd_type = SDT_MEMERA,
 1493         .ssd_dpl = SEL_UPL,
 1494         .ssd_p = 1,
 1495         .ssd_xx = 0, .ssd_xx1 = 0,
 1496         .ssd_def32 = 1,
 1497         .ssd_gran = 1           },
 1498 /* GUDATA_SEL   7 Data Descriptor for user */
 1499 {       .ssd_base = 0x0,
 1500         .ssd_limit = 0xfffff,
 1501         .ssd_type = SDT_MEMRWA,
 1502         .ssd_dpl = SEL_UPL,
 1503         .ssd_p = 1,
 1504         .ssd_xx = 0, .ssd_xx1 = 0,
 1505         .ssd_def32 = 1,
 1506         .ssd_gran = 1           },
 1507 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1508 {       .ssd_base = 0x400,
 1509         .ssd_limit = 0xfffff,
 1510         .ssd_type = SDT_MEMRWA,
 1511         .ssd_dpl = SEL_KPL,
 1512         .ssd_p = 1,
 1513         .ssd_xx = 0, .ssd_xx1 = 0,
 1514         .ssd_def32 = 1,
 1515         .ssd_gran = 1           },
 1516 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1517 {
 1518         .ssd_base = 0x0,
 1519         .ssd_limit = sizeof(struct i386tss)-1,
 1520         .ssd_type = SDT_SYS386TSS,
 1521         .ssd_dpl = 0,
 1522         .ssd_p = 1,
 1523         .ssd_xx = 0, .ssd_xx1 = 0,
 1524         .ssd_def32 = 0,
 1525         .ssd_gran = 0           },
 1526 /* GLDT_SEL     10 LDT Descriptor */
 1527 {       .ssd_base = (int) ldt,
 1528         .ssd_limit = sizeof(ldt)-1,
 1529         .ssd_type = SDT_SYSLDT,
 1530         .ssd_dpl = SEL_UPL,
 1531         .ssd_p = 1,
 1532         .ssd_xx = 0, .ssd_xx1 = 0,
 1533         .ssd_def32 = 0,
 1534         .ssd_gran = 0           },
 1535 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1536 {       .ssd_base = (int) ldt,
 1537         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1538         .ssd_type = SDT_SYSLDT,
 1539         .ssd_dpl = 0,
 1540         .ssd_p = 1,
 1541         .ssd_xx = 0, .ssd_xx1 = 0,
 1542         .ssd_def32 = 0,
 1543         .ssd_gran = 0           },
 1544 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1545 {       .ssd_base = (int) &dblfault_tss,
 1546         .ssd_limit = sizeof(struct i386tss)-1,
 1547         .ssd_type = SDT_SYS386TSS,
 1548         .ssd_dpl = 0,
 1549         .ssd_p = 1,
 1550         .ssd_xx = 0, .ssd_xx1 = 0,
 1551         .ssd_def32 = 0,
 1552         .ssd_gran = 0           },
 1553 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1554 {       .ssd_base = 0,
 1555         .ssd_limit = 0xfffff,
 1556         .ssd_type = SDT_MEMERA,
 1557         .ssd_dpl = 0,
 1558         .ssd_p = 1,
 1559         .ssd_xx = 0, .ssd_xx1 = 0,
 1560         .ssd_def32 = 0,
 1561         .ssd_gran = 1           },
 1562 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1563 {       .ssd_base = 0,
 1564         .ssd_limit = 0xfffff,
 1565         .ssd_type = SDT_MEMERA,
 1566         .ssd_dpl = 0,
 1567         .ssd_p = 1,
 1568         .ssd_xx = 0, .ssd_xx1 = 0,
 1569         .ssd_def32 = 0,
 1570         .ssd_gran = 1           },
 1571 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1572 {       .ssd_base = 0,
 1573         .ssd_limit = 0xfffff,
 1574         .ssd_type = SDT_MEMRWA,
 1575         .ssd_dpl = 0,
 1576         .ssd_p = 1,
 1577         .ssd_xx = 0, .ssd_xx1 = 0,
 1578         .ssd_def32 = 1,
 1579         .ssd_gran = 1           },
 1580 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1581 {       .ssd_base = 0,
 1582         .ssd_limit = 0xfffff,
 1583         .ssd_type = SDT_MEMRWA,
 1584         .ssd_dpl = 0,
 1585         .ssd_p = 1,
 1586         .ssd_xx = 0, .ssd_xx1 = 0,
 1587         .ssd_def32 = 0,
 1588         .ssd_gran = 1           },
 1589 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1590 {       .ssd_base = 0,
 1591         .ssd_limit = 0xfffff,
 1592         .ssd_type = SDT_MEMRWA,
 1593         .ssd_dpl = 0,
 1594         .ssd_p = 1,
 1595         .ssd_xx = 0, .ssd_xx1 = 0,
 1596         .ssd_def32 = 0,
 1597         .ssd_gran = 1           },
 1598 /* GNDIS_SEL    18 NDIS Descriptor */
 1599 {       .ssd_base = 0x0,
 1600         .ssd_limit = 0x0,
 1601         .ssd_type = 0,
 1602         .ssd_dpl = 0,
 1603         .ssd_p = 0,
 1604         .ssd_xx = 0, .ssd_xx1 = 0,
 1605         .ssd_def32 = 0,
 1606         .ssd_gran = 0           },
 1607 };
 1608 
 1609 static struct soft_segment_descriptor ldt_segs[] = {
 1610         /* Null Descriptor - overwritten by call gate */
 1611 {       .ssd_base = 0x0,
 1612         .ssd_limit = 0x0,
 1613         .ssd_type = 0,
 1614         .ssd_dpl = 0,
 1615         .ssd_p = 0,
 1616         .ssd_xx = 0, .ssd_xx1 = 0,
 1617         .ssd_def32 = 0,
 1618         .ssd_gran = 0           },
 1619         /* Null Descriptor - overwritten by call gate */
 1620 {       .ssd_base = 0x0,
 1621         .ssd_limit = 0x0,
 1622         .ssd_type = 0,
 1623         .ssd_dpl = 0,
 1624         .ssd_p = 0,
 1625         .ssd_xx = 0, .ssd_xx1 = 0,
 1626         .ssd_def32 = 0,
 1627         .ssd_gran = 0           },
 1628         /* Null Descriptor - overwritten by call gate */
 1629 {       .ssd_base = 0x0,
 1630         .ssd_limit = 0x0,
 1631         .ssd_type = 0,
 1632         .ssd_dpl = 0,
 1633         .ssd_p = 0,
 1634         .ssd_xx = 0, .ssd_xx1 = 0,
 1635         .ssd_def32 = 0,
 1636         .ssd_gran = 0           },
 1637         /* Code Descriptor for user */
 1638 {       .ssd_base = 0x0,
 1639         .ssd_limit = 0xfffff,
 1640         .ssd_type = SDT_MEMERA,
 1641         .ssd_dpl = SEL_UPL,
 1642         .ssd_p = 1,
 1643         .ssd_xx = 0, .ssd_xx1 = 0,
 1644         .ssd_def32 = 1,
 1645         .ssd_gran = 1           },
 1646         /* Null Descriptor - overwritten by call gate */
 1647 {       .ssd_base = 0x0,
 1648         .ssd_limit = 0x0,
 1649         .ssd_type = 0,
 1650         .ssd_dpl = 0,
 1651         .ssd_p = 0,
