The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_dc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.3/sys/pci/if_dc.c 136572 2004-10-16 00:53:44Z green $");
   35 
   36 /*
   37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
   38  * series chips and several workalikes including the following:
   39  *
   40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
   41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
   42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
   43  * ASIX Electronics AX88140A (www.asix.com.tw)
   44  * ASIX Electronics AX88141 (www.asix.com.tw)
   45  * ADMtek AL981 (www.admtek.com.tw)
   46  * ADMtek AN985 (www.admtek.com.tw)
   47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
   48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
   49  * Accton EN1217 (www.accton.com)
   50  * Xircom X3201 (www.xircom.com)
   51  * Abocom FE2500
   52  * Conexant LANfinity (www.conexant.com)
   53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
   54  *
   55  * Datasheets for the 21143 are available at developer.intel.com.
   56  * Datasheets for the clone parts can be found at their respective sites.
   57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
   58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
   59  * worth noting is that its multicast hash table is only 128 bits wide
   60  * instead of 512.
   61  *
   62  * Written by Bill Paul <wpaul@ee.columbia.edu>
   63  * Electrical Engineering Department
   64  * Columbia University, New York City
   65  */
   66 /*
   67  * The Intel 21143 is the successor to the DEC 21140. It is basically
   68  * the same as the 21140 but with a few new features. The 21143 supports
   69  * three kinds of media attachments:
   70  *
   71  * o MII port, for 10Mbps and 100Mbps support and NWAY
   72  *   autonegotiation provided by an external PHY.
   73  * o SYM port, for symbol mode 100Mbps support.
   74  * o 10baseT port.
   75  * o AUI/BNC port.
   76  *
   77  * The 100Mbps SYM port and 10baseT port can be used together in
   78  * combination with the internal NWAY support to create a 10/100
   79  * autosensing configuration.
   80  *
   81  * Note that not all tulip workalikes are handled in this driver: we only
   82  * deal with those which are relatively well behaved. The Winbond is
   83  * handled separately due to its different register offsets and the
   84  * special handling needed for its various bugs. The PNIC is handled
   85  * here, but I'm not thrilled about it.
   86  *
   87  * All of the workalike chips use some form of MII transceiver support
   88  * with the exception of the Macronix chips, which also have a SYM port.
   89  * The ASIX AX88140A is also documented to have a SYM port, but all
   90  * the cards I've seen use an MII transceiver, probably because the
   91  * AX88140A doesn't support internal NWAY.
   92  */
   93 
   94 #include <sys/param.h>
   95 #include <sys/endian.h>
   96 #include <sys/systm.h>
   97 #include <sys/sockio.h>
   98 #include <sys/mbuf.h>
   99 #include <sys/malloc.h>
  100 #include <sys/kernel.h>
  101 #include <sys/module.h>
  102 #include <sys/socket.h>
  103 #include <sys/sysctl.h>
  104 
  105 #include <net/if.h>
  106 #include <net/if_arp.h>
  107 #include <net/ethernet.h>
  108 #include <net/if_dl.h>
  109 #include <net/if_media.h>
  110 #include <net/if_types.h>
  111 #include <net/if_vlan_var.h>
  112 
  113 #include <net/bpf.h>
  114 
  115 #include <machine/bus_pio.h>
  116 #include <machine/bus_memio.h>
  117 #include <machine/bus.h>
  118 #include <machine/resource.h>
  119 #include <sys/bus.h>
  120 #include <sys/rman.h>
  121 
  122 #include <dev/mii/mii.h>
  123 #include <dev/mii/miivar.h>
  124 
  125 #include <dev/pci/pcireg.h>
  126 #include <dev/pci/pcivar.h>
  127 
  128 #define DC_USEIOSPACE
  129 #ifdef __alpha__
  130 #define SRM_MEDIA
  131 #endif
  132 
  133 #include <pci/if_dcreg.h>
  134 
  135 #ifdef __sparc64__
  136 #include <dev/ofw/openfirm.h>
  137 #include <machine/ofw_machdep.h>
  138 #endif
  139 
  140 MODULE_DEPEND(dc, pci, 1, 1, 1);
  141 MODULE_DEPEND(dc, ether, 1, 1, 1);
  142 MODULE_DEPEND(dc, miibus, 1, 1, 1);
  143 
  144 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  145 #include "miibus_if.h"
  146 
  147 /*
  148  * Various supported device vendors/types and their names.
  149  */
  150 static struct dc_type dc_devs[] = {
  151         { DC_VENDORID_DEC, DC_DEVICEID_21143,
  152                 "Intel 21143 10/100BaseTX" },
  153         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
  154                 "Davicom DM9009 10/100BaseTX" },
  155         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
  156                 "Davicom DM9100 10/100BaseTX" },
  157         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
  158                 "Davicom DM9102 10/100BaseTX" },
  159         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
  160                 "Davicom DM9102A 10/100BaseTX" },
  161         { DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
  162                 "ADMtek AL981 10/100BaseTX" },
  163         { DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
  164                 "ADMtek AN985 10/100BaseTX" },
  165         { DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
  166                 "ADMtek ADM9511 10/100BaseTX" },
  167         { DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
  168                 "ADMtek ADM9513 10/100BaseTX" },
  169         { DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
  170                 "Netgear FA511 10/100BaseTX" },
  171         { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
  172                 "ASIX AX88140A 10/100BaseTX" },
  173         { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
  174                 "ASIX AX88141 10/100BaseTX" },
  175         { DC_VENDORID_MX, DC_DEVICEID_98713,
  176                 "Macronix 98713 10/100BaseTX" },
  177         { DC_VENDORID_MX, DC_DEVICEID_98713,
  178                 "Macronix 98713A 10/100BaseTX" },
  179         { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
  180                 "Compex RL100-TX 10/100BaseTX" },
  181         { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
  182                 "Compex RL100-TX 10/100BaseTX" },
  183         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  184                 "Macronix 98715/98715A 10/100BaseTX" },
  185         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  186                 "Macronix 98715AEC-C 10/100BaseTX" },
  187         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  188                 "Macronix 98725 10/100BaseTX" },
  189         { DC_VENDORID_MX, DC_DEVICEID_98727,
  190                 "Macronix 98727/98732 10/100BaseTX" },
  191         { DC_VENDORID_LO, DC_DEVICEID_82C115,
  192                 "LC82C115 PNIC II 10/100BaseTX" },
  193         { DC_VENDORID_LO, DC_DEVICEID_82C168,
  194                 "82c168 PNIC 10/100BaseTX" },
  195         { DC_VENDORID_LO, DC_DEVICEID_82C168,
  196                 "82c169 PNIC 10/100BaseTX" },
  197         { DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
  198                 "Accton EN1217 10/100BaseTX" },
  199         { DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
  200                 "Accton EN2242 MiniPCI 10/100BaseTX" },
  201         { DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
  202                 "Xircom X3201 10/100BaseTX" },
  203         { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
  204                 "Abocom FE2500 10/100BaseTX" },
  205         { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
  206                 "Abocom FE2500MX 10/100BaseTX" },
  207         { DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
  208                 "Conexant LANfinity MiniPCI 10/100BaseTX" },
  209         { DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
  210                 "Hawking CB102 CardBus 10/100" },
  211         { DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
  212                 "PlaneX FNW-3602-T CardBus 10/100" },
  213         { DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
  214                 "3Com OfficeConnect 10/100B" },
  215         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
  216                 "Microsoft MN-120 CardBus 10/100" },
  217         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
  218                 "Microsoft MN-130 10/100" },
  219         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
  220                 "Microsoft MN-130 10/100" },
  221         { 0, 0, NULL }
  222 };
  223 
  224 static int dc_probe             (device_t);
  225 static int dc_attach            (device_t);
  226 static int dc_detach            (device_t);
  227 static int dc_suspend           (device_t);
  228 static int dc_resume            (device_t);
  229 static struct dc_type *dc_devtype       (device_t);
  230 static int dc_newbuf            (struct dc_softc *, int, int);
  231 static int dc_encap             (struct dc_softc *, struct mbuf **);
  232 static void dc_pnic_rx_bug_war  (struct dc_softc *, int);
  233 static int dc_rx_resync         (struct dc_softc *);
  234 static void dc_rxeof            (struct dc_softc *);
  235 static void dc_txeof            (struct dc_softc *);
  236 static void dc_tick             (void *);
  237 static void dc_tx_underrun      (struct dc_softc *);
  238 static void dc_intr             (void *);
  239 static void dc_start            (struct ifnet *);
  240 static int dc_ioctl             (struct ifnet *, u_long, caddr_t);
  241 static void dc_init             (void *);
  242 static void dc_stop             (struct dc_softc *);
  243 static void dc_watchdog         (struct ifnet *);
  244 static void dc_shutdown         (device_t);
  245 static int dc_ifmedia_upd       (struct ifnet *);
  246 static void dc_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  247 
  248 static void dc_delay            (struct dc_softc *);
  249 static void dc_eeprom_idle      (struct dc_softc *);
  250 static void dc_eeprom_putbyte   (struct dc_softc *, int);
  251 static void dc_eeprom_getword   (struct dc_softc *, int, u_int16_t *);
  252 static void dc_eeprom_getword_pnic
  253                                 (struct dc_softc *, int, u_int16_t *);
  254 static void dc_eeprom_getword_xircom
  255                                 (struct dc_softc *, int, u_int16_t *);
  256 static void dc_eeprom_width     (struct dc_softc *);
  257 static void dc_read_eeprom      (struct dc_softc *, caddr_t, int, int, int);
  258 
  259 static void dc_mii_writebit     (struct dc_softc *, int);
  260 static int dc_mii_readbit       (struct dc_softc *);
  261 static void dc_mii_sync         (struct dc_softc *);
  262 static void dc_mii_send         (struct dc_softc *, u_int32_t, int);
  263 static int dc_mii_readreg       (struct dc_softc *, struct dc_mii_frame *);
  264 static int dc_mii_writereg      (struct dc_softc *, struct dc_mii_frame *);
  265 static int dc_miibus_readreg    (device_t, int, int);
  266 static int dc_miibus_writereg   (device_t, int, int, int);
  267 static void dc_miibus_statchg   (device_t);
  268 static void dc_miibus_mediainit (device_t);
  269 
  270 static void dc_setcfg           (struct dc_softc *, int);
  271 static uint32_t dc_mchash_le    (struct dc_softc *, const uint8_t *);
  272 static uint32_t dc_mchash_be    (const uint8_t *);
  273 static void dc_setfilt_21143    (struct dc_softc *);
  274 static void dc_setfilt_asix     (struct dc_softc *);
  275 static void dc_setfilt_admtek   (struct dc_softc *);
  276 static void dc_setfilt_xircom   (struct dc_softc *);
  277 
  278 static void dc_setfilt          (struct dc_softc *);
  279 
  280 static void dc_reset            (struct dc_softc *);
  281 static int dc_list_rx_init      (struct dc_softc *);
  282 static int dc_list_tx_init      (struct dc_softc *);
  283 
  284 static void dc_read_srom        (struct dc_softc *, int);
  285 static void dc_parse_21143_srom (struct dc_softc *);
  286 static void dc_decode_leaf_sia  (struct dc_softc *, struct dc_eblock_sia *);
  287 static void dc_decode_leaf_mii  (struct dc_softc *, struct dc_eblock_mii *);
  288 static void dc_decode_leaf_sym  (struct dc_softc *, struct dc_eblock_sym *);
  289 static void dc_apply_fixup      (struct dc_softc *, int);
  290 
  291 static void dc_dma_map_txbuf    (void *, bus_dma_segment_t *, int, bus_size_t,
  292                                     int);
  293 static void dc_dma_map_rxbuf    (void *, bus_dma_segment_t *, int, bus_size_t,
  294                                     int);
  295 
  296 #ifdef DC_USEIOSPACE
  297 #define DC_RES                  SYS_RES_IOPORT
  298 #define DC_RID                  DC_PCI_CFBIO
  299 #else
  300 #define DC_RES                  SYS_RES_MEMORY
  301 #define DC_RID                  DC_PCI_CFBMA
  302 #endif
  303 
  304 static device_method_t dc_methods[] = {
  305         /* Device interface */
  306         DEVMETHOD(device_probe,         dc_probe),
  307         DEVMETHOD(device_attach,        dc_attach),
  308         DEVMETHOD(device_detach,        dc_detach),
  309         DEVMETHOD(device_suspend,       dc_suspend),
  310         DEVMETHOD(device_resume,        dc_resume),
  311         DEVMETHOD(device_shutdown,      dc_shutdown),
  312 
  313         /* bus interface */
  314         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  315         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  316 
  317         /* MII interface */
  318         DEVMETHOD(miibus_readreg,       dc_miibus_readreg),
  319         DEVMETHOD(miibus_writereg,      dc_miibus_writereg),
  320         DEVMETHOD(miibus_statchg,       dc_miibus_statchg),
  321         DEVMETHOD(miibus_mediainit,     dc_miibus_mediainit),
  322 
  323         { 0, 0 }
  324 };
  325 
  326 static driver_t dc_driver = {
  327         "dc",
  328         dc_methods,
  329         sizeof(struct dc_softc)
  330 };
  331 
  332 static devclass_t dc_devclass;
  333 #ifdef __i386__
  334 static int dc_quick = 1;
  335 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
  336     "do not m_devget() in dc driver");
  337 #endif
  338 
  339 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
  340 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
  341 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
  342 
  343 #define DC_SETBIT(sc, reg, x)                           \
  344         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  345 
  346 #define DC_CLRBIT(sc, reg, x)                           \
  347         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  348 
  349 #define SIO_SET(x)      DC_SETBIT(sc, DC_SIO, (x))
  350 #define SIO_CLR(x)      DC_CLRBIT(sc, DC_SIO, (x))
  351 
  352 #define IS_MPSAFE       0
  353 
  354 static void
  355 dc_delay(struct dc_softc *sc)
  356 {
  357         int idx;
  358 
  359         for (idx = (300 / 33) + 1; idx > 0; idx--)
  360                 CSR_READ_4(sc, DC_BUSCTL);
  361 }
  362 
  363 static void
  364 dc_eeprom_width(struct dc_softc *sc)
  365 {
  366         int i;
  367 
  368         /* Force EEPROM to idle state. */
  369         dc_eeprom_idle(sc);
  370 
  371         /* Enter EEPROM access mode. */
  372         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  373         dc_delay(sc);
  374         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  375         dc_delay(sc);
  376         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  377         dc_delay(sc);
  378         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  379         dc_delay(sc);
  380 
  381         for (i = 3; i--;) {
  382                 if (6 & (1 << i))
  383                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  384                 else
  385                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  386                 dc_delay(sc);
  387                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  388                 dc_delay(sc);
  389                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  390                 dc_delay(sc);
  391         }
  392 
  393         for (i = 1; i <= 12; i++) {
  394                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  395                 dc_delay(sc);
  396                 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
  397                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  398                         dc_delay(sc);
  399                         break;
  400                 }
  401                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  402                 dc_delay(sc);
  403         }
  404 
  405         /* Turn off EEPROM access mode. */
  406         dc_eeprom_idle(sc);
  407 
  408         if (i < 4 || i > 12)
  409                 sc->dc_romwidth = 6;
  410         else
  411                 sc->dc_romwidth = i;
  412 
  413         /* Enter EEPROM access mode. */
  414         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  415         dc_delay(sc);
  416         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  417         dc_delay(sc);
  418         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  419         dc_delay(sc);
  420         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  421         dc_delay(sc);
  422 
  423         /* Turn off EEPROM access mode. */
  424         dc_eeprom_idle(sc);
  425 }
  426 
  427 static void
  428 dc_eeprom_idle(struct dc_softc *sc)
  429 {
  430         int i;
  431 
  432         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  433         dc_delay(sc);
  434         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  435         dc_delay(sc);
  436         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  437         dc_delay(sc);
  438         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  439         dc_delay(sc);
  440 
  441         for (i = 0; i < 25; i++) {
  442                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  443                 dc_delay(sc);
  444                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  445                 dc_delay(sc);
  446         }
  447 
  448         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  449         dc_delay(sc);
  450         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
  451         dc_delay(sc);
  452         CSR_WRITE_4(sc, DC_SIO, 0x00000000);
  453 }
  454 
  455 /*
  456  * Send a read command and address to the EEPROM, check for ACK.
