The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/agp.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  *      $FreeBSD: releng/5.0/sys/pci/agp.c 106860 2002-11-13 17:40:15Z mux $
   27  */
   28 
   29 #include "opt_bus.h"
   30 
   31 #include <sys/param.h>
   32 #include <sys/systm.h>
   33 #include <sys/malloc.h>
   34 #include <sys/kernel.h>
   35 #include <sys/bus.h>
   36 #include <sys/conf.h>
   37 #include <sys/ioccom.h>
   38 #include <sys/agpio.h>
   39 #include <sys/lock.h>
   40 #include <sys/lockmgr.h>
   41 #include <sys/mutex.h>
   42 #include <sys/proc.h>
   43 
   44 #include <pci/pcivar.h>
   45 #include <pci/pcireg.h>
   46 #include <pci/agppriv.h>
   47 #include <pci/agpvar.h>
   48 #include <pci/agpreg.h>
   49 
   50 #include <vm/vm.h>
   51 #include <vm/vm_object.h>
   52 #include <vm/vm_page.h>
   53 #include <vm/vm_pageout.h>
   54 #include <vm/pmap.h>
   55 
   56 #include <machine/md_var.h>
   57 #include <machine/bus.h>
   58 #include <machine/resource.h>
   59 #include <sys/rman.h>
   60 
   61 MODULE_VERSION(agp, 1);
   62 
   63 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
   64 
   65 #define CDEV_MAJOR      148
   66                                 /* agp_drv.c */
   67 static d_open_t agp_open;
   68 static d_close_t agp_close;
   69 static d_ioctl_t agp_ioctl;
   70 static d_mmap_t agp_mmap;
   71 
   72 static struct cdevsw agp_cdevsw = {
   73         /* open */      agp_open,
   74         /* close */     agp_close,
   75         /* read */      noread,
   76         /* write */     nowrite,
   77         /* ioctl */     agp_ioctl,
   78         /* poll */      nopoll,
   79         /* mmap */      agp_mmap,
   80         /* strategy */  nostrategy,
   81         /* name */      "agp",
   82         /* maj */       CDEV_MAJOR,
   83         /* dump */      nodump,
   84         /* psize */     nopsize,
   85         /* flags */     D_TTY,
   86 };
   87 
   88 static devclass_t agp_devclass;
   89 #define KDEV2DEV(kdev)  devclass_get_device(agp_devclass, minor(kdev))
   90 
   91 /* Helper functions for implementing chipset mini drivers. */
   92 
   93 void
   94 agp_flush_cache()
   95 {
   96 #ifdef __i386__
   97         wbinvd();
   98 #endif
   99 }
  100 
  101 u_int8_t
  102 agp_find_caps(device_t dev)
  103 {
  104         u_int32_t status;
  105         u_int8_t ptr, next;
  106 
  107         /*
  108          * Check the CAP_LIST bit of the PCI status register first.
  109          */
  110         status = pci_read_config(dev, PCIR_STATUS, 2);
  111         if (!(status & 0x10))
  112                 return 0;
  113 
  114         /*
  115          * Traverse the capabilities list.
  116          */
  117         for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
  118              ptr != 0;
  119              ptr = next) {
  120                 u_int32_t capid = pci_read_config(dev, ptr, 4);
  121                 next = AGP_CAPID_GET_NEXT_PTR(capid);
  122 
  123                 /*
  124                  * If this capability entry ID is 2, then we are done.
  125                  */
  126                 if (AGP_CAPID_GET_CAP_ID(capid) == 2)
  127                         return ptr;
  128         }
  129 
  130         return 0;
  131 }
  132 
  133 /*
  134  * Find an AGP display device (if any).