 1652         .ssd_xx = 0, .ssd_xx1 = 0,
 1653         .ssd_def32 = 0,
 1654         .ssd_gran = 0           },
 1655         /* Data Descriptor for user */
 1656 {       .ssd_base = 0x0,
 1657         .ssd_limit = 0xfffff,
 1658         .ssd_type = SDT_MEMRWA,
 1659         .ssd_dpl = SEL_UPL,
 1660         .ssd_p = 1,
 1661         .ssd_xx = 0, .ssd_xx1 = 0,
 1662         .ssd_def32 = 1,
 1663         .ssd_gran = 1           },
 1664 };
 1665 
 1666 void
 1667 setidt(idx, func, typ, dpl, selec)
 1668         int idx;
 1669         inthand_t *func;
 1670         int typ;
 1671         int dpl;
 1672         int selec;
 1673 {
 1674         struct gate_descriptor *ip;
 1675 
 1676         ip = idt + idx;
 1677         ip->gd_looffset = (int)func;
 1678         ip->gd_selector = selec;
 1679         ip->gd_stkcpy = 0;
 1680         ip->gd_xx = 0;
 1681         ip->gd_type = typ;
 1682         ip->gd_dpl = dpl;
 1683         ip->gd_p = 1;
 1684         ip->gd_hioffset = ((int)func)>>16 ;
 1685 }
 1686 
 1687 extern inthand_t
 1688         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1689         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1690         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1691         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1692         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1693 
 1694 #ifdef DDB
 1695 /*
 1696  * Display the index and function name of any IDT entries that don't use
 1697  * the default 'rsvd' entry point.
 1698  */
 1699 DB_SHOW_COMMAND(idt, db_show_idt)
 1700 {
 1701         struct gate_descriptor *ip;
 1702         int idx;
 1703         uintptr_t func;
 1704 
 1705         ip = idt;
 1706         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1707                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1708                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1709                         db_printf("%3d\t", idx);
 1710                         db_printsym(func, DB_STGY_PROC);
 1711                         db_printf("\n");
 1712                 }
 1713                 ip++;
 1714         }
 1715 }
 1716 
 1717 /* Show privileged registers. */
 1718 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1719 {
 1720         uint64_t idtr, gdtr;
 1721 
 1722         idtr = ridt();
 1723         db_printf("idtr\t0x%08x/%04x\n",
 1724             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1725         gdtr = rgdt();
 1726         db_printf("gdtr\t0x%08x/%04x\n",
 1727             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1728         db_printf("ldtr\t0x%04x\n", rldt());
 1729         db_printf("tr\t0x%04x\n", rtr());
 1730         db_printf("cr0\t0x%08x\n", rcr0());
 1731         db_printf("cr2\t0x%08x\n", rcr2());
 1732         db_printf("cr3\t0x%08x\n", rcr3());
 1733         db_printf("cr4\t0x%08x\n", rcr4());
 1734 }
 1735 #endif
 1736 
 1737 void
 1738 sdtossd(sd, ssd)
 1739         struct segment_descriptor *sd;
 1740         struct soft_segment_descriptor *ssd;
 1741 {
 1742         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1743         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1744         ssd->ssd_type  = sd->sd_type;
 1745         ssd->ssd_dpl   = sd->sd_dpl;
 1746         ssd->ssd_p     = sd->sd_p;
 1747         ssd->ssd_def32 = sd->sd_def32;
 1748         ssd->ssd_gran  = sd->sd_gran;
 1749 }
 1750 
 1751 static void
 1752 basemem_setup(void)
 1753 {
 1754         vm_paddr_t pa;
 1755         pt_entry_t *pte;
 1756         int i;
 1757 
 1758         if (basemem > 640) {
 1759                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1760                         basemem);
 1761                 basemem = 640;
 1762         }
 1763 
 1764         /*
 1765          * XXX if biosbasemem is now < 640, there is a `hole'
 1766          * between the end of base memory and the start of
 1767          * ISA memory.  The hole may be empty or it may
 1768          * contain BIOS code or data.  Map it read/write so
 1769          * that the BIOS can write to it.  (Memory from 0 to
 1770          * the physical end of the kernel is mapped read-only
 1771          * to begin with and then parts of it are remapped.
 1772          * The parts that aren't remapped form holes that
 1773          * remain read-only and are unused by the kernel.
 1774          * The base memory area is below the physical end of
 1775          * the kernel and right now forms a read-only hole.
 1776          * The part of it from PAGE_SIZE to
 1777          * (trunc_page(biosbasemem * 1024) - 1) will be
 1778          * remapped and used by the kernel later.)
 1779          *
 1780          * This code is similar to the code used in
 1781          * pmap_mapdev, but since no memory needs to be
 1782          * allocated we simply change the mapping.
 1783          */
 1784         for (pa = trunc_page(basemem * 1024);
 1785              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1786                 pmap_kenter(KERNBASE + pa, pa);
 1787 
 1788         /*
 1789          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 1790          * the vm86 page table so that vm86 can scribble on them using
 1791          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 1792          * page 0, at least as initialized here?
 1793          */
 1794         pte = (pt_entry_t *)vm86paddr;
 1795         for (i = basemem / 4; i < 160; i++)
 1796                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1797 }
 1798 
 1799 /*
 1800  * Populate the (physmap) array with base/bound pairs describing the
 1801  * available physical memory in the system, then test this memory and
 1802  * build the phys_avail array describing the actually-available memory.