  457  */
  458 static void
  459 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
  460 {
  461         int d, i;
  462 
  463         d = DC_EECMD_READ >> 6;
  464         for (i = 3; i--; ) {
  465                 if (d & (1 << i))
  466                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  467                 else
  468                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  469                 dc_delay(sc);
  470                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  471                 dc_delay(sc);
  472                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  473                 dc_delay(sc);
  474         }
  475 
  476         /*
  477          * Feed in each bit and strobe the clock.
  478          */
  479         for (i = sc->dc_romwidth; i--;) {
  480                 if (addr & (1 << i)) {
  481                         SIO_SET(DC_SIO_EE_DATAIN);
  482                 } else {
  483                         SIO_CLR(DC_SIO_EE_DATAIN);
  484                 }
  485                 dc_delay(sc);
  486                 SIO_SET(DC_SIO_EE_CLK);
  487                 dc_delay(sc);
  488                 SIO_CLR(DC_SIO_EE_CLK);
  489                 dc_delay(sc);
  490         }
  491 }
  492 
  493 /*
  494  * Read a word of data stored in the EEPROM at address 'addr.'
  495  * The PNIC 82c168/82c169 has its own non-standard way to read
  496  * the EEPROM.
  497  */
  498 static void
  499 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
  500 {
  501         int i;
  502         u_int32_t r;
  503 
  504         CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
  505 
  506         for (i = 0; i < DC_TIMEOUT; i++) {
  507                 DELAY(1);
  508                 r = CSR_READ_4(sc, DC_SIO);
  509                 if (!(r & DC_PN_SIOCTL_BUSY)) {
  510                         *dest = (u_int16_t)(r & 0xFFFF);
  511                         return;
  512                 }
  513         }
  514 }
  515 
  516 /*
  517  * Read a word of data stored in the EEPROM at address 'addr.'
  518  * The Xircom X3201 has its own non-standard way to read
  519  * the EEPROM, too.
  520  */
  521 static void
  522 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
  523 {
  524 
  525         SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  526 
  527         addr *= 2;
  528         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  529         *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
  530         addr += 1;
  531         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  532         *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
  533 
  534         SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  535 }
  536 
  537 /*
  538  * Read a word of data stored in the EEPROM at address 'addr.'
  539  */
  540 static void
  541 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
  542 {
  543         int i;
  544         u_int16_t word = 0;
  545 
  546         /* Force EEPROM to idle state. */
  547         dc_eeprom_idle(sc);
  548 
  549         /* Enter EEPROM access mode. */
  550         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  551         dc_delay(sc);
  552         DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
  553         dc_delay(sc);
  554         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  555         dc_delay(sc);
  556         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  557         dc_delay(sc);
  558 
  559         /*
  560          * Send address of word we want to read.
  561          */
  562         dc_eeprom_putbyte(sc, addr);
  563 
  564         /*
  565          * Start reading bits from EEPROM.
  566          */
  567         for (i = 0x8000; i; i >>= 1) {
  568                 SIO_SET(DC_SIO_EE_CLK);
  569                 dc_delay(sc);
  570                 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
  571                         word |= i;
  572                 dc_delay(sc);
  573                 SIO_CLR(DC_SIO_EE_CLK);
  574                 dc_delay(sc);
  575         }
  576 
  577         /* Turn off EEPROM access mode. */
  578         dc_eeprom_idle(sc);
  579 
  580         *dest = word;
  581 }
  582 
  583 /*
  584  * Read a sequence of words from the EEPROM.
  585  */
  586 static void
  587 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
  588 {
  589         int i;
  590         u_int16_t word = 0, *ptr;
  591 
  592         for (i = 0; i < cnt; i++) {
  593                 if (DC_IS_PNIC(sc))
  594                         dc_eeprom_getword_pnic(sc, off + i, &word);
  595                 else if (DC_IS_XIRCOM(sc))
  596                         dc_eeprom_getword_xircom(sc, off + i, &word);
  597                 else
  598                         dc_eeprom_getword(sc, off + i, &word);
  599                 ptr = (u_int16_t *)(dest + (i * 2));
  600                 if (be)
  601                         *ptr = be16toh(word);
  602                 else
  603                         *ptr = le16toh(word);
  604         }
  605 }
  606 
  607 /*
  608  * The following two routines are taken from the Macronix 98713
  609  * Application Notes pp.19-21.
  610  */
  611 /*
  612  * Write a bit to the MII bus.
  613  */
  614 static void
  615 dc_mii_writebit(struct dc_softc *sc, int bit)
  616 {
  617 
  618         if (bit)
  619                 CSR_WRITE_4(sc, DC_SIO,
  620                     DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
  621         else
  622                 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  623 
  624         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  625         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  626 }
  627 
  628 /*
  629  * Read a bit from the MII bus.
  630  */
  631 static int
  632 dc_mii_readbit(struct dc_softc *sc)
  633 {
  634 
  635         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
  636         CSR_READ_4(sc, DC_SIO);
  637         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  638         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  639         if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
  640                 return (1);
  641 
  642         return (0);
  643 }
  644 
  645 /*
  646  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  647  */
  648 static void
  649 dc_mii_sync(struct dc_softc *sc)
  650 {
  651         int i;
  652 
  653         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  654 
  655         for (i = 0; i < 32; i++)
  656                 dc_mii_writebit(sc, 1);
  657 }
  658 
  659 /*
  660  * Clock a series of bits through the MII.
  661  */
  662 static void
  663 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
  664 {
  665         int i;
  666 
  667         for (i = (0x1 << (cnt - 1)); i; i >>= 1)
  668                 dc_mii_writebit(sc, bits & i);
  669 }
  670 
  671 /*
  672  * Read an PHY register through the MII.
  673  */
  674 static int
  675 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
  676 {
  677         int i, ack;
  678 
  679         DC_LOCK(sc);
  680 
  681         /*
  682          * Set up frame for RX.
  683          */
  684         frame->mii_stdelim = DC_MII_STARTDELIM;
  685         frame->mii_opcode = DC_MII_READOP;
  686         frame->mii_turnaround = 0;
  687         frame->mii_data = 0;
  688 
  689         /*
  690          * Sync the PHYs.
  691          */
  692         dc_mii_sync(sc);
  693 
  694         /*
  695          * Send command/address info.
  696          */
  697         dc_mii_send(sc, frame->mii_stdelim, 2);
  698         dc_mii_send(sc, frame->mii_opcode, 2);
  699         dc_mii_send(sc, frame->mii_phyaddr, 5);
  700         dc_mii_send(sc, frame->mii_regaddr, 5);
  701 
  702 #ifdef notdef
  703         /* Idle bit */
  704         dc_mii_writebit(sc, 1);
  705         dc_mii_writebit(sc, 0);
  706 #endif
  707 
  708         /* Check for ack. */
  709         ack = dc_mii_readbit(sc);
  710 
  711         /*
  712          * Now try reading data bits. If the ack failed, we still
  713          * need to clock through 16 cycles to keep the PHY(s) in sync.
  714          */
  715         if (ack) {
  716                 for (i = 0; i < 16; i++)
  717                         dc_mii_readbit(sc);
  718                 goto fail;
  719         }
  720 
  721         for (i = 0x8000; i; i >>= 1) {
  722                 if (!ack) {
  723                         if (dc_mii_readbit(sc))
  724                                 frame->mii_data |= i;
  725                 }
  726         }
  727 
  728 fail:
  729 
  730         dc_mii_writebit(sc, 0);
  731         dc_mii_writebit(sc, 0);
  732 
  733         DC_UNLOCK(sc);
  734 
  735         if (ack)
  736                 return (1);
  737         return (0);
  738 }
  739 
  740 /*
  741  * Write to a PHY register through the MII.
  742  */
  743 static int
  744 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
  745 {
  746 
  747         DC_LOCK(sc);
  748         /*
  749          * Set up frame for TX.
  750          */
  751 
  752         frame->mii_stdelim = DC_MII_STARTDELIM;
  753         frame->mii_opcode = DC_MII_WRITEOP;
  754         frame->mii_turnaround = DC_MII_TURNAROUND;
  755 
  756         /*
  757          * Sync the PHYs.
  758          */
  759         dc_mii_sync(sc);
  760 
  761         dc_mii_send(sc, frame->mii_stdelim, 2);
  762         dc_mii_send(sc, frame->mii_opcode, 2);
  763         dc_mii_send(sc, frame->mii_phyaddr, 5);
  764         dc_mii_send(sc, frame->mii_regaddr, 5);
  765         dc_mii_send(sc, frame->mii_turnaround, 2);
  766         dc_mii_send(sc, frame->mii_data, 16);
  767 
  768         /* Idle bit. */
  769         dc_mii_writebit(sc, 0);
  770         dc_mii_writebit(sc, 0);
  771 
  772         DC_UNLOCK(sc);
  773 
  774         return (0);
  775 }
  776 
  777 static int
  778 dc_miibus_readreg(device_t dev, int phy, int reg)
  779 {
  780         struct dc_mii_frame frame;
  781         struct dc_softc  *sc;
  782         int i, rval, phy_reg = 0;
  783 
  784         sc = device_get_softc(dev);
  785         bzero(&frame, sizeof(frame));
  786 
  787         /*
  788          * Note: both the AL981 and AN985 have internal PHYs,
  789          * however the AL981 provides direct access to the PHY
  790          * registers while the AN985 uses a serial MII interface.
  791          * The AN985's MII interface is also buggy in that you
  792          * can read from any MII address (0 to 31), but only address 1
  793          * behaves normally. To deal with both cases, we pretend
  794          * that the PHY is at MII address 1.
  795          */
  796         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  797                 return (0);
  798 
  799         /*
  800          * Note: the ukphy probes of the RS7112 report a PHY at
  801          * MII address 0 (possibly HomePNA?) and 1 (ethernet)
  802          * so we only respond to correct one.
  803          */
  804         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  805                 return (0);
  806 
  807         if (sc->dc_pmode != DC_PMODE_MII) {
  808                 if (phy == (MII_NPHY - 1)) {
  809                         switch (reg) {
  810                         case MII_BMSR:
  811                         /*
  812                          * Fake something to make the probe
  813                          * code think there's a PHY here.
  814                          */
  815                                 return (BMSR_MEDIAMASK);
  816                                 break;
  817                         case MII_PHYIDR1:
  818                                 if (DC_IS_PNIC(sc))
  819                                         return (DC_VENDORID_LO);
  820                                 return (DC_VENDORID_DEC);
  821                                 break;
  822                         case MII_PHYIDR2:
  823                                 if (DC_IS_PNIC(sc))
  824                                         return (DC_DEVICEID_82C168);
  825                                 return (DC_DEVICEID_21143);
  826                                 break;
  827                         default:
  828                                 return (0);
  829                                 break;
  830                         }
  831                 } else
  832                         return (0);
  833         }
  834 
  835         if (DC_IS_PNIC(sc)) {
  836                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
  837                     (phy << 23) | (reg << 18));
  838                 for (i = 0; i < DC_TIMEOUT; i++) {
  839                         DELAY(1);
  840                         rval = CSR_READ_4(sc, DC_PN_MII);
  841                         if (!(rval & DC_PN_MII_BUSY)) {
  842                                 rval &= 0xFFFF;
  843                                 return (rval == 0xFFFF ? 0 : rval);
  844                         }
  845                 }
  846                 return (0);
  847         }
  848 
  849         if (DC_IS_COMET(sc)) {
  850                 switch (reg) {
  851                 case MII_BMCR:
  852                         phy_reg = DC_AL_BMCR;
  853                         break;
  854                 case MII_BMSR:
  855                         phy_reg = DC_AL_BMSR;
  856                         break;
  857                 case MII_PHYIDR1:
  858                         phy_reg = DC_AL_VENID;
  859                         break;
  860                 case MII_PHYIDR2:
  861                         phy_reg = DC_AL_DEVID;
  862                         break;
  863                 case MII_ANAR:
  864                         phy_reg = DC_AL_ANAR;
  865                         break;
  866                 case MII_ANLPAR:
  867                         phy_reg = DC_AL_LPAR;
  868                         break;
  869                 case MII_ANER:
  870                         phy_reg = DC_AL_ANER;
  871                         break;
  872                 default:
  873                         printf("dc%d: phy_read: bad phy register %x\n",
  874                             sc->dc_unit, reg);
  875                         return (0);
  876                         break;
  877                 }
  878 
  879                 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
  880 
  881                 if (rval == 0xFFFF)
  882                         return (0);
  883                 return (rval);
  884         }
  885 
  886         frame.mii_phyaddr = phy;
  887         frame.mii_regaddr = reg;
  888         if (sc->dc_type == DC_TYPE_98713) {
  889                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  890                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  891         }
  892         dc_mii_readreg(sc, &frame);
  893         if (sc->dc_type == DC_TYPE_98713)
  894                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  895 
  896         return (frame.mii_data);
  897 }
  898 
  899 static int
  900 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
  901 {
  902         struct dc_softc *sc;
  903         struct dc_mii_frame frame;
  904         int i, phy_reg = 0;
  905 
  906         sc = device_get_softc(dev);
  907         bzero(&frame, sizeof(frame));
  908 
  909         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  910                 return (0);
  911 
  912         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  913                 return (0);
  914 
  915         if (DC_IS_PNIC(sc)) {
  916                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
  917                     (phy << 23) | (reg << 10) | data);
  918                 for (i = 0; i < DC_TIMEOUT; i++) {
  919                         if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
  920                                 break;
  921                 }
  922                 return (0);
  923         }
  924 
  925         if (DC_IS_COMET(sc)) {
  926                 switch (reg) {
  927                 case MII_BMCR:
  928                         phy_reg = DC_AL_BMCR;
  929                         break;
  930                 case MII_BMSR:
  931                         phy_reg = DC_AL_BMSR;
  932                         break;
  933                 case MII_PHYIDR1:
  934                         phy_reg = DC_AL_VENID;
  935                         break;
  936                 case MII_PHYIDR2:
  937                         phy_reg = DC_AL_DEVID;
  938                         break;
  939                 case MII_ANAR:
  940                         phy_reg = DC_AL_ANAR;
  941                         break;
  942                 case MII_ANLPAR:
  943                         phy_reg = DC_AL_LPAR;
  944                         break;
  945                 case MII_ANER:
  946                         phy_reg = DC_AL_ANER;
  947                         break;
  948                 default:
  949                         printf("dc%d: phy_write: bad phy register %x\n",
  950                             sc->dc_unit, reg);
  951                         return (0);
  952                         break;
  953                 }
  954 
  955                 CSR_WRITE_4(sc, phy_reg, data);
  956                 return (0);
  957         }
  958 
  959         frame.mii_phyaddr = phy;
  960         frame.mii_regaddr = reg;
  961         frame.mii_data = data;
  962 
  963         if (sc->dc_type == DC_TYPE_98713) {
  964                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  965                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  966         }
  967         dc_mii_writereg(sc, &frame);
  968         if (sc->dc_type == DC_TYPE_98713)
  969                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  970 
  971         return (0);
  972 }
  973 
  974 static void
  975 dc_miibus_statchg(device_t dev)
  976 {
  977         struct dc_softc *sc;
  978         struct mii_data *mii;
  979         struct ifmedia *ifm;
  980 
  981         sc = device_get_softc(dev);
  982         if (DC_IS_ADMTEK(sc))
  983                 return;
  984 
  985         mii = device_get_softc(sc->dc_miibus);
  986         ifm = &mii->mii_media;
  987         if (DC_IS_DAVICOM(sc) &&
  988             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
  989                 dc_setcfg(sc, ifm->ifm_media);
  990                 sc->dc_if_media = ifm->ifm_media;
  991         } else {
  992                 dc_setcfg(sc, mii->mii_media_active);
  993                 sc->dc_if_media = mii->mii_media_active;
  994         }
  995 }
  996 
  997 /*
  998  * Special support for DM9102A cards with HomePNA PHYs. Note:
  999  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
 1000  * to be impossible to talk to the management interface of the DM9801
 1001  * PHY (its MDIO pin is not connected to anything). Consequently,
 1002  * the driver has to just 'know' about the additional mode and deal
 1003  * with it itself. *sigh*
 1004  */
 1005 static void
 1006 dc_miibus_mediainit(device_t dev)
 1007 {
 1008         struct dc_softc *sc;
 1009         struct mii_data *mii;
 1010         struct ifmedia *ifm;
 1011         int rev;
 1012 
 1013         rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
 1014 
 1015         sc = device_get_softc(dev);
 1016         mii = device_get_softc(sc->dc_miibus);
 1017         ifm = &mii->mii_media;
 1018 
 1019         if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
 1020                 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
 1021 }
 1022 
 1023 #define DC_BITS_512     9
 1024 #define DC_BITS_128     7
 1025 #define DC_BITS_64      6
 1026 
 1027 static uint32_t
 1028 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
 1029 {
 1030         uint32_t crc;
 1031 
 1032         /* Compute CRC for the address value. */
 1033         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
 1034 
 1035         /*
 1036          * The hash table on the PNIC II and the MX98715AEC-C/D/E
 1037          * chips is only 128 bits wide.
