The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/agp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/6.0/sys/pci/agp.c 136852 2004-10-24 07:12:13Z alc $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/malloc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/bus.h>
   38 #include <sys/conf.h>
   39 #include <sys/ioccom.h>
   40 #include <sys/agpio.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/proc.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <dev/pci/pcireg.h>
   47 #include <pci/agppriv.h>
   48 #include <pci/agpvar.h>
   49 #include <pci/agpreg.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/vm_object.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_pageout.h>
   55 #include <vm/pmap.h>
   56 
   57 #include <machine/md_var.h>
   58 #include <machine/bus.h>
   59 #include <machine/resource.h>
   60 #include <sys/rman.h>
   61 
   62 MODULE_VERSION(agp, 1);
   63 
   64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
   65 
   66                                 /* agp_drv.c */
   67 static d_open_t agp_open;
   68 static d_close_t agp_close;
   69 static d_ioctl_t agp_ioctl;
   70 static d_mmap_t agp_mmap;
   71 
   72 static struct cdevsw agp_cdevsw = {
   73         .d_version =    D_VERSION,
   74         .d_flags =      D_NEEDGIANT,
   75         .d_open =       agp_open,
   76         .d_close =      agp_close,
   77         .d_ioctl =      agp_ioctl,
   78         .d_mmap =       agp_mmap,
   79         .d_name =       "agp",
   80 };
   81 
   82 static devclass_t agp_devclass;
   83 #define KDEV2DEV(kdev)  devclass_get_device(agp_devclass, minor(kdev))
   84 
   85 /* Helper functions for implementing chipset mini drivers. */
   86 
   87 void
   88 agp_flush_cache()
   89 {
   90 #if defined(__i386__) || defined(__amd64__)
   91         wbinvd();
   92 #endif
   93 #ifdef __alpha__
   94         /* FIXME: This is most likely not correct as it doesn't flush CPU 
   95          * write caches, but we don't have a facility to do that and 
   96          * this is all linux does, too */
   97         alpha_mb();
   98 #endif
   99 }
  100 
  101 u_int8_t
  102 agp_find_caps(device_t dev)
  103 {
  104         u_int32_t status;
  105         u_int8_t ptr, next;
  106 
  107         /*
  108          * Check the CAP_LIST bit of the PCI status register first.
  109          */
  110         status = pci_read_config(dev, PCIR_STATUS, 2);
  111         if (!(status & 0x10))
  112                 return 0;
  113 
  114         /*
  115          * Traverse the capabilities list.
  116          */
  117         for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
  118              ptr != 0;
  119              ptr = next) {
  120                 u_int32_t capid = pci_read_config(dev, ptr, 4);
  121                 next = AGP_CAPID_GET_NEXT_PTR(capid);
  122 
  123                 /*
  124                  * If this capability entry ID is 2, then we are done.
  125                  */
  126                 if (AGP_CAPID_GET_CAP_ID(capid) == 2)
  127                         return ptr;
  128         }
  129 
  130         return 0;
  131 }
  132 
  133 /*
  134  * Find an AGP display device (if any).