 1803  *
 1804  * If we cannot accurately determine the physical memory map, then use
 1805  * value from the 0xE801 call, and failing that, the RTC.
 1806  *
 1807  * Total memory size may be set by the kernel environment variable
 1808  * hw.physmem or the compile-time define MAXMEM.
 1809  *
 1810  * XXX first should be vm_paddr_t.
 1811  */
 1812 static void
 1813 getmemsize(int first)
 1814 {
 1815         int off, physmap_idx, pa_indx, da_indx;
 1816         u_long physmem_tunable;
 1817         vm_paddr_t physmap[PHYSMAP_SIZE];
 1818         pt_entry_t *pte;
 1819         quad_t dcons_addr, dcons_size;
 1820         int i;
 1821         int pg_n;
 1822         u_int extmem;
 1823         u_int under16;
 1824         vm_paddr_t pa;
 1825 
 1826         bzero(physmap, sizeof(physmap));
 1827 
 1828         /* XXX - some of EPSON machines can't use PG_N */
 1829         pg_n = PG_N;
 1830         if (pc98_machine_type & M_EPSON_PC98) {
 1831                 switch (epson_machine_id) {
 1832 #ifdef WB_CACHE
 1833                 default:
 1834 #endif
 1835                 case EPSON_PC486_HX:
 1836                 case EPSON_PC486_HG:
 1837                 case EPSON_PC486_HA:
 1838                         pg_n = 0;
 1839                         break;
 1840                 }
 1841         }
 1842 
 1843         under16 = pc98_getmemsize(&basemem, &extmem);
 1844         basemem_setup();
 1845 
 1846         physmap[0] = 0;
 1847         physmap[1] = basemem * 1024;
 1848         physmap_idx = 2;
 1849         physmap[physmap_idx] = 0x100000;
 1850         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1851 
 1852         /*
 1853          * Now, physmap contains a map of physical memory.
 1854          */
 1855 
 1856 #ifdef SMP
 1857         /* make hole for AP bootstrap code */
 1858         physmap[1] = mp_bootaddress(physmap[1]);
 1859 #endif
 1860 
 1861         /*
 1862          * Maxmem isn't the "maximum memory", it's one larger than the
 1863          * highest page of the physical address space.  It should be
 1864          * called something like "Maxphyspage".  We may adjust this 
 1865          * based on ``hw.physmem'' and the results of the memory test.
 1866          */
 1867         Maxmem = atop(physmap[physmap_idx + 1]);
 1868 
 1869 #ifdef MAXMEM
 1870         Maxmem = MAXMEM / 4;
 1871 #endif
 1872 
 1873         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1874                 Maxmem = atop(physmem_tunable);
 1875 
 1876         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1877             (boothowto & RB_VERBOSE))
 1878                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1879 
 1880         /*
 1881          * If Maxmem has been increased beyond what the system has detected,
 1882          * extend the last memory segment to the new limit.
 1883          */ 
 1884         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1885                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1886 
 1887         /*
 1888          * We need to divide chunk if Maxmem is larger than 16MB and
 1889          * under 16MB area is not full of memory.
 1890          * (1) system area (15-16MB region) is cut off
 1891          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 1892          */
 1893         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 1894                 /* 15M - 16M region is cut off, so need to divide chunk */
 1895                 physmap[physmap_idx + 1] = under16 * 1024;
 1896                 physmap_idx += 2;
 1897                 physmap[physmap_idx] = 0x1000000;
 1898                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 1899         }
 1900 
 1901         /* call pmap initialization to make new kernel address space */
 1902         pmap_bootstrap(first);
 1903 
 1904         /*
 1905          * Size up each available chunk of physical memory.
 1906          */
 1907         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1908         pa_indx = 0;
 1909         da_indx = 1;
 1910         phys_avail[pa_indx++] = physmap[0];
 1911         phys_avail[pa_indx] = physmap[0];
 1912         dump_avail[da_indx] = physmap[0];
 1913         pte = CMAP1;
 1914 
 1915         /*
 1916          * Get dcons buffer address
 1917          */
 1918         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1919             getenv_quad("dcons.size", &dcons_size) == 0)
 1920                 dcons_addr = 0;
 1921 
 1922         /*
 1923          * physmap is in bytes, so when converting to page boundaries,
 1924          * round up the start address and round down the end address.
 1925          */
 1926         for (i = 0; i <= physmap_idx; i += 2) {
 1927                 vm_paddr_t end;
 1928 
 1929                 end = ptoa((vm_paddr_t)Maxmem);
 1930                 if (physmap[i + 1] < end)
 1931                         end = trunc_page(physmap[i + 1]);
 1932                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 1933                         int tmp, page_bad, full;
 1934                         int *ptr = (int *)CADDR1;
 1935 
 1936                         full = FALSE;
 1937                         /*
 1938                          * block out kernel memory as not available.
 1939                          */
 1940                         if (pa >= KERNLOAD && pa < first)
 1941                                 goto do_dump_avail;
 1942 
 1943                         /*
 1944                          * block out dcons buffer
 1945                          */
 1946                         if (dcons_addr > 0
 1947                             && pa >= trunc_page(dcons_addr)
 1948                             && pa < dcons_addr + dcons_size)
 1949                                 goto do_dump_avail;
 1950 
 1951                         page_bad = FALSE;
 1952 
 1953                         /*
 1954                          * map page into kernel: valid, read/write,non-cacheable
 1955                          */
 1956                         *pte = pa | PG_V | PG_RW | pg_n;
 1957                         invltlb();
 1958 
 1959                         tmp = *(int *)ptr;
 1960                         /*
 1961                          * Test for alternating 1's and 0's
 1962                          */
 1963                         *(volatile int *)ptr = 0xaaaaaaaa;
 1964                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 1965                                 page_bad = TRUE;
 1966                         /*
 1967                          * Test for alternating 0's and 1's
 1968                          */
 1969                         *(volatile int *)ptr = 0x55555555;
 1970                         if (*(volatile int *)ptr != 0x55555555)
 1971                                 page_bad = TRUE;
 1972                         /*
 1973                          * Test for all 1's
 1974                          */
 1975                         *(volatile int *)ptr = 0xffffffff;
 1976                         if (*(volatile int *)ptr != 0xffffffff)
 1977                                 page_bad = TRUE;
 1978                         /*
 1979                          * Test for all 0's
 1980                          */
 1981                         *(volatile int *)ptr = 0x0;
 1982                         if (*(volatile int *)ptr != 0x0)
 1983                                 page_bad = TRUE;
 1984                         /*
 1985                          * Restore original value.