 1038          */
 1039         if (sc->dc_flags & DC_128BIT_HASH)
 1040                 return (crc & ((1 << DC_BITS_128) - 1));
 1041 
 1042         /* The hash table on the MX98715BEC is only 64 bits wide. */
 1043         if (sc->dc_flags & DC_64BIT_HASH)
 1044                 return (crc & ((1 << DC_BITS_64) - 1));
 1045 
 1046         /* Xircom's hash filtering table is different (read: weird) */
 1047         /* Xircom uses the LEAST significant bits */
 1048         if (DC_IS_XIRCOM(sc)) {
 1049                 if ((crc & 0x180) == 0x180)
 1050                         return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
 1051                 else
 1052                         return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
 1053                             (12 << 4));
 1054         }
 1055 
 1056         return (crc & ((1 << DC_BITS_512) - 1));
 1057 }
 1058 
 1059 /*
 1060  * Calculate CRC of a multicast group address, return the lower 6 bits.
 1061  */
 1062 static uint32_t
 1063 dc_mchash_be(const uint8_t *addr)
 1064 {
 1065         uint32_t crc;
 1066 
 1067         /* Compute CRC for the address value. */
 1068         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
 1069 
 1070         /* Return the filter bit position. */
 1071         return ((crc >> 26) & 0x0000003F);
 1072 }
 1073 
 1074 /*
 1075  * 21143-style RX filter setup routine. Filter programming is done by
 1076  * downloading a special setup frame into the TX engine. 21143, Macronix,
 1077  * PNIC, PNIC II and Davicom chips are programmed this way.
 1078  *
 1079  * We always program the chip using 'hash perfect' mode, i.e. one perfect
 1080  * address (our node address) and a 512-bit hash filter for multicast
 1081  * frames. We also sneak the broadcast address into the hash filter since
 1082  * we need that too.
 1083  */
 1084 static void
 1085 dc_setfilt_21143(struct dc_softc *sc)
 1086 {
 1087         struct dc_desc *sframe;
 1088         u_int32_t h, *sp;
 1089         struct ifmultiaddr *ifma;
 1090         struct ifnet *ifp;
 1091         int i;
 1092 
 1093         ifp = &sc->arpcom.ac_if;
 1094 
 1095         i = sc->dc_cdata.dc_tx_prod;
 1096         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1097         sc->dc_cdata.dc_tx_cnt++;
 1098         sframe = &sc->dc_ldata->dc_tx_list[i];
 1099         sp = sc->dc_cdata.dc_sbuf;
 1100         bzero(sp, DC_SFRAME_LEN);
 1101 
 1102         sframe->dc_data = htole32(sc->dc_saddr);
 1103         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1104             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1105 
 1106         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1107 
 1108         /* If we want promiscuous mode, set the allframes bit. */
 1109         if (ifp->if_flags & IFF_PROMISC)
 1110                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1111         else
 1112                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1113 
 1114         if (ifp->if_flags & IFF_ALLMULTI)
 1115                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1116         else
 1117                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1118 
 1119         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1120                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1121                         continue;
 1122                 h = dc_mchash_le(sc,
 1123                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1124                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1125         }
 1126 
 1127         if (ifp->if_flags & IFF_BROADCAST) {
 1128                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1129                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1130         }
 1131 
 1132         /* Set our MAC address */
 1133         sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 1134         sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 1135         sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 1136 
 1137         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1138         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1139 
 1140         /*
 1141          * The PNIC takes an exceedingly long time to process its
 1142          * setup frame; wait 10ms after posting the setup frame
 1143          * before proceeding, just so it has time to swallow its
 1144          * medicine.
 1145          */
 1146         DELAY(10000);
 1147 
 1148         ifp->if_timer = 5;
 1149 }
 1150 
 1151 static void
 1152 dc_setfilt_admtek(struct dc_softc *sc)
 1153 {
 1154         struct ifnet *ifp;
 1155         struct ifmultiaddr *ifma;
 1156         int h = 0;
 1157         u_int32_t hashes[2] = { 0, 0 };
 1158 
 1159         ifp = &sc->arpcom.ac_if;
 1160 
 1161         /* Init our MAC address. */
 1162         CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1163         CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1164 
 1165         /* If we want promiscuous mode, set the allframes bit. */
 1166         if (ifp->if_flags & IFF_PROMISC)
 1167                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1168         else
 1169                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1170 
 1171         if (ifp->if_flags & IFF_ALLMULTI)
 1172                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1173         else
 1174                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1175 
 1176         /* First, zot all the existing hash bits. */
 1177         CSR_WRITE_4(sc, DC_AL_MAR0, 0);
 1178         CSR_WRITE_4(sc, DC_AL_MAR1, 0);
 1179 
 1180         /*
 1181          * If we're already in promisc or allmulti mode, we
 1182          * don't have to bother programming the multicast filter.
 1183          */
 1184         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1185                 return;
 1186 
 1187         /* Now program new ones. */
 1188         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1189                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1190                         continue;
 1191                 if (DC_IS_CENTAUR(sc))
 1192                         h = dc_mchash_le(sc,
 1193                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1194                 else
 1195                         h = dc_mchash_be(
 1196                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1197                 if (h < 32)
 1198                         hashes[0] |= (1 << h);
 1199                 else
 1200                         hashes[1] |= (1 << (h - 32));
 1201         }
 1202 
 1203         CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
 1204         CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
 1205 }
 1206 
 1207 static void
 1208 dc_setfilt_asix(struct dc_softc *sc)
 1209 {
 1210         struct ifnet *ifp;
 1211         struct ifmultiaddr *ifma;
 1212         int h = 0;
 1213         u_int32_t hashes[2] = { 0, 0 };
 1214 
 1215         ifp = &sc->arpcom.ac_if;
 1216 
 1217         /* Init our MAC address */
 1218         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
 1219         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1220             *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1221         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
 1222         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1223             *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1224 
 1225         /* If we want promiscuous mode, set the allframes bit. */
 1226         if (ifp->if_flags & IFF_PROMISC)
 1227                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1228         else
 1229                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1230 
 1231         if (ifp->if_flags & IFF_ALLMULTI)
 1232                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1233         else
 1234                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1235 
 1236         /*
 1237          * The ASIX chip has a special bit to enable reception
 1238          * of broadcast frames.
 1239          */
 1240         if (ifp->if_flags & IFF_BROADCAST)
 1241                 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1242         else
 1243                 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1244 
 1245         /* first, zot all the existing hash bits */
 1246         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1247         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1248         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1249         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1250 
 1251         /*
 1252          * If we're already in promisc or allmulti mode, we
 1253          * don't have to bother programming the multicast filter.
 1254          */
 1255         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1256                 return;
 1257 
 1258         /* now program new ones */
 1259         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1260                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1261                         continue;
 1262                 h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1263                 if (h < 32)
 1264                         hashes[0] |= (1 << h);
 1265                 else
 1266                         hashes[1] |= (1 << (h - 32));
 1267         }
 1268 
 1269         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1270         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
 1271         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1272         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
 1273 }
 1274 
 1275 static void
 1276 dc_setfilt_xircom(struct dc_softc *sc)
 1277 {
 1278         struct ifnet *ifp;
 1279         struct ifmultiaddr *ifma;
 1280         struct dc_desc *sframe;
 1281         u_int32_t h, *sp;
 1282         int i;
 1283 
 1284         ifp = &sc->arpcom.ac_if;
 1285         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1286 
 1287         i = sc->dc_cdata.dc_tx_prod;
 1288         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1289         sc->dc_cdata.dc_tx_cnt++;
 1290         sframe = &sc->dc_ldata->dc_tx_list[i];
 1291         sp = sc->dc_cdata.dc_sbuf;
 1292         bzero(sp, DC_SFRAME_LEN);
 1293 
 1294         sframe->dc_data = htole32(sc->dc_saddr);
 1295         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1296             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1297 
 1298         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1299 
 1300         /* If we want promiscuous mode, set the allframes bit. */
 1301         if (ifp->if_flags & IFF_PROMISC)
 1302                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1303         else
 1304                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1305 
 1306         if (ifp->if_flags & IFF_ALLMULTI)
 1307                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1308         else
 1309                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1310 
 1311         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1312                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1313                         continue;
 1314                 h = dc_mchash_le(sc,
 1315                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1316                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1317         }
 1318 
 1319         if (ifp->if_flags & IFF_BROADCAST) {
 1320                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1321                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1322         }
 1323 
 1324         /* Set our MAC address */
 1325         sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 1326         sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 1327         sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 1328 
 1329         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 1330         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 1331         ifp->if_flags |= IFF_RUNNING;
 1332         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1333         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1334 
 1335         /*
 1336          * Wait some time...
 1337          */
 1338         DELAY(1000);
 1339 
 1340         ifp->if_timer = 5;
 1341 }
 1342 
 1343 static void
 1344 dc_setfilt(struct dc_softc *sc)
 1345 {
 1346 
 1347         if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
 1348             DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
 1349                 dc_setfilt_21143(sc);
 1350 
 1351         if (DC_IS_ASIX(sc))
 1352                 dc_setfilt_asix(sc);
 1353 
 1354         if (DC_IS_ADMTEK(sc))
 1355                 dc_setfilt_admtek(sc);
 1356 
 1357         if (DC_IS_XIRCOM(sc))
 1358                 dc_setfilt_xircom(sc);
 1359 }
 1360 
 1361 /*
 1362  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
 1363  * the netconfig register, we first have to put the transmit and/or
 1364  * receive logic in the idle state.
 1365  */
 1366 static void
 1367 dc_setcfg(struct dc_softc *sc, int media)
 1368 {
 1369         int i, restart = 0, watchdogreg;
 1370         u_int32_t isr;
 1371 
 1372         if (IFM_SUBTYPE(media) == IFM_NONE)
 1373                 return;
 1374 
 1375         if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
 1376                 restart = 1;
 1377                 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1378 
 1379                 for (i = 0; i < DC_TIMEOUT; i++) {
 1380                         isr = CSR_READ_4(sc, DC_ISR);
 1381                         if (isr & DC_ISR_TX_IDLE &&
 1382                             ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1383                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
 1384                                 break;
 1385                         DELAY(10);
 1386                 }
 1387 
 1388                 if (i == DC_TIMEOUT)
 1389                         printf("dc%d: failed to force tx and "
 1390                                 "rx to idle state\n", sc->dc_unit);
 1391         }
 1392 
 1393         if (IFM_SUBTYPE(media) == IFM_100_TX) {
 1394                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1395                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1396                 if (sc->dc_pmode == DC_PMODE_MII) {
 1397                         if (DC_IS_INTEL(sc)) {
 1398                         /* There's a write enable bit here that reads as 1. */
 1399                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1400                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1401                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1402                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1403                         } else {
 1404                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1405                         }
 1406                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1407                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1408                         if (sc->dc_type == DC_TYPE_98713)
 1409                                 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1410                                     DC_NETCFG_SCRAMBLER));
 1411                         if (!DC_IS_DAVICOM(sc))
 1412                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1413                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1414                         if (DC_IS_INTEL(sc))
 1415                                 dc_apply_fixup(sc, IFM_AUTO);
 1416                 } else {
 1417                         if (DC_IS_PNIC(sc)) {
 1418                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1419                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1420                                 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1421                         }
 1422                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1423                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1424                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1425                         if (DC_IS_INTEL(sc))
 1426                                 dc_apply_fixup(sc,
 1427                                     (media & IFM_GMASK) == IFM_FDX ?
 1428                                     IFM_100_TX | IFM_FDX : IFM_100_TX);
 1429                 }
 1430         }
 1431 
 1432         if (IFM_SUBTYPE(media) == IFM_10_T) {
 1433                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1434                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1435                 if (sc->dc_pmode == DC_PMODE_MII) {
 1436                         /* There's a write enable bit here that reads as 1. */
 1437                         if (DC_IS_INTEL(sc)) {
 1438                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1439                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1440                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1441                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1442                         } else {
 1443                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1444                         }
 1445                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1446                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1447                         if (sc->dc_type == DC_TYPE_98713)
 1448                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1449                         if (!DC_IS_DAVICOM(sc))
 1450                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1451                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1452                         if (DC_IS_INTEL(sc))
 1453                                 dc_apply_fixup(sc, IFM_AUTO);
 1454                 } else {
 1455                         if (DC_IS_PNIC(sc)) {
 1456                                 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1457                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1458                                 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1459                         }
 1460                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1461                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1462                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1463                         if (DC_IS_INTEL(sc)) {
 1464                                 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1465                                 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1466                                 if ((media & IFM_GMASK) == IFM_FDX)
 1467                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
 1468                                 else
 1469                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
 1470                                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1471                                 DC_CLRBIT(sc, DC_10BTCTRL,
 1472                                     DC_TCTL_AUTONEGENBL);
 1473                                 dc_apply_fixup(sc,
 1474                                     (media & IFM_GMASK) == IFM_FDX ?
 1475                                     IFM_10_T | IFM_FDX : IFM_10_T);
 1476                                 DELAY(20000);
 1477                         }
 1478                 }
 1479         }
 1480 
 1481         /*
 1482          * If this is a Davicom DM9102A card with a DM9801 HomePNA
 1483          * PHY and we want HomePNA mode, set the portsel bit to turn
 1484          * on the external MII port.
 1485          */
 1486         if (DC_IS_DAVICOM(sc)) {
 1487                 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
 1488                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1489                         sc->dc_link = 1;
 1490                 } else {
 1491                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1492                 }
 1493         }
 1494 
 1495         if ((media & IFM_GMASK) == IFM_FDX) {
 1496                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1497                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1498                         DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1499         } else {
 1500                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1501                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1502                         DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1503         }
 1504 
 1505         if (restart)
 1506                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
 1507 }
 1508 
 1509 static void
 1510 dc_reset(struct dc_softc *sc)
 1511 {
 1512         int i;
 1513 
 1514         DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1515 
 1516         for (i = 0; i < DC_TIMEOUT; i++) {
 1517                 DELAY(10);
 1518                 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
 1519                         break;
 1520         }
 1521 
 1522         if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
 1523             DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
 1524                 DELAY(10000);
 1525                 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1526                 i = 0;
 1527         }
 1528 
 1529         if (i == DC_TIMEOUT)
 1530                 printf("dc%d: reset never completed!\n", sc->dc_unit);
 1531 
 1532         /* Wait a little while for the chip to get its brains in order. */
 1533         DELAY(1000);
 1534 
 1535         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 1536         CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
 1537         CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
 1538 
 1539         /*
 1540          * Bring the SIA out of reset. In some cases, it looks
 1541          * like failing to unreset the SIA soon enough gets it
 1542          * into a state where it will never come out of reset
 1543          * until we reset the whole chip again.
