The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pc98/pc98/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1992 Terrence R. Lambert.
    3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * William Jolitz.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      from: @(#)machdep.c     7.4 (Berkeley) 6/3/91
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/9.2/sys/pc98/pc98/machdep.c 243460 2012-11-23 15:42:25Z nyan $");
   42 
   43 #include "opt_apic.h"
   44 #include "opt_atalk.h"
   45 #include "opt_atpic.h"
   46 #include "opt_compat.h"
   47 #include "opt_cpu.h"
   48 #include "opt_ddb.h"
   49 #include "opt_inet.h"
   50 #include "opt_ipx.h"
   51 #include "opt_isa.h"
   52 #include "opt_kstack_pages.h"
   53 #include "opt_maxmem.h"
   54 #include "opt_mp_watchdog.h"
   55 #include "opt_npx.h"
   56 #include "opt_perfmon.h"
   57 #include "opt_kdtrace.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/proc.h>
   61 #include <sys/systm.h>
   62 #include <sys/bio.h>
   63 #include <sys/buf.h>
   64 #include <sys/bus.h>
   65 #include <sys/callout.h>
   66 #include <sys/cons.h>
   67 #include <sys/cpu.h>
   68 #include <sys/eventhandler.h>
   69 #include <sys/exec.h>
   70 #include <sys/imgact.h>
   71 #include <sys/kdb.h>
   72 #include <sys/kernel.h>
   73 #include <sys/ktr.h>
   74 #include <sys/linker.h>
   75 #include <sys/lock.h>
   76 #include <sys/malloc.h>
   77 #include <sys/memrange.h>
   78 #include <sys/msgbuf.h>
   79 #include <sys/mutex.h>
   80 #include <sys/pcpu.h>
   81 #include <sys/ptrace.h>
   82 #include <sys/reboot.h>
   83 #include <sys/sched.h>
   84 #include <sys/signalvar.h>
   85 #ifdef SMP
   86 #include <sys/smp.h>
   87 #endif
   88 #include <sys/syscallsubr.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/sysent.h>
   91 #include <sys/sysproto.h>
   92 #include <sys/ucontext.h>
   93 #include <sys/vmmeter.h>
   94 
   95 #include <vm/vm.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_pager.h>
  102 #include <vm/vm_param.h>
  103 
  104 #ifdef DDB
  105 #ifndef KDB
  106 #error KDB must be enabled in order for DDB to work!
  107 #endif
  108 #include <ddb/ddb.h>
  109 #include <ddb/db_sym.h>
  110 #endif
  111 
  112 #include <pc98/pc98/pc98_machdep.h>
  113 
  114 #include <net/netisr.h>
  115 
  116 #include <machine/bootinfo.h>
  117 #include <machine/clock.h>
  118 #include <machine/cpu.h>
  119 #include <machine/cputypes.h>
  120 #include <machine/intr_machdep.h>
  121 #include <x86/mca.h>
  122 #include <machine/md_var.h>
  123 #include <machine/mp_watchdog.h>
  124 #include <machine/pc/bios.h>
  125 #include <machine/pcb.h>
  126 #include <machine/pcb_ext.h>
  127 #include <machine/proc.h>
  128 #include <machine/reg.h>
  129 #include <machine/sigframe.h>
  130 #include <machine/specialreg.h>
  131 #include <machine/vm86.h>
  132 #ifdef PERFMON
  133 #include <machine/perfmon.h>
  134 #endif
  135 #ifdef SMP
  136 #include <machine/smp.h>
  137 #endif
  138 
  139 #ifdef DEV_APIC
  140 #include <machine/apicvar.h>
  141 #endif
  142 
  143 #ifdef DEV_ISA
  144 #include <x86/isa/icu.h>
  145 #endif
  146 
  147 /* Sanity check for __curthread() */
  148 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
  149 
  150 extern void init386(int first);
  151 extern void dblfault_handler(void);
  152 
  153 extern void printcpuinfo(void); /* XXX header file */
  154 extern void finishidentcpu(void);
  155 extern void panicifcpuunsupported(void);
  156 
  157 #define CS_SECURE(cs)           (ISPL(cs) == SEL_UPL)
  158 #define EFL_SECURE(ef, oef)     ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
  159 
  160 #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
  161 #define CPU_ENABLE_SSE
  162 #endif
  163 
  164 static void cpu_startup(void *);
  165 static void fpstate_drop(struct thread *td);
  166 static void get_fpcontext(struct thread *td, mcontext_t *mcp);
  167 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
  168 #ifdef CPU_ENABLE_SSE
  169 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
  170 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
  171 #endif /* CPU_ENABLE_SSE */
  172 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  173 
  174 int     need_pre_dma_flush;     /* If 1, use wbinvd befor DMA transfer. */
  175 int     need_post_dma_flush;    /* If 1, use invd after DMA transfer. */
  176 
  177 #ifdef DDB
  178 extern vm_offset_t ksym_start, ksym_end;
  179 #endif
  180 
  181 int     _udatasel, _ucodesel;
  182 u_int   basemem;
  183 
  184 static int      ispc98 = 1;
  185 SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
  186 
  187 int cold = 1;
  188 
  189 #ifdef COMPAT_43
  190 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  191 #endif
  192 #ifdef COMPAT_FREEBSD4
  193 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
  194 #endif
  195 
  196 long Maxmem = 0;
  197 long realmem = 0;
  198 
  199 /*
  200  * The number of PHYSMAP entries must be one less than the number of
  201  * PHYSSEG entries because the PHYSMAP entry that spans the largest
  202  * physical address that is accessible by ISA DMA is split into two
  203  * PHYSSEG entries.
  204  */
  205 #define PHYSMAP_SIZE    (2 * (VM_PHYSSEG_MAX - 1))
  206 
  207 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
  208 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
  209 
  210 /* must be 2 less so 0 0 can signal end of chunks */
  211 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
  212 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
  213 
  214 struct kva_md_info kmi;
  215 
  216 static struct trapframe proc0_tf;
  217 struct pcpu __pcpu[MAXCPU];
  218 
  219 struct mtx icu_lock;
  220 
  221 struct mem_range_softc mem_range_softc;
  222 
  223 static void
  224 cpu_startup(dummy)
  225         void *dummy;
  226 {
  227         uintmax_t memsize;
  228 
  229         /*
  230          * Good {morning,afternoon,evening,night}.
  231          */
  232         startrtclock();
  233         printcpuinfo();
  234         panicifcpuunsupported();
  235 #ifdef PERFMON
  236         perfmon_init();
  237 #endif
  238         realmem = Maxmem;
  239 
  240         /*
  241          * Display physical memory.
  242          */
  243         memsize = ptoa((uintmax_t)Maxmem);
  244         printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
  245 
  246         /*
  247          * Display any holes after the first chunk of extended memory.
  248          */
  249         if (bootverbose) {
  250                 int indx;
  251 
  252                 printf("Physical memory chunk(s):\n");
  253                 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
  254                         vm_paddr_t size;
  255 
  256                         size = phys_avail[indx + 1] - phys_avail[indx];
  257                         printf(
  258                             "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
  259                             (uintmax_t)phys_avail[indx],
  260                             (uintmax_t)phys_avail[indx + 1] - 1,
  261                             (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
  262                 }
  263         }
  264 
  265         vm_ksubmap_init(&kmi);
  266 
  267         printf("avail memory = %ju (%ju MB)\n",
  268             ptoa((uintmax_t)cnt.v_free_count),
  269             ptoa((uintmax_t)cnt.v_free_count) / 1048576);
  270 
  271         /*
  272          * Set up buffers, so they can be used to read disk labels.
  273          */
  274         bufinit();
  275         vm_pager_bufferinit();
  276         cpu_setregs();
  277 
  278         /*
  279          * Add BSP as an interrupt target.
  280          */
  281         intr_add_cpu(0);
  282 }
  283 
  284 /*
  285  * Send an interrupt to process.
  286  *
  287  * Stack is set up to allow sigcode stored
  288  * at top to call routine, followed by kcall
  289  * to sigreturn routine below.  After sigreturn
  290  * resets the signal mask, the stack, and the
  291  * frame pointer, it returns to the user
  292  * specified pc, psl.
  293  */
  294 #ifdef COMPAT_43
  295 static void
  296 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  297 {
  298         struct osigframe sf, *fp;
  299         struct proc *p;
  300         struct thread *td;
  301         struct sigacts *psp;
  302         struct trapframe *regs;
  303         int sig;
  304         int oonstack;
  305 
  306         td = curthread;
  307         p = td->td_proc;
  308         PROC_LOCK_ASSERT(p, MA_OWNED);
  309         sig = ksi->ksi_signo;
  310         psp = p->p_sigacts;
  311         mtx_assert(&psp->ps_mtx, MA_OWNED);
  312         regs = td->td_frame;
  313         oonstack = sigonstack(regs->tf_esp);
  314 
  315         /* Allocate space for the signal handler context. */
  316         if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
  317             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  318                 fp = (struct osigframe *)(td->td_sigstk.ss_sp +
  319                     td->td_sigstk.ss_size - sizeof(struct osigframe));
  320 #if defined(COMPAT_43)
  321                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  322 #endif
  323         } else
  324                 fp = (struct osigframe *)regs->tf_esp - 1;
  325 
  326         /* Translate the signal if appropriate. */
  327         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  328                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  329 
  330         /* Build the argument list for the signal handler. */
  331         sf.sf_signum = sig;
  332         sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
  333         bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
  334         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  335                 /* Signal handler installed with SA_SIGINFO. */
  336                 sf.sf_arg2 = (register_t)&fp->sf_siginfo;
  337                 sf.sf_siginfo.si_signo = sig;
  338                 sf.sf_siginfo.si_code = ksi->ksi_code;
  339                 sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
  340                 sf.sf_addr = 0;
  341         } else {
  342                 /* Old FreeBSD-style arguments. */
  343                 sf.sf_arg2 = ksi->ksi_code;
  344                 sf.sf_addr = (register_t)ksi->ksi_addr;
  345                 sf.sf_ahu.sf_handler = catcher;
  346         }
  347         mtx_unlock(&psp->ps_mtx);
  348         PROC_UNLOCK(p);
  349 
  350         /* Save most if not all of trap frame. */
  351         sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
  352         sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
  353         sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
  354         sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
  355         sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
  356         sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
  357         sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
  358         sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
  359         sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
  360         sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
  361         sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
  362         sf.sf_siginfo.si_sc.sc_gs = rgs();
  363         sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
  364 
  365         /* Build the signal context to be used by osigreturn(). */
  366         sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
  367         SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
  368         sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
  369         sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
  370         sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
  371         sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
  372         sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
  373         sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
  374 
  375         /*
  376          * If we're a vm86 process, we want to save the segment registers.
  377          * We also change eflags to be our emulated eflags, not the actual
  378          * eflags.
  379          */
  380         if (regs->tf_eflags & PSL_VM) {
  381                 /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
  382                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  383                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  384 
  385                 sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
  386                 sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
  387                 sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
  388                 sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
  389 
  390                 if (vm86->vm86_has_vme == 0)
  391                         sf.sf_siginfo.si_sc.sc_ps =
  392                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  393                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  394 
  395                 /* See sendsig() for comments. */
  396                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  397         }
  398 
  399         /*
  400          * Copy the sigframe out to the user's stack.
  401          */
  402         if (copyout(&sf, fp, sizeof(*fp)) != 0) {
  403 #ifdef DEBUG
  404                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  405 #endif
  406                 PROC_LOCK(p);
  407                 sigexit(td, SIGILL);
  408         }
  409 
  410         regs->tf_esp = (int)fp;
  411         if (p->p_sysent->sv_sigcode_base != 0) {
  412                 regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  413                     szosigcode;
  414         } else {
  415                 /* a.out sysentvec does not use shared page */
  416                 regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
  417         }
  418         regs->tf_eflags &= ~(PSL_T | PSL_D);
  419         regs->tf_cs = _ucodesel;
  420         regs->tf_ds = _udatasel;
  421         regs->tf_es = _udatasel;
  422         regs->tf_fs = _udatasel;
  423         load_gs(_udatasel);
  424         regs->tf_ss = _udatasel;
  425         PROC_LOCK(p);
  426         mtx_lock(&psp->ps_mtx);
  427 }
  428 #endif /* COMPAT_43 */
  429 
  430 #ifdef COMPAT_FREEBSD4
  431 static void
  432 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  433 {
  434         struct sigframe4 sf, *sfp;
  435         struct proc *p;
  436         struct thread *td;
  437         struct sigacts *psp;
  438         struct trapframe *regs;
  439         int sig;
  440         int oonstack;
  441 
  442         td = curthread;
  443         p = td->td_proc;
  444         PROC_LOCK_ASSERT(p, MA_OWNED);
  445         sig = ksi->ksi_signo;
  446         psp = p->p_sigacts;
  447         mtx_assert(&psp->ps_mtx, MA_OWNED);
  448         regs = td->td_frame;
  449         oonstack = sigonstack(regs->tf_esp);
  450 
  451         /* Save user context. */
  452         bzero(&sf, sizeof(sf));
  453         sf.sf_uc.uc_sigmask = *mask;
  454         sf.sf_uc.uc_stack = td->td_sigstk;
  455         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  456             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  457         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  458         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  459         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  460         bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
  461             sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
  462         bzero(sf.sf_uc.uc_mcontext.__spare__,
  463             sizeof(sf.sf_uc.uc_mcontext.__spare__));
  464         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  465 
  466         /* Allocate space for the signal handler context. */
  467         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  468             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  469                 sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
  470                     td->td_sigstk.ss_size - sizeof(struct sigframe4));
  471 #if defined(COMPAT_43)
  472                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  473 #endif
  474         } else
  475                 sfp = (struct sigframe4 *)regs->tf_esp - 1;
  476 
  477         /* Translate the signal if appropriate. */
  478         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  479                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  480 
  481         /* Build the argument list for the signal handler. */
  482         sf.sf_signum = sig;
  483         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  484         bzero(&sf.sf_si, sizeof(sf.sf_si));
  485         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  486                 /* Signal handler installed with SA_SIGINFO. */
  487                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  488                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  489 
  490                 /* Fill in POSIX parts */
  491                 sf.sf_si.si_signo = sig;
  492                 sf.sf_si.si_code = ksi->ksi_code;
  493                 sf.sf_si.si_addr = ksi->ksi_addr;
  494         } else {
  495                 /* Old FreeBSD-style arguments. */
  496                 sf.sf_siginfo = ksi->ksi_code;
  497                 sf.sf_addr = (register_t)ksi->ksi_addr;
  498                 sf.sf_ahu.sf_handler = catcher;
  499         }
  500         mtx_unlock(&psp->ps_mtx);
  501         PROC_UNLOCK(p);
  502 
  503         /*
  504          * If we're a vm86 process, we want to save the segment registers.
