The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/agp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/6.1/sys/pci/agp.c 153796 2005-12-28 16:52:45Z jhb $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/malloc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/bus.h>
   38 #include <sys/conf.h>
   39 #include <sys/ioccom.h>
   40 #include <sys/agpio.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/proc.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <dev/pci/pcireg.h>
   47 #include <pci/agppriv.h>
   48 #include <pci/agpvar.h>
   49 #include <pci/agpreg.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/vm_object.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_pageout.h>
   55 #include <vm/pmap.h>
   56 
   57 #include <machine/md_var.h>
   58 #include <machine/bus.h>
   59 #include <machine/resource.h>
   60 #include <sys/rman.h>
   61 
   62 MODULE_VERSION(agp, 1);
   63 
   64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
   65 
   66                                 /* agp_drv.c */
   67 static d_open_t agp_open;
   68 static d_close_t agp_close;
   69 static d_ioctl_t agp_ioctl;
   70 static d_mmap_t agp_mmap;
   71 
   72 static struct cdevsw agp_cdevsw = {
   73         .d_version =    D_VERSION,
   74         .d_flags =      D_NEEDGIANT,
   75         .d_open =       agp_open,
   76         .d_close =      agp_close,
   77         .d_ioctl =      agp_ioctl,
   78         .d_mmap =       agp_mmap,
   79         .d_name =       "agp",
   80 };
   81 
   82 static devclass_t agp_devclass;
   83 #define KDEV2DEV(kdev)  devclass_get_device(agp_devclass, minor(kdev))
   84 
   85 /* Helper functions for implementing chipset mini drivers. */
   86 
   87 void
   88 agp_flush_cache()
   89 {
   90 #if defined(__i386__) || defined(__amd64__)
   91         wbinvd();
   92 #endif
   93 #ifdef __alpha__
   94         /* FIXME: This is most likely not correct as it doesn't flush CPU 
   95          * write caches, but we don't have a facility to do that and 
   96          * this is all linux does, too */
   97         alpha_mb();
   98 #endif
   99 }
  100 
  101 u_int8_t
  102 agp_find_caps(device_t dev)
  103 {
  104         u_int32_t status;
  105         u_int8_t ptr, next;
  106 
  107         /*
  108          * Check the CAP_LIST bit of the PCI status register first.
  109          */
  110         status = pci_read_config(dev, PCIR_STATUS, 2);
  111         if (!(status & 0x10))
  112                 return 0;
  113 
  114         /*
  115          * Traverse the capabilities list.
  116          */
  117         for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
  118              ptr != 0;
  119              ptr = next) {
  120                 u_int32_t capid = pci_read_config(dev, ptr, 4);
  121                 next = AGP_CAPID_GET_NEXT_PTR(capid);
  122 
  123                 /*
  124                  * If this capability entry ID is 2, then we are done.
  125                  */
  126                 if (AGP_CAPID_GET_CAP_ID(capid) == 2)
  127                         return ptr;
  128         }
  129 
  130         return 0;
  131 }
  132 
  133 /*
  134  * Find an AGP display device (if any).