 1986                          */
 1987                         *(int *)ptr = tmp;
 1988 
 1989                         /*
 1990                          * Adjust array of valid/good pages.
 1991                          */
 1992                         if (page_bad == TRUE)
 1993                                 continue;
 1994                         /*
 1995                          * If this good page is a continuation of the
 1996                          * previous set of good pages, then just increase
 1997                          * the end pointer. Otherwise start a new chunk.
 1998                          * Note that "end" points one higher than end,
 1999                          * making the range >= start and < end.
 2000                          * If we're also doing a speculative memory
 2001                          * test and we at or past the end, bump up Maxmem
 2002                          * so that we keep going. The first bad page
 2003                          * will terminate the loop.
 2004                          */
 2005                         if (phys_avail[pa_indx] == pa) {
 2006                                 phys_avail[pa_indx] += PAGE_SIZE;
 2007                         } else {
 2008                                 pa_indx++;
 2009                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2010                                         printf(
 2011                 "Too many holes in the physical address space, giving up\n");
 2012                                         pa_indx--;
 2013                                         full = TRUE;
 2014                                         goto do_dump_avail;
 2015                                 }
 2016                                 phys_avail[pa_indx++] = pa;     /* start */
 2017                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2018                         }
 2019                         physmem++;
 2020 do_dump_avail:
 2021                         if (dump_avail[da_indx] == pa) {
 2022                                 dump_avail[da_indx] += PAGE_SIZE;
 2023                         } else {
 2024                                 da_indx++;
 2025                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2026                                         da_indx--;
 2027                                         goto do_next;
 2028                                 }
 2029                                 dump_avail[da_indx++] = pa;     /* start */
 2030                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2031                         }
 2032 do_next:
 2033                         if (full)
 2034                                 break;
 2035                 }
 2036         }
 2037         *pte = 0;
 2038         invltlb();
 2039         
 2040         /*
 2041          * XXX
 2042          * The last chunk must contain at least one page plus the message
 2043          * buffer to avoid complicating other code (message buffer address
 2044          * calculation, etc.).
 2045          */
 2046         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2047             round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
 2048                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2049                 phys_avail[pa_indx--] = 0;
 2050                 phys_avail[pa_indx--] = 0;
 2051         }
 2052 
 2053         Maxmem = atop(phys_avail[pa_indx]);
 2054 
 2055         /* Trim off space for the message buffer. */
 2056         phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
 2057 
 2058         /* Map the message buffer. */
 2059         for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
 2060                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2061                     off);
 2062 }
 2063 
 2064 void
 2065 init386(first)
 2066         int first;
 2067 {
 2068         struct gate_descriptor *gdp;
 2069         int gsel_tss, metadata_missing, x, pa;
 2070         struct pcpu *pc;
 2071 
 2072         thread0.td_kstack = proc0kstack;
 2073         thread0.td_pcb = (struct pcb *)
 2074            (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
 2075 
 2076         /*
 2077          * This may be done better later if it gets more high level
 2078          * components in it. If so just link td->td_proc here.
 2079          */
 2080         proc_linkup0(&proc0, &thread0);
 2081 
 2082         /*
 2083          * Initialize DMAC
 2084          */
 2085         pc98_init_dmac();
 2086 
 2087         metadata_missing = 0;
 2088         if (bootinfo.bi_modulep) {
 2089                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2090                 preload_bootstrap_relocate(KERNBASE);
 2091         } else {
 2092                 metadata_missing = 1;
 2093         }
 2094         if (envmode == 1)
 2095                 kern_envp = static_env;
 2096         else if (bootinfo.bi_envp)
 2097                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2098 
 2099         /* Init basic tunables, hz etc */
 2100         init_param1();
 2101 
 2102         /*
 2103          * Make gdt memory segments.  All segments cover the full 4GB
 2104          * of address space and permissions are enforced at page level.
 2105          */
 2106         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2107         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2108         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2109         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2110         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2111         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2112 
 2113         pc = &__pcpu[0];
 2114         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2115         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2116         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2117 
 2118         for (x = 0; x < NGDT; x++)
 2119                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2120 
 2121         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2122         r_gdt.rd_base =  (int) gdt;
 2123         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2124         lgdt(&r_gdt);
 2125 
 2126         pcpu_init(pc, 0, sizeof(struct pcpu));
 2127         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2128                 pmap_kenter(pa + KERNBASE, pa);
 2129         dpcpu_init((void *)(first + KERNBASE), 0);
 2130         first += DPCPU_SIZE;
 2131         PCPU_SET(prvspace, pc);
 2132         PCPU_SET(curthread, &thread0);
 2133         PCPU_SET(curpcb, thread0.td_pcb);
 2134 
 2135         /*
 2136          * Initialize mutexes.
 2137          *
 2138          * icu_lock: in order to allow an interrupt to occur in a critical
 2139          *           section, to set pcpu->ipending (etc...) properly, we
 2140          *           must be able to get the icu lock, so it can't be
 2141          *           under witness.