 1544          */
 1545         if (DC_IS_INTEL(sc)) {
 1546                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1547                 CSR_WRITE_4(sc, DC_10BTCTRL, 0);
 1548                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 1549         }
 1550 }
 1551 
 1552 static struct dc_type *
 1553 dc_devtype(device_t dev)
 1554 {
 1555         struct dc_type *t;
 1556         u_int32_t rev;
 1557 
 1558         t = dc_devs;
 1559 
 1560         while (t->dc_name != NULL) {
 1561                 if ((pci_get_vendor(dev) == t->dc_vid) &&
 1562                     (pci_get_device(dev) == t->dc_did)) {
 1563                         /* Check the PCI revision */
 1564                         rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
 1565                         if (t->dc_did == DC_DEVICEID_98713 &&
 1566                             rev >= DC_REVISION_98713A)
 1567                                 t++;
 1568                         if (t->dc_did == DC_DEVICEID_98713_CP &&
 1569                             rev >= DC_REVISION_98713A)
 1570                                 t++;
 1571                         if (t->dc_did == DC_DEVICEID_987x5 &&
 1572                             rev >= DC_REVISION_98715AEC_C)
 1573                                 t++;
 1574                         if (t->dc_did == DC_DEVICEID_987x5 &&
 1575                             rev >= DC_REVISION_98725)
 1576                                 t++;
 1577                         if (t->dc_did == DC_DEVICEID_AX88140A &&
 1578                             rev >= DC_REVISION_88141)
 1579                                 t++;
 1580                         if (t->dc_did == DC_DEVICEID_82C168 &&
 1581                             rev >= DC_REVISION_82C169)
 1582                                 t++;
 1583                         if (t->dc_did == DC_DEVICEID_DM9102 &&
 1584                             rev >= DC_REVISION_DM9102A)
 1585                                 t++;
 1586                         /*
 1587                          * The Microsoft MN-130 has a device ID of 0x0002,
 1588                          * which happens to be the same as the PNIC 82c168.
 1589                          * To keep dc_attach() from getting confused, we
 1590                          * pretend its ID is something different.
 1591                          * XXX: ideally, dc_attach() should be checking
 1592                          * vendorid+deviceid together to avoid such
 1593                          * collisions.
 1594                          */
 1595                         if (t->dc_vid == DC_VENDORID_MICROSOFT &&
 1596                             t->dc_did == DC_DEVICEID_MSMN130)
 1597                                 t++;
 1598                         return (t);
 1599                 }
 1600                 t++;
 1601         }
 1602 
 1603         return (NULL);
 1604 }
 1605 
 1606 /*
 1607  * Probe for a 21143 or clone chip. Check the PCI vendor and device
 1608  * IDs against our list and return a device name if we find a match.
 1609  * We do a little bit of extra work to identify the exact type of
 1610  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
 1611  * but different revision IDs. The same is true for 98715/98715A
 1612  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
 1613  * cases, the exact chip revision affects driver behavior.
 1614  */
 1615 static int
 1616 dc_probe(device_t dev)
 1617 {
 1618         struct dc_type *t;
 1619 
 1620         t = dc_devtype(dev);
 1621 
 1622         if (t != NULL) {
 1623                 device_set_desc(dev, t->dc_name);
 1624                 return (0);
 1625         }
 1626 
 1627         return (ENXIO);
 1628 }
 1629 
 1630 static void
 1631 dc_apply_fixup(struct dc_softc *sc, int media)
 1632 {
 1633         struct dc_mediainfo *m;
 1634         u_int8_t *p;
 1635         int i;
 1636         u_int32_t reg;
 1637 
 1638         m = sc->dc_mi;
 1639 
 1640         while (m != NULL) {
 1641                 if (m->dc_media == media)
 1642                         break;
 1643                 m = m->dc_next;
 1644         }
 1645 
 1646         if (m == NULL)
 1647                 return;
 1648 
 1649         for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
 1650                 reg = (p[0] | (p[1] << 8)) << 16;
 1651                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1652         }
 1653 
 1654         for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
 1655                 reg = (p[0] | (p[1] << 8)) << 16;
 1656                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1657         }
 1658 }
 1659 
 1660 static void
 1661 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
 1662 {
 1663         struct dc_mediainfo *m;
 1664 
 1665         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1666         switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
 1667         case DC_SIA_CODE_10BT:
 1668                 m->dc_media = IFM_10_T;
 1669                 break;
 1670         case DC_SIA_CODE_10BT_FDX:
 1671                 m->dc_media = IFM_10_T | IFM_FDX;
 1672                 break;
 1673         case DC_SIA_CODE_10B2:
 1674                 m->dc_media = IFM_10_2;
 1675                 break;
 1676         case DC_SIA_CODE_10B5:
 1677                 m->dc_media = IFM_10_5;
 1678                 break;
 1679         default:
 1680                 break;
 1681         }
 1682 
 1683         /*
 1684          * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
 1685          * Things apparently already work for cards that do
 1686          * supply Media Specific Data.
 1687          */
 1688         if (l->dc_sia_code & DC_SIA_CODE_EXT) {
 1689                 m->dc_gp_len = 2;
 1690                 m->dc_gp_ptr =
 1691                 (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
 1692         } else {
 1693                 m->dc_gp_len = 2;
 1694                 m->dc_gp_ptr =
 1695                 (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
 1696         }
 1697 
 1698         m->dc_next = sc->dc_mi;
 1699         sc->dc_mi = m;
 1700 
 1701         sc->dc_pmode = DC_PMODE_SIA;
 1702 }
 1703 
 1704 static void
 1705 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
 1706 {
 1707         struct dc_mediainfo *m;
 1708 
 1709         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1710         if (l->dc_sym_code == DC_SYM_CODE_100BT)
 1711                 m->dc_media = IFM_100_TX;
 1712 
 1713         if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
 1714                 m->dc_media = IFM_100_TX | IFM_FDX;
 1715 
 1716         m->dc_gp_len = 2;
 1717         m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
 1718 
 1719         m->dc_next = sc->dc_mi;
 1720         sc->dc_mi = m;
 1721 
 1722         sc->dc_pmode = DC_PMODE_SYM;
 1723 }
 1724 
 1725 static void
 1726 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
 1727 {
 1728         struct dc_mediainfo *m;
 1729         u_int8_t *p;
 1730 
 1731         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1732         /* We abuse IFM_AUTO to represent MII. */
 1733         m->dc_media = IFM_AUTO;
 1734         m->dc_gp_len = l->dc_gpr_len;
 1735 
 1736         p = (u_int8_t *)l;
 1737         p += sizeof(struct dc_eblock_mii);
 1738         m->dc_gp_ptr = p;
 1739         p += 2 * l->dc_gpr_len;
 1740         m->dc_reset_len = *p;
 1741         p++;
 1742         m->dc_reset_ptr = p;
 1743 
 1744         m->dc_next = sc->dc_mi;
 1745         sc->dc_mi = m;
 1746 }
 1747 
 1748 static void
 1749 dc_read_srom(struct dc_softc *sc, int bits)
 1750 {
 1751         int size;
 1752 
 1753         size = 2 << bits;
 1754         sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
 1755         dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
 1756 }
 1757 
 1758 static void
 1759 dc_parse_21143_srom(struct dc_softc *sc)
 1760 {
 1761         struct dc_leaf_hdr *lhdr;
 1762         struct dc_eblock_hdr *hdr;
 1763         int have_mii, i, loff;
 1764         char *ptr;
 1765 
 1766         have_mii = 0;
 1767         loff = sc->dc_srom[27];
 1768         lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
 1769 
 1770         ptr = (char *)lhdr;
 1771         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1772         /*
 1773          * Look if we got a MII media block.
 1774          */
 1775         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1776                 hdr = (struct dc_eblock_hdr *)ptr;
 1777                 if (hdr->dc_type == DC_EBLOCK_MII)
 1778                     have_mii++;
 1779 
 1780                 ptr += (hdr->dc_len & 0x7F);
 1781                 ptr++;
 1782         }
 1783 
 1784         /*
 1785          * Do the same thing again. Only use SIA and SYM media
 1786          * blocks if no MII media block is available.
 1787          */
 1788         ptr = (char *)lhdr;
 1789         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1790         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1791                 hdr = (struct dc_eblock_hdr *)ptr;
 1792                 switch (hdr->dc_type) {
 1793                 case DC_EBLOCK_MII:
 1794                         dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
 1795                         break;
 1796                 case DC_EBLOCK_SIA:
 1797                         if (! have_mii)
 1798                                 dc_decode_leaf_sia(sc,
 1799                                     (struct dc_eblock_sia *)hdr);
 1800                         break;
 1801                 case DC_EBLOCK_SYM:
 1802                         if (! have_mii)
 1803                                 dc_decode_leaf_sym(sc,
 1804                                     (struct dc_eblock_sym *)hdr);
 1805                         break;
 1806                 default:
 1807                         /* Don't care. Yet. */
 1808                         break;
 1809                 }
 1810                 ptr += (hdr->dc_len & 0x7F);
 1811                 ptr++;
 1812         }
 1813 }
 1814 
 1815 static void
 1816 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1817 {
 1818         u_int32_t *paddr;
 1819 
 1820         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 1821         paddr = arg;
 1822         *paddr = segs->ds_addr;
 1823 }
 1824 
 1825 /*
 1826  * Attach the interface. Allocate softc structures, do ifmedia
 1827  * setup and ethernet/BPF attach.
 1828  */
 1829 static int
 1830 dc_attach(device_t dev)
 1831 {
 1832         int tmp = 0;
 1833         u_char eaddr[ETHER_ADDR_LEN];
 1834         u_int32_t command;
 1835         struct dc_softc *sc;
 1836         struct ifnet *ifp;
 1837         u_int32_t revision;
 1838         int unit, error = 0, rid, mac_offset;
 1839         int i;
 1840         u_int8_t *mac;
 1841 
 1842         sc = device_get_softc(dev);
 1843         unit = device_get_unit(dev);
 1844 
 1845         mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1846             MTX_DEF | MTX_RECURSE);
 1847 
 1848         /*
 1849          * Map control/status registers.
 1850          */
 1851         pci_enable_busmaster(dev);
 1852 
 1853         rid = DC_RID;
 1854         sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
 1855 
 1856         if (sc->dc_res == NULL) {
 1857                 printf("dc%d: couldn't map ports/memory\n", unit);
 1858                 error = ENXIO;
 1859                 goto fail;
 1860         }
 1861 
 1862         sc->dc_btag = rman_get_bustag(sc->dc_res);
 1863         sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
 1864 
 1865         /* Allocate interrupt. */
 1866         rid = 0;
 1867         sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1868             RF_SHAREABLE | RF_ACTIVE);
 1869 
 1870         if (sc->dc_irq == NULL) {
 1871                 printf("dc%d: couldn't map interrupt\n", unit);
 1872                 error = ENXIO;
 1873                 goto fail;
 1874         }
 1875 
 1876         /* Need this info to decide on a chip type. */
 1877         sc->dc_info = dc_devtype(dev);
 1878         revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
 1879 
 1880         /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
 1881         if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
 1882            sc->dc_info->dc_did != DC_DEVICEID_X3201)
 1883                 dc_eeprom_width(sc);
 1884 
 1885         switch (sc->dc_info->dc_did) {
 1886         case DC_DEVICEID_21143:
 1887                 sc->dc_type = DC_TYPE_21143;
 1888                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1889                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1890                 /* Save EEPROM contents so we can parse them later. */
 1891                 dc_read_srom(sc, sc->dc_romwidth);
 1892                 break;
 1893         case DC_DEVICEID_DM9009:
 1894         case DC_DEVICEID_DM9100:
 1895         case DC_DEVICEID_DM9102:
 1896                 sc->dc_type = DC_TYPE_DM9102;
 1897                 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
 1898                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
 1899                 sc->dc_flags |= DC_TX_ALIGN;
 1900                 sc->dc_pmode = DC_PMODE_MII;
 1901                 /* Increase the latency timer value. */
 1902                 command = pci_read_config(dev, DC_PCI_CFLT, 4);
 1903                 command &= 0xFFFF00FF;
 1904                 command |= 0x00008000;
 1905                 pci_write_config(dev, DC_PCI_CFLT, command, 4);
 1906                 break;
 1907         case DC_DEVICEID_AL981:
 1908                 sc->dc_type = DC_TYPE_AL981;
 1909                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1910                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1911                 sc->dc_pmode = DC_PMODE_MII;
 1912                 dc_read_srom(sc, sc->dc_romwidth);
 1913                 break;
 1914         case DC_DEVICEID_AN985:
 1915         case DC_DEVICEID_ADM9511:
 1916         case DC_DEVICEID_ADM9513:
 1917         case DC_DEVICEID_FA511:
 1918         case DC_DEVICEID_FE2500:
 1919         case DC_DEVICEID_EN2242:
 1920         case DC_DEVICEID_HAWKING_PN672TX:
 1921         case DC_DEVICEID_3CSOHOB:
 1922         case DC_DEVICEID_MSMN120:
 1923         case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
 1924                 sc->dc_type = DC_TYPE_AN985;
 1925                 sc->dc_flags |= DC_64BIT_HASH;
 1926                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1927                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1928                 sc->dc_pmode = DC_PMODE_MII;
 1929                 /* Don't read SROM for - auto-loaded on reset */
 1930                 break;
 1931         case DC_DEVICEID_98713:
 1932         case DC_DEVICEID_98713_CP:
 1933                 if (revision < DC_REVISION_98713A) {
 1934                         sc->dc_type = DC_TYPE_98713;
 1935                 }
 1936                 if (revision >= DC_REVISION_98713A) {
 1937                         sc->dc_type = DC_TYPE_98713A;
 1938                         sc->dc_flags |= DC_21143_NWAY;
 1939                 }
 1940                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1941                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1942                 break;
 1943         case DC_DEVICEID_987x5:
 1944         case DC_DEVICEID_EN1217:
 1945                 /*
 1946                  * Macronix MX98715AEC-C/D/E parts have only a
 1947                  * 128-bit hash table. We need to deal with these
 1948                  * in the same manner as the PNIC II so that we
 1949                  * get the right number of bits out of the
 1950                  * CRC routine.
 1951                  */
 1952                 if (revision >= DC_REVISION_98715AEC_C &&
 1953                     revision < DC_REVISION_98725)
 1954                         sc->dc_flags |= DC_128BIT_HASH;
 1955                 sc->dc_type = DC_TYPE_987x5;
 1956                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1957                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1958                 break;
 1959         case DC_DEVICEID_98727:
 1960                 sc->dc_type = DC_TYPE_987x5;
 1961                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1962                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1963                 break;
 1964         case DC_DEVICEID_82C115:
 1965                 sc->dc_type = DC_TYPE_PNICII;
 1966                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
 1967                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1968                 break;
 1969         case DC_DEVICEID_82C168:
 1970                 sc->dc_type = DC_TYPE_PNIC;
 1971                 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
 1972                 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
 1973                 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
 1974                 if (revision < DC_REVISION_82C169)
 1975                         sc->dc_pmode = DC_PMODE_SYM;
 1976                 break;
 1977         case DC_DEVICEID_AX88140A:
 1978                 sc->dc_type = DC_TYPE_ASIX;
 1979                 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
 1980                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1981                 sc->dc_pmode = DC_PMODE_MII;
 1982                 break;
 1983         case DC_DEVICEID_X3201:
 1984                 sc->dc_type = DC_TYPE_XIRCOM;
 1985                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 1986                                 DC_TX_ALIGN;
 1987                 /*
 1988                  * We don't actually need to coalesce, but we're doing
 1989                  * it to obtain a double word aligned buffer.
