The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_dc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.4/sys/pci/if_dc.c 145945 2005-05-06 00:52:59Z scottl $");
   35 
   36 /*
   37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
   38  * series chips and several workalikes including the following:
   39  *
   40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
   41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
   42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
   43  * ASIX Electronics AX88140A (www.asix.com.tw)
   44  * ASIX Electronics AX88141 (www.asix.com.tw)
   45  * ADMtek AL981 (www.admtek.com.tw)
   46  * ADMtek AN985 (www.admtek.com.tw)
   47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
   48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
   49  * Accton EN1217 (www.accton.com)
   50  * Xircom X3201 (www.xircom.com)
   51  * Abocom FE2500
   52  * Conexant LANfinity (www.conexant.com)
   53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
   54  *
   55  * Datasheets for the 21143 are available at developer.intel.com.
   56  * Datasheets for the clone parts can be found at their respective sites.
   57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
   58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
   59  * worth noting is that its multicast hash table is only 128 bits wide
   60  * instead of 512.
   61  *
   62  * Written by Bill Paul <wpaul@ee.columbia.edu>
   63  * Electrical Engineering Department
   64  * Columbia University, New York City
   65  */
   66 /*
   67  * The Intel 21143 is the successor to the DEC 21140. It is basically
   68  * the same as the 21140 but with a few new features. The 21143 supports
   69  * three kinds of media attachments:
   70  *
   71  * o MII port, for 10Mbps and 100Mbps support and NWAY
   72  *   autonegotiation provided by an external PHY.
   73  * o SYM port, for symbol mode 100Mbps support.
   74  * o 10baseT port.
   75  * o AUI/BNC port.
   76  *
   77  * The 100Mbps SYM port and 10baseT port can be used together in
   78  * combination with the internal NWAY support to create a 10/100
   79  * autosensing configuration.
   80  *
   81  * Note that not all tulip workalikes are handled in this driver: we only
   82  * deal with those which are relatively well behaved. The Winbond is
   83  * handled separately due to its different register offsets and the
   84  * special handling needed for its various bugs. The PNIC is handled
   85  * here, but I'm not thrilled about it.
   86  *
   87  * All of the workalike chips use some form of MII transceiver support
   88  * with the exception of the Macronix chips, which also have a SYM port.
   89  * The ASIX AX88140A is also documented to have a SYM port, but all
   90  * the cards I've seen use an MII transceiver, probably because the
   91  * AX88140A doesn't support internal NWAY.
   92  */
   93 
   94 #include <sys/param.h>
   95 #include <sys/endian.h>
   96 #include <sys/systm.h>
   97 #include <sys/sockio.h>
   98 #include <sys/mbuf.h>
   99 #include <sys/malloc.h>
  100 #include <sys/kernel.h>
  101 #include <sys/module.h>
  102 #include <sys/socket.h>
  103 #include <sys/sysctl.h>
  104 
  105 #include <net/if.h>
  106 #include <net/if_arp.h>
  107 #include <net/ethernet.h>
  108 #include <net/if_dl.h>
  109 #include <net/if_media.h>
  110 #include <net/if_types.h>
  111 #include <net/if_vlan_var.h>
  112 
  113 #include <net/bpf.h>
  114 
  115 #include <machine/bus_pio.h>
  116 #include <machine/bus_memio.h>
  117 #include <machine/bus.h>
  118 #include <machine/resource.h>
  119 #include <sys/bus.h>
  120 #include <sys/rman.h>
  121 
  122 #include <dev/mii/mii.h>
  123 #include <dev/mii/miivar.h>
  124 
  125 #include <dev/pci/pcireg.h>
  126 #include <dev/pci/pcivar.h>
  127 
  128 #define DC_USEIOSPACE
  129 #ifdef __alpha__
  130 #define SRM_MEDIA
  131 #endif
  132 
  133 #include <pci/if_dcreg.h>
  134 
  135 #ifdef __sparc64__
  136 #include <dev/ofw/openfirm.h>
  137 #include <machine/ofw_machdep.h>
  138 #endif
  139 
  140 MODULE_DEPEND(dc, pci, 1, 1, 1);
  141 MODULE_DEPEND(dc, ether, 1, 1, 1);
  142 MODULE_DEPEND(dc, miibus, 1, 1, 1);
  143 
  144 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  145 #include "miibus_if.h"
  146 
  147 /*
  148  * Various supported device vendors/types and their names.