  135  */
  136 static device_t
  137 agp_find_display(void)
  138 {
  139         devclass_t pci = devclass_find("pci");
  140         device_t bus, dev = 0;
  141         device_t *kids;
  142         int busnum, numkids, i;
  143 
  144         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  145                 bus = devclass_get_device(pci, busnum);
  146                 if (!bus)
  147                         continue;
  148                 device_get_children(bus, &kids, &numkids);
  149                 for (i = 0; i < numkids; i++) {
  150                         dev = kids[i];
  151                         if (pci_get_class(dev) == PCIC_DISPLAY
  152                             && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
  153                                 if (agp_find_caps(dev)) {
  154                                         free(kids, M_TEMP);
  155                                         return dev;
  156                                 }
  157                                         
  158                 }
  159                 free(kids, M_TEMP);
  160         }
  161 
  162         return 0;
  163 }
  164 
  165 struct agp_gatt *
  166 agp_alloc_gatt(device_t dev)
  167 {
  168         u_int32_t apsize = AGP_GET_APERTURE(dev);
  169         u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
  170         struct agp_gatt *gatt;
  171 
  172         if (bootverbose)
  173                 device_printf(dev,
  174                               "allocating GATT for aperture of size %dM\n",
  175                               apsize / (1024*1024));
  176 
  177         if (entries == 0) {
  178                 device_printf(dev, "bad aperture size\n");
  179                 return NULL;
  180         }
  181 
  182         gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
  183         if (!gatt)
  184                 return 0;
  185 
  186         gatt->ag_entries = entries;
  187         gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
  188                                         0, ~0, PAGE_SIZE, 0);
  189         if (!gatt->ag_virtual) {
  190                 if (bootverbose)
  191                         device_printf(dev, "contiguous allocation failed\n");
  192                 free(gatt, M_AGP);
  193                 return 0;
  194         }
  195         bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
  196         gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
  197         agp_flush_cache();
  198 
  199         return gatt;
  200 }
  201 
  202 void
  203 agp_free_gatt(struct agp_gatt *gatt)
  204 {
  205         contigfree(gatt->ag_virtual,
  206                    gatt->ag_entries * sizeof(u_int32_t), M_AGP);
  207         free(gatt, M_AGP);
  208 }
  209 
  210 static int agp_max[][2] = {
  211         {0,     0},
  212         {32,    4},
  213         {64,    28},
  214         {128,   96},
  215         {256,   204},
  216         {512,   440},
  217         {1024,  942},
  218         {2048,  1920},
  219         {4096,  3932}
  220 };
  221 #define agp_max_size    (sizeof(agp_max) / sizeof(agp_max[0]))
  222 
  223 int
  224 agp_generic_attach(device_t dev)
  225 {
  226         struct agp_softc *sc = device_get_softc(dev);
  227         int rid, memsize, i;
  228 
  229         /*
  230          * Find and map the aperture.
  231          */
  232         rid = AGP_APBASE;
  233         sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  234                                                  RF_ACTIVE);
  235         if (!sc->as_aperture)
  236                 return ENOMEM;
  237 
  238         /*
  239          * Work out an upper bound for agp memory allocation. This
  240          * uses a heurisitc table from the Linux driver.
  241          */
  242         memsize = ptoa(Maxmem) >> 20;
  243         for (i = 0; i < agp_max_size; i++) {
  244                 if (memsize <= agp_max[i][0])
  245                         break;
  246         }
  247         if (i == agp_max_size) i = agp_max_size - 1;
  248         sc->as_maxmem = agp_max[i][1] << 20U;
  249 
  250         /*
  251          * The lock is used to prevent re-entry to
  252          * agp_generic_bind_memory() since that function can sleep.
  253          */
  254         mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
  255 
  256         /*
  257          * Initialise stuff for the userland device.
  258          */
  259         agp_devclass = devclass_find("agp");
  260         TAILQ_INIT(&sc->as_memory);
  261         sc->as_nextid = 1;
  262 
  263         sc->as_devnode = make_dev(&agp_cdevsw,
  264                                   device_get_unit(dev),
  265                                   UID_ROOT,
  266                                   GID_WHEEL,
  267                                   0600,
  268                                   "agpgart");
  269 
  270         return 0;
  271 }
  272 
  273 int
  274 agp_generic_detach(device_t dev)
  275 {
  276         struct agp_softc *sc = device_get_softc(dev);
  277 
  278         destroy_dev(sc->as_devnode);
  279         bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
  280         mtx_destroy(&sc->as_lock);
  281         agp_flush_cache();
  282         return 0;
  283 }
  284 
  285 /*
  286  * This does the enable logic for v3, with the same topology
  287  * restrictions as in place for v2 -- one bus, one device on the bus.
  288  */
  289 static int
  290 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
  291 {
  292         u_int32_t tstatus, mstatus;
  293         u_int32_t command;
  294         int rq, sba, fw, rate, arqsz, cal;
  295 
  296         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  297         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  298 
  299         /* Set RQ to the min of mode, tstatus and mstatus */
  300         rq = AGP_MODE_GET_RQ(mode);
  301         if (AGP_MODE_GET_RQ(tstatus) < rq)
  302                 rq = AGP_MODE_GET_RQ(tstatus);
  303         if (AGP_MODE_GET_RQ(mstatus) < rq)
  304                 rq = AGP_MODE_GET_RQ(mstatus);
  305 
  306         /*
  307          * ARQSZ - Set the value to the maximum one.