 2142          */
 2143         mutex_init();
 2144         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2145 
 2146         /* make ldt memory segments */
 2147         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2148         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2149         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2150                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2151 
 2152         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2153         lldt(_default_ldt);
 2154         PCPU_SET(currentldt, _default_ldt);
 2155 
 2156         /* exceptions */
 2157         for (x = 0; x < NIDT; x++)
 2158                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2159                     GSEL(GCODE_SEL, SEL_KPL));
 2160         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2161             GSEL(GCODE_SEL, SEL_KPL));
 2162         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2163             GSEL(GCODE_SEL, SEL_KPL));
 2164         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2165             GSEL(GCODE_SEL, SEL_KPL));
 2166         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2167             GSEL(GCODE_SEL, SEL_KPL));
 2168         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2169             GSEL(GCODE_SEL, SEL_KPL));
 2170         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2171             GSEL(GCODE_SEL, SEL_KPL));
 2172         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2173             GSEL(GCODE_SEL, SEL_KPL));
 2174         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2175             , GSEL(GCODE_SEL, SEL_KPL));
 2176         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2177         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2178             GSEL(GCODE_SEL, SEL_KPL));
 2179         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2180             GSEL(GCODE_SEL, SEL_KPL));
 2181         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2182             GSEL(GCODE_SEL, SEL_KPL));
 2183         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2184             GSEL(GCODE_SEL, SEL_KPL));
 2185         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2186             GSEL(GCODE_SEL, SEL_KPL));
 2187         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2188             GSEL(GCODE_SEL, SEL_KPL));
 2189         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2190             GSEL(GCODE_SEL, SEL_KPL));
 2191         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2192             GSEL(GCODE_SEL, SEL_KPL));
 2193         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2194             GSEL(GCODE_SEL, SEL_KPL));
 2195         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2196             GSEL(GCODE_SEL, SEL_KPL));
 2197         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2198             GSEL(GCODE_SEL, SEL_KPL));
 2199 
 2200         r_idt.rd_limit = sizeof(idt0) - 1;
 2201         r_idt.rd_base = (int) idt;
 2202         lidt(&r_idt);
 2203 
 2204         /*
 2205          * Initialize the i8254 before the console so that console
 2206          * initialization can use DELAY().
 2207          */
 2208         i8254_init();
 2209 
 2210         /*
 2211          * Initialize the console before we print anything out.
 2212          */
 2213         cninit();
 2214 
 2215         if (metadata_missing)
 2216                 printf("WARNING: loader(8) metadata is missing!\n");
 2217 
 2218 #ifdef DEV_ISA
 2219         atpic_startup();
 2220 #endif
 2221 
 2222 #ifdef DDB
 2223         ksym_start = bootinfo.bi_symtab;
 2224         ksym_end = bootinfo.bi_esymtab;
 2225 #endif
 2226 
 2227         kdb_init();
 2228 
 2229 #ifdef KDB
 2230         if (boothowto & RB_KDB)
 2231                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2232 #endif
 2233 
 2234         finishidentcpu();       /* Final stage of CPU initialization */
 2235         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2236             GSEL(GCODE_SEL, SEL_KPL));
 2237         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2238             GSEL(GCODE_SEL, SEL_KPL));
 2239         initializecpu();        /* Initialize CPU registers */
 2240 
 2241         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2242         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2243         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2244             KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
 2245         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2246         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2247         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2248         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2249         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2250         ltr(gsel_tss);
 2251 
 2252         /* pointer to selector slot for %fs/%gs */
 2253         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2254 
 2255         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2256             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2257         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2258             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2259         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2260         dblfault_tss.tss_eip = (int)dblfault_handler;
 2261         dblfault_tss.tss_eflags = PSL_KERNEL;
 2262         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2263             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2264         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2265         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2266         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2267 
 2268         vm86_initialize();
 2269         getmemsize(first);
 2270         init_param2(physmem);
 2271 
 2272         /* now running on new page tables, configured,and u/iom is accessible */
 2273 
 2274         msgbufinit(msgbufp, MSGBUF_SIZE);
 2275 
 2276         /* make a call gate to reenter kernel with */
 2277         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2278 
 2279         x = (int) &IDTVEC(lcall_syscall);
 2280         gdp->gd_looffset = x;
 2281         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2282         gdp->gd_stkcpy = 1;
 2283         gdp->gd_type = SDT_SYS386CGT;
 2284         gdp->gd_dpl = SEL_UPL;
 2285         gdp->gd_p = 1;
 2286         gdp->gd_hioffset = x >> 16;
 2287 
 2288         /* XXX does this work? */
 2289         /* XXX yes! */
 2290         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2291         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2292 
 2293         /* transfer to user mode */
 2294 
 2295         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2296         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2297 
 2298         /* setup proc 0's pcb */
 2299         thread0.td_pcb->pcb_flags = 0;
 2300         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2301         thread0.td_pcb->pcb_ext = 0;
 2302         thread0.td_frame = &proc0_tf;
 2303 }
 2304 
 2305 void
 2306 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2307 {
 2308 
 2309 }
 2310 
 2311 void
 2312 spinlock_enter(void)
 2313 {
 2314         struct thread *td;
 2315 
 2316         td = curthread;
 2317         if (td->td_md.md_spinlock_count == 0)
 2318                 td->td_md.md_saved_flags = intr_disable();
 2319         td->td_md.md_spinlock_count++;
 2320         critical_enter();
 2321 }
 2322 
 2323 void
 2324 spinlock_exit(void)
 2325 {
 2326         struct thread *td;
 2327 
 2328         td = curthread;
 2329         critical_exit();
 2330         td->td_md.md_spinlock_count--;
 2331         if (td->td_md.md_spinlock_count == 0)
 2332                 intr_restore(td->td_md.md_saved_flags);
 2333 }
 2334 
 2335 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2336 static void f00f_hack(void *unused);
 2337 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 2338 
 2339 static void
 2340 f00f_hack(void *unused)
 2341 {
 2342         struct gate_descriptor *new_idt;
 2343         vm_offset_t tmp;
 2344 
 2345         if (!has_f00f_bug)
 2346                 return;
 2347 
 2348         GIANT_REQUIRED;
 2349 
 2350         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2351 
 2352         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 2353         if (tmp == 0)
 2354                 panic("kmem_alloc returned 0");
 2355 
 2356         /* Put the problematic entry (#6) at the end of the lower page. */
 2357         new_idt = (struct gate_descriptor*)
 2358             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2359         bcopy(idt, new_idt, sizeof(idt0));
 2360         r_idt.rd_base = (u_int)new_idt;
 2361         lidt(&r_idt);
 2362         idt = new_idt;
 2363         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 2364                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 2365                 panic("vm_map_protect failed");
 2366 }
 2367 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2368 
 2369 /*
 2370  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2371  * we want to start a backtrace from the function that caused us to enter
 2372  * the debugger. We have the context in the trapframe, but base the trace
 2373  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2374  * enough for a backtrace.