  135  */
  136 static device_t
  137 agp_find_display(void)
  138 {
  139         devclass_t pci = devclass_find("pci");
  140         device_t bus, dev = 0;
  141         device_t *kids;
  142         int busnum, numkids, i;
  143 
  144         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  145                 bus = devclass_get_device(pci, busnum);
  146                 if (!bus)
  147                         continue;
  148                 device_get_children(bus, &kids, &numkids);
  149                 for (i = 0; i < numkids; i++) {
  150                         dev = kids[i];
  151                         if (pci_get_class(dev) == PCIC_DISPLAY
  152                             && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
  153                                 if (agp_find_caps(dev)) {
  154                                         free(kids, M_TEMP);
  155                                         return dev;
  156                                 }
  157                                         
  158                 }
  159                 free(kids, M_TEMP);
  160         }
  161 
  162         return 0;
  163 }
  164 
  165 struct agp_gatt *
  166 agp_alloc_gatt(device_t dev)
  167 {
  168         u_int32_t apsize = AGP_GET_APERTURE(dev);
  169         u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
  170         struct agp_gatt *gatt;
  171 
  172         if (bootverbose)
  173                 device_printf(dev,
  174                               "allocating GATT for aperture of size %dM\n",
  175                               apsize / (1024*1024));
  176 
  177         if (entries == 0) {
  178                 device_printf(dev, "bad aperture size\n");
  179                 return NULL;
  180         }
  181 
  182         gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
  183         if (!gatt)
  184                 return 0;
  185 
  186         gatt->ag_entries = entries;
  187         gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
  188                                         0, ~0, PAGE_SIZE, 0);
  189         if (!gatt->ag_virtual) {
  190                 if (bootverbose)
  191                         device_printf(dev, "contiguous allocation failed\n");
  192                 free(gatt, M_AGP);
  193                 return 0;
  194         }
  195         bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
  196         gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
  197         agp_flush_cache();
  198 
  199         return gatt;
  200 }
  201 
  202 void
  203 agp_free_gatt(struct agp_gatt *gatt)
  204 {
  205         contigfree(gatt->ag_virtual,
  206                    gatt->ag_entries * sizeof(u_int32_t), M_AGP);
  207         free(gatt, M_AGP);
  208 }
  209 
  210 static int agp_max[][2] = {
  211         {0,     0},
  212         {32,    4},
  213         {64,    28},
  214         {128,   96},
  215         {256,   204},
  216         {512,   440},
  217         {1024,  942},
  218         {2048,  1920},
  219         {4096,  3932}
  220 };
  221 #define agp_max_size    (sizeof(agp_max) / sizeof(agp_max[0]))
  222 
  223 int
  224 agp_generic_attach(device_t dev)
  225 {
  226         struct agp_softc *sc = device_get_softc(dev);
  227         int rid, memsize, i;
  228 
  229         /*
  230          * Find and map the aperture.
  231          */
  232         rid = AGP_APBASE;
  233         sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  234                                                  RF_ACTIVE);
  235         if (!sc->as_aperture)
  236                 return ENOMEM;
  237 
  238         /*
  239          * Work out an upper bound for agp memory allocation. This
  240          * uses a heurisitc table from the Linux driver.
  241          */
  242         memsize = ptoa(Maxmem) >> 20;
  243         for (i = 0; i < agp_max_size; i++) {
  244                 if (memsize <= agp_max[i][0])
  245                         break;
  246         }
  247         if (i == agp_max_size) i = agp_max_size - 1;
  248         sc->as_maxmem = agp_max[i][1] << 20U;
  249 
  250         /*
  251          * The lock is used to prevent re-entry to
  252          * agp_generic_bind_memory() since that function can sleep.
  253          */
  254         mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
  255 
  256         /*
  257          * Initialise stuff for the userland device.
  258          */
  259         agp_devclass = devclass_find("agp");
  260         TAILQ_INIT(&sc->as_memory);
  261         sc->as_nextid = 1;
  262 
  263         sc->as_devnode = make_dev(&agp_cdevsw,
  264                                   device_get_unit(dev),
  265                                   UID_ROOT,
  266                                   GID_WHEEL,
  267                                   0600,
  268                                   "agpgart");
  269 
  270         return 0;
  271 }
  272 
  273 int
  274 agp_generic_detach(device_t dev)
  275 {
  276         struct agp_softc *sc = device_get_softc(dev);
  277         bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
  278         mtx_destroy(&sc->as_lock);
  279         destroy_dev(sc->as_devnode);
  280         agp_flush_cache();
  281         return 0;
  282 }
  283 
  284 /*
  285  * This does the enable logic for v3, with the same topology
  286  * restrictions as in place for v2 -- one bus, one device on the bus.
  287  */
  288 static int
  289 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
  290 {
  291         u_int32_t tstatus, mstatus;
  292         u_int32_t command;
  293         int rq, sba, fw, rate, arqsz, cal;
  294 
  295         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  296         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  297 
  298         /* Set RQ to the min of mode, tstatus and mstatus */
  299         rq = AGP_MODE_GET_RQ(mode);
  300         if (AGP_MODE_GET_RQ(tstatus) < rq)
  301                 rq = AGP_MODE_GET_RQ(tstatus);
  302         if (AGP_MODE_GET_RQ(mstatus) < rq)
  303                 rq = AGP_MODE_GET_RQ(mstatus);
  304 
  305         /*
  306          * ARQSZ - Set the value to the maximum one.