 1990                  * The DC_TX_COALESCE flag is required.
 1991                  */
 1992                 sc->dc_pmode = DC_PMODE_MII;
 1993                 break;
 1994         case DC_DEVICEID_RS7112:
 1995                 sc->dc_type = DC_TYPE_CONEXANT;
 1996                 sc->dc_flags |= DC_TX_INTR_ALWAYS;
 1997                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1998                 sc->dc_pmode = DC_PMODE_MII;
 1999                 dc_read_srom(sc, sc->dc_romwidth);
 2000                 break;
 2001         default:
 2002                 printf("dc%d: unknown device: %x\n", sc->dc_unit,
 2003                     sc->dc_info->dc_did);
 2004                 break;
 2005         }
 2006 
 2007         /* Save the cache line size. */
 2008         if (DC_IS_DAVICOM(sc))
 2009                 sc->dc_cachesize = 0;
 2010         else
 2011                 sc->dc_cachesize = pci_read_config(dev,
 2012                     DC_PCI_CFLT, 4) & 0xFF;
 2013 
 2014         /* Reset the adapter. */
 2015         dc_reset(sc);
 2016 
 2017         /* Take 21143 out of snooze mode */
 2018         if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
 2019                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2020                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2021                 pci_write_config(dev, DC_PCI_CFDD, command, 4);
 2022         }
 2023 
 2024         /*
 2025          * Try to learn something about the supported media.
 2026          * We know that ASIX and ADMtek and Davicom devices
 2027          * will *always* be using MII media, so that's a no-brainer.
 2028          * The tricky ones are the Macronix/PNIC II and the
 2029          * Intel 21143.
 2030          */
 2031         if (DC_IS_INTEL(sc))
 2032                 dc_parse_21143_srom(sc);
 2033         else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 2034                 if (sc->dc_type == DC_TYPE_98713)
 2035                         sc->dc_pmode = DC_PMODE_MII;
 2036                 else
 2037                         sc->dc_pmode = DC_PMODE_SYM;
 2038         } else if (!sc->dc_pmode)
 2039                 sc->dc_pmode = DC_PMODE_MII;
 2040 
 2041         /*
 2042          * Get station address from the EEPROM.
 2043          */
 2044         switch(sc->dc_type) {
 2045         case DC_TYPE_98713:
 2046         case DC_TYPE_98713A:
 2047         case DC_TYPE_987x5:
 2048         case DC_TYPE_PNICII:
 2049                 dc_read_eeprom(sc, (caddr_t)&mac_offset,
 2050                     (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
 2051                 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
 2052                 break;
 2053         case DC_TYPE_PNIC:
 2054                 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
 2055                 break;
 2056         case DC_TYPE_DM9102:
 2057                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2058 #ifdef __sparc64__
 2059                 /*
 2060                  * If this is an onboard dc(4) the station address read from
 2061                  * the EEPROM is all zero and we have to get it from the fcode.
 2062                  */
 2063                 for (i = 0; i < ETHER_ADDR_LEN; i++)
 2064                         if (eaddr[i] != 0x00)
 2065                                 break;
 2066                 if (i >= ETHER_ADDR_LEN)
 2067                         OF_getetheraddr(dev, eaddr);
 2068 #endif
 2069                 break;
 2070         case DC_TYPE_21143:
 2071         case DC_TYPE_ASIX:
 2072                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2073                 break;
 2074         case DC_TYPE_AL981:
 2075         case DC_TYPE_AN985:
 2076                 *(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
 2077                 *(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
 2078                 break;
 2079         case DC_TYPE_CONEXANT:
 2080                 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
 2081                     ETHER_ADDR_LEN);
 2082                 break;
 2083         case DC_TYPE_XIRCOM:
 2084                 /* The MAC comes from the CIS. */
 2085                 mac = pci_get_ether(dev);
 2086                 if (!mac) {
 2087                         device_printf(dev, "No station address in CIS!\n");
 2088                         error = ENXIO;
 2089                         goto fail;
 2090                 }
 2091                 bcopy(mac, eaddr, ETHER_ADDR_LEN);
 2092                 break;
 2093         default:
 2094                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2095                 break;
 2096         }
 2097 
 2098         sc->dc_unit = unit;
 2099         bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
 2100 
 2101         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 2102         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2103             BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
 2104             sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
 2105         if (error) {
 2106                 printf("dc%d: failed to allocate busdma tag\n", unit);
 2107                 error = ENXIO;
 2108                 goto fail;
 2109         }
 2110         error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
 2111             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
 2112         if (error) {
 2113                 printf("dc%d: failed to allocate DMA safe memory\n", unit);
 2114                 error = ENXIO;
 2115                 goto fail;
 2116         }
 2117         error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
 2118             sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
 2119             BUS_DMA_NOWAIT);
 2120         if (error) {
 2121                 printf("dc%d: cannot get address of the descriptors\n", unit);
 2122                 error = ENXIO;
 2123                 goto fail;
 2124         }
 2125 
 2126         /*
 2127          * Allocate a busdma tag and DMA safe memory for the multicast
 2128          * setup frame.
 2129          */
 2130         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2131             BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
 2132             DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
 2133         if (error) {
 2134                 printf("dc%d: failed to allocate busdma tag\n", unit);
 2135                 error = ENXIO;
 2136                 goto fail;
 2137         }
 2138         error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
 2139             BUS_DMA_NOWAIT, &sc->dc_smap);
 2140         if (error) {
 2141                 printf("dc%d: failed to allocate DMA safe memory\n", unit);
 2142                 error = ENXIO;
 2143                 goto fail;
 2144         }
 2145         error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
 2146             DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
 2147         if (error) {
 2148                 printf("dc%d: cannot get address of the descriptors\n", unit);
 2149                 error = ENXIO;
 2150                 goto fail;
 2151         }
 2152 
 2153         /* Allocate a busdma tag for mbufs. */
 2154         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2155             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
 2156             DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
 2157         if (error) {
 2158                 printf("dc%d: failed to allocate busdma tag\n", unit);
 2159                 error = ENXIO;
 2160                 goto fail;
 2161         }
 2162 
 2163         /* Create the TX/RX busdma maps. */
 2164         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2165                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2166                     &sc->dc_cdata.dc_tx_map[i]);
 2167                 if (error) {
 2168                         printf("dc%d: failed to init TX ring\n", unit);
 2169                         error = ENXIO;
 2170                         goto fail;
 2171                 }
 2172         }
 2173         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2174                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2175                     &sc->dc_cdata.dc_rx_map[i]);
 2176                 if (error) {
 2177                         printf("dc%d: failed to init RX ring\n", unit);
 2178                         error = ENXIO;
 2179                         goto fail;
 2180                 }
 2181         }
 2182         error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
 2183         if (error) {
 2184                 printf("dc%d: failed to init RX ring\n", unit);
 2185                 error = ENXIO;
 2186                 goto fail;
 2187         }
 2188 
 2189         ifp = &sc->arpcom.ac_if;
 2190         ifp->if_softc = sc;
 2191         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2192         /* XXX: bleah, MTU gets overwritten in ether_ifattach() */
 2193         ifp->if_mtu = ETHERMTU;
 2194         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2195         if (!IS_MPSAFE)
 2196                 ifp->if_flags |= IFF_NEEDSGIANT;
 2197         ifp->if_ioctl = dc_ioctl;
 2198         ifp->if_start = dc_start;
 2199         ifp->if_watchdog = dc_watchdog;
 2200         ifp->if_init = dc_init;
 2201         ifp->if_baudrate = 10000000;
 2202         IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
 2203         ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
 2204         IFQ_SET_READY(&ifp->if_snd);
 2205 
 2206         /*
 2207          * Do MII setup. If this is a 21143, check for a PHY on the
 2208          * MII bus after applying any necessary fixups to twiddle the
 2209          * GPIO bits. If we don't end up finding a PHY, restore the
 2210          * old selection (SIA only or SIA/SYM) and attach the dcphy
 2211          * driver instead.
 2212          */
 2213         if (DC_IS_INTEL(sc)) {
 2214                 dc_apply_fixup(sc, IFM_AUTO);
 2215                 tmp = sc->dc_pmode;
 2216                 sc->dc_pmode = DC_PMODE_MII;
 2217         }
 2218 
 2219         error = mii_phy_probe(dev, &sc->dc_miibus,
 2220             dc_ifmedia_upd, dc_ifmedia_sts);
 2221 
 2222         if (error && DC_IS_INTEL(sc)) {
 2223                 sc->dc_pmode = tmp;
 2224                 if (sc->dc_pmode != DC_PMODE_SIA)
 2225                         sc->dc_pmode = DC_PMODE_SYM;
 2226                 sc->dc_flags |= DC_21143_NWAY;
 2227                 mii_phy_probe(dev, &sc->dc_miibus,
 2228                     dc_ifmedia_upd, dc_ifmedia_sts);
 2229                 /*
 2230                  * For non-MII cards, we need to have the 21143
 2231                  * drive the LEDs. Except there are some systems
 2232                  * like the NEC VersaPro NoteBook PC which have no
 2233                  * LEDs, and twiddling these bits has adverse effects
 2234                  * on them. (I.e. you suddenly can't get a link.)
 2235                  */
 2236                 if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
 2237                         sc->dc_flags |= DC_TULIP_LEDS;
 2238                 error = 0;
 2239         }
 2240 
 2241         if (error) {
 2242                 printf("dc%d: MII without any PHY!\n", sc->dc_unit);
 2243                 goto fail;
 2244         }
 2245 
 2246         if (DC_IS_XIRCOM(sc)) {
 2247                 /*
 2248                  * setup General Purpose Port mode and data so the tulip
 2249                  * can talk to the MII.
 2250                  */
 2251                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 2252                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2253                 DELAY(10);
 2254                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 2255                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2256                 DELAY(10);
 2257         }
 2258 
 2259         if (DC_IS_ADMTEK(sc)) {
 2260                 /*
 2261                  * Set automatic TX underrun recovery for the ADMtek chips
 2262                  */
 2263                 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
 2264         }
 2265 
 2266         /*
 2267          * Tell the upper layer(s) we support long frames.
 2268          */
 2269         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 2270         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 2271 #ifdef DEVICE_POLLING
 2272         ifp->if_capabilities |= IFCAP_POLLING;
 2273 #endif
 2274         ifp->if_capenable = ifp->if_capabilities;
 2275 
 2276         callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
 2277 
 2278 #ifdef SRM_MEDIA
 2279         sc->dc_srm_media = 0;
 2280 
 2281         /* Remember the SRM console media setting */
 2282         if (DC_IS_INTEL(sc)) {
 2283                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2284                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2285                 switch ((command >> 8) & 0xff) {
 2286                 case 3:
 2287                         sc->dc_srm_media = IFM_10_T;
 2288                         break;
 2289                 case 4:
 2290                         sc->dc_srm_media = IFM_10_T | IFM_FDX;
 2291                         break;
 2292                 case 5:
 2293                         sc->dc_srm_media = IFM_100_TX;
 2294                         break;
 2295                 case 6:
 2296                         sc->dc_srm_media = IFM_100_TX | IFM_FDX;
 2297                         break;
 2298                 }
 2299                 if (sc->dc_srm_media)
 2300                         sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
 2301         }
 2302 #endif
 2303 
 2304         /*
 2305          * Call MI attach routine.
 2306          */
 2307         ether_ifattach(ifp, eaddr);
 2308 
 2309         /* Hook interrupt last to avoid having to lock softc */
 2310         error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
 2311             (IS_MPSAFE ? INTR_MPSAFE : 0),
 2312             dc_intr, sc, &sc->dc_intrhand);
 2313 
 2314         if (error) {
 2315                 printf("dc%d: couldn't set up irq\n", unit);
 2316                 ether_ifdetach(ifp);
 2317                 goto fail;
 2318         }
 2319 
 2320 fail:
 2321         if (error)
 2322                 dc_detach(dev);
 2323         return (error);
 2324 }
 2325 
 2326 /*
 2327  * Shutdown hardware and free up resources. This can be called any
 2328  * time after the mutex has been initialized. It is called in both
 2329  * the error case in attach and the normal detach case so it needs
 2330  * to be careful about only freeing resources that have actually been
 2331  * allocated.
 2332  */
 2333 static int
 2334 dc_detach(device_t dev)
 2335 {
 2336         struct dc_softc *sc;
 2337         struct ifnet *ifp;
 2338         struct dc_mediainfo *m;
 2339         int i;
 2340 
 2341         sc = device_get_softc(dev);
 2342         KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
 2343         DC_LOCK(sc);
 2344 
 2345         ifp = &sc->arpcom.ac_if;
 2346 
 2347         /* These should only be active if attach succeeded */
 2348         if (device_is_attached(dev)) {
 2349                 dc_stop(sc);
 2350                 ether_ifdetach(ifp);
 2351         }
 2352         if (sc->dc_miibus)
 2353                 device_delete_child(dev, sc->dc_miibus);
 2354         bus_generic_detach(dev);
 2355 
 2356         if (sc->dc_intrhand)
 2357                 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
 2358         if (sc->dc_irq)
 2359                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
 2360         if (sc->dc_res)
 2361                 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
 2362 
 2363         if (sc->dc_cdata.dc_sbuf != NULL)
 2364                 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
 2365         if (sc->dc_ldata != NULL)
 2366                 bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
 2367         for (i = 0; i < DC_TX_LIST_CNT; i++)
 2368                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
 2369         for (i = 0; i < DC_RX_LIST_CNT; i++)
 2370                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2371         bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
 2372         if (sc->dc_stag)
 2373                 bus_dma_tag_destroy(sc->dc_stag);
 2374         if (sc->dc_mtag)
 2375                 bus_dma_tag_destroy(sc->dc_mtag);
 2376         if (sc->dc_ltag)
 2377                 bus_dma_tag_destroy(sc->dc_ltag);
 2378 
 2379         free(sc->dc_pnic_rx_buf, M_DEVBUF);
 2380 
 2381         while (sc->dc_mi != NULL) {
 2382                 m = sc->dc_mi->dc_next;
 2383                 free(sc->dc_mi, M_DEVBUF);
 2384                 sc->dc_mi = m;
 2385         }
 2386         free(sc->dc_srom, M_DEVBUF);
 2387 
 2388         DC_UNLOCK(sc);
 2389         mtx_destroy(&sc->dc_mtx);
 2390 
 2391         return (0);
 2392 }
 2393 
 2394 /*
 2395  * Initialize the transmit descriptors.
 2396  */
 2397 static int
 2398 dc_list_tx_init(struct dc_softc *sc)
 2399 {
 2400         struct dc_chain_data *cd;
 2401         struct dc_list_data *ld;
 2402         int i, nexti;
 2403 
 2404         cd = &sc->dc_cdata;
 2405         ld = sc->dc_ldata;
 2406         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2407                 if (i == DC_TX_LIST_CNT - 1)
 2408                         nexti = 0;
 2409                 else
 2410                         nexti = i + 1;
 2411                 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
 2412                 cd->dc_tx_chain[i] = NULL;
 2413                 ld->dc_tx_list[i].dc_data = 0;
 2414                 ld->dc_tx_list[i].dc_ctl = 0;
 2415         }
 2416 
 2417         cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
 2418         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2419             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2420         return (0);
 2421 }
 2422 
 2423 
 2424 /*
 2425  * Initialize the RX descriptors and allocate mbufs for them. Note that
 2426  * we arrange the descriptors in a closed ring, so that the last descriptor
 2427  * points back to the first.