 2375  */
 2376 void
 2377 makectx(struct trapframe *tf, struct pcb *pcb)
 2378 {
 2379 
 2380         pcb->pcb_edi = tf->tf_edi;
 2381         pcb->pcb_esi = tf->tf_esi;
 2382         pcb->pcb_ebp = tf->tf_ebp;
 2383         pcb->pcb_ebx = tf->tf_ebx;
 2384         pcb->pcb_eip = tf->tf_eip;
 2385         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2386 }
 2387 
 2388 int
 2389 ptrace_set_pc(struct thread *td, u_long addr)
 2390 {
 2391 
 2392         td->td_frame->tf_eip = addr;
 2393         return (0);
 2394 }
 2395 
 2396 int
 2397 ptrace_single_step(struct thread *td)
 2398 {
 2399         td->td_frame->tf_eflags |= PSL_T;
 2400         return (0);
 2401 }
 2402 
 2403 int
 2404 ptrace_clear_single_step(struct thread *td)
 2405 {
 2406         td->td_frame->tf_eflags &= ~PSL_T;
 2407         return (0);
 2408 }
 2409 
 2410 int
 2411 fill_regs(struct thread *td, struct reg *regs)
 2412 {
 2413         struct pcb *pcb;
 2414         struct trapframe *tp;
 2415 
 2416         tp = td->td_frame;
 2417         pcb = td->td_pcb;
 2418         regs->r_fs = tp->tf_fs;
 2419         regs->r_es = tp->tf_es;
 2420         regs->r_ds = tp->tf_ds;
 2421         regs->r_edi = tp->tf_edi;
 2422         regs->r_esi = tp->tf_esi;
 2423         regs->r_ebp = tp->tf_ebp;
 2424         regs->r_ebx = tp->tf_ebx;
 2425         regs->r_edx = tp->tf_edx;
 2426         regs->r_ecx = tp->tf_ecx;
 2427         regs->r_eax = tp->tf_eax;
 2428         regs->r_eip = tp->tf_eip;
 2429         regs->r_cs = tp->tf_cs;
 2430         regs->r_eflags = tp->tf_eflags;
 2431         regs->r_esp = tp->tf_esp;
 2432         regs->r_ss = tp->tf_ss;
 2433         regs->r_gs = pcb->pcb_gs;
 2434         return (0);
 2435 }
 2436 
 2437 int
 2438 set_regs(struct thread *td, struct reg *regs)
 2439 {
 2440         struct pcb *pcb;
 2441         struct trapframe *tp;
 2442 
 2443         tp = td->td_frame;
 2444         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2445             !CS_SECURE(regs->r_cs))
 2446                 return (EINVAL);
 2447         pcb = td->td_pcb;
 2448         tp->tf_fs = regs->r_fs;
 2449         tp->tf_es = regs->r_es;
 2450         tp->tf_ds = regs->r_ds;
 2451         tp->tf_edi = regs->r_edi;
 2452         tp->tf_esi = regs->r_esi;
 2453         tp->tf_ebp = regs->r_ebp;
 2454         tp->tf_ebx = regs->r_ebx;
 2455         tp->tf_edx = regs->r_edx;
 2456         tp->tf_ecx = regs->r_ecx;
 2457         tp->tf_eax = regs->r_eax;
 2458         tp->tf_eip = regs->r_eip;
 2459         tp->tf_cs = regs->r_cs;
 2460         tp->tf_eflags = regs->r_eflags;
 2461         tp->tf_esp = regs->r_esp;
 2462         tp->tf_ss = regs->r_ss;
 2463         pcb->pcb_gs = regs->r_gs;
 2464         return (0);
 2465 }
 2466 
 2467 #ifdef CPU_ENABLE_SSE
 2468 static void
 2469 fill_fpregs_xmm(sv_xmm, sv_87)
 2470         struct savexmm *sv_xmm;
 2471         struct save87 *sv_87;
 2472 {
 2473         register struct env87 *penv_87 = &sv_87->sv_env;
 2474         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2475         int i;
 2476 
 2477         bzero(sv_87, sizeof(*sv_87));
 2478 
 2479         /* FPU control/status */
 2480         penv_87->en_cw = penv_xmm->en_cw;
 2481         penv_87->en_sw = penv_xmm->en_sw;
 2482         penv_87->en_tw = penv_xmm->en_tw;
 2483         penv_87->en_fip = penv_xmm->en_fip;
 2484         penv_87->en_fcs = penv_xmm->en_fcs;
 2485         penv_87->en_opcode = penv_xmm->en_opcode;
 2486         penv_87->en_foo = penv_xmm->en_foo;
 2487         penv_87->en_fos = penv_xmm->en_fos;
 2488 
 2489         /* FPU registers */
 2490         for (i = 0; i < 8; ++i)
 2491                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 2492 }
 2493 
 2494 static void
 2495 set_fpregs_xmm(sv_87, sv_xmm)
 2496         struct save87 *sv_87;
 2497         struct savexmm *sv_xmm;
 2498 {
 2499         register struct env87 *penv_87 = &sv_87->sv_env;
 2500         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2501         int i;
 2502 
 2503         /* FPU control/status */
 2504         penv_xmm->en_cw = penv_87->en_cw;
 2505         penv_xmm->en_sw = penv_87->en_sw;
 2506         penv_xmm->en_tw = penv_87->en_tw;
 2507         penv_xmm->en_fip = penv_87->en_fip;
 2508         penv_xmm->en_fcs = penv_87->en_fcs;
 2509         penv_xmm->en_opcode = penv_87->en_opcode;
 2510         penv_xmm->en_foo = penv_87->en_foo;
 2511         penv_xmm->en_fos = penv_87->en_fos;
 2512 
 2513         /* FPU registers */
 2514         for (i = 0; i < 8; ++i)
 2515                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 2516 }
 2517 #endif /* CPU_ENABLE_SSE */
 2518 
 2519 int
 2520 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2521 {
 2522 
 2523         KASSERT(td == curthread || TD_IS_SUSPENDED(td),
 2524             ("not suspended thread %p", td));
 2525         npxgetregs(td);
 2526 #ifdef CPU_ENABLE_SSE
 2527         if (cpu_fxsr)
 2528                 fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
 2529                     (struct save87 *)fpregs);
 2530         else
 2531 #endif /* CPU_ENABLE_SSE */
 2532                 bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
 2533                     sizeof(*fpregs));
 2534         return (0);
 2535 }
 2536 
 2537 int
 2538 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2539 {
 2540 
 2541 #ifdef CPU_ENABLE_SSE
 2542         if (cpu_fxsr)
 2543                 set_fpregs_xmm((struct save87 *)fpregs,
 2544                     &td->td_pcb->pcb_user_save.sv_xmm);
 2545         else
 2546 #endif /* CPU_ENABLE_SSE */
 2547                 bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
 2548                     sizeof(*fpregs));
 2549         npxuserinited(td);
 2550         return (0);
 2551 }
 2552 
 2553 /*
 2554  * Get machine context.
