The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/agp.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/7.3/sys/pci/agp.c 186830 2009-01-06 15:18:14Z kib $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/malloc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/bus.h>
   38 #include <sys/conf.h>
   39 #include <sys/ioccom.h>
   40 #include <sys/agpio.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/proc.h>
   44 
   45 #include <dev/pci/pcivar.h>
   46 #include <dev/pci/pcireg.h>
   47 #include <pci/agppriv.h>
   48 #include <pci/agpvar.h>
   49 #include <pci/agpreg.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/vm_object.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_pageout.h>
   55 #include <vm/pmap.h>
   56 
   57 #include <machine/md_var.h>
   58 #include <machine/bus.h>
   59 #include <machine/resource.h>
   60 #include <sys/rman.h>
   61 
   62 MODULE_VERSION(agp, 1);
   63 
   64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
   65 
   66                                 /* agp_drv.c */
   67 static d_open_t agp_open;
   68 static d_close_t agp_close;
   69 static d_ioctl_t agp_ioctl;
   70 static d_mmap_t agp_mmap;
   71 
   72 static struct cdevsw agp_cdevsw = {
   73         .d_version =    D_VERSION,
   74         .d_flags =      D_NEEDGIANT,
   75         .d_open =       agp_open,
   76         .d_close =      agp_close,
   77         .d_ioctl =      agp_ioctl,
   78         .d_mmap =       agp_mmap,
   79         .d_name =       "agp",
   80 };
   81 
   82 static devclass_t agp_devclass;
   83 #define KDEV2DEV(kdev)  devclass_get_device(agp_devclass, minor(kdev))
   84 
   85 /* Helper functions for implementing chipset mini drivers. */
   86 
   87 void
   88 agp_flush_cache()
   89 {
   90 #if defined(__i386__) || defined(__amd64__)
   91         wbinvd();
   92 #endif
   93 }
   94 
   95 u_int8_t
   96 agp_find_caps(device_t dev)
   97 {
   98         int capreg;
   99 
  100 
  101         if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0)
  102                 capreg = 0;
  103         return (capreg);
  104 }
  105 
  106 /*
  107  * Find an AGP display device (if any).
  108  */
  109 static device_t
  110 agp_find_display(void)
  111 {
  112         devclass_t pci = devclass_find("pci");
  113         device_t bus, dev = 0;
  114         device_t *kids;
  115         int busnum, numkids, i;
  116 
  117         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  118                 bus = devclass_get_device(pci, busnum);
  119                 if (!bus)
  120                         continue;
  121                 device_get_children(bus, &kids, &numkids);
  122                 for (i = 0; i < numkids; i++) {
  123                         dev = kids[i];
  124                         if (pci_get_class(dev) == PCIC_DISPLAY
  125                             && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
  126                                 if (agp_find_caps(dev)) {
  127                                         free(kids, M_TEMP);
  128                                         return dev;
  129                                 }
  130                                         
  131                 }
  132                 free(kids, M_TEMP);
  133         }
  134 
  135         return 0;
  136 }
  137 
  138 struct agp_gatt *
  139 agp_alloc_gatt(device_t dev)
  140 {
  141         u_int32_t apsize = AGP_GET_APERTURE(dev);
  142         u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
  143         struct agp_gatt *gatt;
  144 
  145         if (bootverbose)
  146                 device_printf(dev,
  147                               "allocating GATT for aperture of size %dM\n",
  148                               apsize / (1024*1024));
  149 
  150         if (entries == 0) {
  151                 device_printf(dev, "bad aperture size\n");
  152                 return NULL;
  153         }
  154 
  155         gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
  156         if (!gatt)
  157                 return 0;
  158 
  159         gatt->ag_entries = entries;
  160         gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
  161                                         0, ~0, PAGE_SIZE, 0);
  162         if (!gatt->ag_virtual) {
  163                 if (bootverbose)
  164                         device_printf(dev, "contiguous allocation failed\n");
  165                 free(gatt, M_AGP);
  166                 return 0;
  167         }
  168         bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
  169         gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
  170         agp_flush_cache();
  171 
  172         return gatt;
  173 }
  174 
  175 void
  176 agp_free_gatt(struct agp_gatt *gatt)
  177 {
  178         contigfree(gatt->ag_virtual,
  179                    gatt->ag_entries * sizeof(u_int32_t), M_AGP);
  180         free(gatt, M_AGP);
  181 }
  182 
  183 static u_int agp_max[][2] = {
  184         {0,     0},
  185         {32,    4},
  186         {64,    28},
  187         {128,   96},
  188         {256,   204},
  189         {512,   440},
  190         {1024,  942},
  191         {2048,  1920},
  192         {4096,  3932}
  193 };
  194 #define agp_max_size    (sizeof(agp_max) / sizeof(agp_max[0]))
  195 
  196 /**
  197  * Sets the PCI resource which represents the AGP aperture.