  308          * Don't allow the mode register to override values.
  309          */
  310         arqsz = AGP_MODE_GET_ARQSZ(mode);
  311         if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
  312                 rq = AGP_MODE_GET_ARQSZ(tstatus);
  313         if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
  314                 rq = AGP_MODE_GET_ARQSZ(mstatus);
  315 
  316         /* Calibration cycle - don't allow override by mode register */
  317         cal = AGP_MODE_GET_CAL(tstatus);
  318         if (AGP_MODE_GET_CAL(mstatus) < cal)
  319                 cal = AGP_MODE_GET_CAL(mstatus);
  320 
  321         /* SBA must be supported for AGP v3. */
  322         sba = 1;
  323 
  324         /* Set FW if all three support it. */
  325         fw = (AGP_MODE_GET_FW(tstatus)
  326                & AGP_MODE_GET_FW(mstatus)
  327                & AGP_MODE_GET_FW(mode));
  328         
  329         /* Figure out the max rate */
  330         rate = (AGP_MODE_GET_RATE(tstatus)
  331                 & AGP_MODE_GET_RATE(mstatus)
  332                 & AGP_MODE_GET_RATE(mode));
  333         if (rate & AGP_MODE_V3_RATE_8x)
  334                 rate = AGP_MODE_V3_RATE_8x;
  335         else
  336                 rate = AGP_MODE_V3_RATE_4x;
  337         if (bootverbose)
  338                 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
  339 
  340         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
  341 
  342         /* Construct the new mode word and tell the hardware */
  343         command = AGP_MODE_SET_RQ(0, rq);
  344         command = AGP_MODE_SET_ARQSZ(command, arqsz);
  345         command = AGP_MODE_SET_CAL(command, cal);
  346         command = AGP_MODE_SET_SBA(command, sba);
  347         command = AGP_MODE_SET_FW(command, fw);
  348         command = AGP_MODE_SET_RATE(command, rate);
  349         command = AGP_MODE_SET_AGP(command, 1);
  350         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  351         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  352 
  353         return 0;
  354 }
  355 
  356 static int
  357 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
  358 {
  359         u_int32_t tstatus, mstatus;
  360         u_int32_t command;
  361         int rq, sba, fw, rate;
  362 
  363         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  364         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  365 
  366         /* Set RQ to the min of mode, tstatus and mstatus */
  367         rq = AGP_MODE_GET_RQ(mode);
  368         if (AGP_MODE_GET_RQ(tstatus) < rq)
  369                 rq = AGP_MODE_GET_RQ(tstatus);
  370         if (AGP_MODE_GET_RQ(mstatus) < rq)
  371                 rq = AGP_MODE_GET_RQ(mstatus);
  372 
  373         /* Set SBA if all three can deal with SBA */
  374         sba = (AGP_MODE_GET_SBA(tstatus)
  375                & AGP_MODE_GET_SBA(mstatus)
  376                & AGP_MODE_GET_SBA(mode));
  377 
  378         /* Similar for FW */
  379         fw = (AGP_MODE_GET_FW(tstatus)
  380                & AGP_MODE_GET_FW(mstatus)
  381                & AGP_MODE_GET_FW(mode));
  382 
  383         /* Figure out the max rate */
  384         rate = (AGP_MODE_GET_RATE(tstatus)
  385                 & AGP_MODE_GET_RATE(mstatus)
  386                 & AGP_MODE_GET_RATE(mode));
  387         if (rate & AGP_MODE_V2_RATE_4x)
  388                 rate = AGP_MODE_V2_RATE_4x;
  389         else if (rate & AGP_MODE_V2_RATE_2x)
  390                 rate = AGP_MODE_V2_RATE_2x;
  391         else
  392                 rate = AGP_MODE_V2_RATE_1x;
  393         if (bootverbose)
  394                 device_printf(dev, "Setting AGP v2 mode %d\n", rate);
  395 
  396         /* Construct the new mode word and tell the hardware */
  397         command = AGP_MODE_SET_RQ(0, rq);
  398         command = AGP_MODE_SET_SBA(command, sba);
  399         command = AGP_MODE_SET_FW(command, fw);
  400         command = AGP_MODE_SET_RATE(command, rate);
  401         command = AGP_MODE_SET_AGP(command, 1);
  402         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  403         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  404 
  405         return 0;
  406 }
  407 
  408 int
  409 agp_generic_enable(device_t dev, u_int32_t mode)
  410 {
  411         device_t mdev = agp_find_display();
  412         u_int32_t tstatus, mstatus;
  413 
  414         if (!mdev) {
  415                 AGP_DPF("can't find display\n");
  416                 return ENXIO;
  417         }
  418 
  419         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  420         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  421 
  422         /*
  423          * Check display and bridge for AGP v3 support.  AGP v3 allows
  424          * more variety in topology than v2, e.g. multiple AGP devices
  425          * attached to one bridge, or multiple AGP bridges in one
  426          * system.  This doesn't attempt to address those situations,
  427          * but should work fine for a classic single AGP slot system
  428          * with AGP v3.