 2428  */
 2429 static int
 2430 dc_list_rx_init(struct dc_softc *sc)
 2431 {
 2432         struct dc_chain_data *cd;
 2433         struct dc_list_data *ld;
 2434         int i, nexti;
 2435 
 2436         cd = &sc->dc_cdata;
 2437         ld = sc->dc_ldata;
 2438 
 2439         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2440                 if (dc_newbuf(sc, i, 1) != 0)
 2441                         return (ENOBUFS);
 2442                 if (i == DC_RX_LIST_CNT - 1)
 2443                         nexti = 0;
 2444                 else
 2445                         nexti = i + 1;
 2446                 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
 2447         }
 2448 
 2449         cd->dc_rx_prod = 0;
 2450         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2451             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2452         return (0);
 2453 }
 2454 
 2455 static void
 2456 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
 2457         void *arg;
 2458         bus_dma_segment_t *segs;
 2459         int nseg;
 2460         bus_size_t mapsize;
 2461         int error;
 2462 {
 2463         struct dc_softc *sc;
 2464         struct dc_desc *c;
 2465 
 2466         sc = arg;
 2467         c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
 2468         if (error) {
 2469                 sc->dc_cdata.dc_rx_err = error;
 2470                 return;
 2471         }
 2472 
 2473         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 2474         sc->dc_cdata.dc_rx_err = 0;
 2475         c->dc_data = htole32(segs->ds_addr);
 2476 }
 2477 
 2478 /*
 2479  * Initialize an RX descriptor and attach an MBUF cluster.
 2480  */
 2481 static int
 2482 dc_newbuf(struct dc_softc *sc, int i, int alloc)
 2483 {
 2484         struct mbuf *m_new;
 2485         bus_dmamap_t tmp;
 2486         int error;
 2487 
 2488         if (alloc) {
 2489                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2490                 if (m_new == NULL)
 2491                         return (ENOBUFS);
 2492         } else {
 2493                 m_new = sc->dc_cdata.dc_rx_chain[i];
 2494                 m_new->m_data = m_new->m_ext.ext_buf;
 2495         }
 2496         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 2497         m_adj(m_new, sizeof(u_int64_t));
 2498 
 2499         /*
 2500          * If this is a PNIC chip, zero the buffer. This is part
 2501          * of the workaround for the receive bug in the 82c168 and
 2502          * 82c169 chips.
 2503          */
 2504         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
 2505                 bzero(mtod(m_new, char *), m_new->m_len);
 2506 
 2507         /* No need to remap the mbuf if we're reusing it. */
 2508         if (alloc) {
 2509                 sc->dc_cdata.dc_rx_cur = i;
 2510                 error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
 2511                     m_new, dc_dma_map_rxbuf, sc, 0);
 2512                 if (error) {
 2513                         m_freem(m_new);
 2514                         return (error);
 2515                 }
 2516                 if (sc->dc_cdata.dc_rx_err != 0) {
 2517                         m_freem(m_new);
 2518                         return (sc->dc_cdata.dc_rx_err);
 2519                 }
 2520                 bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2521                 tmp = sc->dc_cdata.dc_rx_map[i];
 2522                 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
 2523                 sc->dc_sparemap = tmp;
 2524                 sc->dc_cdata.dc_rx_chain[i] = m_new;
 2525         }
 2526 
 2527         sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2528         sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2529         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2530             BUS_DMASYNC_PREREAD);
 2531         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2532             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2533         return (0);
 2534 }
 2535 
 2536 /*
 2537  * Grrrrr.
 2538  * The PNIC chip has a terrible bug in it that manifests itself during
 2539  * periods of heavy activity. The exact mode of failure if difficult to
 2540  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
 2541  * will happen on slow machines. The bug is that sometimes instead of
 2542  * uploading one complete frame during reception, it uploads what looks
 2543  * like the entire contents of its FIFO memory. The frame we want is at
 2544  * the end of the whole mess, but we never know exactly how much data has
 2545  * been uploaded, so salvaging the frame is hard.
 2546  *
 2547  * There is only one way to do it reliably, and it's disgusting.
 2548  * Here's what we know:
 2549  *
 2550  * - We know there will always be somewhere between one and three extra
 2551  *   descriptors uploaded.
 2552  *
 2553  * - We know the desired received frame will always be at the end of the
 2554  *   total data upload.
 2555  *
 2556  * - We know the size of the desired received frame because it will be
 2557  *   provided in the length field of the status word in the last descriptor.
 2558  *
 2559  * Here's what we do:
 2560  *
 2561  * - When we allocate buffers for the receive ring, we bzero() them.
 2562  *   This means that we know that the buffer contents should be all
 2563  *   zeros, except for data uploaded by the chip.
 2564  *
 2565  * - We also force the PNIC chip to upload frames that include the
 2566  *   ethernet CRC at the end.
 2567  *
 2568  * - We gather all of the bogus frame data into a single buffer.
 2569  *
 2570  * - We then position a pointer at the end of this buffer and scan
 2571  *   backwards until we encounter the first non-zero byte of data.
 2572  *   This is the end of the received frame. We know we will encounter
 2573  *   some data at the end of the frame because the CRC will always be
 2574  *   there, so even if the sender transmits a packet of all zeros,
 2575  *   we won't be fooled.
 2576  *
 2577  * - We know the size of the actual received frame, so we subtract
 2578  *   that value from the current pointer location. This brings us
 2579  *   to the start of the actual received packet.
 2580  *
 2581  * - We copy this into an mbuf and pass it on, along with the actual
 2582  *   frame length.
 2583  *
 2584  * The performance hit is tremendous, but it beats dropping frames all
 2585  * the time.
 2586  */
 2587 
 2588 #define DC_WHOLEFRAME   (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
 2589 static void
 2590 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
 2591 {
 2592         struct dc_desc *cur_rx;
 2593         struct dc_desc *c = NULL;
 2594         struct mbuf *m = NULL;
 2595         unsigned char *ptr;
 2596         int i, total_len;
 2597         u_int32_t rxstat = 0;
 2598 
 2599         i = sc->dc_pnic_rx_bug_save;
 2600         cur_rx = &sc->dc_ldata->dc_rx_list[idx];
 2601         ptr = sc->dc_pnic_rx_buf;
 2602         bzero(ptr, DC_RXLEN * 5);
 2603 
 2604         /* Copy all the bytes from the bogus buffers. */
 2605         while (1) {
 2606                 c = &sc->dc_ldata->dc_rx_list[i];
 2607                 rxstat = le32toh(c->dc_status);
 2608                 m = sc->dc_cdata.dc_rx_chain[i];
 2609                 bcopy(mtod(m, char *), ptr, DC_RXLEN);
 2610                 ptr += DC_RXLEN;
 2611                 /* If this is the last buffer, break out. */
 2612                 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
 2613                         break;
 2614                 dc_newbuf(sc, i, 0);
 2615                 DC_INC(i, DC_RX_LIST_CNT);
 2616         }
 2617 
 2618         /* Find the length of the actual receive frame. */
 2619         total_len = DC_RXBYTES(rxstat);
 2620 
 2621         /* Scan backwards until we hit a non-zero byte. */
 2622         while (*ptr == 0x00)
 2623                 ptr--;
 2624 
 2625         /* Round off. */
 2626         if ((uintptr_t)(ptr) & 0x3)
 2627                 ptr -= 1;
 2628 
 2629         /* Now find the start of the frame. */
 2630         ptr -= total_len;
 2631         if (ptr < sc->dc_pnic_rx_buf)
 2632                 ptr = sc->dc_pnic_rx_buf;
 2633 
 2634         /*
 2635          * Now copy the salvaged frame to the last mbuf and fake up
 2636          * the status word to make it look like a successful
 2637          * frame reception.
 2638          */
 2639         dc_newbuf(sc, i, 0);
 2640         bcopy(ptr, mtod(m, char *), total_len);
 2641         cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
 2642 }
 2643 
 2644 /*
 2645  * This routine searches the RX ring for dirty descriptors in the
 2646  * event that the rxeof routine falls out of sync with the chip's
 2647  * current descriptor pointer. This may happen sometimes as a result
 2648  * of a "no RX buffer available" condition that happens when the chip
 2649  * consumes all of the RX buffers before the driver has a chance to
 2650  * process the RX ring. This routine may need to be called more than
 2651  * once to bring the driver back in sync with the chip, however we
 2652  * should still be getting RX DONE interrupts to drive the search
 2653  * for new packets in the RX ring, so we should catch up eventually.
 2654  */
 2655 static int
 2656 dc_rx_resync(struct dc_softc *sc)
 2657 {
 2658         struct dc_desc *cur_rx;
 2659         int i, pos;
 2660 
 2661         pos = sc->dc_cdata.dc_rx_prod;
 2662 
 2663         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2664                 cur_rx = &sc->dc_ldata->dc_rx_list[pos];
 2665                 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
 2666                         break;
 2667                 DC_INC(pos, DC_RX_LIST_CNT);
 2668         }
 2669 
 2670         /* If the ring really is empty, then just return. */
 2671         if (i == DC_RX_LIST_CNT)
 2672                 return (0);
 2673 
 2674         /* We've fallen behing the chip: catch it. */
 2675         sc->dc_cdata.dc_rx_prod = pos;
 2676 
 2677         return (EAGAIN);
 2678 }
 2679 
 2680 /*
 2681  * A frame has been uploaded: pass the resulting mbuf chain up to
 2682  * the higher level protocols.
 2683  */
 2684 static void
 2685 dc_rxeof(struct dc_softc *sc)
 2686 {
 2687         struct mbuf *m;
 2688         struct ifnet *ifp;
 2689         struct dc_desc *cur_rx;
 2690         int i, total_len = 0;
 2691         u_int32_t rxstat;
 2692 
 2693         DC_LOCK_ASSERT(sc);
 2694 
 2695         ifp = &sc->arpcom.ac_if;
 2696         i = sc->dc_cdata.dc_rx_prod;
 2697 
 2698         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2699         while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
 2700             DC_RXSTAT_OWN)) {
 2701 #ifdef DEVICE_POLLING
 2702                 if (ifp->if_flags & IFF_POLLING) {
 2703                         if (sc->rxcycles <= 0)
 2704                                 break;
 2705                         sc->rxcycles--;
 2706                 }
 2707 #endif
 2708                 cur_rx = &sc->dc_ldata->dc_rx_list[i];
 2709                 rxstat = le32toh(cur_rx->dc_status);
 2710                 m = sc->dc_cdata.dc_rx_chain[i];
 2711                 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2712                     BUS_DMASYNC_POSTREAD);
 2713                 total_len = DC_RXBYTES(rxstat);
 2714 
 2715                 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2716                         if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
 2717                                 if (rxstat & DC_RXSTAT_FIRSTFRAG)
 2718                                         sc->dc_pnic_rx_bug_save = i;
 2719                                 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
 2720                                         DC_INC(i, DC_RX_LIST_CNT);
 2721                                         continue;
 2722                                 }
 2723                                 dc_pnic_rx_bug_war(sc, i);
 2724                                 rxstat = le32toh(cur_rx->dc_status);
 2725                                 total_len = DC_RXBYTES(rxstat);
 2726                         }
 2727                 }
 2728 
 2729                 /*
 2730                  * If an error occurs, update stats, clear the
 2731                  * status word and leave the mbuf cluster in place:
 2732                  * it should simply get re-used next time this descriptor
 2733                  * comes up in the ring.  However, don't report long
 2734                  * frames as errors since they could be vlans.
 2735                  */
 2736                 if ((rxstat & DC_RXSTAT_RXERR)) {
 2737                         if (!(rxstat & DC_RXSTAT_GIANT) ||
 2738                             (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
 2739                                        DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
 2740                                        DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
 2741                                 ifp->if_ierrors++;
 2742                                 if (rxstat & DC_RXSTAT_COLLSEEN)
 2743                                         ifp->if_collisions++;
 2744                                 dc_newbuf(sc, i, 0);
 2745                                 if (rxstat & DC_RXSTAT_CRCERR) {
 2746                                         DC_INC(i, DC_RX_LIST_CNT);
 2747                                         continue;
 2748                                 } else {
 2749                                         dc_init(sc);
 2750                                         return;
 2751                                 }
 2752                         }
 2753                 }
 2754 
 2755                 /* No errors; receive the packet. */
 2756                 total_len -= ETHER_CRC_LEN;
 2757 #ifdef __i386__
 2758                 /*
 2759                  * On the x86 we do not have alignment problems, so try to
 2760                  * allocate a new buffer for the receive ring, and pass up
 2761                  * the one where the packet is already, saving the expensive
 2762                  * copy done in m_devget().
 2763                  * If we are on an architecture with alignment problems, or
 2764                  * if the allocation fails, then use m_devget and leave the
 2765                  * existing buffer in the receive ring.
 2766                  */
 2767                 if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
 2768                         m->m_pkthdr.rcvif = ifp;
 2769                         m->m_pkthdr.len = m->m_len = total_len;
 2770                         DC_INC(i, DC_RX_LIST_CNT);
 2771                 } else
 2772 #endif
 2773                 {
 2774                         struct mbuf *m0;
 2775 
 2776                         m0 = m_devget(mtod(m, char *), total_len,
 2777                                 ETHER_ALIGN, ifp, NULL);
 2778                         dc_newbuf(sc, i, 0);
 2779                         DC_INC(i, DC_RX_LIST_CNT);
 2780                         if (m0 == NULL) {
 2781                                 ifp->if_ierrors++;
 2782                                 continue;
 2783                         }
 2784                         m = m0;
 2785                 }
 2786 
 2787                 ifp->if_ipackets++;
 2788                 DC_UNLOCK(sc);
 2789                 (*ifp->if_input)(ifp, m);
 2790                 DC_LOCK(sc);
 2791         }
 2792 
 2793         sc->dc_cdata.dc_rx_prod = i;
 2794 }
 2795 
 2796 /*
 2797  * A frame was downloaded to the chip. It's safe for us to clean up
 2798  * the list buffers.
 2799  */
 2800 
 2801 static void
 2802 dc_txeof(struct dc_softc *sc)
 2803 {
 2804         struct dc_desc *cur_tx = NULL;
 2805         struct ifnet *ifp;
 2806         int idx;
 2807         u_int32_t ctl, txstat;
 2808 
 2809         ifp = &sc->arpcom.ac_if;
 2810 
 2811         /*
 2812          * Go through our tx list and free mbufs for those
 2813          * frames that have been transmitted.
 2814          */
 2815         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2816         idx = sc->dc_cdata.dc_tx_cons;
 2817         while (idx != sc->dc_cdata.dc_tx_prod) {
 2818 
 2819                 cur_tx = &sc->dc_ldata->dc_tx_list[idx];
 2820                 txstat = le32toh(cur_tx->dc_status);
 2821                 ctl = le32toh(cur_tx->dc_ctl);
 2822 
 2823                 if (txstat & DC_TXSTAT_OWN)
 2824                         break;
 2825 
 2826                 if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
 2827                         if (ctl & DC_TXCTL_SETUP) {
 2828                                 /*
 2829                                  * Yes, the PNIC is so brain damaged
 2830                                  * that it will sometimes generate a TX
 2831                                  * underrun error while DMAing the RX
 2832                                  * filter setup frame. If we detect this,
 2833                                  * we have to send the setup frame again,
 2834                                  * or else the filter won't be programmed
 2835                                  * correctly.
 2836                                  */
 2837                                 if (DC_IS_PNIC(sc)) {
 2838                                         if (txstat & DC_TXSTAT_ERRSUM)
 2839                                                 dc_setfilt(sc);
 2840                                 }
 2841                                 sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2842                         }
 2843                         sc->dc_cdata.dc_tx_cnt--;
 2844                         DC_INC(idx, DC_TX_LIST_CNT);
 2845                         continue;
 2846                 }
 2847 
 2848                 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
 2849                         /*
 2850                          * XXX: Why does my Xircom taunt me so?