  505          * We also change eflags to be our emulated eflags, not the actual
  506          * eflags.
  507          */
  508         if (regs->tf_eflags & PSL_VM) {
  509                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  510                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  511 
  512                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  513                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  514                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  515                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  516 
  517                 if (vm86->vm86_has_vme == 0)
  518                         sf.sf_uc.uc_mcontext.mc_eflags =
  519                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  520                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  521 
  522                 /*
  523                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  524                  * syscalls made by the signal handler.  This just avoids
  525                  * wasting time for our lazy fixup of such faults.  PSL_NT
  526                  * does nothing in vm86 mode, but vm86 programs can set it
  527                  * almost legitimately in probes for old cpu types.
  528                  */
  529                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  530         }
  531 
  532         /*
  533          * Copy the sigframe out to the user's stack.
  534          */
  535         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  536 #ifdef DEBUG
  537                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  538 #endif
  539                 PROC_LOCK(p);
  540                 sigexit(td, SIGILL);
  541         }
  542 
  543         regs->tf_esp = (int)sfp;
  544         regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
  545             szfreebsd4_sigcode;
  546         regs->tf_eflags &= ~(PSL_T | PSL_D);
  547         regs->tf_cs = _ucodesel;
  548         regs->tf_ds = _udatasel;
  549         regs->tf_es = _udatasel;
  550         regs->tf_fs = _udatasel;
  551         regs->tf_ss = _udatasel;
  552         PROC_LOCK(p);
  553         mtx_lock(&psp->ps_mtx);
  554 }
  555 #endif  /* COMPAT_FREEBSD4 */
  556 
  557 void
  558 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
  559 {
  560         struct sigframe sf, *sfp;
  561         struct proc *p;
  562         struct thread *td;
  563         struct sigacts *psp;
  564         char *sp;
  565         struct trapframe *regs;
  566         struct segment_descriptor *sdp;
  567         int sig;
  568         int oonstack;
  569 
  570         td = curthread;
  571         p = td->td_proc;
  572         PROC_LOCK_ASSERT(p, MA_OWNED);
  573         sig = ksi->ksi_signo;
  574         psp = p->p_sigacts;
  575         mtx_assert(&psp->ps_mtx, MA_OWNED);
  576 #ifdef COMPAT_FREEBSD4
  577         if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
  578                 freebsd4_sendsig(catcher, ksi, mask);
  579                 return;
  580         }
  581 #endif
  582 #ifdef COMPAT_43
  583         if (SIGISMEMBER(psp->ps_osigset, sig)) {
  584                 osendsig(catcher, ksi, mask);
  585                 return;
  586         }
  587 #endif
  588         regs = td->td_frame;
  589         oonstack = sigonstack(regs->tf_esp);
  590 
  591         /* Save user context. */
  592         bzero(&sf, sizeof(sf));
  593         sf.sf_uc.uc_sigmask = *mask;
  594         sf.sf_uc.uc_stack = td->td_sigstk;
  595         sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
  596             ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  597         sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
  598         sf.sf_uc.uc_mcontext.mc_gs = rgs();
  599         bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
  600         sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
  601         get_fpcontext(td, &sf.sf_uc.uc_mcontext);
  602         fpstate_drop(td);
  603         /*
  604          * Unconditionally fill the fsbase and gsbase into the mcontext.
  605          */
  606         sdp = &td->td_pcb->pcb_fsd;
  607         sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
  608             sdp->sd_lobase;
  609         sdp = &td->td_pcb->pcb_gsd;
  610         sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
  611             sdp->sd_lobase;
  612         sf.sf_uc.uc_mcontext.mc_flags = 0;
  613         bzero(sf.sf_uc.uc_mcontext.mc_spare2,
  614             sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
  615         bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
  616 
  617         /* Allocate space for the signal handler context. */
  618         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
  619             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  620                 sp = td->td_sigstk.ss_sp +
  621                     td->td_sigstk.ss_size - sizeof(struct sigframe);
  622 #if defined(COMPAT_43)
  623                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  624 #endif
  625         } else
  626                 sp = (char *)regs->tf_esp - sizeof(struct sigframe);
  627         /* Align to 16 bytes. */
  628         sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
  629 
  630         /* Translate the signal if appropriate. */
  631         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  632                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  633 
  634         /* Build the argument list for the signal handler. */
  635         sf.sf_signum = sig;
  636         sf.sf_ucontext = (register_t)&sfp->sf_uc;
  637         bzero(&sf.sf_si, sizeof(sf.sf_si));
  638         if (SIGISMEMBER(psp->ps_siginfo, sig)) {
  639                 /* Signal handler installed with SA_SIGINFO. */
  640                 sf.sf_siginfo = (register_t)&sfp->sf_si;
  641                 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
  642 
  643                 /* Fill in POSIX parts */
  644                 sf.sf_si = ksi->ksi_info;
  645                 sf.sf_si.si_signo = sig; /* maybe a translated signal */
  646         } else {
  647                 /* Old FreeBSD-style arguments. */
  648                 sf.sf_siginfo = ksi->ksi_code;
  649                 sf.sf_addr = (register_t)ksi->ksi_addr;
  650                 sf.sf_ahu.sf_handler = catcher;
  651         }
  652         mtx_unlock(&psp->ps_mtx);
  653         PROC_UNLOCK(p);
  654 
  655         /*
  656          * If we're a vm86 process, we want to save the segment registers.
  657          * We also change eflags to be our emulated eflags, not the actual
  658          * eflags.
  659          */
  660         if (regs->tf_eflags & PSL_VM) {
  661                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  662                 struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  663 
  664                 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
  665                 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
  666                 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
  667                 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
  668 
  669                 if (vm86->vm86_has_vme == 0)
  670                         sf.sf_uc.uc_mcontext.mc_eflags =
  671                             (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
  672                             (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
  673 
  674                 /*
  675                  * Clear PSL_NT to inhibit T_TSSFLT faults on return from
  676                  * syscalls made by the signal handler.  This just avoids
  677                  * wasting time for our lazy fixup of such faults.  PSL_NT
  678                  * does nothing in vm86 mode, but vm86 programs can set it
  679                  * almost legitimately in probes for old cpu types.
  680                  */
  681                 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
  682         }
  683 
  684         /*
  685          * Copy the sigframe out to the user's stack.
  686          */
  687         if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
  688 #ifdef DEBUG
  689                 printf("process %ld has trashed its stack\n", (long)p->p_pid);
  690 #endif
  691                 PROC_LOCK(p);
  692                 sigexit(td, SIGILL);
  693         }
  694 
  695         regs->tf_esp = (int)sfp;
  696         regs->tf_eip = p->p_sysent->sv_sigcode_base;
  697         regs->tf_eflags &= ~(PSL_T | PSL_D);
  698         regs->tf_cs = _ucodesel;
  699         regs->tf_ds = _udatasel;
  700         regs->tf_es = _udatasel;
  701         regs->tf_fs = _udatasel;
  702         regs->tf_ss = _udatasel;
  703         PROC_LOCK(p);
  704         mtx_lock(&psp->ps_mtx);
  705 }
  706 
  707 /*
  708  * System call to cleanup state after a signal
  709  * has been taken.  Reset signal mask and
  710  * stack state from context left by sendsig (above).
  711  * Return to previous pc and psl as specified by
  712  * context left by sendsig. Check carefully to
  713  * make sure that the user has not modified the
  714  * state to gain improper privileges.
  715  *
  716  * MPSAFE
  717  */
  718 #ifdef COMPAT_43
  719 int
  720 osigreturn(td, uap)
  721         struct thread *td;
  722         struct osigreturn_args /* {
  723                 struct osigcontext *sigcntxp;
  724         } */ *uap;
  725 {
  726         struct osigcontext sc;
  727         struct trapframe *regs;
  728         struct osigcontext *scp;
  729         int eflags, error;
  730         ksiginfo_t ksi;
  731 
  732         regs = td->td_frame;
  733         error = copyin(uap->sigcntxp, &sc, sizeof(sc));
  734         if (error != 0)
  735                 return (error);
  736         scp = &sc;
  737         eflags = scp->sc_ps;
  738         if (eflags & PSL_VM) {
  739                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  740                 struct vm86_kernel *vm86;
  741 
  742                 /*
  743                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  744                  * set up the vm86 area, and we can't enter vm86 mode.
  745                  */
  746                 if (td->td_pcb->pcb_ext == 0)
  747                         return (EINVAL);
  748                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  749                 if (vm86->vm86_inited == 0)
  750                         return (EINVAL);
  751 
  752                 /* Go back to user mode if both flags are set. */
  753                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  754                         ksiginfo_init_trap(&ksi);
  755                         ksi.ksi_signo = SIGBUS;
  756                         ksi.ksi_code = BUS_OBJERR;
  757                         ksi.ksi_addr = (void *)regs->tf_eip;
  758                         trapsignal(td, &ksi);
  759                 }
  760 
  761                 if (vm86->vm86_has_vme) {
  762                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  763                             (eflags & VME_USERCHANGE) | PSL_VM;
  764                 } else {
  765                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  766                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  767                             (eflags & VM_USERCHANGE) | PSL_VM;
  768                 }
  769                 tf->tf_vm86_ds = scp->sc_ds;
  770                 tf->tf_vm86_es = scp->sc_es;
  771                 tf->tf_vm86_fs = scp->sc_fs;
  772                 tf->tf_vm86_gs = scp->sc_gs;
  773                 tf->tf_ds = _udatasel;
  774                 tf->tf_es = _udatasel;
  775                 tf->tf_fs = _udatasel;
  776         } else {
  777                 /*
  778                  * Don't allow users to change privileged or reserved flags.
  779                  */
  780                 /*
  781                  * XXX do allow users to change the privileged flag PSL_RF.
  782                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  783                  * should sometimes set it there too.  tf_eflags is kept in
  784                  * the signal context during signal handling and there is no
  785                  * other place to remember it, so the PSL_RF bit may be
  786                  * corrupted by the signal handler without us knowing.
  787                  * Corruption of the PSL_RF bit at worst causes one more or
  788                  * one less debugger trap, so allowing it is fairly harmless.
  789                  */
  790                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  791                         return (EINVAL);
  792                 }
  793 
  794                 /*
  795                  * Don't allow users to load a valid privileged %cs.  Let the
  796                  * hardware check for invalid selectors, excess privilege in
  797                  * other selectors, invalid %eip's and invalid %esp's.
  798                  */
  799                 if (!CS_SECURE(scp->sc_cs)) {
  800                         ksiginfo_init_trap(&ksi);
  801                         ksi.ksi_signo = SIGBUS;
  802                         ksi.ksi_code = BUS_OBJERR;
  803                         ksi.ksi_trapno = T_PROTFLT;
  804                         ksi.ksi_addr = (void *)regs->tf_eip;
  805                         trapsignal(td, &ksi);
  806                         return (EINVAL);
  807                 }
  808                 regs->tf_ds = scp->sc_ds;
  809                 regs->tf_es = scp->sc_es;
  810                 regs->tf_fs = scp->sc_fs;
  811         }
  812 
  813         /* Restore remaining registers. */
  814         regs->tf_eax = scp->sc_eax;
  815         regs->tf_ebx = scp->sc_ebx;
  816         regs->tf_ecx = scp->sc_ecx;
  817         regs->tf_edx = scp->sc_edx;
  818         regs->tf_esi = scp->sc_esi;
  819         regs->tf_edi = scp->sc_edi;
  820         regs->tf_cs = scp->sc_cs;
  821         regs->tf_ss = scp->sc_ss;
  822         regs->tf_isp = scp->sc_isp;
  823         regs->tf_ebp = scp->sc_fp;
  824         regs->tf_esp = scp->sc_sp;
  825         regs->tf_eip = scp->sc_pc;
  826         regs->tf_eflags = eflags;
  827 
  828 #if defined(COMPAT_43)
  829         if (scp->sc_onstack & 1)
  830                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  831         else
  832                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  833 #endif
  834         kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
  835             SIGPROCMASK_OLD);
  836         return (EJUSTRETURN);
  837 }
  838 #endif /* COMPAT_43 */
  839 
  840 #ifdef COMPAT_FREEBSD4
  841 /*
  842  * MPSAFE
  843  */
  844 int
  845 freebsd4_sigreturn(td, uap)
  846         struct thread *td;
  847         struct freebsd4_sigreturn_args /* {
  848                 const ucontext4 *sigcntxp;
  849         } */ *uap;
  850 {
  851         struct ucontext4 uc;
  852         struct trapframe *regs;
  853         struct ucontext4 *ucp;
  854         int cs, eflags, error;
  855         ksiginfo_t ksi;
  856 
  857         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  858         if (error != 0)
  859                 return (error);
  860         ucp = &uc;
  861         regs = td->td_frame;
  862         eflags = ucp->uc_mcontext.mc_eflags;
  863         if (eflags & PSL_VM) {
  864                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  865                 struct vm86_kernel *vm86;
  866 
  867                 /*
  868                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  869                  * set up the vm86 area, and we can't enter vm86 mode.