  429          */
  430         if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus))
  431                 return (agp_v3_enable(dev, mdev, mode));
  432         else
  433                 return (agp_v2_enable(dev, mdev, mode));            
  434 }
  435 
  436 struct agp_memory *
  437 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
  438 {
  439         struct agp_softc *sc = device_get_softc(dev);
  440         struct agp_memory *mem;
  441 
  442         if ((size & (AGP_PAGE_SIZE - 1)) != 0)
  443                 return 0;
  444 
  445         if (sc->as_allocated + size > sc->as_maxmem)
  446                 return 0;
  447 
  448         if (type != 0) {
  449                 printf("agp_generic_alloc_memory: unsupported type %d\n",
  450                        type);
  451                 return 0;
  452         }
  453 
  454         mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
  455         mem->am_id = sc->as_nextid++;
  456         mem->am_size = size;
  457         mem->am_type = 0;
  458         mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
  459         mem->am_physical = 0;
  460         mem->am_offset = 0;
  461         mem->am_is_bound = 0;
  462         TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
  463         sc->as_allocated += size;
  464 
  465         return mem;
  466 }
  467 
  468 int
  469 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
  470 {
  471         struct agp_softc *sc = device_get_softc(dev);
  472 
  473         if (mem->am_is_bound)
  474                 return EBUSY;
  475 
  476         sc->as_allocated -= mem->am_size;
  477         TAILQ_REMOVE(&sc->as_memory, mem, am_link);
  478         vm_object_deallocate(mem->am_obj);
  479         free(mem, M_AGP);
  480         return 0;
  481 }
  482 
  483 int
  484 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
  485                         vm_offset_t offset)
  486 {
  487         struct agp_softc *sc = device_get_softc(dev);
  488         vm_offset_t i, j, k;
  489         vm_page_t m;
  490         int error;
  491 
  492         /* Do some sanity checks first. */
  493         if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 ||
  494             offset + mem->am_size > AGP_GET_APERTURE(dev)) {
  495                 device_printf(dev, "binding memory at bad offset %#x\n",
  496                     (int)offset);
  497                 return EINVAL;
  498         }
  499 
  500         /*
  501          * Allocate the pages early, before acquiring the lock,
  502          * because vm_page_grab() used with VM_ALLOC_RETRY may
  503          * block and we can't hold a mutex while blocking.
  504          */
  505         VM_OBJECT_LOCK(mem->am_obj);
  506         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  507                 /*
  508                  * Find a page from the object and wire it
  509                  * down. This page will be mapped using one or more
  510                  * entries in the GATT (assuming that PAGE_SIZE >=
  511                  * AGP_PAGE_SIZE. If this is the first call to bind,
  512                  * the pages will be allocated and zeroed.
  513                  */
  514                 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
  515                     VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
  516                 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
  517         }
  518         VM_OBJECT_UNLOCK(mem->am_obj);
  519 
  520         mtx_lock(&sc->as_lock);
  521 
  522         if (mem->am_is_bound) {
  523                 device_printf(dev, "memory already bound\n");
  524                 error = EINVAL;
  525                 VM_OBJECT_LOCK(mem->am_obj);
  526                 goto bad;
  527         }
  528         
  529         /*
  530          * Bind the individual pages and flush the chipset's
  531          * TLB.