 2851                          * For some reason it likes setting the CARRLOST flag
 2852                          * even when the carrier is there. wtf?!?
 2853                          * Who knows, but Conexant chips have the
 2854                          * same problem. Maybe they took lessons
 2855                          * from Xircom.
 2856                          */
 2857                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2858                             sc->dc_pmode == DC_PMODE_MII &&
 2859                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2860                             DC_TXSTAT_NOCARRIER)))
 2861                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2862                 } else {
 2863                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2864                             sc->dc_pmode == DC_PMODE_MII &&
 2865                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2866                             DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
 2867                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2868                 }
 2869 
 2870                 if (txstat & DC_TXSTAT_ERRSUM) {
 2871                         ifp->if_oerrors++;
 2872                         if (txstat & DC_TXSTAT_EXCESSCOLL)
 2873                                 ifp->if_collisions++;
 2874                         if (txstat & DC_TXSTAT_LATECOLL)
 2875                                 ifp->if_collisions++;
 2876                         if (!(txstat & DC_TXSTAT_UNDERRUN)) {
 2877                                 dc_init(sc);
 2878                                 return;
 2879                         }
 2880                 }
 2881 
 2882                 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
 2883 
 2884                 ifp->if_opackets++;
 2885                 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
 2886                         bus_dmamap_sync(sc->dc_mtag,
 2887                             sc->dc_cdata.dc_tx_map[idx],
 2888                             BUS_DMASYNC_POSTWRITE);
 2889                         bus_dmamap_unload(sc->dc_mtag,
 2890                             sc->dc_cdata.dc_tx_map[idx]);
 2891                         m_freem(sc->dc_cdata.dc_tx_chain[idx]);
 2892                         sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2893                 }
 2894 
 2895                 sc->dc_cdata.dc_tx_cnt--;
 2896                 DC_INC(idx, DC_TX_LIST_CNT);
 2897         }
 2898 
 2899         if (idx != sc->dc_cdata.dc_tx_cons) {
 2900                 /* Some buffers have been freed. */
 2901                 sc->dc_cdata.dc_tx_cons = idx;
 2902                 ifp->if_flags &= ~IFF_OACTIVE;
 2903         }
 2904         ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
 2905 }
 2906 
 2907 static void
 2908 dc_tick(void *xsc)
 2909 {
 2910         struct dc_softc *sc;
 2911         struct mii_data *mii;
 2912         struct ifnet *ifp;
 2913         u_int32_t r;
 2914 
 2915         sc = xsc;
 2916         DC_LOCK(sc);
 2917         ifp = &sc->arpcom.ac_if;
 2918         mii = device_get_softc(sc->dc_miibus);
 2919 
 2920         if (sc->dc_flags & DC_REDUCED_MII_POLL) {
 2921                 if (sc->dc_flags & DC_21143_NWAY) {
 2922                         r = CSR_READ_4(sc, DC_10BTSTAT);
 2923                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2924                             IFM_100_TX && (r & DC_TSTAT_LS100)) {
 2925                                 sc->dc_link = 0;
 2926                                 mii_mediachg(mii);
 2927                         }
 2928                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2929                             IFM_10_T && (r & DC_TSTAT_LS10)) {
 2930                                 sc->dc_link = 0;
 2931                                 mii_mediachg(mii);
 2932                         }
 2933                         if (sc->dc_link == 0)
 2934                                 mii_tick(mii);
 2935                 } else {
 2936                         r = CSR_READ_4(sc, DC_ISR);
 2937                         if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
 2938                             sc->dc_cdata.dc_tx_cnt == 0) {
 2939                                 mii_tick(mii);
 2940                                 if (!(mii->mii_media_status & IFM_ACTIVE))
 2941                                         sc->dc_link = 0;
 2942                         }
 2943                 }
 2944         } else
 2945                 mii_tick(mii);
 2946 
 2947         /*
 2948          * When the init routine completes, we expect to be able to send
 2949          * packets right away, and in fact the network code will send a
 2950          * gratuitous ARP the moment the init routine marks the interface
 2951          * as running. However, even though the MAC may have been initialized,
 2952          * there may be a delay of a few seconds before the PHY completes
 2953          * autonegotiation and the link is brought up. Any transmissions
 2954          * made during that delay will be lost. Dealing with this is tricky:
 2955          * we can't just pause in the init routine while waiting for the
 2956          * PHY to come ready since that would bring the whole system to
 2957          * a screeching halt for several seconds.
 2958          *
 2959          * What we do here is prevent the TX start routine from sending
 2960          * any packets until a link has been established. After the
 2961          * interface has been initialized, the tick routine will poll
 2962          * the state of the PHY until the IFM_ACTIVE flag is set. Until
 2963          * that time, packets will stay in the send queue, and once the
 2964          * link comes up, they will be flushed out to the wire.
 2965          */
 2966         if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
 2967             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 2968                 sc->dc_link++;
 2969                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2970                         dc_start(ifp);
 2971         }
 2972 
 2973         if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
 2974                 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 2975         else
 2976                 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 2977 
 2978         DC_UNLOCK(sc);
 2979 }
 2980 
 2981 /*
 2982  * A transmit underrun has occurred.  Back off the transmit threshold,
 2983  * or switch to store and forward mode if we have to.
 2984  */
 2985 static void
 2986 dc_tx_underrun(struct dc_softc *sc)
 2987 {
 2988         u_int32_t isr;
 2989         int i;
 2990 
 2991         if (DC_IS_DAVICOM(sc))
 2992                 dc_init(sc);
 2993 
 2994         if (DC_IS_INTEL(sc)) {
 2995                 /*
 2996                  * The real 21143 requires that the transmitter be idle
 2997                  * in order to change the transmit threshold or store
 2998                  * and forward state.
 2999                  */
 3000                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3001 
 3002                 for (i = 0; i < DC_TIMEOUT; i++) {
 3003                         isr = CSR_READ_4(sc, DC_ISR);
 3004                         if (isr & DC_ISR_TX_IDLE)
 3005                                 break;
 3006                         DELAY(10);
 3007                 }
 3008                 if (i == DC_TIMEOUT) {
 3009                         printf("dc%d: failed to force tx to idle state\n",
 3010                             sc->dc_unit);
 3011                         dc_init(sc);
 3012                 }
 3013         }
 3014 
 3015         printf("dc%d: TX underrun -- ", sc->dc_unit);
 3016         sc->dc_txthresh += DC_TXTHRESH_INC;
 3017         if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3018                 printf("using store and forward mode\n");
 3019                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3020         } else {
 3021                 printf("increasing TX threshold\n");
 3022                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3023                 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3024         }
 3025 
 3026         if (DC_IS_INTEL(sc))
 3027                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3028 }
 3029 
 3030 #ifdef DEVICE_POLLING
 3031 static poll_handler_t dc_poll;
 3032 
 3033 static void
 3034 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3035 {
 3036         struct dc_softc *sc = ifp->if_softc;
 3037 
 3038         if (!(ifp->if_capenable & IFCAP_POLLING)) {
 3039                 ether_poll_deregister(ifp);
 3040                 cmd = POLL_DEREGISTER;
 3041         }
 3042         if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
 3043                 /* Re-enable interrupts. */
 3044                 CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3045                 return;
 3046         }
 3047         DC_LOCK(sc);
 3048         sc->rxcycles = count;
 3049         dc_rxeof(sc);
 3050         dc_txeof(sc);
 3051         if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
 3052                 dc_start(ifp);
 3053 
 3054         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 3055                 u_int32_t       status;
 3056 
 3057                 status = CSR_READ_4(sc, DC_ISR);
 3058                 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
 3059                         DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
 3060                         DC_ISR_BUS_ERR);
 3061                 if (!status) {
 3062                         DC_UNLOCK(sc);
 3063                         return;
 3064                 }
 3065                 /* ack what we have */
 3066                 CSR_WRITE_4(sc, DC_ISR, status);
 3067 
 3068                 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
 3069                         u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3070                         ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
 3071 
 3072                         if (dc_rx_resync(sc))
 3073                                 dc_rxeof(sc);
 3074                 }
 3075                 /* restart transmit unit if necessary */
 3076                 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
 3077                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3078 
 3079                 if (status & DC_ISR_TX_UNDERRUN)
 3080                         dc_tx_underrun(sc);
 3081 
 3082                 if (status & DC_ISR_BUS_ERR) {
 3083                         printf("dc_poll: dc%d bus error\n", sc->dc_unit);
 3084                         dc_reset(sc);
 3085                         dc_init(sc);
 3086                 }
 3087         }
 3088         DC_UNLOCK(sc);
 3089 }
 3090 #endif /* DEVICE_POLLING */
 3091 
 3092 static void
 3093 dc_intr(void *arg)
 3094 {
 3095         struct dc_softc *sc;
 3096         struct ifnet *ifp;
 3097         u_int32_t status;
 3098 
 3099         sc = arg;
 3100 
 3101         if (sc->suspended)
 3102                 return;
 3103 
 3104         if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
 3105                 return;
 3106 
 3107         DC_LOCK(sc);
 3108         ifp = &sc->arpcom.ac_if;
 3109 #ifdef DEVICE_POLLING
 3110         if (ifp->if_flags & IFF_POLLING)
 3111                 goto done;
 3112         if ((ifp->if_capenable & IFCAP_POLLING) &&
 3113             ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
 3114                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3115                 goto done;
 3116         }
 3117 #endif
 3118 
 3119         /* Suppress unwanted interrupts */
 3120         if (!(ifp->if_flags & IFF_UP)) {
 3121                 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
 3122                         dc_stop(sc);
 3123                 DC_UNLOCK(sc);
 3124                 return;
 3125         }
 3126 
 3127         /* Disable interrupts. */
 3128         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3129 
 3130         while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
 3131               && status != 0xFFFFFFFF) {
 3132 
 3133                 CSR_WRITE_4(sc, DC_ISR, status);
 3134 
 3135                 if (status & DC_ISR_RX_OK) {
 3136                         int             curpkts;
 3137                         curpkts = ifp->if_ipackets;
 3138                         dc_rxeof(sc);
 3139                         if (curpkts == ifp->if_ipackets) {
 3140                                 while (dc_rx_resync(sc))
 3141                                         dc_rxeof(sc);
 3142                         }
 3143                 }
 3144 
 3145                 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
 3146                         dc_txeof(sc);
 3147 
 3148                 if (status & DC_ISR_TX_IDLE) {
 3149                         dc_txeof(sc);
 3150                         if (sc->dc_cdata.dc_tx_cnt) {
 3151                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3152                                 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3153                         }
 3154                 }
 3155 
 3156                 if (status & DC_ISR_TX_UNDERRUN)
 3157                         dc_tx_underrun(sc);
 3158 
 3159                 if ((status & DC_ISR_RX_WATDOGTIMEO)
 3160                     || (status & DC_ISR_RX_NOBUF)) {
 3161                         int             curpkts;
 3162                         curpkts = ifp->if_ipackets;
 3163                         dc_rxeof(sc);
 3164                         if (curpkts == ifp->if_ipackets) {
 3165                                 while (dc_rx_resync(sc))
 3166                                         dc_rxeof(sc);
 3167                         }
 3168                 }
 3169 
 3170                 if (status & DC_ISR_BUS_ERR) {
 3171                         dc_reset(sc);
 3172                         dc_init(sc);
 3173                 }
 3174         }
 3175 
 3176         /* Re-enable interrupts. */
 3177         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3178 
 3179         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3180                 dc_start(ifp);
 3181 
 3182 #ifdef DEVICE_POLLING
 3183 done:
 3184 #endif
 3185 
 3186         DC_UNLOCK(sc);
 3187 }
 3188 
 3189 static void
 3190 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
 3191         void *arg;
 3192         bus_dma_segment_t *segs;
 3193         int nseg;
 3194         bus_size_t mapsize;
 3195         int error;
 3196 {
 3197         struct dc_softc *sc;
 3198         struct dc_desc *f;
 3199         int cur, first, frag, i;
 3200 
 3201         sc = arg;
 3202         if (error) {
 3203                 sc->dc_cdata.dc_tx_err = error;
 3204                 return;
 3205         }
 3206 
 3207         first = cur = frag = sc->dc_cdata.dc_tx_prod;
 3208         for (i = 0; i < nseg; i++) {
 3209                 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
 3210                     (frag == (DC_TX_LIST_CNT - 1)) &&
 3211                     (first != sc->dc_cdata.dc_tx_first)) {
 3212                         bus_dmamap_unload(sc->dc_mtag,
 3213                             sc->dc_cdata.dc_tx_map[first]);
 3214                         sc->dc_cdata.dc_tx_err = ENOBUFS;
 3215                         return;
 3216                 }
 3217 
 3218                 f = &sc->dc_ldata->dc_tx_list[frag];
 3219                 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
 3220                 if (i == 0) {
 3221                         f->dc_status = 0;
 3222                         f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
 3223                 } else
 3224                         f->dc_status = htole32(DC_TXSTAT_OWN);
 3225                 f->dc_data = htole32(segs[i].ds_addr);
 3226                 cur = frag;
 3227                 DC_INC(frag, DC_TX_LIST_CNT);
 3228         }
 3229 
 3230         sc->dc_cdata.dc_tx_err = 0;
 3231         sc->dc_cdata.dc_tx_prod = frag;
 3232         sc->dc_cdata.dc_tx_cnt += nseg;
 3233         sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
 3234         sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
 3235         if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
 3236                 sc->dc_ldata->dc_tx_list[first].dc_ctl |=
 3237                     htole32(DC_TXCTL_FINT);
 3238         if (sc->dc_flags & DC_TX_INTR_ALWAYS)
 3239                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3240         if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
 3241                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3242         sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
 3243 }
 3244 
 3245 /*
 3246  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 3247  * pointers to the fragment pointers.
 3248  */
 3249 static int
 3250 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
 3251 {
 3252         struct mbuf *m;
 3253         int error, idx, chainlen = 0;
 3254 
 3255         /*
 3256          * If there's no way we can send any packets, return now.
 3257          */
 3258         if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
 3259                 return (ENOBUFS);
 3260 
 3261         /*
 3262          * Count the number of frags in this chain to see if
 3263          * we need to m_defrag.  Since the descriptor list is shared
 3264          * by all packets, we'll m_defrag long chains so that they
 3265          * do not use up the entire list, even if they would fit.
 3266          */
 3267         for (m = *m_head; m != NULL; m = m->m_next)
 3268                 chainlen++;
 3269 
 3270         if ((chainlen > DC_TX_LIST_CNT / 4) ||
 3271             ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
 3272                 m = m_defrag(*m_head, M_DONTWAIT);
 3273                 if (m == NULL)
 3274                         return (ENOBUFS);
 3275                 *m_head = m;
 3276         }
 3277 
 3278         /*
 3279          * Start packing the mbufs in this chain into
 3280          * the fragment pointers. Stop when we run out
 3281          * of fragments or hit the end of the mbuf chain.
 3282          */
 3283         idx = sc->dc_cdata.dc_tx_prod;
 3284         sc->dc_cdata.dc_tx_mapping = *m_head;
 3285         error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3286             *m_head, dc_dma_map_txbuf, sc, 0);
 3287         if (error)
 3288                 return (error);
 3289         if (sc->dc_cdata.dc_tx_err != 0)
 3290                 return (sc->dc_cdata.dc_tx_err);
 3291         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3292             BUS_DMASYNC_PREWRITE);
 3293         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 3294             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 3295         return (0);
 3296 }
 3297 
 3298 /*
 3299  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3300  * to the mbuf data regions directly in the transmit lists. We also save a
 3301  * copy of the pointers since the transmit list fragment pointers are
 3302  * physical addresses.