  307          * Don't allow the mode register to override values.
  308          */
  309         arqsz = AGP_MODE_GET_ARQSZ(mode);
  310         if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
  311                 rq = AGP_MODE_GET_ARQSZ(tstatus);
  312         if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
  313                 rq = AGP_MODE_GET_ARQSZ(mstatus);
  314 
  315         /* Calibration cycle - don't allow override by mode register */
  316         cal = AGP_MODE_GET_CAL(tstatus);
  317         if (AGP_MODE_GET_CAL(mstatus) < cal)
  318                 cal = AGP_MODE_GET_CAL(mstatus);
  319 
  320         /* SBA must be supported for AGP v3. */
  321         sba = 1;
  322 
  323         /* Set FW if all three support it. */
  324         fw = (AGP_MODE_GET_FW(tstatus)
  325                & AGP_MODE_GET_FW(mstatus)
  326                & AGP_MODE_GET_FW(mode));
  327         
  328         /* Figure out the max rate */
  329         rate = (AGP_MODE_GET_RATE(tstatus)
  330                 & AGP_MODE_GET_RATE(mstatus)
  331                 & AGP_MODE_GET_RATE(mode));
  332         if (rate & AGP_MODE_V3_RATE_8x)
  333                 rate = AGP_MODE_V3_RATE_8x;
  334         else
  335                 rate = AGP_MODE_V3_RATE_4x;
  336         if (bootverbose)
  337                 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
  338 
  339         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
  340 
  341         /* Construct the new mode word and tell the hardware */
  342         command = AGP_MODE_SET_RQ(0, rq);
  343         command = AGP_MODE_SET_ARQSZ(command, arqsz);
  344         command = AGP_MODE_SET_CAL(command, cal);
  345         command = AGP_MODE_SET_SBA(command, sba);
  346         command = AGP_MODE_SET_FW(command, fw);
  347         command = AGP_MODE_SET_RATE(command, rate);
  348         command = AGP_MODE_SET_AGP(command, 1);
  349         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  350         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  351 
  352         return 0;
  353 }
  354 
  355 static int
  356 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
  357 {
  358         u_int32_t tstatus, mstatus;
  359         u_int32_t command;
  360         int rq, sba, fw, rate;
  361 
  362         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  363         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  364 
  365         /* Set RQ to the min of mode, tstatus and mstatus */
  366         rq = AGP_MODE_GET_RQ(mode);
  367         if (AGP_MODE_GET_RQ(tstatus) < rq)
  368                 rq = AGP_MODE_GET_RQ(tstatus);
  369         if (AGP_MODE_GET_RQ(mstatus) < rq)
  370                 rq = AGP_MODE_GET_RQ(mstatus);
  371 
  372         /* Set SBA if all three can deal with SBA */
  373         sba = (AGP_MODE_GET_SBA(tstatus)
  374                & AGP_MODE_GET_SBA(mstatus)
  375                & AGP_MODE_GET_SBA(mode));
  376 
  377         /* Similar for FW */
  378         fw = (AGP_MODE_GET_FW(tstatus)
  379                & AGP_MODE_GET_FW(mstatus)
  380                & AGP_MODE_GET_FW(mode));
  381 
  382         /* Figure out the max rate */
  383         rate = (AGP_MODE_GET_RATE(tstatus)
  384                 & AGP_MODE_GET_RATE(mstatus)
  385                 & AGP_MODE_GET_RATE(mode));
  386         if (rate & AGP_MODE_V2_RATE_4x)
  387                 rate = AGP_MODE_V2_RATE_4x;
  388         else if (rate & AGP_MODE_V2_RATE_2x)
  389                 rate = AGP_MODE_V2_RATE_2x;
  390         else
  391                 rate = AGP_MODE_V2_RATE_1x;
  392         if (bootverbose)
  393                 device_printf(dev, "Setting AGP v2 mode %d\n", rate);
  394 
  395         /* Construct the new mode word and tell the hardware */
  396         command = AGP_MODE_SET_RQ(0, rq);
  397         command = AGP_MODE_SET_SBA(command, sba);
  398         command = AGP_MODE_SET_FW(command, fw);
  399         command = AGP_MODE_SET_RATE(command, rate);
  400         command = AGP_MODE_SET_AGP(command, 1);
  401         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  402         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  403 
  404         return 0;
  405 }
  406 
  407 int
  408 agp_generic_enable(device_t dev, u_int32_t mode)
  409 {
  410         device_t mdev = agp_find_display();
  411         u_int32_t tstatus, mstatus;
  412 
  413         if (!mdev) {
  414                 AGP_DPF("can't find display\n");
  415                 return ENXIO;
  416         }
  417 
  418         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  419         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  420 
  421         /*
  422          * Check display and bridge for AGP v3 support.  AGP v3 allows
  423          * more variety in topology than v2, e.g. multiple AGP devices
  424          * attached to one bridge, or multiple AGP bridges in one
  425          * system.  This doesn't attempt to address those situations,
  426          * but should work fine for a classic single AGP slot system
  427          * with AGP v3.