  135  */
  136 static device_t
  137 agp_find_display(void)
  138 {
  139         devclass_t pci = devclass_find("pci");
  140         device_t bus, dev = 0;
  141         device_t *kids;
  142         int busnum, numkids, i;
  143 
  144         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  145                 bus = devclass_get_device(pci, busnum);
  146                 if (!bus)
  147                         continue;
  148                 device_get_children(bus, &kids, &numkids);
  149                 for (i = 0; i < numkids; i++) {
  150                         dev = kids[i];
  151                         if (pci_get_class(dev) == PCIC_DISPLAY
  152                             && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
  153                                 if (agp_find_caps(dev)) {
  154                                         free(kids, M_TEMP);
  155                                         return dev;
  156                                 }
  157                                         
  158                 }
  159                 free(kids, M_TEMP);
  160         }
  161 
  162         return 0;
  163 }
  164 
  165 struct agp_gatt *
  166 agp_alloc_gatt(device_t dev)
  167 {
  168         u_int32_t apsize = AGP_GET_APERTURE(dev);
  169         u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
  170         struct agp_gatt *gatt;
  171 
  172         if (bootverbose)
  173                 device_printf(dev,
  174                               "allocating GATT for aperture of size %dM\n",
  175                               apsize / (1024*1024));
  176 
  177         gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
  178         if (!gatt)
  179                 return 0;
  180 
  181         gatt->ag_entries = entries;
  182         gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
  183                                         0, ~0, PAGE_SIZE, 0);
  184         if (!gatt->ag_virtual) {
  185                 if (bootverbose)
  186                         device_printf(dev, "contiguous allocation failed\n");
  187                 free(gatt, M_AGP);
  188                 return 0;
  189         }
  190         bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
  191         gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
  192         agp_flush_cache();
  193 
  194         return gatt;
  195 }
  196 
  197 void
  198 agp_free_gatt(struct agp_gatt *gatt)
  199 {
  200         contigfree(gatt->ag_virtual,
  201                    gatt->ag_entries * sizeof(u_int32_t), M_AGP);
  202         free(gatt, M_AGP);
  203 }
  204 
  205 static int agp_max[][2] = {
  206         {0,     0},
  207         {32,    4},
  208         {64,    28},
  209         {128,   96},
  210         {256,   204},
  211         {512,   440},
  212         {1024,  942},
  213         {2048,  1920},
  214         {4096,  3932}
  215 };
  216 #define agp_max_size    (sizeof(agp_max) / sizeof(agp_max[0]))
  217 
  218 int
  219 agp_generic_attach(device_t dev)
  220 {
  221         struct agp_softc *sc = device_get_softc(dev);
  222         int rid, memsize, i;
  223 
  224         /*
  225          * Find and map the aperture.
  226          */
  227         rid = AGP_APBASE;
  228         sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
  229                                              0, ~0, 1, RF_ACTIVE);
  230         if (!sc->as_aperture)
  231                 return ENOMEM;
  232 
  233         /*
  234          * Work out an upper bound for agp memory allocation. This
  235          * uses a heurisitc table from the Linux driver.
  236          */
  237         memsize = ptoa(Maxmem) >> 20;
  238         for (i = 0; i < agp_max_size; i++) {
  239                 if (memsize <= agp_max[i][0])
  240                         break;
  241         }
  242         if (i == agp_max_size) i = agp_max_size - 1;
  243         sc->as_maxmem = agp_max[i][1] << 20U;
  244 
  245         /*
  246          * The lock is used to prevent re-entry to
  247          * agp_generic_bind_memory() since that function can sleep.
  248          */
  249         lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
  250 
  251         /*
  252          * Initialise stuff for the userland device.