  198  *
  199  * If not called, the default AGP aperture resource of AGP_APBASE will
  200  * be used.  Must be called before agp_generic_attach().
  201  */
  202 void
  203 agp_set_aperture_resource(device_t dev, int rid)
  204 {
  205         struct agp_softc *sc = device_get_softc(dev);
  206 
  207         sc->as_aperture_rid = rid;
  208 }
  209 
  210 int
  211 agp_generic_attach(device_t dev)
  212 {
  213         struct agp_softc *sc = device_get_softc(dev);
  214         int i;
  215         u_int memsize;
  216 
  217         /*
  218          * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
  219          * because the kernel doesn't need to map it.
  220          */
  221         if (sc->as_aperture_rid == 0)
  222                 sc->as_aperture_rid = AGP_APBASE;
  223 
  224         sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  225             &sc->as_aperture_rid, RF_SHAREABLE);
  226         if (!sc->as_aperture)
  227                 return ENOMEM;
  228 
  229         /*
  230          * Work out an upper bound for agp memory allocation. This
  231          * uses a heurisitc table from the Linux driver.
  232          */
  233         memsize = ptoa(Maxmem) >> 20;
  234         for (i = 0; i < agp_max_size; i++) {
  235                 if (memsize <= agp_max[i][0])
  236                         break;
  237         }
  238         if (i == agp_max_size) i = agp_max_size - 1;
  239         sc->as_maxmem = agp_max[i][1] << 20U;
  240 
  241         /*
  242          * The lock is used to prevent re-entry to
  243          * agp_generic_bind_memory() since that function can sleep.
  244          */
  245         mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
  246 
  247         /*
  248          * Initialise stuff for the userland device.
  249          */
  250         agp_devclass = devclass_find("agp");
  251         TAILQ_INIT(&sc->as_memory);
  252         sc->as_nextid = 1;
  253 
  254         sc->as_devnode = make_dev(&agp_cdevsw,
  255                                   device_get_unit(dev),
  256                                   UID_ROOT,
  257                                   GID_WHEEL,
  258                                   0600,
  259                                   "agpgart");
  260 
  261         return 0;
  262 }
  263 
  264 void
  265 agp_free_cdev(device_t dev)
  266 {
  267         struct agp_softc *sc = device_get_softc(dev);
  268 
  269         destroy_dev(sc->as_devnode);
  270 }
  271 
  272 void
  273 agp_free_res(device_t dev)
  274 {
  275         struct agp_softc *sc = device_get_softc(dev);
  276 
  277         bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
  278             sc->as_aperture);
  279         mtx_destroy(&sc->as_lock);
  280         agp_flush_cache();
  281 }
  282 
  283 int
  284 agp_generic_detach(device_t dev)
  285 {
  286 
  287         agp_free_cdev(dev);
  288         agp_free_res(dev);
  289         return 0;
  290 }
  291 
  292 /**
  293  * Default AGP aperture size detection which simply returns the size of
  294  * the aperture's PCI resource.
  295  */
  296 int
  297 agp_generic_get_aperture(device_t dev)
  298 {
  299         struct agp_softc *sc = device_get_softc(dev);
  300 
  301         return rman_get_size(sc->as_aperture);
  302 }
  303 
  304 /**
  305  * Default AGP aperture size setting function, which simply doesn't allow
  306  * changes to resource size.
  307  */
  308 int
  309 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
  310 {
  311         u_int32_t current_aperture;
  312 
  313         current_aperture = AGP_GET_APERTURE(dev);
  314         if (current_aperture != aperture)
  315                 return EINVAL;
  316         else
  317                 return 0;
  318 }
  319 
  320 /*
  321  * This does the enable logic for v3, with the same topology
  322  * restrictions as in place for v2 -- one bus, one device on the bus.