  428          */
  429         if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus))
  430                 return (agp_v3_enable(dev, mdev, mode));
  431         else
  432                 return (agp_v2_enable(dev, mdev, mode));            
  433 }
  434 
  435 struct agp_memory *
  436 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
  437 {
  438         struct agp_softc *sc = device_get_softc(dev);
  439         struct agp_memory *mem;
  440 
  441         if ((size & (AGP_PAGE_SIZE - 1)) != 0)
  442                 return 0;
  443 
  444         if (sc->as_allocated + size > sc->as_maxmem)
  445                 return 0;
  446 
  447         if (type != 0) {
  448                 printf("agp_generic_alloc_memory: unsupported type %d\n",
  449                        type);
  450                 return 0;
  451         }
  452 
  453         mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
  454         mem->am_id = sc->as_nextid++;
  455         mem->am_size = size;
  456         mem->am_type = 0;
  457         mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
  458         mem->am_physical = 0;
  459         mem->am_offset = 0;
  460         mem->am_is_bound = 0;
  461         TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
  462         sc->as_allocated += size;
  463 
  464         return mem;
  465 }
  466 
  467 int
  468 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
  469 {
  470         struct agp_softc *sc = device_get_softc(dev);
  471 
  472         if (mem->am_is_bound)
  473                 return EBUSY;
  474 
  475         sc->as_allocated -= mem->am_size;
  476         TAILQ_REMOVE(&sc->as_memory, mem, am_link);
  477         vm_object_deallocate(mem->am_obj);
  478         free(mem, M_AGP);
  479         return 0;
  480 }
  481 
  482 int
  483 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
  484                         vm_offset_t offset)
  485 {
  486         struct agp_softc *sc = device_get_softc(dev);
  487         vm_offset_t i, j, k;
  488         vm_page_t m;
  489         int error;
  490 
  491         /* Do some sanity checks first. */
  492         if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 ||
  493             offset + mem->am_size > AGP_GET_APERTURE(dev)) {
  494                 device_printf(dev, "binding memory at bad offset %#x\n",
  495                     (int)offset);
  496                 return EINVAL;
  497         }
  498 
  499         /*
  500          * Allocate the pages early, before acquiring the lock,
  501          * because vm_page_grab() used with VM_ALLOC_RETRY may
  502          * block and we can't hold a mutex while blocking.
  503          */
  504         VM_OBJECT_LOCK(mem->am_obj);
  505         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  506                 /*
  507                  * Find a page from the object and wire it
  508                  * down. This page will be mapped using one or more
  509                  * entries in the GATT (assuming that PAGE_SIZE >=
  510                  * AGP_PAGE_SIZE. If this is the first call to bind,
  511                  * the pages will be allocated and zeroed.
  512                  */
  513                 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
  514                     VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
  515                 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
  516         }
  517         VM_OBJECT_UNLOCK(mem->am_obj);
  518 
  519         mtx_lock(&sc->as_lock);
  520 
  521         if (mem->am_is_bound) {
  522                 device_printf(dev, "memory already bound\n");
  523                 error = EINVAL;
  524                 VM_OBJECT_LOCK(mem->am_obj);
  525                 goto bad;
  526         }
  527         
  528         /*
  529          * Bind the individual pages and flush the chipset's
  530          * TLB.