  253          */
  254         agp_devclass = devclass_find("agp");
  255         TAILQ_INIT(&sc->as_memory);
  256         sc->as_nextid = 1;
  257 
  258         sc->as_devnode = make_dev(&agp_cdevsw,
  259                                   device_get_unit(dev),
  260                                   UID_ROOT,
  261                                   GID_WHEEL,
  262                                   0600,
  263                                   "agpgart");
  264 
  265         return 0;
  266 }
  267 
  268 int
  269 agp_generic_detach(device_t dev)
  270 {
  271         struct agp_softc *sc = device_get_softc(dev);
  272         bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
  273         lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread);
  274         lockdestroy(&sc->as_lock);
  275         destroy_dev(sc->as_devnode);
  276         agp_flush_cache();
  277         return 0;
  278 }
  279 
  280 int
  281 agp_generic_enable(device_t dev, u_int32_t mode)
  282 {
  283         device_t mdev = agp_find_display();
  284         u_int32_t tstatus, mstatus;
  285         u_int32_t command;
  286         int rq, sba, fw, rate;;
  287 
  288         if (!mdev) {
  289                 AGP_DPF("can't find display\n");
  290                 return ENXIO;
  291         }
  292 
  293         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  294         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  295 
  296         /* Set RQ to the min of mode, tstatus and mstatus */
  297         rq = AGP_MODE_GET_RQ(mode);
  298         if (AGP_MODE_GET_RQ(tstatus) < rq)
  299                 rq = AGP_MODE_GET_RQ(tstatus);
  300         if (AGP_MODE_GET_RQ(mstatus) < rq)
  301                 rq = AGP_MODE_GET_RQ(mstatus);
  302 
  303         /* Set SBA if all three can deal with SBA */
  304         sba = (AGP_MODE_GET_SBA(tstatus)
  305                & AGP_MODE_GET_SBA(mstatus)
  306                & AGP_MODE_GET_SBA(mode));
  307 
  308         /* Similar for FW */
  309         fw = (AGP_MODE_GET_FW(tstatus)
  310                & AGP_MODE_GET_FW(mstatus)
  311                & AGP_MODE_GET_FW(mode));
  312 
  313         /* Figure out the max rate */
  314         rate = (AGP_MODE_GET_RATE(tstatus)
  315                 & AGP_MODE_GET_RATE(mstatus)
  316                 & AGP_MODE_GET_RATE(mode));
  317         if (rate & AGP_MODE_RATE_4x)
  318                 rate = AGP_MODE_RATE_4x;
  319         else if (rate & AGP_MODE_RATE_2x)
  320                 rate = AGP_MODE_RATE_2x;
  321         else
  322                 rate = AGP_MODE_RATE_1x;
  323 
  324         /* Construct the new mode word and tell the hardware */
  325         command = AGP_MODE_SET_RQ(0, rq);
  326         command = AGP_MODE_SET_SBA(command, sba);
  327         command = AGP_MODE_SET_FW(command, fw);
  328         command = AGP_MODE_SET_RATE(command, rate);
  329         command = AGP_MODE_SET_AGP(command, 1);
  330         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  331         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  332 
  333         return 0;
  334 }
  335 
  336 struct agp_memory *
  337 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
  338 {
  339         struct agp_softc *sc = device_get_softc(dev);
  340         struct agp_memory *mem;
  341 
  342         if ((size & (AGP_PAGE_SIZE - 1)) != 0)
  343                 return 0;
  344 
  345         if (sc->as_allocated + size > sc->as_maxmem)
  346                 return 0;
  347 
  348         if (type != 0) {
  349                 printf("agp_generic_alloc_memory: unsupported type %d\n",
  350                        type);
  351                 return 0;
  352         }
  353 
  354         mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
  355         mem->am_id = sc->as_nextid++;
  356         mem->am_size = size;
  357         mem->am_type = 0;
  358         mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
  359         mem->am_physical = 0;
  360         mem->am_offset = 0;
  361         mem->am_is_bound = 0;
  362         TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
  363         sc->as_allocated += size;
  364 
  365         return mem;
  366 }
  367 
  368 int
  369 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
  370 {
  371         struct agp_softc *sc = device_get_softc(dev);
  372 
  373         if (mem->am_is_bound)
  374                 return EBUSY;
  375 
  376         sc->as_allocated -= mem->am_size;
  377         TAILQ_REMOVE(&sc->as_memory, mem, am_link);
  378         vm_object_deallocate(mem->am_obj);
  379         free(mem, M_AGP);
  380         return 0;
  381 }
  382 
  383 int
  384 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
  385                         vm_offset_t offset)
  386 {
  387         struct agp_softc *sc = device_get_softc(dev);
  388         vm_offset_t i, j, k;
  389         vm_page_t m;
  390         int error;
  391 
  392         lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
  393 
  394         if (mem->am_is_bound) {
  395                 device_printf(dev, "memory already bound\n");
  396                 return EINVAL;
  397         }
  398         
  399         if (offset < 0
  400             || (offset & (AGP_PAGE_SIZE - 1)) != 0
  401             || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
  402                 device_printf(dev, "binding memory at bad offset %#x\n",
  403                               (int) offset);
  404                 return EINVAL;
  405         }
  406 
  407         /*
  408          * Bind the individual pages and flush the chipset's
  409          * TLB.