  532          *
  533          * XXX Presumably, this needs to be the pci address on alpha
  534          * (i.e. use alpha_XXX_dmamap()). I don't have access to any
  535          * alpha AGP hardware to check.
  536          */
  537         VM_OBJECT_LOCK(mem->am_obj);
  538         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  539                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
  540 
  541                 /*
  542                  * Install entries in the GATT, making sure that if
  543                  * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
  544                  * aligned to PAGE_SIZE, we don't modify too many GATT 
  545                  * entries.
  546                  */
  547                 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
  548                      j += AGP_PAGE_SIZE) {
  549                         vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
  550                         AGP_DPF("binding offset %#x to pa %#x\n",
  551                                 offset + i + j, pa);
  552                         error = AGP_BIND_PAGE(dev, offset + i + j, pa);
  553                         if (error) {
  554                                 /*
  555                                  * Bail out. Reverse all the mappings
  556                                  * and unwire the pages.
  557                                  */
  558                                 vm_page_lock_queues();
  559                                 vm_page_wakeup(m);
  560                                 vm_page_unlock_queues();
  561                                 for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
  562                                         AGP_UNBIND_PAGE(dev, offset + k);
  563                                 goto bad;
  564                         }
  565                 }
  566                 vm_page_lock_queues();
  567                 vm_page_wakeup(m);
  568                 vm_page_unlock_queues();
  569         }
  570         VM_OBJECT_UNLOCK(mem->am_obj);
  571 
  572         /*
  573          * Flush the cpu cache since we are providing a new mapping
  574          * for these pages.
  575          */
  576         agp_flush_cache();
  577 
  578         /*
  579          * Make sure the chipset gets the new mappings.
  580          */
  581         AGP_FLUSH_TLB(dev);
  582 
  583         mem->am_offset = offset;
  584         mem->am_is_bound = 1;
  585 
  586         mtx_unlock(&sc->as_lock);
  587 
  588         return 0;
  589 bad:
  590         mtx_unlock(&sc->as_lock);
  591         VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED);
  592         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  593                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
  594                 vm_page_lock_queues();
  595                 vm_page_unwire(m, 0);
  596                 vm_page_unlock_queues();
  597         }
  598         VM_OBJECT_UNLOCK(mem->am_obj);
  599 
  600         return error;
  601 }
  602 
  603 int
  604 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
  605 {
  606         struct agp_softc *sc = device_get_softc(dev);
  607         vm_page_t m;
  608         int i;
  609 
  610         mtx_lock(&sc->as_lock);
  611 
  612         if (!mem->am_is_bound) {
  613                 device_printf(dev, "memory is not bound\n");
  614                 mtx_unlock(&sc->as_lock);
  615                 return EINVAL;
  616         }
  617 
  618 
  619         /*
  620          * Unbind the individual pages and flush the chipset's
  621          * TLB. Unwire the pages so they can be swapped.