  531          *
  532          * XXX Presumably, this needs to be the pci address on alpha
  533          * (i.e. use alpha_XXX_dmamap()). I don't have access to any
  534          * alpha AGP hardware to check.
  535          */
  536         VM_OBJECT_LOCK(mem->am_obj);
  537         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  538                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
  539 
  540                 /*
  541                  * Install entries in the GATT, making sure that if
  542                  * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
  543                  * aligned to PAGE_SIZE, we don't modify too many GATT 
  544                  * entries.
  545                  */
  546                 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
  547                      j += AGP_PAGE_SIZE) {
  548                         vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
  549                         AGP_DPF("binding offset %#x to pa %#x\n",
  550                                 offset + i + j, pa);
  551                         error = AGP_BIND_PAGE(dev, offset + i + j, pa);
  552                         if (error) {
  553                                 /*
  554                                  * Bail out. Reverse all the mappings
  555                                  * and unwire the pages.
  556                                  */
  557                                 vm_page_lock_queues();
  558                                 vm_page_wakeup(m);
  559                                 vm_page_unlock_queues();
  560                                 for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
  561                                         AGP_UNBIND_PAGE(dev, offset + k);
  562                                 goto bad;
  563                         }
  564                 }
  565                 vm_page_lock_queues();
  566                 vm_page_wakeup(m);
  567                 vm_page_unlock_queues();
  568         }
  569         VM_OBJECT_UNLOCK(mem->am_obj);
  570 
  571         /*
  572          * Flush the cpu cache since we are providing a new mapping
  573          * for these pages.
  574          */
  575         agp_flush_cache();
  576 
  577         /*
  578          * Make sure the chipset gets the new mappings.
  579          */
  580         AGP_FLUSH_TLB(dev);
  581 
  582         mem->am_offset = offset;
  583         mem->am_is_bound = 1;
  584 
  585         mtx_unlock(&sc->as_lock);
  586 
  587         return 0;
  588 bad:
  589         mtx_unlock(&sc->as_lock);
  590         VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED);
  591         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  592                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
  593                 vm_page_lock_queues();
  594                 vm_page_unwire(m, 0);
  595                 vm_page_unlock_queues();
  596         }
  597         VM_OBJECT_UNLOCK(mem->am_obj);
  598 
  599         return error;
  600 }
  601 
  602 int
  603 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
  604 {
  605         struct agp_softc *sc = device_get_softc(dev);
  606         vm_page_t m;
  607         int i;
  608 
  609         mtx_lock(&sc->as_lock);
  610 
  611         if (!mem->am_is_bound) {
  612                 device_printf(dev, "memory is not bound\n");
  613                 mtx_unlock(&sc->as_lock);
  614                 return EINVAL;
  615         }
  616 
  617 
  618         /*
  619          * Unbind the individual pages and flush the chipset's
  620          * TLB. Unwire the pages so they can be swapped.