  870                  */
  871                 if (td->td_pcb->pcb_ext == 0)
  872                         return (EINVAL);
  873                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  874                 if (vm86->vm86_inited == 0)
  875                         return (EINVAL);
  876 
  877                 /* Go back to user mode if both flags are set. */
  878                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  879                         ksiginfo_init_trap(&ksi);
  880                         ksi.ksi_signo = SIGBUS;
  881                         ksi.ksi_code = BUS_OBJERR;
  882                         ksi.ksi_addr = (void *)regs->tf_eip;
  883                         trapsignal(td, &ksi);
  884                 }
  885                 if (vm86->vm86_has_vme) {
  886                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
  887                             (eflags & VME_USERCHANGE) | PSL_VM;
  888                 } else {
  889                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
  890                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
  891                             (eflags & VM_USERCHANGE) | PSL_VM;
  892                 }
  893                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
  894                 tf->tf_eflags = eflags;
  895                 tf->tf_vm86_ds = tf->tf_ds;
  896                 tf->tf_vm86_es = tf->tf_es;
  897                 tf->tf_vm86_fs = tf->tf_fs;
  898                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
  899                 tf->tf_ds = _udatasel;
  900                 tf->tf_es = _udatasel;
  901                 tf->tf_fs = _udatasel;
  902         } else {
  903                 /*
  904                  * Don't allow users to change privileged or reserved flags.
  905                  */
  906                 /*
  907                  * XXX do allow users to change the privileged flag PSL_RF.
  908                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
  909                  * should sometimes set it there too.  tf_eflags is kept in
  910                  * the signal context during signal handling and there is no
  911                  * other place to remember it, so the PSL_RF bit may be
  912                  * corrupted by the signal handler without us knowing.
  913                  * Corruption of the PSL_RF bit at worst causes one more or
  914                  * one less debugger trap, so allowing it is fairly harmless.
  915                  */
  916                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
  917                         uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
  918                             td->td_proc->p_pid, td->td_name, eflags);
  919                         return (EINVAL);
  920                 }
  921 
  922                 /*
  923                  * Don't allow users to load a valid privileged %cs.  Let the
  924                  * hardware check for invalid selectors, excess privilege in
  925                  * other selectors, invalid %eip's and invalid %esp's.
  926                  */
  927                 cs = ucp->uc_mcontext.mc_cs;
  928                 if (!CS_SECURE(cs)) {
  929                         uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
  930                             td->td_proc->p_pid, td->td_name, cs);
  931                         ksiginfo_init_trap(&ksi);
  932                         ksi.ksi_signo = SIGBUS;
  933                         ksi.ksi_code = BUS_OBJERR;
  934                         ksi.ksi_trapno = T_PROTFLT;
  935                         ksi.ksi_addr = (void *)regs->tf_eip;
  936                         trapsignal(td, &ksi);
  937                         return (EINVAL);
  938                 }
  939 
  940                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
  941         }
  942 
  943 #if defined(COMPAT_43)
  944         if (ucp->uc_mcontext.mc_onstack & 1)
  945                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  946         else
  947                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
  948 #endif
  949         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
  950         return (EJUSTRETURN);
  951 }
  952 #endif  /* COMPAT_FREEBSD4 */
  953 
  954 /*
  955  * MPSAFE
  956  */
  957 int
  958 sys_sigreturn(td, uap)
  959         struct thread *td;
  960         struct sigreturn_args /* {
  961                 const struct __ucontext *sigcntxp;
  962         } */ *uap;
  963 {
  964         ucontext_t uc;
  965         struct trapframe *regs;
  966         ucontext_t *ucp;
  967         int cs, eflags, error, ret;
  968         ksiginfo_t ksi;
  969 
  970         error = copyin(uap->sigcntxp, &uc, sizeof(uc));
  971         if (error != 0)
  972                 return (error);
  973         ucp = &uc;
  974         regs = td->td_frame;
  975         eflags = ucp->uc_mcontext.mc_eflags;
  976         if (eflags & PSL_VM) {
  977                 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
  978                 struct vm86_kernel *vm86;
  979 
  980                 /*
  981                  * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
  982                  * set up the vm86 area, and we can't enter vm86 mode.
  983                  */
  984                 if (td->td_pcb->pcb_ext == 0)
  985                         return (EINVAL);
  986                 vm86 = &td->td_pcb->pcb_ext->ext_vm86;
  987                 if (vm86->vm86_inited == 0)
  988                         return (EINVAL);
  989 
  990                 /* Go back to user mode if both flags are set. */
  991                 if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
  992                         ksiginfo_init_trap(&ksi);
  993                         ksi.ksi_signo = SIGBUS;
  994                         ksi.ksi_code = BUS_OBJERR;
  995                         ksi.ksi_addr = (void *)regs->tf_eip;
  996                         trapsignal(td, &ksi);
  997                 }
  998 
  999                 if (vm86->vm86_has_vme) {
 1000                         eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
 1001                             (eflags & VME_USERCHANGE) | PSL_VM;
 1002                 } else {
 1003                         vm86->vm86_eflags = eflags;     /* save VIF, VIP */
 1004                         eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
 1005                             (eflags & VM_USERCHANGE) | PSL_VM;
 1006                 }
 1007                 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
 1008                 tf->tf_eflags = eflags;
 1009                 tf->tf_vm86_ds = tf->tf_ds;
 1010                 tf->tf_vm86_es = tf->tf_es;
 1011                 tf->tf_vm86_fs = tf->tf_fs;
 1012                 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
 1013                 tf->tf_ds = _udatasel;
 1014                 tf->tf_es = _udatasel;
 1015                 tf->tf_fs = _udatasel;
 1016         } else {
 1017                 /*
 1018                  * Don't allow users to change privileged or reserved flags.
 1019                  */
 1020                 /*
 1021                  * XXX do allow users to change the privileged flag PSL_RF.
 1022                  * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
 1023                  * should sometimes set it there too.  tf_eflags is kept in
 1024                  * the signal context during signal handling and there is no
 1025                  * other place to remember it, so the PSL_RF bit may be
 1026                  * corrupted by the signal handler without us knowing.
 1027                  * Corruption of the PSL_RF bit at worst causes one more or
 1028                  * one less debugger trap, so allowing it is fairly harmless.
 1029                  */
 1030                 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
 1031                         uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
 1032                             td->td_proc->p_pid, td->td_name, eflags);
 1033                         return (EINVAL);
 1034                 }
 1035 
 1036                 /*
 1037                  * Don't allow users to load a valid privileged %cs.  Let the
 1038                  * hardware check for invalid selectors, excess privilege in
 1039                  * other selectors, invalid %eip's and invalid %esp's.
 1040                  */
 1041                 cs = ucp->uc_mcontext.mc_cs;
 1042                 if (!CS_SECURE(cs)) {
 1043                         uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
 1044                             td->td_proc->p_pid, td->td_name, cs);
 1045                         ksiginfo_init_trap(&ksi);
 1046                         ksi.ksi_signo = SIGBUS;
 1047                         ksi.ksi_code = BUS_OBJERR;
 1048                         ksi.ksi_trapno = T_PROTFLT;
 1049                         ksi.ksi_addr = (void *)regs->tf_eip;
 1050                         trapsignal(td, &ksi);
 1051                         return (EINVAL);
 1052                 }
 1053 
 1054                 ret = set_fpcontext(td, &ucp->uc_mcontext);
 1055                 if (ret != 0)
 1056                         return (ret);
 1057                 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
 1058         }
 1059 
 1060 #if defined(COMPAT_43)
 1061         if (ucp->uc_mcontext.mc_onstack & 1)
 1062                 td->td_sigstk.ss_flags |= SS_ONSTACK;
 1063         else
 1064                 td->td_sigstk.ss_flags &= ~SS_ONSTACK;
 1065 #endif
 1066 
 1067         kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
 1068         return (EJUSTRETURN);
 1069 }
 1070 
 1071 /*
 1072  * Machine dependent boot() routine
 1073  *
 1074  * I haven't seen anything to put here yet
 1075  * Possibly some stuff might be grafted back here from boot()
 1076  */
 1077 void
 1078 cpu_boot(int howto)
 1079 {
 1080 }
 1081 
 1082 /*
 1083  * Flush the D-cache for non-DMA I/O so that the I-cache can
 1084  * be made coherent later.
 1085  */
 1086 void
 1087 cpu_flush_dcache(void *ptr, size_t len)
 1088 {
 1089         /* Not applicable */
 1090 }
 1091 
 1092 /* Get current clock frequency for the given cpu id. */
 1093 int
 1094 cpu_est_clockrate(int cpu_id, uint64_t *rate)
 1095 {
 1096         uint64_t tsc1, tsc2;
 1097         register_t reg;
 1098 
 1099         if (pcpu_find(cpu_id) == NULL || rate == NULL)
 1100                 return (EINVAL);
 1101         if ((cpu_feature & CPUID_TSC) == 0)
 1102                 return (EOPNOTSUPP);
 1103 
 1104 #ifdef SMP
 1105         if (smp_cpus > 1) {
 1106                 /* Schedule ourselves on the indicated cpu. */
 1107                 thread_lock(curthread);
 1108                 sched_bind(curthread, cpu_id);
 1109                 thread_unlock(curthread);
 1110         }
 1111 #endif
 1112 
 1113         /* Calibrate by measuring a short delay. */
 1114         reg = intr_disable();
 1115         tsc1 = rdtsc();
 1116         DELAY(1000);
 1117         tsc2 = rdtsc();
 1118         intr_restore(reg);
 1119         *rate = (tsc2 - tsc1) * 1000;
 1120 
 1121 #ifdef SMP
 1122         if (smp_cpus > 1) {
 1123                 thread_lock(curthread);
 1124                 sched_unbind(curthread);
 1125                 thread_unlock(curthread);
 1126         }
 1127 #endif
 1128 
 1129         return (0);
 1130 }
 1131 
 1132 
 1133 /*
 1134  * Shutdown the CPU as much as possible
 1135  */
 1136 void
 1137 cpu_halt(void)
 1138 {
 1139         for (;;)
 1140                 __asm__ ("hlt");
 1141 }
 1142 
 1143 static int      idle_mwait = 1;         /* Use MONITOR/MWAIT for short idle. */
 1144 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
 1145 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
 1146     0, "Use MONITOR/MWAIT for short idle");
 1147 
 1148 #define STATE_RUNNING   0x0
 1149 #define STATE_MWAIT     0x1
 1150 #define STATE_SLEEPING  0x2
 1151 
 1152 static void
 1153 cpu_idle_hlt(int busy)
 1154 {
 1155         int *state;
 1156 
 1157         state = (int *)PCPU_PTR(monitorbuf);
 1158         *state = STATE_SLEEPING;
 1159         /*
 1160          * We must absolutely guarentee that hlt is the next instruction
 1161          * after sti or we introduce a timing window.
 1162          */
 1163         disable_intr();
 1164         if (sched_runnable())
 1165                 enable_intr();
 1166         else
 1167                 __asm __volatile("sti; hlt");
 1168         *state = STATE_RUNNING;
 1169 }
 1170 
 1171 /*
 1172  * MWAIT cpu power states.  Lower 4 bits are sub-states.
 1173  */
 1174 #define MWAIT_C0        0xf0
 1175 #define MWAIT_C1        0x00
 1176 #define MWAIT_C2        0x10
 1177 #define MWAIT_C3        0x20
 1178 #define MWAIT_C4        0x30
 1179 
 1180 static void
 1181 cpu_idle_mwait(int busy)
 1182 {
 1183         int *state;
 1184 
 1185         state = (int *)PCPU_PTR(monitorbuf);
 1186         *state = STATE_MWAIT;
 1187         if (!sched_runnable()) {
 1188                 cpu_monitor(state, 0, 0);
 1189                 if (*state == STATE_MWAIT)
 1190                         cpu_mwait(0, MWAIT_C1);
 1191         }
 1192         *state = STATE_RUNNING;
 1193 }
 1194 
 1195 static void
 1196 cpu_idle_spin(int busy)
 1197 {
 1198         int *state;
 1199         int i;
 1200 
 1201         state = (int *)PCPU_PTR(monitorbuf);
 1202         *state = STATE_RUNNING;
 1203         for (i = 0; i < 1000; i++) {
 1204                 if (sched_runnable())
 1205                         return;
 1206                 cpu_spinwait();
 1207         }
 1208 }
 1209 
 1210 void (*cpu_idle_fn)(int) = cpu_idle_hlt;
 1211 
 1212 void
 1213 cpu_idle(int busy)
 1214 {
 1215 
 1216         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
 1217             busy, curcpu);
 1218 #if defined(MP_WATCHDOG)
 1219         ap_watchdog(PCPU_GET(cpuid));
 1220 #endif
 1221         /* If we are busy - try to use fast methods. */
 1222         if (busy) {
 1223                 if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
 1224                         cpu_idle_mwait(busy);
 1225                         goto out;
 1226                 }
 1227         }
 1228 
 1229         /* If we have time - switch timers into idle mode. */
 1230         if (!busy) {
 1231                 critical_enter();
 1232                 cpu_idleclock();
 1233         }
 1234 
 1235         /* Call main idle method. */
 1236         cpu_idle_fn(busy);
 1237 
 1238         /* Switch timers mack into active mode. */
 1239         if (!busy) {
 1240                 cpu_activeclock();
 1241                 critical_exit();
 1242         }
 1243 out:
 1244         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
 1245             busy, curcpu);
 1246 }
 1247 
 1248 int
 1249 cpu_idle_wakeup(int cpu)
 1250 {
 1251         struct pcpu *pcpu;
 1252         int *state;
 1253 
 1254         pcpu = pcpu_find(cpu);
 1255         state = (int *)pcpu->pc_monitorbuf;
 1256         /*
 1257          * This doesn't need to be atomic since missing the race will
 1258          * simply result in unnecessary IPIs.