  323  */
  324 static int
  325 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
  326 {
  327         u_int32_t tstatus, mstatus;
  328         u_int32_t command;
  329         int rq, sba, fw, rate, arqsz, cal;
  330 
  331         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  332         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  333 
  334         /* Set RQ to the min of mode, tstatus and mstatus */
  335         rq = AGP_MODE_GET_RQ(mode);
  336         if (AGP_MODE_GET_RQ(tstatus) < rq)
  337                 rq = AGP_MODE_GET_RQ(tstatus);
  338         if (AGP_MODE_GET_RQ(mstatus) < rq)
  339                 rq = AGP_MODE_GET_RQ(mstatus);
  340 
  341         /*
  342          * ARQSZ - Set the value to the maximum one.
  343          * Don't allow the mode register to override values.
  344          */
  345         arqsz = AGP_MODE_GET_ARQSZ(mode);
  346         if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
  347                 rq = AGP_MODE_GET_ARQSZ(tstatus);
  348         if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
  349                 rq = AGP_MODE_GET_ARQSZ(mstatus);
  350 
  351         /* Calibration cycle - don't allow override by mode register */
  352         cal = AGP_MODE_GET_CAL(tstatus);
  353         if (AGP_MODE_GET_CAL(mstatus) < cal)
  354                 cal = AGP_MODE_GET_CAL(mstatus);
  355 
  356         /* SBA must be supported for AGP v3. */
  357         sba = 1;
  358 
  359         /* Set FW if all three support it. */
  360         fw = (AGP_MODE_GET_FW(tstatus)
  361                & AGP_MODE_GET_FW(mstatus)
  362                & AGP_MODE_GET_FW(mode));
  363         
  364         /* Figure out the max rate */
  365         rate = (AGP_MODE_GET_RATE(tstatus)
  366                 & AGP_MODE_GET_RATE(mstatus)
  367                 & AGP_MODE_GET_RATE(mode));
  368         if (rate & AGP_MODE_V3_RATE_8x)
  369                 rate = AGP_MODE_V3_RATE_8x;
  370         else
  371                 rate = AGP_MODE_V3_RATE_4x;
  372         if (bootverbose)
  373                 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
  374 
  375         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
  376 
  377         /* Construct the new mode word and tell the hardware */
  378         command = 0;
  379         command = AGP_MODE_SET_RQ(0, rq);
  380         command = AGP_MODE_SET_ARQSZ(command, arqsz);
  381         command = AGP_MODE_SET_CAL(command, cal);
  382         command = AGP_MODE_SET_SBA(command, sba);
  383         command = AGP_MODE_SET_FW(command, fw);
  384         command = AGP_MODE_SET_RATE(command, rate);
  385         command = AGP_MODE_SET_MODE_3(command, 1);
  386         command = AGP_MODE_SET_AGP(command, 1);
  387         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  388         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  389 
  390         return 0;
  391 }
  392 
  393 static int
  394 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
  395 {
  396         u_int32_t tstatus, mstatus;
  397         u_int32_t command;
  398         int rq, sba, fw, rate;
  399 
  400         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  401         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  402 
  403         /* Set RQ to the min of mode, tstatus and mstatus */
  404         rq = AGP_MODE_GET_RQ(mode);
  405         if (AGP_MODE_GET_RQ(tstatus) < rq)
  406                 rq = AGP_MODE_GET_RQ(tstatus);
  407         if (AGP_MODE_GET_RQ(mstatus) < rq)
  408                 rq = AGP_MODE_GET_RQ(mstatus);
  409 
  410         /* Set SBA if all three can deal with SBA */
  411         sba = (AGP_MODE_GET_SBA(tstatus)
  412                & AGP_MODE_GET_SBA(mstatus)
  413                & AGP_MODE_GET_SBA(mode));
  414 
  415         /* Similar for FW */
  416         fw = (AGP_MODE_GET_FW(tstatus)
  417                & AGP_MODE_GET_FW(mstatus)
  418                & AGP_MODE_GET_FW(mode));
  419 
  420         /* Figure out the max rate */
  421         rate = (AGP_MODE_GET_RATE(tstatus)
  422                 & AGP_MODE_GET_RATE(mstatus)
  423                 & AGP_MODE_GET_RATE(mode));
  424         if (rate & AGP_MODE_V2_RATE_4x)
  425                 rate = AGP_MODE_V2_RATE_4x;
  426         else if (rate & AGP_MODE_V2_RATE_2x)
  427                 rate = AGP_MODE_V2_RATE_2x;
  428         else
  429                 rate = AGP_MODE_V2_RATE_1x;
  430         if (bootverbose)
  431                 device_printf(dev, "Setting AGP v2 mode %d\n", rate);
  432 
  433         /* Construct the new mode word and tell the hardware */