 2555  */
 2556 int
 2557 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2558 {
 2559         struct trapframe *tp;
 2560         struct segment_descriptor *sdp;
 2561 
 2562         tp = td->td_frame;
 2563 
 2564         PROC_LOCK(curthread->td_proc);
 2565         mcp->mc_onstack = sigonstack(tp->tf_esp);
 2566         PROC_UNLOCK(curthread->td_proc);
 2567         mcp->mc_gs = td->td_pcb->pcb_gs;
 2568         mcp->mc_fs = tp->tf_fs;
 2569         mcp->mc_es = tp->tf_es;
 2570         mcp->mc_ds = tp->tf_ds;
 2571         mcp->mc_edi = tp->tf_edi;
 2572         mcp->mc_esi = tp->tf_esi;
 2573         mcp->mc_ebp = tp->tf_ebp;
 2574         mcp->mc_isp = tp->tf_isp;
 2575         mcp->mc_eflags = tp->tf_eflags;
 2576         if (flags & GET_MC_CLEAR_RET) {
 2577                 mcp->mc_eax = 0;
 2578                 mcp->mc_edx = 0;
 2579                 mcp->mc_eflags &= ~PSL_C;
 2580         } else {
 2581                 mcp->mc_eax = tp->tf_eax;
 2582                 mcp->mc_edx = tp->tf_edx;
 2583         }
 2584         mcp->mc_ebx = tp->tf_ebx;
 2585         mcp->mc_ecx = tp->tf_ecx;
 2586         mcp->mc_eip = tp->tf_eip;
 2587         mcp->mc_cs = tp->tf_cs;
 2588         mcp->mc_esp = tp->tf_esp;
 2589         mcp->mc_ss = tp->tf_ss;
 2590         mcp->mc_len = sizeof(*mcp);
 2591         get_fpcontext(td, mcp);
 2592         sdp = &td->td_pcb->pcb_fsd;
 2593         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 2594         sdp = &td->td_pcb->pcb_gsd;
 2595         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 2596 
 2597         return (0);
 2598 }
 2599 
 2600 /*
 2601  * Set machine context.
 2602  *
 2603  * However, we don't set any but the user modifiable flags, and we won't
 2604  * touch the cs selector.
 2605  */
 2606 int
 2607 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2608 {
 2609         struct trapframe *tp;
 2610         int eflags, ret;
 2611 
 2612         tp = td->td_frame;
 2613         if (mcp->mc_len != sizeof(*mcp))
 2614                 return (EINVAL);
 2615         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 2616             (tp->tf_eflags & ~PSL_USERCHANGE);
 2617         if ((ret = set_fpcontext(td, mcp)) == 0) {
 2618                 tp->tf_fs = mcp->mc_fs;
 2619                 tp->tf_es = mcp->mc_es;
 2620                 tp->tf_ds = mcp->mc_ds;
 2621                 tp->tf_edi = mcp->mc_edi;
 2622                 tp->tf_esi = mcp->mc_esi;
 2623                 tp->tf_ebp = mcp->mc_ebp;
 2624                 tp->tf_ebx = mcp->mc_ebx;
 2625                 tp->tf_edx = mcp->mc_edx;
 2626                 tp->tf_ecx = mcp->mc_ecx;
 2627                 tp->tf_eax = mcp->mc_eax;
 2628                 tp->tf_eip = mcp->mc_eip;
 2629                 tp->tf_eflags = eflags;
 2630                 tp->tf_esp = mcp->mc_esp;
 2631                 tp->tf_ss = mcp->mc_ss;
 2632                 td->td_pcb->pcb_gs = mcp->mc_gs;
 2633                 ret = 0;
 2634         }
 2635         return (ret);
 2636 }
 2637 
 2638 static void
 2639 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2640 {
 2641 
 2642 #ifndef DEV_NPX
 2643         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 2644         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 2645 #else
 2646         mcp->mc_ownedfp = npxgetregs(td);
 2647         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
 2648             sizeof(mcp->mc_fpstate));
 2649         mcp->mc_fpformat = npxformat();
 2650 #endif
 2651 }
 2652 
 2653 static int
 2654 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2655 {
 2656 
 2657         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2658                 return (0);
 2659         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 2660             mcp->mc_fpformat != _MC_FPFMT_XMM)
 2661                 return (EINVAL);
 2662         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2663                 /* We don't care what state is left in the FPU or PCB. */
 2664                 fpstate_drop(td);
 2665         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2666             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2667 #ifdef DEV_NPX
 2668 #ifdef CPU_ENABLE_SSE
 2669                 if (cpu_fxsr)
 2670                         ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
 2671                             en_mxcsr &= cpu_mxcsr_mask;
 2672 #endif
 2673                 npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
 2674 #endif
 2675         } else
 2676                 return (EINVAL);
 2677         return (0);
 2678 }
 2679 
 2680 static void
 2681 fpstate_drop(struct thread *td)
 2682 {
 2683 
 2684         critical_enter();
 2685 #ifdef DEV_NPX
 2686         if (PCPU_GET(fpcurthread) == td)
 2687                 npxdrop();
 2688 #endif
 2689         /*
 2690          * XXX force a full drop of the npx.  The above only drops it if we
 2691          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 2692          *
 2693          * XXX I don't much like npxgetregs()'s semantics of doing a full
 2694          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2695          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2696          * sendsig() is the only caller of npxgetregs()... perhaps we just
 2697          * have too many layers.