 1259          */
 1260         if (*state == STATE_SLEEPING)
 1261                 return (0);
 1262         if (*state == STATE_MWAIT)
 1263                 *state = STATE_RUNNING;
 1264         return (1);
 1265 }
 1266 
 1267 /*
 1268  * Ordered by speed/power consumption.
 1269  */
 1270 struct {
 1271         void    *id_fn;
 1272         char    *id_name;
 1273 } idle_tbl[] = {
 1274         { cpu_idle_spin, "spin" },
 1275         { cpu_idle_mwait, "mwait" },
 1276         { cpu_idle_hlt, "hlt" },
 1277         { NULL, NULL }
 1278 };
 1279 
 1280 static int
 1281 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
 1282 {
 1283         char *avail, *p;
 1284         int error;
 1285         int i;
 1286 
 1287         avail = malloc(256, M_TEMP, M_WAITOK);
 1288         p = avail;
 1289         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1290                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1291                     (cpu_feature2 & CPUID2_MON) == 0)
 1292                         continue;
 1293                 p += sprintf(p, "%s%s", p != avail ? ", " : "",
 1294                     idle_tbl[i].id_name);
 1295         }
 1296         error = sysctl_handle_string(oidp, avail, 0, req);
 1297         free(avail, M_TEMP);
 1298         return (error);
 1299 }
 1300 
 1301 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
 1302     0, 0, idle_sysctl_available, "A", "list of available idle functions");
 1303 
 1304 static int
 1305 idle_sysctl(SYSCTL_HANDLER_ARGS)
 1306 {
 1307         char buf[16];
 1308         int error;
 1309         char *p;
 1310         int i;
 1311 
 1312         p = "unknown";
 1313         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1314                 if (idle_tbl[i].id_fn == cpu_idle_fn) {
 1315                         p = idle_tbl[i].id_name;
 1316                         break;
 1317                 }
 1318         }
 1319         strncpy(buf, p, sizeof(buf));
 1320         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 1321         if (error != 0 || req->newptr == NULL)
 1322                 return (error);
 1323         for (i = 0; idle_tbl[i].id_name != NULL; i++) {
 1324                 if (strstr(idle_tbl[i].id_name, "mwait") &&
 1325                     (cpu_feature2 & CPUID2_MON) == 0)
 1326                         continue;
 1327                 if (strcmp(idle_tbl[i].id_name, buf))
 1328                         continue;
 1329                 cpu_idle_fn = idle_tbl[i].id_fn;
 1330                 return (0);
 1331         }
 1332         return (EINVAL);
 1333 }
 1334 
 1335 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
 1336     idle_sysctl, "A", "currently selected idle function");
 1337 
 1338 uint64_t (*atomic_load_acq_64)(volatile uint64_t *) =
 1339     atomic_load_acq_64_i386;
 1340 void (*atomic_store_rel_64)(volatile uint64_t *, uint64_t) =
 1341     atomic_store_rel_64_i386;
 1342 
 1343 static void
 1344 cpu_probe_cmpxchg8b(void)
 1345 {
 1346 
 1347         if ((cpu_feature & CPUID_CX8) != 0) {
 1348                 atomic_load_acq_64 = atomic_load_acq_64_i586;
 1349                 atomic_store_rel_64 = atomic_store_rel_64_i586;
 1350         }
 1351 }
 1352 
 1353 /*
 1354  * Reset registers to default values on exec.
 1355  */
 1356 void
 1357 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
 1358 {
 1359         struct trapframe *regs = td->td_frame;
 1360         struct pcb *pcb = td->td_pcb;
 1361 
 1362         /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
 1363         pcb->pcb_gs = _udatasel;
 1364         load_gs(_udatasel);
 1365 
 1366         mtx_lock_spin(&dt_lock);
 1367         if (td->td_proc->p_md.md_ldt)
 1368                 user_ldt_free(td);
 1369         else
 1370                 mtx_unlock_spin(&dt_lock);
 1371   
 1372         bzero((char *)regs, sizeof(struct trapframe));
 1373         regs->tf_eip = imgp->entry_addr;
 1374         regs->tf_esp = stack;
 1375         regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
 1376         regs->tf_ss = _udatasel;
 1377         regs->tf_ds = _udatasel;
 1378         regs->tf_es = _udatasel;
 1379         regs->tf_fs = _udatasel;
 1380         regs->tf_cs = _ucodesel;
 1381 
 1382         /* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
 1383         regs->tf_ebx = imgp->ps_strings;
 1384 
 1385         /*
 1386          * Reset the hardware debug registers if they were in use.
 1387          * They won't have any meaning for the newly exec'd process.  
 1388          */
 1389         if (pcb->pcb_flags & PCB_DBREGS) {
 1390                 pcb->pcb_dr0 = 0;
 1391                 pcb->pcb_dr1 = 0;
 1392                 pcb->pcb_dr2 = 0;
 1393                 pcb->pcb_dr3 = 0;
 1394                 pcb->pcb_dr6 = 0;
 1395                 pcb->pcb_dr7 = 0;
 1396                 if (pcb == curpcb) {
 1397                         /*
 1398                          * Clear the debug registers on the running
 1399                          * CPU, otherwise they will end up affecting
 1400                          * the next process we switch to.
 1401                          */
 1402                         reset_dbregs();
 1403                 }
 1404                 pcb->pcb_flags &= ~PCB_DBREGS;
 1405         }
 1406 
 1407         /*
 1408          * Initialize the math emulator (if any) for the current process.
 1409          * Actually, just clear the bit that says that the emulator has
 1410          * been initialized.  Initialization is delayed until the process
 1411          * traps to the emulator (if it is done at all) mainly because
 1412          * emulators don't provide an entry point for initialization.
 1413          */
 1414         td->td_pcb->pcb_flags &= ~FP_SOFTFP;
 1415         pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
 1416 
 1417         /*
 1418          * Drop the FP state if we hold it, so that the process gets a
 1419          * clean FP state if it uses the FPU again.
 1420          */
 1421         fpstate_drop(td);
 1422 
 1423         /*
 1424          * XXX - Linux emulator
 1425          * Make sure sure edx is 0x0 on entry. Linux binaries depend
 1426          * on it.
 1427          */
 1428         td->td_retval[1] = 0;
 1429 }
 1430 
 1431 void
 1432 cpu_setregs(void)
 1433 {
 1434         unsigned int cr0;
 1435 
 1436         cr0 = rcr0();
 1437 
 1438         /*
 1439          * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
 1440          *
 1441          * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
 1442          * instructions.  We must set the CR0_MP bit and use the CR0_TS
 1443          * bit to control the trap, because setting the CR0_EM bit does
 1444          * not cause WAIT instructions to trap.  It's important to trap
 1445          * WAIT instructions - otherwise the "wait" variants of no-wait
 1446          * control instructions would degenerate to the "no-wait" variants
 1447          * after FP context switches but work correctly otherwise.  It's
 1448          * particularly important to trap WAITs when there is no NPX -
 1449          * otherwise the "wait" variants would always degenerate.
 1450          *
 1451          * Try setting CR0_NE to get correct error reporting on 486DX's.
 1452          * Setting it should fail or do nothing on lesser processors.
 1453          */
 1454         cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
 1455         load_cr0(cr0);
 1456         load_gs(_udatasel);
 1457 }
 1458 
 1459 u_long bootdev;         /* not a struct cdev *- encoding is different */
 1460 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
 1461         CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
 1462 
 1463 /*
 1464  * Initialize 386 and configure to run kernel
 1465  */
 1466 
 1467 /*
 1468  * Initialize segments & interrupt table
 1469  */
 1470 
 1471 int _default_ldt;
 1472 
 1473 union descriptor gdt[NGDT * MAXCPU];    /* global descriptor table */
 1474 union descriptor ldt[NLDT];             /* local descriptor table */
 1475 static struct gate_descriptor idt0[NIDT];
 1476 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
 1477 struct region_descriptor r_gdt, r_idt;  /* table descriptors */
 1478 struct mtx dt_lock;                     /* lock for GDT and LDT */
 1479 
 1480 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 1481 extern int has_f00f_bug;
 1482 #endif
 1483 
 1484 static struct i386tss dblfault_tss;
 1485 static char dblfault_stack[PAGE_SIZE];
 1486 
 1487 extern  vm_offset_t     proc0kstack;
 1488 
 1489 
 1490 /*
 1491  * software prototypes -- in more palatable form.
 1492  *
 1493  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
 1494  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
 1495  */
 1496 struct soft_segment_descriptor gdt_segs[] = {
 1497 /* GNULL_SEL    0 Null Descriptor */
 1498 {       .ssd_base = 0x0,
 1499         .ssd_limit = 0x0,
 1500         .ssd_type = 0,
 1501         .ssd_dpl = SEL_KPL,
 1502         .ssd_p = 0,
 1503         .ssd_xx = 0, .ssd_xx1 = 0,
 1504         .ssd_def32 = 0,
 1505         .ssd_gran = 0           },
 1506 /* GPRIV_SEL    1 SMP Per-Processor Private Data Descriptor */
 1507 {       .ssd_base = 0x0,
 1508         .ssd_limit = 0xfffff,
 1509         .ssd_type = SDT_MEMRWA,
 1510         .ssd_dpl = SEL_KPL,
 1511         .ssd_p = 1,
 1512         .ssd_xx = 0, .ssd_xx1 = 0,
 1513         .ssd_def32 = 1,
 1514         .ssd_gran = 1           },
 1515 /* GUFS_SEL     2 %fs Descriptor for user */
 1516 {       .ssd_base = 0x0,
 1517         .ssd_limit = 0xfffff,
 1518         .ssd_type = SDT_MEMRWA,
 1519         .ssd_dpl = SEL_UPL,
 1520         .ssd_p = 1,
 1521         .ssd_xx = 0, .ssd_xx1 = 0,
 1522         .ssd_def32 = 1,
 1523         .ssd_gran = 1           },
 1524 /* GUGS_SEL     3 %gs Descriptor for user */
 1525 {       .ssd_base = 0x0,
 1526         .ssd_limit = 0xfffff,
 1527         .ssd_type = SDT_MEMRWA,
 1528         .ssd_dpl = SEL_UPL,
 1529         .ssd_p = 1,
 1530         .ssd_xx = 0, .ssd_xx1 = 0,
 1531         .ssd_def32 = 1,
 1532         .ssd_gran = 1           },
 1533 /* GCODE_SEL    4 Code Descriptor for kernel */
 1534 {       .ssd_base = 0x0,
 1535         .ssd_limit = 0xfffff,
 1536         .ssd_type = SDT_MEMERA,
 1537         .ssd_dpl = SEL_KPL,
 1538         .ssd_p = 1,
 1539         .ssd_xx = 0, .ssd_xx1 = 0,
 1540         .ssd_def32 = 1,
 1541         .ssd_gran = 1           },
 1542 /* GDATA_SEL    5 Data Descriptor for kernel */
 1543 {       .ssd_base = 0x0,
 1544         .ssd_limit = 0xfffff,
 1545         .ssd_type = SDT_MEMRWA,
 1546         .ssd_dpl = SEL_KPL,
 1547         .ssd_p = 1,
 1548         .ssd_xx = 0, .ssd_xx1 = 0,
 1549         .ssd_def32 = 1,
 1550         .ssd_gran = 1           },
 1551 /* GUCODE_SEL   6 Code Descriptor for user */
 1552 {       .ssd_base = 0x0,
 1553         .ssd_limit = 0xfffff,
 1554         .ssd_type = SDT_MEMERA,
 1555         .ssd_dpl = SEL_UPL,
 1556         .ssd_p = 1,
 1557         .ssd_xx = 0, .ssd_xx1 = 0,
 1558         .ssd_def32 = 1,
 1559         .ssd_gran = 1           },
 1560 /* GUDATA_SEL   7 Data Descriptor for user */
 1561 {       .ssd_base = 0x0,
 1562         .ssd_limit = 0xfffff,
 1563         .ssd_type = SDT_MEMRWA,
 1564         .ssd_dpl = SEL_UPL,
 1565         .ssd_p = 1,
 1566         .ssd_xx = 0, .ssd_xx1 = 0,
 1567         .ssd_def32 = 1,
 1568         .ssd_gran = 1           },
 1569 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
 1570 {       .ssd_base = 0x400,
 1571         .ssd_limit = 0xfffff,
 1572         .ssd_type = SDT_MEMRWA,
 1573         .ssd_dpl = SEL_KPL,
 1574         .ssd_p = 1,
 1575         .ssd_xx = 0, .ssd_xx1 = 0,
 1576         .ssd_def32 = 1,
 1577         .ssd_gran = 1           },
 1578 /* GPROC0_SEL   9 Proc 0 Tss Descriptor */
 1579 {
 1580         .ssd_base = 0x0,
 1581         .ssd_limit = sizeof(struct i386tss)-1,
 1582         .ssd_type = SDT_SYS386TSS,
 1583         .ssd_dpl = 0,
 1584         .ssd_p = 1,
 1585         .ssd_xx = 0, .ssd_xx1 = 0,
 1586         .ssd_def32 = 0,
 1587         .ssd_gran = 0           },
 1588 /* GLDT_SEL     10 LDT Descriptor */