  434         command = 0;
  435         command = AGP_MODE_SET_RQ(0, rq);
  436         command = AGP_MODE_SET_SBA(command, sba);
  437         command = AGP_MODE_SET_FW(command, fw);
  438         command = AGP_MODE_SET_RATE(command, rate);
  439         command = AGP_MODE_SET_AGP(command, 1);
  440         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  441         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  442 
  443         return 0;
  444 }
  445 
  446 int
  447 agp_generic_enable(device_t dev, u_int32_t mode)
  448 {
  449         device_t mdev = agp_find_display();
  450         u_int32_t tstatus, mstatus;
  451 
  452         if (!mdev) {
  453                 AGP_DPF("can't find display\n");
  454                 return ENXIO;
  455         }
  456 
  457         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  458         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  459 
  460         /*
  461          * Check display and bridge for AGP v3 support.  AGP v3 allows
  462          * more variety in topology than v2, e.g. multiple AGP devices
  463          * attached to one bridge, or multiple AGP bridges in one
  464          * system.  This doesn't attempt to address those situations,
  465          * but should work fine for a classic single AGP slot system
  466          * with AGP v3.
  467          */
  468         if (AGP_MODE_GET_MODE_3(mode) &&
  469             AGP_MODE_GET_MODE_3(tstatus) &&
  470             AGP_MODE_GET_MODE_3(mstatus))
  471                 return (agp_v3_enable(dev, mdev, mode));
  472         else
  473                 return (agp_v2_enable(dev, mdev, mode));            
  474 }
  475 
  476 struct agp_memory *
  477 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
  478 {
  479         struct agp_softc *sc = device_get_softc(dev);
  480         struct agp_memory *mem;
  481 
  482         if ((size & (AGP_PAGE_SIZE - 1)) != 0)
  483                 return 0;
  484 
  485         if (sc->as_allocated + size > sc->as_maxmem)
  486                 return 0;
  487 
  488         if (type != 0) {
  489                 printf("agp_generic_alloc_memory: unsupported type %d\n",
  490                        type);
  491                 return 0;
  492         }
  493 
  494         mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
  495         mem->am_id = sc->as_nextid++;
  496         mem->am_size = size;
  497         mem->am_type = 0;
  498         mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
  499         mem->am_physical = 0;
  500         mem->am_offset = 0;
  501         mem->am_is_bound = 0;
  502         TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
  503         sc->as_allocated += size;
  504 
  505         return mem;
  506 }
  507 
  508 int
  509 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
  510 {
  511         struct agp_softc *sc = device_get_softc(dev);
  512 
  513         if (mem->am_is_bound)
  514                 return EBUSY;
  515 
  516         sc->as_allocated -= mem->am_size;
  517         TAILQ_REMOVE(&sc->as_memory, mem, am_link);
  518         vm_object_deallocate(mem->am_obj);
  519         free(mem, M_AGP);
  520         return 0;
  521 }
  522 
  523 int
  524 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
  525                         vm_offset_t offset)
  526 {
  527         struct agp_softc *sc = device_get_softc(dev);
  528         vm_offset_t i, j, k;
  529         vm_page_t m;
  530         int error;
  531 
  532         /* Do some sanity checks first. */
  533         if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 ||
  534             offset + mem->am_size > AGP_GET_APERTURE(dev)) {
  535                 device_printf(dev, "binding memory at bad offset %#x\n",
  536                     (int)offset);
  537                 return EINVAL;
  538         }
  539 
  540         /*
  541          * Allocate the pages early, before acquiring the lock,
  542          * because vm_page_grab() used with VM_ALLOC_RETRY may
  543          * block and we can't hold a mutex while blocking.
  544          */
  545         VM_OBJECT_LOCK(mem->am_obj);
  546         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  547                 /*
  548                  * Find a page from the object and wire it
  549                  * down. This page will be mapped using one or more
  550                  * entries in the GATT (assuming that PAGE_SIZE >=
  551                  * AGP_PAGE_SIZE. If this is the first call to bind,
  552                  * the pages will be allocated and zeroed.