  410          *
  411          * XXX Presumably, this needs to be the pci address on alpha
  412          * (i.e. use alpha_XXX_dmamap()). I don't have access to any
  413          * alpha AGP hardware to check.
  414          */
  415         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  416                 /*
  417                  * Find a page from the object and wire it
  418                  * down. This page will be mapped using one or more
  419                  * entries in the GATT (assuming that PAGE_SIZE >=
  420                  * AGP_PAGE_SIZE. If this is the first call to bind,
  421                  * the pages will be allocated and zeroed.
  422                  */
  423                 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
  424                     VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
  425                 if ((m->flags & PG_ZERO) == 0)
  426                         pmap_zero_page(m);
  427                 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
  428 
  429                 /*
  430                  * Install entries in the GATT, making sure that if
  431                  * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
  432                  * aligned to PAGE_SIZE, we don't modify too many GATT 
  433                  * entries.
  434                  */
  435                 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
  436                      j += AGP_PAGE_SIZE) {
  437                         vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
  438                         AGP_DPF("binding offset %#x to pa %#x\n",
  439                                 offset + i + j, pa);
  440                         error = AGP_BIND_PAGE(dev, offset + i + j, pa);
  441                         if (error) {
  442                                 /*
  443                                  * Bail out. Reverse all the mappings
  444                                  * and unwire the pages.
  445                                  */
  446                                 vm_page_wakeup(m);
  447                                 for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
  448                                         AGP_UNBIND_PAGE(dev, offset + k);
  449                                 for (k = 0; k <= i; k += PAGE_SIZE) {
  450                                         m = vm_page_lookup(mem->am_obj,
  451                                                            OFF_TO_IDX(k));
  452                                         vm_page_lock_queues();
  453                                         vm_page_unwire(m, 0);
  454                                         vm_page_unlock_queues();
  455                                 }
  456                                 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
  457                                 return error;
  458                         }
  459                 }
  460                 vm_page_wakeup(m);
  461         }
  462 
  463         /*
  464          * Flush the cpu cache since we are providing a new mapping
  465          * for these pages.
  466          */
  467         agp_flush_cache();
  468 
  469         /*
  470          * Make sure the chipset gets the new mappings.
  471          */
  472         AGP_FLUSH_TLB(dev);
  473 
  474         mem->am_offset = offset;
  475         mem->am_is_bound = 1;
  476 
  477         lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
  478 
  479         return 0;
  480 }
  481 
  482 int
  483 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
  484 {
  485         struct agp_softc *sc = device_get_softc(dev);
  486         vm_page_t m;
  487         int i;
  488 
  489         lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
  490 
  491         if (!mem->am_is_bound) {
  492                 device_printf(dev, "memory is not bound\n");
  493                 return EINVAL;
  494         }
  495 
  496 
  497         /*
  498          * Unbind the individual pages and flush the chipset's
  499          * TLB. Unwire the pages so they can be swapped.