 1589 {       .ssd_base = (int) ldt,
 1590         .ssd_limit = sizeof(ldt)-1,
 1591         .ssd_type = SDT_SYSLDT,
 1592         .ssd_dpl = SEL_UPL,
 1593         .ssd_p = 1,
 1594         .ssd_xx = 0, .ssd_xx1 = 0,
 1595         .ssd_def32 = 0,
 1596         .ssd_gran = 0           },
 1597 /* GUSERLDT_SEL 11 User LDT Descriptor per process */
 1598 {       .ssd_base = (int) ldt,
 1599         .ssd_limit = (512 * sizeof(union descriptor)-1),
 1600         .ssd_type = SDT_SYSLDT,
 1601         .ssd_dpl = 0,
 1602         .ssd_p = 1,
 1603         .ssd_xx = 0, .ssd_xx1 = 0,
 1604         .ssd_def32 = 0,
 1605         .ssd_gran = 0           },
 1606 /* GPANIC_SEL   12 Panic Tss Descriptor */
 1607 {       .ssd_base = (int) &dblfault_tss,
 1608         .ssd_limit = sizeof(struct i386tss)-1,
 1609         .ssd_type = SDT_SYS386TSS,
 1610         .ssd_dpl = 0,
 1611         .ssd_p = 1,
 1612         .ssd_xx = 0, .ssd_xx1 = 0,
 1613         .ssd_def32 = 0,
 1614         .ssd_gran = 0           },
 1615 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
 1616 {       .ssd_base = 0,
 1617         .ssd_limit = 0xfffff,
 1618         .ssd_type = SDT_MEMERA,
 1619         .ssd_dpl = 0,
 1620         .ssd_p = 1,
 1621         .ssd_xx = 0, .ssd_xx1 = 0,
 1622         .ssd_def32 = 0,
 1623         .ssd_gran = 1           },
 1624 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
 1625 {       .ssd_base = 0,
 1626         .ssd_limit = 0xfffff,
 1627         .ssd_type = SDT_MEMERA,
 1628         .ssd_dpl = 0,
 1629         .ssd_p = 1,
 1630         .ssd_xx = 0, .ssd_xx1 = 0,
 1631         .ssd_def32 = 0,
 1632         .ssd_gran = 1           },
 1633 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
 1634 {       .ssd_base = 0,
 1635         .ssd_limit = 0xfffff,
 1636         .ssd_type = SDT_MEMRWA,
 1637         .ssd_dpl = 0,
 1638         .ssd_p = 1,
 1639         .ssd_xx = 0, .ssd_xx1 = 0,
 1640         .ssd_def32 = 1,
 1641         .ssd_gran = 1           },
 1642 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
 1643 {       .ssd_base = 0,
 1644         .ssd_limit = 0xfffff,
 1645         .ssd_type = SDT_MEMRWA,
 1646         .ssd_dpl = 0,
 1647         .ssd_p = 1,
 1648         .ssd_xx = 0, .ssd_xx1 = 0,
 1649         .ssd_def32 = 0,
 1650         .ssd_gran = 1           },
 1651 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
 1652 {       .ssd_base = 0,
 1653         .ssd_limit = 0xfffff,
 1654         .ssd_type = SDT_MEMRWA,
 1655         .ssd_dpl = 0,
 1656         .ssd_p = 1,
 1657         .ssd_xx = 0, .ssd_xx1 = 0,
 1658         .ssd_def32 = 0,
 1659         .ssd_gran = 1           },
 1660 /* GNDIS_SEL    18 NDIS Descriptor */
 1661 {       .ssd_base = 0x0,
 1662         .ssd_limit = 0x0,
 1663         .ssd_type = 0,
 1664         .ssd_dpl = 0,
 1665         .ssd_p = 0,
 1666         .ssd_xx = 0, .ssd_xx1 = 0,
 1667         .ssd_def32 = 0,
 1668         .ssd_gran = 0           },
 1669 };
 1670 
 1671 static struct soft_segment_descriptor ldt_segs[] = {
 1672         /* Null Descriptor - overwritten by call gate */
 1673 {       .ssd_base = 0x0,
 1674         .ssd_limit = 0x0,
 1675         .ssd_type = 0,
 1676         .ssd_dpl = 0,
 1677         .ssd_p = 0,
 1678         .ssd_xx = 0, .ssd_xx1 = 0,
 1679         .ssd_def32 = 0,
 1680         .ssd_gran = 0           },
 1681         /* Null Descriptor - overwritten by call gate */
 1682 {       .ssd_base = 0x0,
 1683         .ssd_limit = 0x0,
 1684         .ssd_type = 0,
 1685         .ssd_dpl = 0,
 1686         .ssd_p = 0,
 1687         .ssd_xx = 0, .ssd_xx1 = 0,
 1688         .ssd_def32 = 0,
 1689         .ssd_gran = 0           },
 1690         /* Null Descriptor - overwritten by call gate */
 1691 {       .ssd_base = 0x0,
 1692         .ssd_limit = 0x0,
 1693         .ssd_type = 0,
 1694         .ssd_dpl = 0,
 1695         .ssd_p = 0,
 1696         .ssd_xx = 0, .ssd_xx1 = 0,
 1697         .ssd_def32 = 0,
 1698         .ssd_gran = 0           },
 1699         /* Code Descriptor for user */
 1700 {       .ssd_base = 0x0,
 1701         .ssd_limit = 0xfffff,
 1702         .ssd_type = SDT_MEMERA,
 1703         .ssd_dpl = SEL_UPL,
 1704         .ssd_p = 1,
 1705         .ssd_xx = 0, .ssd_xx1 = 0,
 1706         .ssd_def32 = 1,
 1707         .ssd_gran = 1           },
 1708         /* Null Descriptor - overwritten by call gate */
 1709 {       .ssd_base = 0x0,
 1710         .ssd_limit = 0x0,
 1711         .ssd_type = 0,
 1712         .ssd_dpl = 0,
 1713         .ssd_p = 0,
 1714         .ssd_xx = 0, .ssd_xx1 = 0,
 1715         .ssd_def32 = 0,
 1716         .ssd_gran = 0           },
 1717         /* Data Descriptor for user */
 1718 {       .ssd_base = 0x0,
 1719         .ssd_limit = 0xfffff,
 1720         .ssd_type = SDT_MEMRWA,
 1721         .ssd_dpl = SEL_UPL,
 1722         .ssd_p = 1,
 1723         .ssd_xx = 0, .ssd_xx1 = 0,
 1724         .ssd_def32 = 1,
 1725         .ssd_gran = 1           },
 1726 };
 1727 
 1728 void
 1729 setidt(idx, func, typ, dpl, selec)
 1730         int idx;
 1731         inthand_t *func;
 1732         int typ;
 1733         int dpl;
 1734         int selec;
 1735 {
 1736         struct gate_descriptor *ip;
 1737 
 1738         ip = idt + idx;
 1739         ip->gd_looffset = (int)func;
 1740         ip->gd_selector = selec;
 1741         ip->gd_stkcpy = 0;
 1742         ip->gd_xx = 0;
 1743         ip->gd_type = typ;
 1744         ip->gd_dpl = dpl;
 1745         ip->gd_p = 1;
 1746         ip->gd_hioffset = ((int)func)>>16 ;
 1747 }
 1748 
 1749 extern inthand_t
 1750         IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
 1751         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
 1752         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
 1753         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
 1754         IDTVEC(xmm),
 1755 #ifdef KDTRACE_HOOKS
 1756         IDTVEC(dtrace_ret),
 1757 #endif
 1758         IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
 1759 
 1760 #ifdef DDB
 1761 /*
 1762  * Display the index and function name of any IDT entries that don't use
 1763  * the default 'rsvd' entry point.
 1764  */
 1765 DB_SHOW_COMMAND(idt, db_show_idt)
 1766 {
 1767         struct gate_descriptor *ip;
 1768         int idx;
 1769         uintptr_t func;
 1770 
 1771         ip = idt;
 1772         for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
 1773                 func = (ip->gd_hioffset << 16 | ip->gd_looffset);
 1774                 if (func != (uintptr_t)&IDTVEC(rsvd)) {
 1775                         db_printf("%3d\t", idx);
 1776                         db_printsym(func, DB_STGY_PROC);
 1777                         db_printf("\n");
 1778                 }
 1779                 ip++;
 1780         }
 1781 }
 1782 
 1783 /* Show privileged registers. */
 1784 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
 1785 {
 1786         uint64_t idtr, gdtr;
 1787 
 1788         idtr = ridt();
 1789         db_printf("idtr\t0x%08x/%04x\n",
 1790             (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
 1791         gdtr = rgdt();
 1792         db_printf("gdtr\t0x%08x/%04x\n",
 1793             (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
 1794         db_printf("ldtr\t0x%04x\n", rldt());
 1795         db_printf("tr\t0x%04x\n", rtr());
 1796         db_printf("cr0\t0x%08x\n", rcr0());
 1797         db_printf("cr2\t0x%08x\n", rcr2());
 1798         db_printf("cr3\t0x%08x\n", rcr3());
 1799         db_printf("cr4\t0x%08x\n", rcr4());
 1800 }
 1801 #endif
 1802 
 1803 void
 1804 sdtossd(sd, ssd)
 1805         struct segment_descriptor *sd;
 1806         struct soft_segment_descriptor *ssd;
 1807 {
 1808         ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
 1809         ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
 1810         ssd->ssd_type  = sd->sd_type;
 1811         ssd->ssd_dpl   = sd->sd_dpl;
 1812         ssd->ssd_p     = sd->sd_p;
 1813         ssd->ssd_def32 = sd->sd_def32;
 1814         ssd->ssd_gran  = sd->sd_gran;
 1815 }
 1816 
 1817 static void
 1818 basemem_setup(void)
 1819 {
 1820         vm_paddr_t pa;
 1821         pt_entry_t *pte;
 1822         int i;
 1823 
 1824         if (basemem > 640) {
 1825                 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
 1826                         basemem);
 1827                 basemem = 640;
 1828         }
 1829 
 1830         /*
 1831          * XXX if biosbasemem is now < 640, there is a `hole'
 1832          * between the end of base memory and the start of
 1833          * ISA memory.  The hole may be empty or it may
 1834          * contain BIOS code or data.  Map it read/write so
 1835          * that the BIOS can write to it.  (Memory from 0 to
 1836          * the physical end of the kernel is mapped read-only
 1837          * to begin with and then parts of it are remapped.
 1838          * The parts that aren't remapped form holes that
 1839          * remain read-only and are unused by the kernel.
 1840          * The base memory area is below the physical end of
 1841          * the kernel and right now forms a read-only hole.
 1842          * The part of it from PAGE_SIZE to
 1843          * (trunc_page(biosbasemem * 1024) - 1) will be
 1844          * remapped and used by the kernel later.)
 1845          *
 1846          * This code is similar to the code used in
 1847          * pmap_mapdev, but since no memory needs to be
 1848          * allocated we simply change the mapping.
 1849          */
 1850         for (pa = trunc_page(basemem * 1024);
 1851              pa < ISA_HOLE_START; pa += PAGE_SIZE)
 1852                 pmap_kenter(KERNBASE + pa, pa);
 1853 
 1854         /*
 1855          * Map pages between basemem and ISA_HOLE_START, if any, r/w into
 1856          * the vm86 page table so that vm86 can scribble on them using
 1857          * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
 1858          * page 0, at least as initialized here?
 1859          */
 1860         pte = (pt_entry_t *)vm86paddr;
 1861         for (i = basemem / 4; i < 160; i++)
 1862                 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
 1863 }
 1864 
 1865 /*
 1866  * Populate the (physmap) array with base/bound pairs describing the
 1867  * available physical memory in the system, then test this memory and
 1868  * build the phys_avail array describing the actually-available memory.
 1869  *
 1870  * If we cannot accurately determine the physical memory map, then use
 1871  * value from the 0xE801 call, and failing that, the RTC.
 1872  *
 1873  * Total memory size may be set by the kernel environment variable
 1874  * hw.physmem or the compile-time define MAXMEM.
 1875  *
 1876  * XXX first should be vm_paddr_t.
 1877  */
 1878 static void
 1879 getmemsize(int first)
 1880 {
 1881         int off, physmap_idx, pa_indx, da_indx;
 1882         u_long physmem_tunable, memtest;
 1883         vm_paddr_t physmap[PHYSMAP_SIZE];
 1884         pt_entry_t *pte;
 1885         quad_t dcons_addr, dcons_size;
 1886         int i;
 1887         int pg_n;
 1888         u_int extmem;
 1889         u_int under16;
 1890         vm_paddr_t pa;
 1891 
 1892         bzero(physmap, sizeof(physmap));
 1893 
 1894         /* XXX - some of EPSON machines can't use PG_N */
 1895         pg_n = PG_N;
 1896         if (pc98_machine_type & M_EPSON_PC98) {
 1897                 switch (epson_machine_id) {
 1898 #ifdef WB_CACHE
 1899                 default:
 1900 #endif
 1901                 case EPSON_PC486_HX:
 1902                 case EPSON_PC486_HG:
 1903                 case EPSON_PC486_HA:
 1904                         pg_n = 0;
 1905                         break;
 1906                 }
 1907         }
 1908 
 1909         under16 = pc98_getmemsize(&basemem, &extmem);
 1910         basemem_setup();
 1911 
 1912         physmap[0] = 0;
 1913         physmap[1] = basemem * 1024;
 1914         physmap_idx = 2;
 1915         physmap[physmap_idx] = 0x100000;
 1916         physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
 1917 
 1918         /*
 1919          * Now, physmap contains a map of physical memory.