  553                  */
  554                 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
  555                     VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
  556                 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
  557         }
  558         VM_OBJECT_UNLOCK(mem->am_obj);
  559 
  560         mtx_lock(&sc->as_lock);
  561 
  562         if (mem->am_is_bound) {
  563                 device_printf(dev, "memory already bound\n");
  564                 error = EINVAL;
  565                 VM_OBJECT_LOCK(mem->am_obj);
  566                 i = 0;
  567                 goto bad;
  568         }
  569         
  570         /*
  571          * Bind the individual pages and flush the chipset's
  572          * TLB.
  573          */
  574         VM_OBJECT_LOCK(mem->am_obj);
  575         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  576                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
  577 
  578                 /*
  579                  * Install entries in the GATT, making sure that if
  580                  * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
  581                  * aligned to PAGE_SIZE, we don't modify too many GATT 
  582                  * entries.
  583                  */
  584                 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
  585                      j += AGP_PAGE_SIZE) {
  586                         vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
  587                         AGP_DPF("binding offset %#x to pa %#x\n",
  588                                 offset + i + j, pa);
  589                         error = AGP_BIND_PAGE(dev, offset + i + j, pa);
  590                         if (error) {
  591                                 /*
  592                                  * Bail out. Reverse all the mappings
  593                                  * and unwire the pages.
  594                                  */
  595                                 for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
  596                                         AGP_UNBIND_PAGE(dev, offset + k);
  597                                 goto bad;
  598                         }
  599                 }
  600                 vm_page_wakeup(m);
  601         }
  602         VM_OBJECT_UNLOCK(mem->am_obj);
  603 
  604         /*
  605          * Flush the cpu cache since we are providing a new mapping
  606          * for these pages.
  607          */
  608         agp_flush_cache();
  609 
  610         /*
  611          * Make sure the chipset gets the new mappings.
  612          */
  613         AGP_FLUSH_TLB(dev);
  614 
  615         mem->am_offset = offset;
  616         mem->am_is_bound = 1;
  617 
  618         mtx_unlock(&sc->as_lock);
  619 
  620         return 0;
  621 bad:
  622         mtx_unlock(&sc->as_lock);
  623         VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED);
  624         for (k = 0; k < mem->am_size; k += PAGE_SIZE) {
  625                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k));
  626                 if (k >= i)
  627                         vm_page_wakeup(m);
  628                 vm_page_lock_queues();
  629                 vm_page_unwire(m, 0);
  630                 vm_page_unlock_queues();
  631         }
  632         VM_OBJECT_UNLOCK(mem->am_obj);
  633 
  634         return error;
  635 }
  636 
  637 int
  638 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
  639 {
  640         struct agp_softc *sc = device_get_softc(dev);
  641         vm_page_t m;
  642         int i;
  643 
  644         mtx_lock(&sc->as_lock);
  645 
  646         if (!mem->am_is_bound) {
  647                 device_printf(dev, "memory is not bound\n");
  648                 mtx_unlock(&sc->as_lock);
  649                 return EINVAL;
  650         }
  651 
  652 
  653         /*
  654          * Unbind the individual pages and flush the chipset's
  655          * TLB. Unwire the pages so they can be swapped.