  621          */
  622         for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
  623                 AGP_UNBIND_PAGE(dev, mem->am_offset + i);
  624         VM_OBJECT_LOCK(mem->am_obj);
  625         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  626                 m = vm_page_lookup(mem->am_obj, atop(i));
  627                 vm_page_lock_queues();
  628                 vm_page_unwire(m, 0);
  629                 vm_page_unlock_queues();
  630         }
  631         VM_OBJECT_UNLOCK(mem->am_obj);
  632                 
  633         agp_flush_cache();
  634         AGP_FLUSH_TLB(dev);
  635 
  636         mem->am_offset = 0;
  637         mem->am_is_bound = 0;
  638 
  639         mtx_unlock(&sc->as_lock);
  640 
  641         return 0;
  642 }
  643 
  644 /* Helper functions for implementing user/kernel api */
  645 
  646 static int
  647 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
  648 {
  649         struct agp_softc *sc = device_get_softc(dev);
  650 
  651         if (sc->as_state != AGP_ACQUIRE_FREE)
  652                 return EBUSY;
  653         sc->as_state = state;
  654 
  655         return 0;
  656 }
  657 
  658 static int
  659 agp_release_helper(device_t dev, enum agp_acquire_state state)
  660 {
  661         struct agp_softc *sc = device_get_softc(dev);
  662 
  663         if (sc->as_state == AGP_ACQUIRE_FREE)
  664                 return 0;
  665 
  666         if (sc->as_state != state)
  667                 return EBUSY;
  668 
  669         sc->as_state = AGP_ACQUIRE_FREE;
  670         return 0;
  671 }
  672 
  673 static struct agp_memory *
  674 agp_find_memory(device_t dev, int id)
  675 {
  676         struct agp_softc *sc = device_get_softc(dev);
  677         struct agp_memory *mem;
  678 
  679         AGP_DPF("searching for memory block %d\n", id);
  680         TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
  681                 AGP_DPF("considering memory block %d\n", mem->am_id);
  682                 if (mem->am_id == id)
  683                         return mem;
  684         }
  685         return 0;
  686 }
  687 
  688 /* Implementation of the userland ioctl api */
  689 
  690 static int
  691 agp_info_user(device_t dev, agp_info *info)
  692 {
  693         struct agp_softc *sc = device_get_softc(dev);
  694 
  695         bzero(info, sizeof *info);
  696         info->bridge_id = pci_get_devid(dev);
  697         info->agp_mode = 
  698             pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  699         info->aper_base = rman_get_start(sc->as_aperture);
  700         info->aper_size = AGP_GET_APERTURE(dev) >> 20;
  701         info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
  702         info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
  703 
  704         return 0;
  705 }
  706 
  707 static int
  708 agp_setup_user(device_t dev, agp_setup *setup)
  709 {
  710         return AGP_ENABLE(dev, setup->agp_mode);
  711 }
  712 
  713 static int
  714 agp_allocate_user(device_t dev, agp_allocate *alloc)
  715 {
  716         struct agp_memory *mem;
  717 
  718         mem = AGP_ALLOC_MEMORY(dev,
  719                                alloc->type,
  720                                alloc->pg_count << AGP_PAGE_SHIFT);
  721         if (mem) {
  722                 alloc->key = mem->am_id;
  723                 alloc->physical = mem->am_physical;
  724                 return 0;
  725         } else {
  726                 return ENOMEM;
  727         }
  728 }
  729 
  730 static int
  731 agp_deallocate_user(device_t dev, int id)
  732 {
  733         struct agp_memory *mem = agp_find_memory(dev, id);;
  734 
  735         if (mem) {
  736                 AGP_FREE_MEMORY(dev, mem);
  737                 return 0;
  738         } else {
  739                 return ENOENT;
  740         }
  741 }
  742 
  743 static int
  744 agp_bind_user(device_t dev, agp_bind *bind)
  745 {
  746         struct agp_memory *mem = agp_find_memory(dev, bind->key);
  747 
  748         if (!mem)
  749                 return ENOENT;
  750 
  751         return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
  752 }
  753 
  754 static int
  755 agp_unbind_user(device_t dev, agp_unbind *unbind)
  756 {
  757         struct agp_memory *mem = agp_find_memory(dev, unbind->key);
  758 
  759         if (!mem)
  760                 return ENOENT;
  761 
  762         return AGP_UNBIND_MEMORY(dev, mem);
  763 }
  764 
  765 static int
  766 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
  767 {
  768         device_t dev = KDEV2DEV(kdev);
  769         struct agp_softc *sc = device_get_softc(dev);
  770 
  771         if (!sc->as_isopen) {
  772                 sc->as_isopen = 1;
  773                 device_busy(dev);
  774         }
  775 
  776         return 0;
  777 }
  778 
  779 static int
  780 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