 1920          */
 1921 
 1922 #ifdef SMP
 1923         /* make hole for AP bootstrap code */
 1924         physmap[1] = mp_bootaddress(physmap[1]);
 1925 #endif
 1926 
 1927         /*
 1928          * Maxmem isn't the "maximum memory", it's one larger than the
 1929          * highest page of the physical address space.  It should be
 1930          * called something like "Maxphyspage".  We may adjust this 
 1931          * based on ``hw.physmem'' and the results of the memory test.
 1932          */
 1933         Maxmem = atop(physmap[physmap_idx + 1]);
 1934 
 1935 #ifdef MAXMEM
 1936         Maxmem = MAXMEM / 4;
 1937 #endif
 1938 
 1939         if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
 1940                 Maxmem = atop(physmem_tunable);
 1941 
 1942         /*
 1943          * By default keep the memtest enabled.  Use a general name so that
 1944          * one could eventually do more with the code than just disable it.
 1945          */
 1946         memtest = 1;
 1947         TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
 1948 
 1949         if (atop(physmap[physmap_idx + 1]) != Maxmem &&
 1950             (boothowto & RB_VERBOSE))
 1951                 printf("Physical memory use set to %ldK\n", Maxmem * 4);
 1952 
 1953         /*
 1954          * If Maxmem has been increased beyond what the system has detected,
 1955          * extend the last memory segment to the new limit.
 1956          */ 
 1957         if (atop(physmap[physmap_idx + 1]) < Maxmem)
 1958                 physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
 1959 
 1960         /*
 1961          * We need to divide chunk if Maxmem is larger than 16MB and
 1962          * under 16MB area is not full of memory.
 1963          * (1) system area (15-16MB region) is cut off
 1964          * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
 1965          */
 1966         if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
 1967                 /* 15M - 16M region is cut off, so need to divide chunk */
 1968                 physmap[physmap_idx + 1] = under16 * 1024;
 1969                 physmap_idx += 2;
 1970                 physmap[physmap_idx] = 0x1000000;
 1971                 physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
 1972         }
 1973 
 1974         /* call pmap initialization to make new kernel address space */
 1975         pmap_bootstrap(first);
 1976 
 1977         /*
 1978          * Size up each available chunk of physical memory.
 1979          */
 1980         physmap[0] = PAGE_SIZE;         /* mask off page 0 */
 1981         pa_indx = 0;
 1982         da_indx = 1;
 1983         phys_avail[pa_indx++] = physmap[0];
 1984         phys_avail[pa_indx] = physmap[0];
 1985         dump_avail[da_indx] = physmap[0];
 1986         pte = CMAP1;
 1987 
 1988         /*
 1989          * Get dcons buffer address
 1990          */
 1991         if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
 1992             getenv_quad("dcons.size", &dcons_size) == 0)
 1993                 dcons_addr = 0;
 1994 
 1995         /*
 1996          * physmap is in bytes, so when converting to page boundaries,
 1997          * round up the start address and round down the end address.
 1998          */
 1999         for (i = 0; i <= physmap_idx; i += 2) {
 2000                 vm_paddr_t end;
 2001 
 2002                 end = ptoa((vm_paddr_t)Maxmem);
 2003                 if (physmap[i + 1] < end)
 2004                         end = trunc_page(physmap[i + 1]);
 2005                 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
 2006                         int tmp, page_bad, full;
 2007                         int *ptr = (int *)CADDR1;
 2008 
 2009                         full = FALSE;
 2010                         /*
 2011                          * block out kernel memory as not available.
 2012                          */
 2013                         if (pa >= KERNLOAD && pa < first)
 2014                                 goto do_dump_avail;
 2015 
 2016                         /*
 2017                          * block out dcons buffer
 2018                          */
 2019                         if (dcons_addr > 0
 2020                             && pa >= trunc_page(dcons_addr)
 2021                             && pa < dcons_addr + dcons_size)
 2022                                 goto do_dump_avail;
 2023 
 2024                         page_bad = FALSE;
 2025                         if (memtest == 0)
 2026                                 goto skip_memtest;
 2027 
 2028                         /*
 2029                          * map page into kernel: valid, read/write,non-cacheable
 2030                          */
 2031                         *pte = pa | PG_V | PG_RW | pg_n;
 2032                         invltlb();
 2033 
 2034                         tmp = *(int *)ptr;
 2035                         /*
 2036                          * Test for alternating 1's and 0's
 2037                          */
 2038                         *(volatile int *)ptr = 0xaaaaaaaa;
 2039                         if (*(volatile int *)ptr != 0xaaaaaaaa)
 2040                                 page_bad = TRUE;
 2041                         /*
 2042                          * Test for alternating 0's and 1's
 2043                          */
 2044                         *(volatile int *)ptr = 0x55555555;
 2045                         if (*(volatile int *)ptr != 0x55555555)
 2046                                 page_bad = TRUE;
 2047                         /*
 2048                          * Test for all 1's
 2049                          */
 2050                         *(volatile int *)ptr = 0xffffffff;
 2051                         if (*(volatile int *)ptr != 0xffffffff)
 2052                                 page_bad = TRUE;
 2053                         /*
 2054                          * Test for all 0's
 2055                          */
 2056                         *(volatile int *)ptr = 0x0;
 2057                         if (*(volatile int *)ptr != 0x0)
 2058                                 page_bad = TRUE;
 2059                         /*
 2060                          * Restore original value.
 2061                          */
 2062                         *(int *)ptr = tmp;
 2063 
 2064 skip_memtest:
 2065                         /*
 2066                          * Adjust array of valid/good pages.
 2067                          */
 2068                         if (page_bad == TRUE)
 2069                                 continue;
 2070                         /*
 2071                          * If this good page is a continuation of the
 2072                          * previous set of good pages, then just increase
 2073                          * the end pointer. Otherwise start a new chunk.
 2074                          * Note that "end" points one higher than end,
 2075                          * making the range >= start and < end.
 2076                          * If we're also doing a speculative memory
 2077                          * test and we at or past the end, bump up Maxmem
 2078                          * so that we keep going. The first bad page
 2079                          * will terminate the loop.
 2080                          */
 2081                         if (phys_avail[pa_indx] == pa) {
 2082                                 phys_avail[pa_indx] += PAGE_SIZE;
 2083                         } else {
 2084                                 pa_indx++;
 2085                                 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
 2086                                         printf(
 2087                 "Too many holes in the physical address space, giving up\n");
 2088                                         pa_indx--;
 2089                                         full = TRUE;
 2090                                         goto do_dump_avail;
 2091                                 }
 2092                                 phys_avail[pa_indx++] = pa;     /* start */
 2093                                 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
 2094                         }
 2095                         physmem++;
 2096 do_dump_avail:
 2097                         if (dump_avail[da_indx] == pa) {
 2098                                 dump_avail[da_indx] += PAGE_SIZE;
 2099                         } else {
 2100                                 da_indx++;
 2101                                 if (da_indx == DUMP_AVAIL_ARRAY_END) {
 2102                                         da_indx--;
 2103                                         goto do_next;
 2104                                 }
 2105                                 dump_avail[da_indx++] = pa;     /* start */
 2106                                 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
 2107                         }
 2108 do_next:
 2109                         if (full)
 2110                                 break;
 2111                 }
 2112         }
 2113         *pte = 0;
 2114         invltlb();
 2115         
 2116         /*
 2117          * XXX
 2118          * The last chunk must contain at least one page plus the message
 2119          * buffer to avoid complicating other code (message buffer address
 2120          * calculation, etc.).
 2121          */
 2122         while (phys_avail[pa_indx - 1] + PAGE_SIZE +
 2123             round_page(msgbufsize) >= phys_avail[pa_indx]) {
 2124                 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
 2125                 phys_avail[pa_indx--] = 0;
 2126                 phys_avail[pa_indx--] = 0;
 2127         }
 2128 
 2129         Maxmem = atop(phys_avail[pa_indx]);
 2130 
 2131         /* Trim off space for the message buffer. */
 2132         phys_avail[pa_indx] -= round_page(msgbufsize);
 2133 
 2134         /* Map the message buffer. */
 2135         for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
 2136                 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
 2137                     off);
 2138 
 2139         PT_UPDATES_FLUSH();
 2140 }
 2141 
 2142 void
 2143 init386(first)
 2144         int first;
 2145 {
 2146         struct gate_descriptor *gdp;
 2147         int gsel_tss, metadata_missing, x, pa;
 2148         size_t kstack0_sz;
 2149         struct pcpu *pc;
 2150 
 2151         thread0.td_kstack = proc0kstack;
 2152         thread0.td_kstack_pages = KSTACK_PAGES;
 2153         kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
 2154         thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
 2155 
 2156         /*
 2157          * This may be done better later if it gets more high level
 2158          * components in it. If so just link td->td_proc here.
 2159          */
 2160         proc_linkup0(&proc0, &thread0);
 2161 
 2162         /*
 2163          * Initialize DMAC
 2164          */
 2165         pc98_init_dmac();
 2166 
 2167         metadata_missing = 0;
 2168         if (bootinfo.bi_modulep) {
 2169                 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
 2170                 preload_bootstrap_relocate(KERNBASE);
 2171         } else {
 2172                 metadata_missing = 1;
 2173         }
 2174         if (envmode == 1)
 2175                 kern_envp = static_env;
 2176         else if (bootinfo.bi_envp)
 2177                 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
 2178 
 2179         /* Init basic tunables, hz etc */
 2180         init_param1();
 2181 
 2182         /*
 2183          * Make gdt memory segments.  All segments cover the full 4GB
 2184          * of address space and permissions are enforced at page level.
 2185          */
 2186         gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
 2187         gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
 2188         gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
 2189         gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
 2190         gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
 2191         gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
 2192 
 2193         pc = &__pcpu[0];
 2194         gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
 2195         gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
 2196         gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
 2197 
 2198         for (x = 0; x < NGDT; x++)
 2199                 ssdtosd(&gdt_segs[x], &gdt[x].sd);
 2200 
 2201         r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
 2202         r_gdt.rd_base =  (int) gdt;
 2203         mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
 2204         lgdt(&r_gdt);
 2205 
 2206         pcpu_init(pc, 0, sizeof(struct pcpu));
 2207         for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
 2208                 pmap_kenter(pa + KERNBASE, pa);
 2209         dpcpu_init((void *)(first + KERNBASE), 0);
 2210         first += DPCPU_SIZE;
 2211         PCPU_SET(prvspace, pc);
 2212         PCPU_SET(curthread, &thread0);
 2213         PCPU_SET(curpcb, thread0.td_pcb);
 2214 
 2215         /*
 2216          * Initialize mutexes.
 2217          *
 2218          * icu_lock: in order to allow an interrupt to occur in a critical
 2219          *           section, to set pcpu->ipending (etc...) properly, we
 2220          *           must be able to get the icu lock, so it can't be
 2221          *           under witness.
 2222          */
 2223         mutex_init();
 2224         mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
 2225 
 2226         /* make ldt memory segments */
 2227         ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
 2228         ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
 2229         for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
 2230                 ssdtosd(&ldt_segs[x], &ldt[x].sd);
 2231 
 2232         _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2233         lldt(_default_ldt);
 2234         PCPU_SET(currentldt, _default_ldt);
 2235 
 2236         /* exceptions */
 2237         for (x = 0; x < NIDT; x++)
 2238                 setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
 2239                     GSEL(GCODE_SEL, SEL_KPL));
 2240         setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
 2241             GSEL(GCODE_SEL, SEL_KPL));
 2242         setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
 2243             GSEL(GCODE_SEL, SEL_KPL));
 2244         setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
 2245             GSEL(GCODE_SEL, SEL_KPL));
 2246         setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
 2247             GSEL(GCODE_SEL, SEL_KPL));
 2248         setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
 2249             GSEL(GCODE_SEL, SEL_KPL));
 2250         setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
 2251             GSEL(GCODE_SEL, SEL_KPL));
 2252         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2253             GSEL(GCODE_SEL, SEL_KPL));
 2254         setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
 2255             , GSEL(GCODE_SEL, SEL_KPL));
 2256         setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
 2257         setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
 2258             GSEL(GCODE_SEL, SEL_KPL));
 2259         setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
 2260             GSEL(GCODE_SEL, SEL_KPL));
 2261         setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
 2262             GSEL(GCODE_SEL, SEL_KPL));
 2263         setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
 2264             GSEL(GCODE_SEL, SEL_KPL));
 2265         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2266             GSEL(GCODE_SEL, SEL_KPL));
 2267         setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
 2268             GSEL(GCODE_SEL, SEL_KPL));
 2269         setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
 2270             GSEL(GCODE_SEL, SEL_KPL));
 2271         setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
 2272             GSEL(GCODE_SEL, SEL_KPL));
 2273         setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
 2274             GSEL(GCODE_SEL, SEL_KPL));
 2275         setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
 2276             GSEL(GCODE_SEL, SEL_KPL));
 2277         setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
 2278             GSEL(GCODE_SEL, SEL_KPL));
 2279 #ifdef KDTRACE_HOOKS
 2280         setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
 2281             GSEL(GCODE_SEL, SEL_KPL));
 2282 #endif
 2283 
 2284         r_idt.rd_limit = sizeof(idt0) - 1;
 2285         r_idt.rd_base = (int) idt;
 2286         lidt(&r_idt);
 2287 
 2288         /*
 2289          * Initialize the i8254 before the console so that console
 2290          * initialization can use DELAY().