  622          */
  623         for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
  624                 AGP_UNBIND_PAGE(dev, mem->am_offset + i);
  625         VM_OBJECT_LOCK(mem->am_obj);
  626         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  627                 m = vm_page_lookup(mem->am_obj, atop(i));
  628                 vm_page_lock_queues();
  629                 vm_page_unwire(m, 0);
  630                 vm_page_unlock_queues();
  631         }
  632         VM_OBJECT_UNLOCK(mem->am_obj);
  633                 
  634         agp_flush_cache();
  635         AGP_FLUSH_TLB(dev);
  636 
  637         mem->am_offset = 0;
  638         mem->am_is_bound = 0;
  639 
  640         mtx_unlock(&sc->as_lock);
  641 
  642         return 0;
  643 }
  644 
  645 /* Helper functions for implementing user/kernel api */
  646 
  647 static int
  648 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
  649 {
  650         struct agp_softc *sc = device_get_softc(dev);
  651 
  652         if (sc->as_state != AGP_ACQUIRE_FREE)
  653                 return EBUSY;
  654         sc->as_state = state;
  655 
  656         return 0;
  657 }
  658 
  659 static int
  660 agp_release_helper(device_t dev, enum agp_acquire_state state)
  661 {
  662         struct agp_softc *sc = device_get_softc(dev);
  663 
  664         if (sc->as_state == AGP_ACQUIRE_FREE)
  665                 return 0;
  666 
  667         if (sc->as_state != state)
  668                 return EBUSY;
  669 
  670         sc->as_state = AGP_ACQUIRE_FREE;
  671         return 0;
  672 }
  673 
  674 static struct agp_memory *
  675 agp_find_memory(device_t dev, int id)
  676 {
  677         struct agp_softc *sc = device_get_softc(dev);
  678         struct agp_memory *mem;
  679 
  680         AGP_DPF("searching for memory block %d\n", id);
  681         TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
  682                 AGP_DPF("considering memory block %d\n", mem->am_id);
  683                 if (mem->am_id == id)
  684                         return mem;
  685         }
  686         return 0;
  687 }
  688 
  689 /* Implementation of the userland ioctl api */
  690 
  691 static int
  692 agp_info_user(device_t dev, agp_info *info)
  693 {
  694         struct agp_softc *sc = device_get_softc(dev);
  695 
  696         bzero(info, sizeof *info);
  697         info->bridge_id = pci_get_devid(dev);
  698         info->agp_mode = 
  699             pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  700         info->aper_base = rman_get_start(sc->as_aperture);
  701         info->aper_size = AGP_GET_APERTURE(dev) >> 20;
  702         info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
  703         info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
  704 
  705         return 0;
  706 }
  707 
  708 static int
  709 agp_setup_user(device_t dev, agp_setup *setup)
  710 {
  711         return AGP_ENABLE(dev, setup->agp_mode);
  712 }
  713 
  714 static int
  715 agp_allocate_user(device_t dev, agp_allocate *alloc)
  716 {
  717         struct agp_memory *mem;
  718 
  719         mem = AGP_ALLOC_MEMORY(dev,
  720                                alloc->type,
  721                                alloc->pg_count << AGP_PAGE_SHIFT);
  722         if (mem) {
  723                 alloc->key = mem->am_id;
  724                 alloc->physical = mem->am_physical;
  725                 return 0;
  726         } else {
  727                 return ENOMEM;
  728         }
  729 }
  730 
  731 static int
  732 agp_deallocate_user(device_t dev, int id)
  733 {
  734         struct agp_memory *mem = agp_find_memory(dev, id);;
  735 
  736         if (mem) {
  737                 AGP_FREE_MEMORY(dev, mem);
  738                 return 0;
  739         } else {
  740                 return ENOENT;
  741         }
  742 }
  743 
  744 static int
  745 agp_bind_user(device_t dev, agp_bind *bind)
  746 {
  747         struct agp_memory *mem = agp_find_memory(dev, bind->key);
  748 
  749         if (!mem)
  750                 return ENOENT;
  751 
  752         return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
  753 }
  754 
  755 static int
  756 agp_unbind_user(device_t dev, agp_unbind *unbind)
  757 {
  758         struct agp_memory *mem = agp_find_memory(dev, unbind->key);
  759 
  760         if (!mem)
  761                 return ENOENT;
  762 
  763         return AGP_UNBIND_MEMORY(dev, mem);
  764 }
  765 
  766 static int
  767 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
  768 {
  769         device_t dev = KDEV2DEV(kdev);
  770         struct agp_softc *sc = device_get_softc(dev);
  771 
  772         if (!sc->as_isopen) {
  773                 sc->as_isopen = 1;
  774                 device_busy(dev);
  775         }
  776 
  777         return 0;
  778 }
  779 
  780 static int
  781 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