  781 {
  782         device_t dev = KDEV2DEV(kdev);
  783         struct agp_softc *sc = device_get_softc(dev);
  784         struct agp_memory *mem;
  785 
  786         /*
  787          * Clear the GATT and force release on last close
  788          */
  789         while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
  790                 if (mem->am_is_bound)
  791                         AGP_UNBIND_MEMORY(dev, mem);
  792                 AGP_FREE_MEMORY(dev, mem);
  793         }
  794         if (sc->as_state == AGP_ACQUIRE_USER)
  795                 agp_release_helper(dev, AGP_ACQUIRE_USER);
  796         sc->as_isopen = 0;
  797         device_unbusy(dev);
  798 
  799         return 0;
  800 }
  801 
  802 static int
  803 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  804 {
  805         device_t dev = KDEV2DEV(kdev);
  806 
  807         switch (cmd) {
  808         case AGPIOC_INFO:
  809                 return agp_info_user(dev, (agp_info *) data);
  810 
  811         case AGPIOC_ACQUIRE:
  812                 return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
  813 
  814         case AGPIOC_RELEASE:
  815                 return agp_release_helper(dev, AGP_ACQUIRE_USER);
  816 
  817         case AGPIOC_SETUP:
  818                 return agp_setup_user(dev, (agp_setup *)data);
  819 
  820         case AGPIOC_ALLOCATE:
  821                 return agp_allocate_user(dev, (agp_allocate *)data);
  822 
  823         case AGPIOC_DEALLOCATE:
  824                 return agp_deallocate_user(dev, *(int *) data);
  825 
  826         case AGPIOC_BIND:
  827                 return agp_bind_user(dev, (agp_bind *)data);
  828 
  829         case AGPIOC_UNBIND:
  830                 return agp_unbind_user(dev, (agp_unbind *)data);
  831 
  832         }
  833 
  834         return EINVAL;
  835 }
  836 
  837 static int
  838 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot)
  839 {
  840         device_t dev = KDEV2DEV(kdev);
  841         struct agp_softc *sc = device_get_softc(dev);
  842 
  843         if (offset > AGP_GET_APERTURE(dev))
  844                 return -1;
  845         *paddr = rman_get_start(sc->as_aperture) + offset;
  846         return 0;
  847 }
  848 
  849 /* Implementation of the kernel api */
  850 
  851 device_t
  852 agp_find_device()
  853 {
  854         if (!agp_devclass)
  855                 return 0;
  856         return devclass_get_device(agp_devclass, 0);
  857 }
  858 
  859 enum agp_acquire_state
  860 agp_state(device_t dev)
  861 {
  862         struct agp_softc *sc = device_get_softc(dev);
  863         return sc->as_state;
  864 }
  865 
  866 void
  867 agp_get_info(device_t dev, struct agp_info *info)
  868 {
  869         struct agp_softc *sc = device_get_softc(dev);
  870 
  871         info->ai_mode =
  872                 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  873         info->ai_aperture_base = rman_get_start(sc->as_aperture);
  874         info->ai_aperture_size = rman_get_size(sc->as_aperture);
  875         info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
  876         info->ai_memory_allowed = sc->as_maxmem;
  877         info->ai_memory_used = sc->as_allocated;
  878 }
  879 
  880 int
  881 agp_acquire(device_t dev)
  882 {
  883         return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
  884 }
  885 
  886 int
  887 agp_release(device_t dev)
  888 {
  889         return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
  890 }
  891 
  892 int
  893 agp_enable(device_t dev, u_int32_t mode)
  894 {
  895         return AGP_ENABLE(dev, mode);
  896 }
  897 
  898 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
  899 {
  900         return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
  901 }
  902 
  903 void agp_free_memory(device_t dev, void *handle)
  904 {
  905         struct agp_memory *mem = (struct agp_memory *) handle;
  906         AGP_FREE_MEMORY(dev, mem);
  907 }
  908 
  909 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
  910 {
  911         struct agp_memory *mem = (struct agp_memory *) handle;
  912         return AGP_BIND_MEMORY(dev, mem, offset);
  913 }
  914 
  915 int agp_unbind_memory(device_t dev, void *handle)
  916 {
  917         struct agp_memory *mem = (struct agp_memory *) handle;
  918         return AGP_UNBIND_MEMORY(dev, mem);
  919 }
  920 
  921 void agp_memory_info(device_t dev, void *handle, struct
  922                      agp_memory_info *mi)
  923 {
  924         struct agp_memory *mem = (struct agp_memory *) handle;
  925 
  926         mi->ami_size = mem->am_size;
  927         mi->ami_physical = mem->am_physical;
  928         mi->ami_offset = mem->am_offset;
  929         mi->ami_is_bound = mem->am_is_bound;
  930 }

Cache object: 54e947765c08678427486c6b2b53c93d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.