 2291          */
 2292         i8254_init();
 2293 
 2294         /*
 2295          * Initialize the console before we print anything out.
 2296          */
 2297         cninit();
 2298 
 2299         if (metadata_missing)
 2300                 printf("WARNING: loader(8) metadata is missing!\n");
 2301 
 2302 #ifdef DEV_ISA
 2303 #ifdef DEV_ATPIC
 2304         atpic_startup();
 2305 #else
 2306         /* Reset and mask the atpics and leave them shut down. */
 2307         atpic_reset();
 2308 
 2309         /*
 2310          * Point the ICU spurious interrupt vectors at the APIC spurious
 2311          * interrupt handler.
 2312          */
 2313         setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2314             GSEL(GCODE_SEL, SEL_KPL));
 2315         setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
 2316             GSEL(GCODE_SEL, SEL_KPL));
 2317 #endif
 2318 #endif
 2319 
 2320 #ifdef DDB
 2321         ksym_start = bootinfo.bi_symtab;
 2322         ksym_end = bootinfo.bi_esymtab;
 2323 #endif
 2324 
 2325         kdb_init();
 2326 
 2327 #ifdef KDB
 2328         if (boothowto & RB_KDB)
 2329                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
 2330 #endif
 2331 
 2332         finishidentcpu();       /* Final stage of CPU initialization */
 2333         setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
 2334             GSEL(GCODE_SEL, SEL_KPL));
 2335         setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
 2336             GSEL(GCODE_SEL, SEL_KPL));
 2337         initializecpu();        /* Initialize CPU registers */
 2338 
 2339         /* make an initial tss so cpu can get interrupt stack on syscall! */
 2340         /* Note: -16 is so we can grow the trapframe if we came from vm86 */
 2341         PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
 2342             kstack0_sz - sizeof(struct pcb) - 16);
 2343         PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
 2344         gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
 2345         PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
 2346         PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
 2347         PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
 2348         ltr(gsel_tss);
 2349 
 2350         /* pointer to selector slot for %fs/%gs */
 2351         PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
 2352 
 2353         dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
 2354             dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
 2355         dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
 2356             dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
 2357         dblfault_tss.tss_cr3 = (int)IdlePTD;
 2358         dblfault_tss.tss_eip = (int)dblfault_handler;
 2359         dblfault_tss.tss_eflags = PSL_KERNEL;
 2360         dblfault_tss.tss_ds = dblfault_tss.tss_es =
 2361             dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
 2362         dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
 2363         dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
 2364         dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
 2365 
 2366         vm86_initialize();
 2367         getmemsize(first);
 2368         init_param2(physmem);
 2369 
 2370         /* now running on new page tables, configured,and u/iom is accessible */
 2371 
 2372         msgbufinit(msgbufp, msgbufsize);
 2373 
 2374         /* make a call gate to reenter kernel with */
 2375         gdp = &ldt[LSYS5CALLS_SEL].gd;
 2376 
 2377         x = (int) &IDTVEC(lcall_syscall);
 2378         gdp->gd_looffset = x;
 2379         gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
 2380         gdp->gd_stkcpy = 1;
 2381         gdp->gd_type = SDT_SYS386CGT;
 2382         gdp->gd_dpl = SEL_UPL;
 2383         gdp->gd_p = 1;
 2384         gdp->gd_hioffset = x >> 16;
 2385 
 2386         /* XXX does this work? */
 2387         /* XXX yes! */
 2388         ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2389         ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
 2390 
 2391         /* transfer to user mode */
 2392 
 2393         _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
 2394         _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
 2395 
 2396         /* setup proc 0's pcb */
 2397         thread0.td_pcb->pcb_flags = 0;
 2398         thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
 2399         thread0.td_pcb->pcb_ext = 0;
 2400         thread0.td_frame = &proc0_tf;
 2401 
 2402         cpu_probe_cmpxchg8b();
 2403 }
 2404 
 2405 void
 2406 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
 2407 {
 2408 
 2409 }
 2410 
 2411 void
 2412 spinlock_enter(void)
 2413 {
 2414         struct thread *td;
 2415         register_t flags;
 2416 
 2417         td = curthread;
 2418         if (td->td_md.md_spinlock_count == 0) {
 2419                 flags = intr_disable();
 2420                 td->td_md.md_spinlock_count = 1;
 2421                 td->td_md.md_saved_flags = flags;
 2422         } else
 2423                 td->td_md.md_spinlock_count++;
 2424         critical_enter();
 2425 }
 2426 
 2427 void
 2428 spinlock_exit(void)
 2429 {
 2430         struct thread *td;
 2431         register_t flags;
 2432 
 2433         td = curthread;
 2434         critical_exit();
 2435         flags = td->td_md.md_saved_flags;
 2436         td->td_md.md_spinlock_count--;
 2437         if (td->td_md.md_spinlock_count == 0)
 2438                 intr_restore(flags);
 2439 }
 2440 
 2441 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
 2442 static void f00f_hack(void *unused);
 2443 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
 2444 
 2445 static void
 2446 f00f_hack(void *unused)
 2447 {
 2448         struct gate_descriptor *new_idt;
 2449         vm_offset_t tmp;
 2450 
 2451         if (!has_f00f_bug)
 2452                 return;
 2453 
 2454         GIANT_REQUIRED;
 2455 
 2456         printf("Intel Pentium detected, installing workaround for F00F bug\n");
 2457 
 2458         tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
 2459         if (tmp == 0)
 2460                 panic("kmem_alloc returned 0");
 2461 
 2462         /* Put the problematic entry (#6) at the end of the lower page. */
 2463         new_idt = (struct gate_descriptor*)
 2464             (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
 2465         bcopy(idt, new_idt, sizeof(idt0));
 2466         r_idt.rd_base = (u_int)new_idt;
 2467         lidt(&r_idt);
 2468         idt = new_idt;
 2469         if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
 2470                            VM_PROT_READ, FALSE) != KERN_SUCCESS)
 2471                 panic("vm_map_protect failed");
 2472 }
 2473 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
 2474 
 2475 /*
 2476  * Construct a PCB from a trapframe. This is called from kdb_trap() where
 2477  * we want to start a backtrace from the function that caused us to enter
 2478  * the debugger. We have the context in the trapframe, but base the trace
 2479  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 2480  * enough for a backtrace.
 2481  */
 2482 void
 2483 makectx(struct trapframe *tf, struct pcb *pcb)
 2484 {
 2485 
 2486         pcb->pcb_edi = tf->tf_edi;
 2487         pcb->pcb_esi = tf->tf_esi;
 2488         pcb->pcb_ebp = tf->tf_ebp;
 2489         pcb->pcb_ebx = tf->tf_ebx;
 2490         pcb->pcb_eip = tf->tf_eip;
 2491         pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
 2492 }
 2493 
 2494 int
 2495 ptrace_set_pc(struct thread *td, u_long addr)
 2496 {
 2497 
 2498         td->td_frame->tf_eip = addr;
 2499         return (0);
 2500 }
 2501 
 2502 int
 2503 ptrace_single_step(struct thread *td)
 2504 {
 2505         td->td_frame->tf_eflags |= PSL_T;
 2506         return (0);
 2507 }
 2508 
 2509 int
 2510 ptrace_clear_single_step(struct thread *td)
 2511 {
 2512         td->td_frame->tf_eflags &= ~PSL_T;
 2513         return (0);
 2514 }
 2515 
 2516 int
 2517 fill_regs(struct thread *td, struct reg *regs)
 2518 {
 2519         struct pcb *pcb;
 2520         struct trapframe *tp;
 2521 
 2522         tp = td->td_frame;
 2523         pcb = td->td_pcb;
 2524         regs->r_gs = pcb->pcb_gs;
 2525         return (fill_frame_regs(tp, regs));
 2526 }
 2527 
 2528 int
 2529 fill_frame_regs(struct trapframe *tp, struct reg *regs)
 2530 {
 2531         regs->r_fs = tp->tf_fs;
 2532         regs->r_es = tp->tf_es;
 2533         regs->r_ds = tp->tf_ds;
 2534         regs->r_edi = tp->tf_edi;
 2535         regs->r_esi = tp->tf_esi;
 2536         regs->r_ebp = tp->tf_ebp;
 2537         regs->r_ebx = tp->tf_ebx;
 2538         regs->r_edx = tp->tf_edx;
 2539         regs->r_ecx = tp->tf_ecx;
 2540         regs->r_eax = tp->tf_eax;
 2541         regs->r_eip = tp->tf_eip;
 2542         regs->r_cs = tp->tf_cs;
 2543         regs->r_eflags = tp->tf_eflags;
 2544         regs->r_esp = tp->tf_esp;
 2545         regs->r_ss = tp->tf_ss;
 2546         return (0);
 2547 }
 2548 
 2549 int
 2550 set_regs(struct thread *td, struct reg *regs)
 2551 {
 2552         struct pcb *pcb;
 2553         struct trapframe *tp;
 2554 
 2555         tp = td->td_frame;
 2556         if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
 2557             !CS_SECURE(regs->r_cs))
 2558                 return (EINVAL);
 2559         pcb = td->td_pcb;
 2560         tp->tf_fs = regs->r_fs;
 2561         tp->tf_es = regs->r_es;
 2562         tp->tf_ds = regs->r_ds;
 2563         tp->tf_edi = regs->r_edi;
 2564         tp->tf_esi = regs->r_esi;
 2565         tp->tf_ebp = regs->r_ebp;
 2566         tp->tf_ebx = regs->r_ebx;
 2567         tp->tf_edx = regs->r_edx;
 2568         tp->tf_ecx = regs->r_ecx;
 2569         tp->tf_eax = regs->r_eax;
 2570         tp->tf_eip = regs->r_eip;
 2571         tp->tf_cs = regs->r_cs;
 2572         tp->tf_eflags = regs->r_eflags;
 2573         tp->tf_esp = regs->r_esp;
 2574         tp->tf_ss = regs->r_ss;
 2575         pcb->pcb_gs = regs->r_gs;
 2576         return (0);
 2577 }
 2578 
 2579 #ifdef CPU_ENABLE_SSE
 2580 static void
 2581 fill_fpregs_xmm(sv_xmm, sv_87)
 2582         struct savexmm *sv_xmm;
 2583         struct save87 *sv_87;
 2584 {
 2585         register struct env87 *penv_87 = &sv_87->sv_env;
 2586         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2587         int i;
 2588 
 2589         bzero(sv_87, sizeof(*sv_87));
 2590 
 2591         /* FPU control/status */
 2592         penv_87->en_cw = penv_xmm->en_cw;
 2593         penv_87->en_sw = penv_xmm->en_sw;
 2594         penv_87->en_tw = penv_xmm->en_tw;
 2595         penv_87->en_fip = penv_xmm->en_fip;
 2596         penv_87->en_fcs = penv_xmm->en_fcs;
 2597         penv_87->en_opcode = penv_xmm->en_opcode;
 2598         penv_87->en_foo = penv_xmm->en_foo;
 2599         penv_87->en_fos = penv_xmm->en_fos;
 2600 
 2601         /* FPU registers */
 2602         for (i = 0; i < 8; ++i)
 2603                 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
 2604 }
 2605 
 2606 static void
 2607 set_fpregs_xmm(sv_87, sv_xmm)
 2608         struct save87 *sv_87;
 2609         struct savexmm *sv_xmm;
 2610 {
 2611         register struct env87 *penv_87 = &sv_87->sv_env;
 2612         register struct envxmm *penv_xmm = &sv_xmm->sv_env;
 2613         int i;
 2614 
 2615         /* FPU control/status */
 2616         penv_xmm->en_cw = penv_87->en_cw;
 2617         penv_xmm->en_sw = penv_87->en_sw;
 2618         penv_xmm->en_tw = penv_87->en_tw;
 2619         penv_xmm->en_fip = penv_87->en_fip;
 2620         penv_xmm->en_fcs = penv_87->en_fcs;
 2621         penv_xmm->en_opcode = penv_87->en_opcode;
 2622         penv_xmm->en_foo = penv_87->en_foo;
 2623         penv_xmm->en_fos = penv_87->en_fos;
 2624 
 2625         /* FPU registers */
 2626         for (i = 0; i < 8; ++i)
 2627                 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
 2628 }
 2629 #endif /* CPU_ENABLE_SSE */
 2630 
 2631 int
 2632 fill_fpregs(struct thread *td, struct fpreg *fpregs)
 2633 {
 2634 
 2635         KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
 2636             P_SHOULDSTOP(td->td_proc),
 2637             ("not suspended thread %p", td));
 2638 #ifdef DEV_NPX
 2639         npxgetregs(td);
 2640 #else
 2641         bzero(fpregs, sizeof(*fpregs));
 2642 #endif
 2643 #ifdef CPU_ENABLE_SSE
 2644         if (cpu_fxsr)
 2645                 fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
 2646                     (struct save87 *)fpregs);
 2647         else
 2648 #endif /* CPU_ENABLE_SSE */
 2649                 bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
 2650                     sizeof(*fpregs));
 2651         return (0);
 2652 }
 2653 
 2654 int
 2655 set_fpregs(struct thread *td, struct fpreg *fpregs)
 2656 {
 2657 
 2658 #ifdef CPU_ENABLE_SSE
 2659         if (cpu_fxsr)
 2660                 set_fpregs_xmm((struct save87 *)fpregs,
 2661                     &td->td_pcb->pcb_user_save.sv_xmm);
 2662         else
 2663 #endif /* CPU_ENABLE_SSE */
 2664                 bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
 2665                     sizeof(*fpregs));
 2666 #ifdef DEV_NPX
 2667         npxuserinited(td);
 2668 #endif
 2669         return (0);
 2670 }
 2671 
 2672 /*
 2673  * Get machine context.