  500          */
  501         for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
  502                 AGP_UNBIND_PAGE(dev, mem->am_offset + i);
  503         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  504                 m = vm_page_lookup(mem->am_obj, atop(i));
  505                 vm_page_lock_queues();
  506                 vm_page_unwire(m, 0);
  507                 vm_page_unlock_queues();
  508         }
  509                 
  510         agp_flush_cache();
  511         AGP_FLUSH_TLB(dev);
  512 
  513         mem->am_offset = 0;
  514         mem->am_is_bound = 0;
  515 
  516         lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
  517 
  518         return 0;
  519 }
  520 
  521 /* Helper functions for implementing user/kernel api */
  522 
  523 static int
  524 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
  525 {
  526         struct agp_softc *sc = device_get_softc(dev);
  527 
  528         if (sc->as_state != AGP_ACQUIRE_FREE)
  529                 return EBUSY;
  530         sc->as_state = state;
  531 
  532         return 0;
  533 }
  534 
  535 static int
  536 agp_release_helper(device_t dev, enum agp_acquire_state state)
  537 {
  538         struct agp_softc *sc = device_get_softc(dev);
  539 
  540         if (sc->as_state == AGP_ACQUIRE_FREE)
  541                 return 0;
  542 
  543         if (sc->as_state != state)
  544                 return EBUSY;
  545 
  546         sc->as_state = AGP_ACQUIRE_FREE;
  547         return 0;
  548 }
  549 
  550 static struct agp_memory *
  551 agp_find_memory(device_t dev, int id)
  552 {
  553         struct agp_softc *sc = device_get_softc(dev);
  554         struct agp_memory *mem;
  555 
  556         AGP_DPF("searching for memory block %d\n", id);
  557         TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
  558                 AGP_DPF("considering memory block %d\n", mem->am_id);
  559                 if (mem->am_id == id)
  560                         return mem;
  561         }
  562         return 0;
  563 }
  564 
  565 /* Implementation of the userland ioctl api */
  566 
  567 static int
  568 agp_info_user(device_t dev, agp_info *info)
  569 {
  570         struct agp_softc *sc = device_get_softc(dev);
  571 
  572         bzero(info, sizeof *info);
  573         info->bridge_id = pci_get_devid(dev);
  574         info->agp_mode = 
  575             pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  576         info->aper_base = rman_get_start(sc->as_aperture);
  577         info->aper_size = AGP_GET_APERTURE(dev) >> 20;
  578         info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
  579         info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
  580 
  581         return 0;
  582 }
  583 
  584 static int
  585 agp_setup_user(device_t dev, agp_setup *setup)
  586 {
  587         return AGP_ENABLE(dev, setup->agp_mode);
  588 }
  589 
  590 static int
  591 agp_allocate_user(device_t dev, agp_allocate *alloc)
  592 {
  593         struct agp_memory *mem;
  594 
  595         mem = AGP_ALLOC_MEMORY(dev,
  596                                alloc->type,
  597                                alloc->pg_count << AGP_PAGE_SHIFT);
  598         if (mem) {
  599                 alloc->key = mem->am_id;
  600                 alloc->physical = mem->am_physical;
  601                 return 0;
  602         } else {
  603                 return ENOMEM;
  604         }
  605 }
  606 
  607 static int
  608 agp_deallocate_user(device_t dev, int id)
  609 {
  610         struct agp_memory *mem = agp_find_memory(dev, id);;
  611 
  612         if (mem) {
  613                 AGP_FREE_MEMORY(dev, mem);
  614                 return 0;
  615         } else {
  616                 return ENOENT;
  617         }
  618 }
  619 
  620 static int
  621 agp_bind_user(device_t dev, agp_bind *bind)
  622 {
  623         struct agp_memory *mem = agp_find_memory(dev, bind->key);
  624 
  625         if (!mem)
  626                 return ENOENT;
  627 
  628         return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
  629 }
  630 
  631 static int
  632 agp_unbind_user(device_t dev, agp_unbind *unbind)
  633 {
  634         struct agp_memory *mem = agp_find_memory(dev, unbind->key);
  635 
  636         if (!mem)
  637                 return ENOENT;
  638 
  639         return AGP_UNBIND_MEMORY(dev, mem);
  640 }
  641 
  642 static int
  643 agp_open(dev_t kdev, int oflags, int devtype, struct thread *td)
  644 {
  645         device_t dev = KDEV2DEV(kdev);
  646         struct agp_softc *sc = device_get_softc(dev);
  647 
  648         if (!sc->as_isopen) {
  649                 sc->as_isopen = 1;
  650                 device_busy(dev);
  651         }
  652 
  653         return 0;
  654 }
  655 
  656 static int
  657 agp_close(dev_t kdev, int fflag, int devtype, struct thread *td)