 3303  */
 3304 
 3305 static void
 3306 dc_start(struct ifnet *ifp)
 3307 {
 3308         struct dc_softc *sc;
 3309         struct mbuf *m_head = NULL, *m;
 3310         unsigned int queued = 0;
 3311         int idx;
 3312 
 3313         sc = ifp->if_softc;
 3314 
 3315         DC_LOCK(sc);
 3316 
 3317         if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
 3318                 DC_UNLOCK(sc);
 3319                 return;
 3320         }
 3321 
 3322         if (ifp->if_flags & IFF_OACTIVE) {
 3323                 DC_UNLOCK(sc);
 3324                 return;
 3325         }
 3326 
 3327         idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
 3328 
 3329         while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
 3330                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3331                 if (m_head == NULL)
 3332                         break;
 3333 
 3334                 if (sc->dc_flags & DC_TX_COALESCE &&
 3335                     (m_head->m_next != NULL ||
 3336                      sc->dc_flags & DC_TX_ALIGN)) {
 3337                         m = m_defrag(m_head, M_DONTWAIT);
 3338                         if (m == NULL) {
 3339                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3340                                 ifp->if_flags |= IFF_OACTIVE;
 3341                                 break;
 3342                         } else {
 3343                                 m_head = m;
 3344                         }
 3345                 }
 3346 
 3347                 if (dc_encap(sc, &m_head)) {
 3348                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3349                         ifp->if_flags |= IFF_OACTIVE;
 3350                         break;
 3351                 }
 3352                 idx = sc->dc_cdata.dc_tx_prod;
 3353 
 3354                 queued++;
 3355                 /*
 3356                  * If there's a BPF listener, bounce a copy of this frame
 3357                  * to him.
 3358                  */
 3359                 BPF_MTAP(ifp, m_head);
 3360 
 3361                 if (sc->dc_flags & DC_TX_ONE) {
 3362                         ifp->if_flags |= IFF_OACTIVE;
 3363                         break;
 3364                 }
 3365         }
 3366 
 3367         if (queued > 0) {
 3368                 /* Transmit */
 3369                 if (!(sc->dc_flags & DC_TX_POLL))
 3370                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3371 
 3372                 /*
 3373                  * Set a timeout in case the chip goes out to lunch.
 3374                  */
 3375                 ifp->if_timer = 5;
 3376         }
 3377 
 3378         DC_UNLOCK(sc);
 3379 }
 3380 
 3381 static void
 3382 dc_init(void *xsc)
 3383 {
 3384         struct dc_softc *sc = xsc;
 3385         struct ifnet *ifp = &sc->arpcom.ac_if;
 3386         struct mii_data *mii;
 3387 
 3388         DC_LOCK(sc);
 3389 
 3390         mii = device_get_softc(sc->dc_miibus);
 3391 
 3392         /*
 3393          * Cancel pending I/O and free all RX/TX buffers.
 3394          */
 3395         dc_stop(sc);
 3396         dc_reset(sc);
 3397 
 3398         /*
 3399          * Set cache alignment and burst length.
 3400          */
 3401         if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
 3402                 CSR_WRITE_4(sc, DC_BUSCTL, 0);
 3403         else
 3404                 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
 3405         /*
 3406          * Evenly share the bus between receive and transmit process.
 3407          */
 3408         if (DC_IS_INTEL(sc))
 3409                 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
 3410         if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
 3411                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
 3412         } else {
 3413                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
 3414         }
 3415         if (sc->dc_flags & DC_TX_POLL)
 3416                 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
 3417         switch(sc->dc_cachesize) {
 3418         case 32:
 3419                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
 3420                 break;
 3421         case 16:
 3422                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
 3423                 break;
 3424         case 8:
 3425                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
 3426                 break;
 3427         case 0:
 3428         default:
 3429                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
 3430                 break;
 3431         }
 3432 
 3433         if (sc->dc_flags & DC_TX_STORENFWD)
 3434                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3435         else {
 3436                 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3437                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3438                 } else {
 3439                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3440                         DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3441                 }
 3442         }
 3443 
 3444         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
 3445         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
 3446 
 3447         if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 3448                 /*
 3449                  * The app notes for the 98713 and 98715A say that
 3450                  * in order to have the chips operate properly, a magic
 3451                  * number must be written to CSR16. Macronix does not
 3452                  * document the meaning of these bits so there's no way
 3453                  * to know exactly what they do. The 98713 has a magic
 3454                  * number all its own; the rest all use a different one.
 3455                  */
 3456                 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
 3457                 if (sc->dc_type == DC_TYPE_98713)
 3458                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
 3459                 else
 3460                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
 3461         }
 3462 
 3463         if (DC_IS_XIRCOM(sc)) {
 3464                 /*
 3465                  * setup General Purpose Port mode and data so the tulip
 3466                  * can talk to the MII.
 3467                  */
 3468                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 3469                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3470                 DELAY(10);
 3471                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 3472                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3473                 DELAY(10);
 3474         }
 3475 
 3476         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3477         DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
 3478 
 3479         /* Init circular RX list. */
 3480         if (dc_list_rx_init(sc) == ENOBUFS) {
 3481                 printf("dc%d: initialization failed: no "
 3482                     "memory for rx buffers\n", sc->dc_unit);
 3483                 dc_stop(sc);
 3484                 DC_UNLOCK(sc);
 3485                 return;
 3486         }
 3487 
 3488         /*
 3489          * Init TX descriptors.
 3490          */
 3491         dc_list_tx_init(sc);
 3492 
 3493         /*
 3494          * Load the address of the RX list.
 3495          */
 3496         CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
 3497         CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
 3498 
 3499         /*
 3500          * Enable interrupts.
 3501          */
 3502 #ifdef DEVICE_POLLING
 3503         /*
 3504          * ... but only if we are not polling, and make sure they are off in
 3505          * the case of polling. Some cards (e.g. fxp) turn interrupts on
 3506          * after a reset.
 3507          */
 3508         if (ifp->if_flags & IFF_POLLING)
 3509                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3510         else
 3511 #endif
 3512         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3513         CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
 3514 
 3515         /* Enable transmitter. */
 3516         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3517 
 3518         /*
 3519          * If this is an Intel 21143 and we're not using the
 3520          * MII port, program the LED control pins so we get
 3521          * link and activity indications.
 3522          */
 3523         if (sc->dc_flags & DC_TULIP_LEDS) {
 3524                 CSR_WRITE_4(sc, DC_WATCHDOG,
 3525                     DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
 3526                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 3527         }
 3528 
 3529         /*
 3530          * Load the RX/multicast filter. We do this sort of late
 3531          * because the filter programming scheme on the 21143 and
 3532          * some clones requires DMAing a setup frame via the TX
 3533          * engine, and we need the transmitter enabled for that.
 3534          */
 3535         dc_setfilt(sc);
 3536 
 3537         /* Enable receiver. */
 3538         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 3539         CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
 3540 
 3541         mii_mediachg(mii);
 3542         dc_setcfg(sc, sc->dc_if_media);
 3543 
 3544         ifp->if_flags |= IFF_RUNNING;
 3545         ifp->if_flags &= ~IFF_OACTIVE;
 3546 
 3547         /* Don't start the ticker if this is a homePNA link. */
 3548         if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
 3549                 sc->dc_link = 1;
 3550         else {
 3551                 if (sc->dc_flags & DC_21143_NWAY)
 3552                         callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3553                 else
 3554                         callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3555         }
 3556 
 3557 #ifdef SRM_MEDIA
 3558         if(sc->dc_srm_media) {
 3559                 struct ifreq ifr;
 3560 
 3561                 ifr.ifr_media = sc->dc_srm_media;
 3562                 ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
 3563                 sc->dc_srm_media = 0;
 3564         }
 3565 #endif
 3566         DC_UNLOCK(sc);
 3567 }
 3568 
 3569 /*
 3570  * Set media options.
 3571  */
 3572 static int
 3573 dc_ifmedia_upd(struct ifnet *ifp)
 3574 {
 3575         struct dc_softc *sc;
 3576         struct mii_data *mii;
 3577         struct ifmedia *ifm;
 3578 
 3579         sc = ifp->if_softc;
 3580         mii = device_get_softc(sc->dc_miibus);
 3581         mii_mediachg(mii);
 3582         ifm = &mii->mii_media;
 3583 
 3584         if (DC_IS_DAVICOM(sc) &&
 3585             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
 3586                 dc_setcfg(sc, ifm->ifm_media);
 3587         else
 3588                 sc->dc_link = 0;
 3589 
 3590         return (0);
 3591 }
 3592 
 3593 /*
 3594  * Report current media status.
 3595  */
 3596 static void
 3597 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3598 {
 3599         struct dc_softc *sc;
 3600         struct mii_data *mii;
 3601         struct ifmedia *ifm;
 3602 
 3603         sc = ifp->if_softc;
 3604         mii = device_get_softc(sc->dc_miibus);
 3605         mii_pollstat(mii);
 3606         ifm = &mii->mii_media;
 3607         if (DC_IS_DAVICOM(sc)) {
 3608                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
 3609                         ifmr->ifm_active = ifm->ifm_media;
 3610                         ifmr->ifm_status = 0;
 3611                         return;
 3612                 }
 3613         }
 3614         ifmr->ifm_active = mii->mii_media_active;
 3615         ifmr->ifm_status = mii->mii_media_status;
 3616 }
 3617 
 3618 static int
 3619 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3620 {
 3621         struct dc_softc *sc = ifp->if_softc;
 3622         struct ifreq *ifr = (struct ifreq *)data;
 3623         struct mii_data *mii;
 3624         int error = 0;
 3625 
 3626         DC_LOCK(sc);
 3627 
 3628         switch (command) {
 3629         case SIOCSIFFLAGS:
 3630                 if (ifp->if_flags & IFF_UP) {
 3631                         int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
 3632                                 (IFF_PROMISC | IFF_ALLMULTI);
 3633 
 3634                         if (ifp->if_flags & IFF_RUNNING) {
 3635                                 if (need_setfilt)
 3636                                         dc_setfilt(sc);
 3637                         } else {
 3638                                 sc->dc_txthresh = 0;
 3639                                 dc_init(sc);
 3640                         }
 3641                 } else {
 3642                         if (ifp->if_flags & IFF_RUNNING)
 3643                                 dc_stop(sc);
 3644                 }
 3645                 sc->dc_if_flags = ifp->if_flags;
 3646                 error = 0;
 3647                 break;
 3648         case SIOCADDMULTI:
 3649         case SIOCDELMULTI:
 3650                 dc_setfilt(sc);
 3651                 error = 0;
 3652                 break;
 3653         case SIOCGIFMEDIA:
 3654         case SIOCSIFMEDIA:
 3655                 mii = device_get_softc(sc->dc_miibus);
 3656                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3657 #ifdef SRM_MEDIA
 3658                 if (sc->dc_srm_media)
 3659                         sc->dc_srm_media = 0;
 3660 #endif
 3661                 break;
 3662         case SIOCSIFCAP:
 3663                 ifp->if_capenable &= ~IFCAP_POLLING;
 3664                 ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
 3665                 break;
 3666         default:
 3667                 error = ether_ioctl(ifp, command, data);
 3668                 break;
 3669         }
 3670 
 3671         DC_UNLOCK(sc);
 3672 
 3673         return (error);
 3674 }
 3675 
 3676 static void
 3677 dc_watchdog(struct ifnet *ifp)
 3678 {
 3679         struct dc_softc *sc;
 3680 
 3681         sc = ifp->if_softc;
 3682 
 3683         DC_LOCK(sc);
 3684 
 3685         ifp->if_oerrors++;
 3686         printf("dc%d: watchdog timeout\n", sc->dc_unit);
 3687 
 3688         dc_stop(sc);
 3689         dc_reset(sc);
 3690         dc_init(sc);
 3691 
 3692         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3693                 dc_start(ifp);
 3694 
 3695         DC_UNLOCK(sc);
 3696 }
 3697 
 3698 /*
 3699  * Stop the adapter and free any mbufs allocated to the
 3700  * RX and TX lists.
 3701  */
 3702 static void
 3703 dc_stop(struct dc_softc *sc)
 3704 {
 3705         struct ifnet *ifp;
 3706         struct dc_list_data *ld;
 3707         struct dc_chain_data *cd;
 3708         int i;
 3709         u_int32_t ctl;
 3710 
 3711         DC_LOCK(sc);
 3712 
 3713         ifp = &sc->arpcom.ac_if;
 3714         ifp->if_timer = 0;
 3715         ld = sc->dc_ldata;
 3716         cd = &sc->dc_cdata;
 3717 
 3718         callout_stop(&sc->dc_stat_ch);
 3719 
 3720         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 3721 #ifdef DEVICE_POLLING
 3722         ether_poll_deregister(ifp);
 3723 #endif
 3724 
 3725         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
 3726         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3727         CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
 3728         CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
 3729         sc->dc_link = 0;
 3730 
 3731         /*
 3732          * Free data in the RX lists.
 3733          */
 3734         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 3735                 if (cd->dc_rx_chain[i] != NULL) {
 3736                         m_freem(cd->dc_rx_chain[i]);
 3737                         cd->dc_rx_chain[i] = NULL;
 3738                 }
 3739         }
 3740         bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
 3741 
 3742         /*
 3743          * Free the TX list buffers.
 3744          */
 3745         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 3746                 if (cd->dc_tx_chain[i] != NULL) {
 3747                         ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
 3748                         if ((ctl & DC_TXCTL_SETUP) ||
 3749                             !(ctl & DC_TXCTL_LASTFRAG)) {
 3750                                 cd->dc_tx_chain[i] = NULL;
 3751                                 continue;
 3752                         }
 3753                         bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
 3754                         m_freem(cd->dc_tx_chain[i]);
 3755                         cd->dc_tx_chain[i] = NULL;
 3756                 }
 3757         }
 3758         bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
 3759 
 3760         DC_UNLOCK(sc);
 3761 }
 3762 
 3763 /*
 3764  * Device suspend routine.  Stop the interface and save some PCI
 3765  * settings in case the BIOS doesn't restore them properly on
 3766  * resume.
 3767  */
 3768 static int
 3769 dc_suspend(device_t dev)
 3770 {
 3771         struct dc_softc *sc;
 3772         int s;
 3773 
 3774         s = splimp();
 3775 
 3776         sc = device_get_softc(dev);
 3777         dc_stop(sc);
 3778         sc->suspended = 1;
 3779 
 3780         splx(s);
 3781         return (0);
 3782 }
 3783 
 3784 /*
 3785  * Device resume routine.  Restore some PCI settings in case the BIOS
 3786  * doesn't, re-enable busmastering, and restart the interface if
 3787  * appropriate.
 3788  */
 3789 static int
 3790 dc_resume(device_t dev)
 3791 {
 3792         struct dc_softc *sc;
 3793         struct ifnet *ifp;
 3794         int s;
 3795 
 3796         s = splimp();
 3797 
 3798         sc = device_get_softc(dev);
 3799         ifp = &sc->arpcom.ac_if;
 3800 
 3801         /* reinitialize interface if necessary */
 3802         if (ifp->if_flags & IFF_UP)
 3803                 dc_init(sc);
 3804 
 3805         sc->suspended = 0;
 3806 
 3807         splx(s);
 3808         return (0);
 3809 }
 3810 
 3811 /*
 3812  * Stop all chip I/O so that the kernel's probe routines don't
 3813  * get confused by errant DMAs when rebooting.
 3814  */
 3815 static void
 3816 dc_shutdown(device_t dev)
 3817 {
 3818         struct dc_softc *sc;
 3819 
 3820         sc = device_get_softc(dev);
 3821 
 3822         dc_stop(sc);
 3823 }

Cache object: c721eb1ccde9acdf38bf2a2914a465b9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.