 2674  */
 2675 int
 2676 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
 2677 {
 2678         struct trapframe *tp;
 2679         struct segment_descriptor *sdp;
 2680 
 2681         tp = td->td_frame;
 2682 
 2683         PROC_LOCK(curthread->td_proc);
 2684         mcp->mc_onstack = sigonstack(tp->tf_esp);
 2685         PROC_UNLOCK(curthread->td_proc);
 2686         mcp->mc_gs = td->td_pcb->pcb_gs;
 2687         mcp->mc_fs = tp->tf_fs;
 2688         mcp->mc_es = tp->tf_es;
 2689         mcp->mc_ds = tp->tf_ds;
 2690         mcp->mc_edi = tp->tf_edi;
 2691         mcp->mc_esi = tp->tf_esi;
 2692         mcp->mc_ebp = tp->tf_ebp;
 2693         mcp->mc_isp = tp->tf_isp;
 2694         mcp->mc_eflags = tp->tf_eflags;
 2695         if (flags & GET_MC_CLEAR_RET) {
 2696                 mcp->mc_eax = 0;
 2697                 mcp->mc_edx = 0;
 2698                 mcp->mc_eflags &= ~PSL_C;
 2699         } else {
 2700                 mcp->mc_eax = tp->tf_eax;
 2701                 mcp->mc_edx = tp->tf_edx;
 2702         }
 2703         mcp->mc_ebx = tp->tf_ebx;
 2704         mcp->mc_ecx = tp->tf_ecx;
 2705         mcp->mc_eip = tp->tf_eip;
 2706         mcp->mc_cs = tp->tf_cs;
 2707         mcp->mc_esp = tp->tf_esp;
 2708         mcp->mc_ss = tp->tf_ss;
 2709         mcp->mc_len = sizeof(*mcp);
 2710         get_fpcontext(td, mcp);
 2711         sdp = &td->td_pcb->pcb_fsd;
 2712         mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 2713         sdp = &td->td_pcb->pcb_gsd;
 2714         mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
 2715         mcp->mc_flags = 0;
 2716         bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
 2717         return (0);
 2718 }
 2719 
 2720 /*
 2721  * Set machine context.
 2722  *
 2723  * However, we don't set any but the user modifiable flags, and we won't
 2724  * touch the cs selector.
 2725  */
 2726 int
 2727 set_mcontext(struct thread *td, const mcontext_t *mcp)
 2728 {
 2729         struct trapframe *tp;
 2730         int eflags, ret;
 2731 
 2732         tp = td->td_frame;
 2733         if (mcp->mc_len != sizeof(*mcp))
 2734                 return (EINVAL);
 2735         eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
 2736             (tp->tf_eflags & ~PSL_USERCHANGE);
 2737         if ((ret = set_fpcontext(td, mcp)) == 0) {
 2738                 tp->tf_fs = mcp->mc_fs;
 2739                 tp->tf_es = mcp->mc_es;
 2740                 tp->tf_ds = mcp->mc_ds;
 2741                 tp->tf_edi = mcp->mc_edi;
 2742                 tp->tf_esi = mcp->mc_esi;
 2743                 tp->tf_ebp = mcp->mc_ebp;
 2744                 tp->tf_ebx = mcp->mc_ebx;
 2745                 tp->tf_edx = mcp->mc_edx;
 2746                 tp->tf_ecx = mcp->mc_ecx;
 2747                 tp->tf_eax = mcp->mc_eax;
 2748                 tp->tf_eip = mcp->mc_eip;
 2749                 tp->tf_eflags = eflags;
 2750                 tp->tf_esp = mcp->mc_esp;
 2751                 tp->tf_ss = mcp->mc_ss;
 2752                 td->td_pcb->pcb_gs = mcp->mc_gs;
 2753                 ret = 0;
 2754         }
 2755         return (ret);
 2756 }
 2757 
 2758 static void
 2759 get_fpcontext(struct thread *td, mcontext_t *mcp)
 2760 {
 2761 
 2762 #ifndef DEV_NPX
 2763         mcp->mc_fpformat = _MC_FPFMT_NODEV;
 2764         mcp->mc_ownedfp = _MC_FPOWNED_NONE;
 2765         bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
 2766 #else
 2767         mcp->mc_ownedfp = npxgetregs(td);
 2768         bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate,
 2769             sizeof(mcp->mc_fpstate));
 2770         mcp->mc_fpformat = npxformat();
 2771 #endif
 2772 }
 2773 
 2774 static int
 2775 set_fpcontext(struct thread *td, const mcontext_t *mcp)
 2776 {
 2777 
 2778         if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
 2779                 return (0);
 2780         else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
 2781             mcp->mc_fpformat != _MC_FPFMT_XMM)
 2782                 return (EINVAL);
 2783         else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
 2784                 /* We don't care what state is left in the FPU or PCB. */
 2785                 fpstate_drop(td);
 2786         else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
 2787             mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
 2788 #ifdef DEV_NPX
 2789 #ifdef CPU_ENABLE_SSE
 2790                 if (cpu_fxsr)
 2791                         ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
 2792                             en_mxcsr &= cpu_mxcsr_mask;
 2793 #endif
 2794                 npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
 2795 #endif
 2796         } else
 2797                 return (EINVAL);
 2798         return (0);
 2799 }
 2800 
 2801 static void
 2802 fpstate_drop(struct thread *td)
 2803 {
 2804 
 2805         KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
 2806         critical_enter();
 2807 #ifdef DEV_NPX
 2808         if (PCPU_GET(fpcurthread) == td)
 2809                 npxdrop();
 2810 #endif
 2811         /*
 2812          * XXX force a full drop of the npx.  The above only drops it if we
 2813          * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
 2814          *
 2815          * XXX I don't much like npxgetregs()'s semantics of doing a full
 2816          * drop.  Dropping only to the pcb matches fnsave's behaviour.
 2817          * We only need to drop to !PCB_INITDONE in sendsig().  But
 2818          * sendsig() is the only caller of npxgetregs()... perhaps we just
 2819          * have too many layers.
 2820          */
 2821         curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
 2822             PCB_NPXUSERINITDONE);
 2823         critical_exit();
 2824 }
 2825 
 2826 int
 2827 fill_dbregs(struct thread *td, struct dbreg *dbregs)
 2828 {
 2829         struct pcb *pcb;
 2830 
 2831         if (td == NULL) {
 2832                 dbregs->dr[0] = rdr0();
 2833                 dbregs->dr[1] = rdr1();
 2834                 dbregs->dr[2] = rdr2();
 2835                 dbregs->dr[3] = rdr3();
 2836                 dbregs->dr[4] = rdr4();
 2837                 dbregs->dr[5] = rdr5();
 2838                 dbregs->dr[6] = rdr6();
 2839                 dbregs->dr[7] = rdr7();
 2840         } else {
 2841                 pcb = td->td_pcb;
 2842                 dbregs->dr[0] = pcb->pcb_dr0;
 2843                 dbregs->dr[1] = pcb->pcb_dr1;
 2844                 dbregs->dr[2] = pcb->pcb_dr2;
 2845                 dbregs->dr[3] = pcb->pcb_dr3;
 2846                 dbregs->dr[4] = 0;
 2847                 dbregs->dr[5] = 0;
 2848                 dbregs->dr[6] = pcb->pcb_dr6;
 2849                 dbregs->dr[7] = pcb->pcb_dr7;
 2850         }
 2851         return (0);
 2852 }
 2853 
 2854 int
 2855 set_dbregs(struct thread *td, struct dbreg *dbregs)
 2856 {
 2857         struct pcb *pcb;
 2858         int i;
 2859 
 2860         if (td == NULL) {
 2861                 load_dr0(dbregs->dr[0]);
 2862                 load_dr1(dbregs->dr[1]);
 2863                 load_dr2(dbregs->dr[2]);
 2864                 load_dr3(dbregs->dr[3]);
 2865                 load_dr4(dbregs->dr[4]);
 2866                 load_dr5(dbregs->dr[5]);
 2867                 load_dr6(dbregs->dr[6]);
 2868                 load_dr7(dbregs->dr[7]);
 2869         } else {
 2870                 /*
 2871                  * Don't let an illegal value for dr7 get set.  Specifically,
 2872                  * check for undefined settings.  Setting these bit patterns
 2873                  * result in undefined behaviour and can lead to an unexpected
 2874                  * TRCTRAP.
 2875                  */
 2876                 for (i = 0; i < 4; i++) {
 2877                         if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
 2878                                 return (EINVAL);
 2879                         if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
 2880                                 return (EINVAL);
 2881                 }
 2882                 
 2883                 pcb = td->td_pcb;
 2884                 
 2885                 /*
 2886                  * Don't let a process set a breakpoint that is not within the
 2887                  * process's address space.  If a process could do this, it
 2888                  * could halt the system by setting a breakpoint in the kernel
 2889                  * (if ddb was enabled).  Thus, we need to check to make sure
 2890                  * that no breakpoints are being enabled for addresses outside
 2891                  * process's address space.
 2892                  *
 2893                  * XXX - what about when the watched area of the user's
 2894                  * address space is written into from within the kernel
 2895                  * ... wouldn't that still cause a breakpoint to be generated
 2896                  * from within kernel mode?
 2897                  */
 2898 
 2899                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
 2900                         /* dr0 is enabled */
 2901                         if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
 2902                                 return (EINVAL);
 2903                 }
 2904                         
 2905                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
 2906                         /* dr1 is enabled */
 2907                         if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
 2908                                 return (EINVAL);
 2909                 }
 2910                         
 2911                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
 2912                         /* dr2 is enabled */
 2913                         if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
 2914                                 return (EINVAL);
 2915                 }
 2916                         
 2917                 if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
 2918                         /* dr3 is enabled */
 2919                         if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
 2920                                 return (EINVAL);
 2921                 }
 2922 
 2923                 pcb->pcb_dr0 = dbregs->dr[0];
 2924                 pcb->pcb_dr1 = dbregs->dr[1];
 2925                 pcb->pcb_dr2 = dbregs->dr[2];
 2926                 pcb->pcb_dr3 = dbregs->dr[3];
 2927                 pcb->pcb_dr6 = dbregs->dr[6];
 2928                 pcb->pcb_dr7 = dbregs->dr[7];
 2929 
 2930                 pcb->pcb_flags |= PCB_DBREGS;
 2931         }
 2932 
 2933         return (0);
 2934 }
 2935 
 2936 /*
 2937  * Return > 0 if a hardware breakpoint has been hit, and the
 2938  * breakpoint was in user space.  Return 0, otherwise.
 2939  */
 2940 int
 2941 user_dbreg_trap(void)
 2942 {
 2943         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
 2944         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
 2945         int nbp;            /* number of breakpoints that triggered */
 2946         caddr_t addr[4];    /* breakpoint addresses */
 2947         int i;
 2948         
 2949         dr7 = rdr7();
 2950         if ((dr7 & 0x000000ff) == 0) {
 2951                 /*
 2952                  * all GE and LE bits in the dr7 register are zero,
 2953                  * thus the trap couldn't have been caused by the
 2954                  * hardware debug registers
 2955                  */
 2956                 return 0;
 2957         }
 2958 
 2959         nbp = 0;
 2960         dr6 = rdr6();
 2961         bp = dr6 & 0x0000000f;
 2962 
 2963         if (!bp) {
 2964                 /*
 2965                  * None of the breakpoint bits are set meaning this
 2966                  * trap was not caused by any of the debug registers
 2967                  */
 2968                 return 0;
 2969         }
 2970 
 2971         /*
 2972          * at least one of the breakpoints were hit, check to see
 2973          * which ones and if any of them are user space addresses
 2974          */
 2975 
 2976         if (bp & 0x01) {
 2977                 addr[nbp++] = (caddr_t)rdr0();
 2978         }
 2979         if (bp & 0x02) {
 2980                 addr[nbp++] = (caddr_t)rdr1();
 2981         }
 2982         if (bp & 0x04) {
 2983                 addr[nbp++] = (caddr_t)rdr2();
 2984         }
 2985         if (bp & 0x08) {
 2986                 addr[nbp++] = (caddr_t)rdr3();
 2987         }
 2988 
 2989         for (i = 0; i < nbp; i++) {
 2990                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
 2991                         /*
 2992                          * addr[i] is in user space
 2993                          */
 2994                         return nbp;
 2995                 }
 2996         }
 2997 
 2998         /*
 2999          * None of the breakpoints are in user space.
 3000          */
 3001         return 0;
 3002 }
 3003 
 3004 #ifdef KDB
 3005 
 3006 /*
 3007  * Provide inb() and outb() as functions.  They are normally only available as
 3008  * inline functions, thus cannot be called from the debugger.
 3009  */
 3010 
 3011 /* silence compiler warnings */
 3012 u_char inb_(u_short);
 3013 void outb_(u_short, u_char);
 3014 
 3015 u_char
 3016 inb_(u_short port)
 3017 {
 3018         return inb(port);
 3019 }
 3020 
 3021 void
 3022 outb_(u_short port, u_char data)
 3023 {
 3024         outb(port, data);
 3025 }
 3026 
 3027 #endif /* KDB */

Cache object: 80bc3ab08b826042fd6a8ff9743229d5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.