  656          */
  657         for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
  658                 AGP_UNBIND_PAGE(dev, mem->am_offset + i);
  659         VM_OBJECT_LOCK(mem->am_obj);
  660         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  661                 m = vm_page_lookup(mem->am_obj, atop(i));
  662                 vm_page_lock_queues();
  663                 vm_page_unwire(m, 0);
  664                 vm_page_unlock_queues();
  665         }
  666         VM_OBJECT_UNLOCK(mem->am_obj);
  667                 
  668         agp_flush_cache();
  669         AGP_FLUSH_TLB(dev);
  670 
  671         mem->am_offset = 0;
  672         mem->am_is_bound = 0;
  673 
  674         mtx_unlock(&sc->as_lock);
  675 
  676         return 0;
  677 }
  678 
  679 /* Helper functions for implementing user/kernel api */
  680 
  681 static int
  682 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
  683 {
  684         struct agp_softc *sc = device_get_softc(dev);
  685 
  686         if (sc->as_state != AGP_ACQUIRE_FREE)
  687                 return EBUSY;
  688         sc->as_state = state;
  689 
  690         return 0;
  691 }
  692 
  693 static int
  694 agp_release_helper(device_t dev, enum agp_acquire_state state)
  695 {
  696         struct agp_softc *sc = device_get_softc(dev);
  697 
  698         if (sc->as_state == AGP_ACQUIRE_FREE)
  699                 return 0;
  700 
  701         if (sc->as_state != state)
  702                 return EBUSY;
  703 
  704         sc->as_state = AGP_ACQUIRE_FREE;
  705         return 0;
  706 }
  707 
  708 static struct agp_memory *
  709 agp_find_memory(device_t dev, int id)
  710 {
  711         struct agp_softc *sc = device_get_softc(dev);
  712         struct agp_memory *mem;
  713 
  714         AGP_DPF("searching for memory block %d\n", id);
  715         TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
  716                 AGP_DPF("considering memory block %d\n", mem->am_id);
  717                 if (mem->am_id == id)
  718                         return mem;
  719         }
  720         return 0;
  721 }
  722 
  723 /* Implementation of the userland ioctl api */
  724 
  725 static int
  726 agp_info_user(device_t dev, agp_info *info)
  727 {
  728         struct agp_softc *sc = device_get_softc(dev);
  729 
  730         bzero(info, sizeof *info);
  731         info->bridge_id = pci_get_devid(dev);
  732         info->agp_mode = 
  733             pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  734         info->aper_base = rman_get_start(sc->as_aperture);
  735         info->aper_size = AGP_GET_APERTURE(dev) >> 20;
  736         info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
  737         info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
  738 
  739         return 0;
  740 }
  741 
  742 static int
  743 agp_setup_user(device_t dev, agp_setup *setup)
  744 {
  745         return AGP_ENABLE(dev, setup->agp_mode);
  746 }
  747 
  748 static int
  749 agp_allocate_user(device_t dev, agp_allocate *alloc)
  750 {
  751         struct agp_memory *mem;
  752 
  753         mem = AGP_ALLOC_MEMORY(dev,
  754                                alloc->type,
  755                                alloc->pg_count << AGP_PAGE_SHIFT);
  756         if (mem) {
  757                 alloc->key = mem->am_id;
  758                 alloc->physical = mem->am_physical;
  759                 return 0;
  760         } else {
  761                 return ENOMEM;
  762         }
  763 }
  764 
  765 static int
  766 agp_deallocate_user(device_t dev, int id)
  767 {
  768         struct agp_memory *mem = agp_find_memory(dev, id);;
  769 
  770         if (mem) {
  771                 AGP_FREE_MEMORY(dev, mem);
  772                 return 0;
  773         } else {
  774                 return ENOENT;
  775         }
  776 }
  777 
  778 static int
  779 agp_bind_user(device_t dev, agp_bind *bind)
  780 {
  781         struct agp_memory *mem = agp_find_memory(dev, bind->key);
  782 
  783         if (!mem)
  784                 return ENOENT;
  785 
  786         return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
  787 }
  788 
  789 static int
  790 agp_unbind_user(device_t dev, agp_unbind *unbind)
  791 {
  792         struct agp_memory *mem = agp_find_memory(dev, unbind->key);
  793 
  794         if (!mem)
  795                 return ENOENT;
  796 
  797         return AGP_UNBIND_MEMORY(dev, mem);
  798 }
  799 
  800 static int
  801 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
  802 {
  803         device_t dev = KDEV2DEV(kdev);
  804         struct agp_softc *sc = device_get_softc(dev);
  805 
  806         if (!sc->as_isopen) {
  807                 sc->as_isopen = 1;
  808                 device_busy(dev);
  809         }
  810 
  811         return 0;
  812 }
  813 
  814 static int
  815 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
  816 {
  817         device_t dev = KDEV2DEV(kdev);
  818         struct agp_softc *sc = device_get_softc(dev);
  819         struct agp_memory *mem;
  820 
  821         /*