  782 {
  783         device_t dev = KDEV2DEV(kdev);
  784         struct agp_softc *sc = device_get_softc(dev);
  785         struct agp_memory *mem;
  786 
  787         /*
  788          * Clear the GATT and force release on last close
  789          */
  790         while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
  791                 if (mem->am_is_bound)
  792                         AGP_UNBIND_MEMORY(dev, mem);
  793                 AGP_FREE_MEMORY(dev, mem);
  794         }
  795         if (sc->as_state == AGP_ACQUIRE_USER)
  796                 agp_release_helper(dev, AGP_ACQUIRE_USER);
  797         sc->as_isopen = 0;
  798         device_unbusy(dev);
  799 
  800         return 0;
  801 }
  802 
  803 static int
  804 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  805 {
  806         device_t dev = KDEV2DEV(kdev);
  807 
  808         switch (cmd) {
  809         case AGPIOC_INFO:
  810                 return agp_info_user(dev, (agp_info *) data);
  811 
  812         case AGPIOC_ACQUIRE:
  813                 return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
  814 
  815         case AGPIOC_RELEASE:
  816                 return agp_release_helper(dev, AGP_ACQUIRE_USER);
  817 
  818         case AGPIOC_SETUP:
  819                 return agp_setup_user(dev, (agp_setup *)data);
  820 
  821         case AGPIOC_ALLOCATE:
  822                 return agp_allocate_user(dev, (agp_allocate *)data);
  823 
  824         case AGPIOC_DEALLOCATE:
  825                 return agp_deallocate_user(dev, *(int *) data);
  826 
  827         case AGPIOC_BIND:
  828                 return agp_bind_user(dev, (agp_bind *)data);
  829 
  830         case AGPIOC_UNBIND:
  831                 return agp_unbind_user(dev, (agp_unbind *)data);
  832 
  833         }
  834 
  835         return EINVAL;
  836 }
  837 
  838 static int
  839 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot)
  840 {
  841         device_t dev = KDEV2DEV(kdev);
  842         struct agp_softc *sc = device_get_softc(dev);
  843 
  844         if (offset > AGP_GET_APERTURE(dev))
  845                 return -1;
  846         *paddr = rman_get_start(sc->as_aperture) + offset;
  847         return 0;
  848 }
  849 
  850 /* Implementation of the kernel api */
  851 
  852 device_t
  853 agp_find_device()
  854 {
  855         if (!agp_devclass)
  856                 return 0;
  857         return devclass_get_device(agp_devclass, 0);
  858 }
  859 
  860 enum agp_acquire_state
  861 agp_state(device_t dev)
  862 {
  863         struct agp_softc *sc = device_get_softc(dev);
  864         return sc->as_state;
  865 }
  866 
  867 void
  868 agp_get_info(device_t dev, struct agp_info *info)
  869 {
  870         struct agp_softc *sc = device_get_softc(dev);
  871 
  872         info->ai_mode =
  873                 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  874         info->ai_aperture_base = rman_get_start(sc->as_aperture);
  875         info->ai_aperture_size = rman_get_size(sc->as_aperture);
  876         info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
  877         info->ai_memory_allowed = sc->as_maxmem;
  878         info->ai_memory_used = sc->as_allocated;
  879 }
  880 
  881 int
  882 agp_acquire(device_t dev)
  883 {
  884         return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
  885 }
  886 
  887 int
  888 agp_release(device_t dev)
  889 {
  890         return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
  891 }
  892 
  893 int
  894 agp_enable(device_t dev, u_int32_t mode)
  895 {
  896         return AGP_ENABLE(dev, mode);
  897 }
  898 
  899 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
  900 {
  901         return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
  902 }
  903 
  904 void agp_free_memory(device_t dev, void *handle)
  905 {
  906         struct agp_memory *mem = (struct agp_memory *) handle;
  907         AGP_FREE_MEMORY(dev, mem);
  908 }
  909 
  910 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
  911 {
  912         struct agp_memory *mem = (struct agp_memory *) handle;
  913         return AGP_BIND_MEMORY(dev, mem, offset);
  914 }
  915 
  916 int agp_unbind_memory(device_t dev, void *handle)
  917 {
  918         struct agp_memory *mem = (struct agp_memory *) handle;
  919         return AGP_UNBIND_MEMORY(dev, mem);
  920 }
  921 
  922 void agp_memory_info(device_t dev, void *handle, struct
  923                      agp_memory_info *mi)
  924 {
  925         struct agp_memory *mem = (struct agp_memory *) handle;
  926 
  927         mi->ami_size = mem->am_size;
  928         mi->ami_physical = mem->am_physical;
  929         mi->ami_offset = mem->am_offset;
  930         mi->ami_is_bound = mem->am_is_bound;
  931 }

Cache object: 99ba5c45dbceda0be60f5452c07adc14


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.