  658 {
  659         device_t dev = KDEV2DEV(kdev);
  660         struct agp_softc *sc = device_get_softc(dev);
  661         struct agp_memory *mem;
  662 
  663         /*
  664          * Clear the GATT and force release on last close
  665          */
  666         while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
  667                 if (mem->am_is_bound)
  668                         AGP_UNBIND_MEMORY(dev, mem);
  669                 AGP_FREE_MEMORY(dev, mem);
  670         }
  671         if (sc->as_state == AGP_ACQUIRE_USER)
  672                 agp_release_helper(dev, AGP_ACQUIRE_USER);
  673         sc->as_isopen = 0;
  674         device_unbusy(dev);
  675 
  676         return 0;
  677 }
  678 
  679 static int
  680 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  681 {
  682         device_t dev = KDEV2DEV(kdev);
  683 
  684         switch (cmd) {
  685         case AGPIOC_INFO:
  686                 return agp_info_user(dev, (agp_info *) data);
  687 
  688         case AGPIOC_ACQUIRE:
  689                 return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
  690 
  691         case AGPIOC_RELEASE:
  692                 return agp_release_helper(dev, AGP_ACQUIRE_USER);
  693 
  694         case AGPIOC_SETUP:
  695                 return agp_setup_user(dev, (agp_setup *)data);
  696 
  697         case AGPIOC_ALLOCATE:
  698                 return agp_allocate_user(dev, (agp_allocate *)data);
  699 
  700         case AGPIOC_DEALLOCATE:
  701                 return agp_deallocate_user(dev, *(int *) data);
  702 
  703         case AGPIOC_BIND:
  704                 return agp_bind_user(dev, (agp_bind *)data);
  705 
  706         case AGPIOC_UNBIND:
  707                 return agp_unbind_user(dev, (agp_unbind *)data);
  708 
  709         }
  710 
  711         return EINVAL;
  712 }
  713 
  714 static int
  715 agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
  716 {
  717         device_t dev = KDEV2DEV(kdev);
  718         struct agp_softc *sc = device_get_softc(dev);
  719 
  720         if (offset > AGP_GET_APERTURE(dev))
  721                 return -1;
  722         return atop(rman_get_start(sc->as_aperture) + offset);
  723 }
  724 
  725 /* Implementation of the kernel api */
  726 
  727 device_t
  728 agp_find_device()
  729 {
  730         if (!agp_devclass)
  731                 return 0;
  732         return devclass_get_device(agp_devclass, 0);
  733 }
  734 
  735 enum agp_acquire_state
  736 agp_state(device_t dev)
  737 {
  738         struct agp_softc *sc = device_get_softc(dev);
  739         return sc->as_state;
  740 }
  741 
  742 void
  743 agp_get_info(device_t dev, struct agp_info *info)
  744 {
  745         struct agp_softc *sc = device_get_softc(dev);
  746 
  747         info->ai_mode =
  748                 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  749         info->ai_aperture_base = rman_get_start(sc->as_aperture);
  750         info->ai_aperture_size = rman_get_size(sc->as_aperture);
  751         info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
  752         info->ai_memory_allowed = sc->as_maxmem;
  753         info->ai_memory_used = sc->as_allocated;
  754 }
  755 
  756 int
  757 agp_acquire(device_t dev)
  758 {
  759         return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
  760 }
  761 
  762 int
  763 agp_release(device_t dev)
  764 {
  765         return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
  766 }
  767 
  768 int
  769 agp_enable(device_t dev, u_int32_t mode)
  770 {
  771         return AGP_ENABLE(dev, mode);
  772 }
  773 
  774 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
  775 {
  776         return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
  777 }
  778 
  779 void agp_free_memory(device_t dev, void *handle)
  780 {
  781         struct agp_memory *mem = (struct agp_memory *) handle;
  782         AGP_FREE_MEMORY(dev, mem);
  783 }
  784 
  785 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
  786 {
  787         struct agp_memory *mem = (struct agp_memory *) handle;
  788         return AGP_BIND_MEMORY(dev, mem, offset);
  789 }
  790 
  791 int agp_unbind_memory(device_t dev, void *handle)
  792 {
  793         struct agp_memory *mem = (struct agp_memory *) handle;
  794         return AGP_UNBIND_MEMORY(dev, mem);
  795 }
  796 
  797 void agp_memory_info(device_t dev, void *handle, struct
  798                      agp_memory_info *mi)
  799 {
  800         struct agp_memory *mem = (struct agp_memory *) handle;
  801 
  802         mi->ami_size = mem->am_size;
  803         mi->ami_physical = mem->am_physical;
  804         mi->ami_offset = mem->am_offset;
  805         mi->ami_is_bound = mem->am_is_bound;
  806 }

Cache object: d138baa23e593774e8697ee09cef259e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.