 2698          */
 2699         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 2700             PCB_NPXUSERINITDONE);
 2701         critical_exit();
 2702 }
 2703 
 2704 int
 2705 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2706 {
 2707         struct pcb *pcb;
 2708 
 2709         if (td == NULL) {
 2710                 dbregs->dr[0] = rdr0();
 2711                 dbregs->dr[1] = rdr1();
 2712                 dbregs->dr[2] = rdr2();
 2713                 dbregs->dr[3] = rdr3();
 2714                 dbregs->dr[4] = rdr4();
 2715                 dbregs->dr[5] = rdr5();
 2716                 dbregs->dr[6] = rdr6();
 2717                 dbregs->dr[7] = rdr7();
 2718         } else {
 2719                 pcb = td->td_pcb;
 2720                 dbregs->dr[0] = pcb->pcb_dr0;
 2721                 dbregs->dr[1] = pcb->pcb_dr1;
 2722                 dbregs->dr[2] = pcb->pcb_dr2;
 2723                 dbregs->dr[3] = pcb->pcb_dr3;
 2724                 dbregs->dr[4] = 0;
 2725                 dbregs->dr[5] = 0;
 2726                 dbregs->dr[6] = pcb->pcb_dr6;
 2727                 dbregs->dr[7] = pcb->pcb_dr7;
 2728         }
 2729         return (0);
 2730 }
 2731 
 2732 int
 2733 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2734 {
 2735         struct pcb *pcb;
 2736         int i;
 2737 
 2738         if (td == NULL) {
 2739                 load_dr0(dbregs->dr[0]);
 2740                 load_dr1(dbregs->dr[1]);
 2741                 load_dr2(dbregs->dr[2]);
 2742                 load_dr3(dbregs->dr[3]);
 2743                 load_dr4(dbregs->dr[4]);
 2744                 load_dr5(dbregs->dr[5]);
 2745                 load_dr6(dbregs->dr[6]);
 2746                 load_dr7(dbregs->dr[7]);
 2747         } else {
 2748                 /*
 2749                  * Don't let an illegal value for dr7 get set.  Specifically,
 2750                  * check for undefined settings.  Setting these bit patterns
 2751                  * result in undefined behaviour and can lead to an unexpected
 2752                  * TRCTRAP.
 2753                  */
 2754                 for (i = 0; i < 4; i++) {
 2755                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2756                                 return (EINVAL);
 2757                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 2758                                 return (EINVAL);
 2759                 }
 2760                 
 2761                 pcb = td->td_pcb;
 2762                 
 2763                 /*
 2764                  * Don't let a process set a breakpoint that is not within the
 2765                  * process's address space.  If a process could do this, it
 2766                  * could halt the system by setting a breakpoint in the kernel
 2767                  * (if ddb was enabled).  Thus, we need to check to make sure
 2768                  * that no breakpoints are being enabled for addresses outside
 2769                  * process's address space.
 2770                  *
 2771                  * XXX - what about when the watched area of the user's
 2772                  * address space is written into from within the kernel
 2773                  * ... wouldn't that still cause a breakpoint to be generated
 2774                  * from within kernel mode?
 2775                  */
 2776 
 2777                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2778                         /* dr0 is enabled */
 2779                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2780                                 return (EINVAL);
 2781                 }
 2782                         
 2783                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2784                         /* dr1 is enabled */
 2785                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2786                                 return (EINVAL);
 2787                 }
 2788                         
 2789                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2790                         /* dr2 is enabled */
 2791                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2792                                 return (EINVAL);
 2793                 }
 2794                         
 2795                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2796                         /* dr3 is enabled */
 2797                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2798                                 return (EINVAL);
 2799                 }
 2800 
 2801                 pcb->pcb_dr0 = dbregs->dr[0];
 2802                 pcb->pcb_dr1 = dbregs->dr[1];
 2803                 pcb->pcb_dr2 = dbregs->dr[2];
 2804                 pcb->pcb_dr3 = dbregs->dr[3];
 2805                 pcb->pcb_dr6 = dbregs->dr[6];
 2806                 pcb->pcb_dr7 = dbregs->dr[7];
 2807 
 2808                 pcb->pcb_flags |= PCB_DBREGS;
 2809         }
 2810 
 2811         return (0);
 2812 }
 2813 
 2814 /*
 2815  * Return > 0 if a hardware breakpoint has been hit, and the
 2816  * breakpoint was in user space.  Return 0, otherwise.
 2817  */
 2818 int
 2819 user_dbreg_trap(void)
 2820 {
 2821         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 2822         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 2823         int nbp;            /* number of breakpoints that triggered */
 2824         caddr_t addr[4];    /* breakpoint addresses */
 2825         int i;
 2826         
 2827         dr7 = rdr7();
 2828         if ((dr7 & 0x000000ff) == 0) {
 2829                 /*
 2830                  * all GE and LE bits in the dr7 register are zero,
 2831                  * thus the trap couldn't have been caused by the
 2832                  * hardware debug registers
 2833                  */
 2834                 return 0;
 2835         }
 2836 
 2837         nbp = 0;
 2838         dr6 = rdr6();
 2839         bp = dr6 & 0x0000000f;
 2840 
 2841         if (!bp) {
 2842                 /*
 2843                  * None of the breakpoint bits are set meaning this
 2844                  * trap was not caused by any of the debug registers
 2845                  */
 2846                 return 0;
 2847         }
 2848 
 2849         /*
 2850          * at least one of the breakpoints were hit, check to see
 2851          * which ones and if any of them are user space addresses
 2852          */
 2853 
 2854         if (bp & 0x01) {
 2855                 addr[nbp++] = (caddr_t)rdr0();
 2856         }
 2857         if (bp & 0x02) {
 2858                 addr[nbp++] = (caddr_t)rdr1();
 2859         }
 2860         if (bp & 0x04) {
 2861                 addr[nbp++] = (caddr_t)rdr2();
 2862         }
 2863         if (bp & 0x08) {
 2864                 addr[nbp++] = (caddr_t)rdr3();
 2865         }
 2866 
 2867         for (i = 0; i < nbp; i++) {
 2868                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2869                         /*
 2870                          * addr[i] is in user space
 2871                          */
 2872                         return nbp;
 2873                 }
 2874         }
 2875 
 2876         /*
 2877          * None of the breakpoints are in user space.
 2878          */
 2879         return 0;
 2880 }
 2881 
 2882 #ifdef KDB
 2883 
 2884 /*
 2885  * Provide inb() and outb() as functions.  They are normally only available as
 2886  * inline functions, thus cannot be called from the debugger.
 2887  */
 2888 
 2889 /* silence compiler warnings */
 2890 u_char inb_(u_short);
 2891 void outb_(u_short, u_char);
 2892 
 2893 u_char
 2894 inb_(u_short port)
 2895 {
 2896         return inb(port);
 2897 }
 2898 
 2899 void
 2900 outb_(u_short port, u_char data)
 2901 {
 2902         outb(port, data);
 2903 }
 2904 
 2905 #endif /* KDB */

Cache object: 767ac62eb77331756516a832f42d3cae


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.