  822          * Clear the GATT and force release on last close
  823          */
  824         while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
  825                 if (mem->am_is_bound)
  826                         AGP_UNBIND_MEMORY(dev, mem);
  827                 AGP_FREE_MEMORY(dev, mem);
  828         }
  829         if (sc->as_state == AGP_ACQUIRE_USER)
  830                 agp_release_helper(dev, AGP_ACQUIRE_USER);
  831         sc->as_isopen = 0;
  832         device_unbusy(dev);
  833 
  834         return 0;
  835 }
  836 
  837 static int
  838 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  839 {
  840         device_t dev = KDEV2DEV(kdev);
  841 
  842         switch (cmd) {
  843         case AGPIOC_INFO:
  844                 return agp_info_user(dev, (agp_info *) data);
  845 
  846         case AGPIOC_ACQUIRE:
  847                 return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
  848 
  849         case AGPIOC_RELEASE:
  850                 return agp_release_helper(dev, AGP_ACQUIRE_USER);
  851 
  852         case AGPIOC_SETUP:
  853                 return agp_setup_user(dev, (agp_setup *)data);
  854 
  855         case AGPIOC_ALLOCATE:
  856                 return agp_allocate_user(dev, (agp_allocate *)data);
  857 
  858         case AGPIOC_DEALLOCATE:
  859                 return agp_deallocate_user(dev, *(int *) data);
  860 
  861         case AGPIOC_BIND:
  862                 return agp_bind_user(dev, (agp_bind *)data);
  863 
  864         case AGPIOC_UNBIND:
  865                 return agp_unbind_user(dev, (agp_unbind *)data);
  866 
  867         }
  868 
  869         return EINVAL;
  870 }
  871 
  872 static int
  873 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot)
  874 {
  875         device_t dev = KDEV2DEV(kdev);
  876         struct agp_softc *sc = device_get_softc(dev);
  877 
  878         if (offset > AGP_GET_APERTURE(dev))
  879                 return -1;
  880         *paddr = rman_get_start(sc->as_aperture) + offset;
  881         return 0;
  882 }
  883 
  884 /* Implementation of the kernel api */
  885 
  886 device_t
  887 agp_find_device()
  888 {
  889         device_t *children, child;
  890         int i, count;
  891 
  892         if (!agp_devclass)
  893                 return NULL;
  894         if (devclass_get_devices(agp_devclass, &children, &count) != 0)
  895                 return NULL;
  896         child = NULL;
  897         for (i = 0; i < count; i++) {
  898                 if (device_is_attached(children[i])) {
  899                         child = children[i];
  900                         break;
  901                 }
  902         }
  903         free(children, M_TEMP);
  904         return child;
  905 }
  906 
  907 enum agp_acquire_state
  908 agp_state(device_t dev)
  909 {
  910         struct agp_softc *sc = device_get_softc(dev);
  911         return sc->as_state;
  912 }
  913 
  914 void
  915 agp_get_info(device_t dev, struct agp_info *info)
  916 {
  917         struct agp_softc *sc = device_get_softc(dev);
  918 
  919         info->ai_mode =
  920                 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  921         info->ai_aperture_base = rman_get_start(sc->as_aperture);
  922         info->ai_aperture_size = rman_get_size(sc->as_aperture);
  923         info->ai_memory_allowed = sc->as_maxmem;
  924         info->ai_memory_used = sc->as_allocated;
  925 }
  926 
  927 int
  928 agp_acquire(device_t dev)
  929 {
  930         return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
  931 }
  932 
  933 int
  934 agp_release(device_t dev)
  935 {
  936         return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
  937 }
  938 
  939 int
  940 agp_enable(device_t dev, u_int32_t mode)
  941 {
  942         return AGP_ENABLE(dev, mode);
  943 }
  944 
  945 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
  946 {
  947         return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
  948 }
  949 
  950 void agp_free_memory(device_t dev, void *handle)
  951 {
  952         struct agp_memory *mem = (struct agp_memory *) handle;
  953         AGP_FREE_MEMORY(dev, mem);
  954 }
  955 
  956 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
  957 {
  958         struct agp_memory *mem = (struct agp_memory *) handle;
  959         return AGP_BIND_MEMORY(dev, mem, offset);
  960 }
  961 
  962 int agp_unbind_memory(device_t dev, void *handle)
  963 {
  964         struct agp_memory *mem = (struct agp_memory *) handle;
  965         return AGP_UNBIND_MEMORY(dev, mem);
  966 }
  967 
  968 void agp_memory_info(device_t dev, void *handle, struct
  969                      agp_memory_info *mi)
  970 {
  971         struct agp_memory *mem = (struct agp_memory *) handle;
  972 
  973         mi->ami_size = mem->am_size;
  974         mi->ami_physical = mem->am_physical;
  975         mi->ami_offset = mem->am_offset;
  976         mi->ami_is_bound = mem->am_is_bound;
  977 }

Cache object: 33363dbc791ef075c9306ebaa0c96fbe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.