  149  */
  150 static struct dc_type dc_devs[] = {
  151         { DC_VENDORID_DEC, DC_DEVICEID_21143,
  152                 "Intel 21143 10/100BaseTX" },
  153         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
  154                 "Davicom DM9009 10/100BaseTX" },
  155         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
  156                 "Davicom DM9100 10/100BaseTX" },
  157         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
  158                 "Davicom DM9102 10/100BaseTX" },
  159         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
  160                 "Davicom DM9102A 10/100BaseTX" },
  161         { DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
  162                 "ADMtek AL981 10/100BaseTX" },
  163         { DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
  164                 "ADMtek AN985 10/100BaseTX" },
  165         { DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
  166                 "ADMtek ADM9511 10/100BaseTX" },
  167         { DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
  168                 "ADMtek ADM9513 10/100BaseTX" },
  169         { DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
  170                 "Netgear FA511 10/100BaseTX" },
  171         { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
  172                 "ASIX AX88140A 10/100BaseTX" },
  173         { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
  174                 "ASIX AX88141 10/100BaseTX" },
  175         { DC_VENDORID_MX, DC_DEVICEID_98713,
  176                 "Macronix 98713 10/100BaseTX" },
  177         { DC_VENDORID_MX, DC_DEVICEID_98713,
  178                 "Macronix 98713A 10/100BaseTX" },
  179         { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
  180                 "Compex RL100-TX 10/100BaseTX" },
  181         { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
  182                 "Compex RL100-TX 10/100BaseTX" },
  183         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  184                 "Macronix 98715/98715A 10/100BaseTX" },
  185         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  186                 "Macronix 98715AEC-C 10/100BaseTX" },
  187         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  188                 "Macronix 98725 10/100BaseTX" },
  189         { DC_VENDORID_MX, DC_DEVICEID_98727,
  190                 "Macronix 98727/98732 10/100BaseTX" },
  191         { DC_VENDORID_LO, DC_DEVICEID_82C115,
  192                 "LC82C115 PNIC II 10/100BaseTX" },
  193         { DC_VENDORID_LO, DC_DEVICEID_82C168,
  194                 "82c168 PNIC 10/100BaseTX" },
  195         { DC_VENDORID_LO, DC_DEVICEID_82C168,
  196                 "82c169 PNIC 10/100BaseTX" },
  197         { DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
  198                 "Accton EN1217 10/100BaseTX" },
  199         { DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
  200                 "Accton EN2242 MiniPCI 10/100BaseTX" },
  201         { DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
  202                 "Xircom X3201 10/100BaseTX" },
  203         { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
  204                 "Abocom FE2500 10/100BaseTX" },
  205         { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
  206                 "Abocom FE2500MX 10/100BaseTX" },
  207         { DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
  208                 "Conexant LANfinity MiniPCI 10/100BaseTX" },
  209         { DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
  210                 "Hawking CB102 CardBus 10/100" },
  211         { DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
  212                 "PlaneX FNW-3602-T CardBus 10/100" },
  213         { DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
  214                 "3Com OfficeConnect 10/100B" },
  215         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
  216                 "Microsoft MN-120 CardBus 10/100" },
  217         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
  218                 "Microsoft MN-130 10/100" },
  219         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
  220                 "Microsoft MN-130 10/100" },
  221         { 0, 0, NULL }
  222 };
  223 
  224 static int dc_probe(device_t);
  225 static int dc_attach(device_t);
  226 static int dc_detach(device_t);
  227 static int dc_suspend(device_t);
  228 static int dc_resume(device_t);
  229 static struct dc_type *dc_devtype(device_t);
  230 static int dc_newbuf(struct dc_softc *, int, int);
  231 static int dc_encap(struct dc_softc *, struct mbuf **);
  232 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
  233 static int dc_rx_resync(struct dc_softc *);
  234 static void dc_rxeof(struct dc_softc *);
  235 static void dc_txeof(struct dc_softc *);
  236 static void dc_tick(void *);
  237 static void dc_tx_underrun(struct dc_softc *);
  238 static void dc_intr(void *);
  239 static void dc_start(struct ifnet *);
  240 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
  241 static void dc_init(void *);
  242 static void dc_stop(struct dc_softc *);
  243 static void dc_watchdog(struct ifnet *);
  244 static void dc_shutdown(device_t);
  245 static int dc_ifmedia_upd(struct ifnet *);
  246 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  247 
  248 static void dc_delay(struct dc_softc *);
  249 static void dc_eeprom_idle(struct dc_softc *);
  250 static void dc_eeprom_putbyte(struct dc_softc *, int);
  251 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
  252 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
  253 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
  254 static void dc_eeprom_width(struct dc_softc *);
  255 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
  256 
  257 static void dc_mii_writebit(struct dc_softc *, int);
  258 static int dc_mii_readbit(struct dc_softc *);
  259 static void dc_mii_sync(struct dc_softc *);
  260 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
  261 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
  262 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
  263 static int dc_miibus_readreg(device_t, int, int);
  264 static int dc_miibus_writereg(device_t, int, int, int);
  265 static void dc_miibus_statchg(device_t);
  266 static void dc_miibus_mediainit(device_t);
  267 
  268 static void dc_setcfg(struct dc_softc *, int);
  269 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
  270 static uint32_t dc_mchash_be(const uint8_t *);
  271 static void dc_setfilt_21143(struct dc_softc *);
  272 static void dc_setfilt_asix(struct dc_softc *);
  273 static void dc_setfilt_admtek(struct dc_softc *);
  274 static void dc_setfilt_xircom(struct dc_softc *);
  275 
  276 static void dc_setfilt(struct dc_softc *);
  277 
  278 static void dc_reset(struct dc_softc *);
  279 static int dc_list_rx_init(struct dc_softc *);
  280 static int dc_list_tx_init(struct dc_softc *);
  281 
  282 static void dc_read_srom(struct dc_softc *, int);
  283 static void dc_parse_21143_srom(struct dc_softc *);
  284 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
  285 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
  286 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
  287 static void dc_apply_fixup(struct dc_softc *, int);
  288 
  289 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
  290 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
  291 
  292 #ifdef DC_USEIOSPACE
  293 #define DC_RES                  SYS_RES_IOPORT
  294 #define DC_RID                  DC_PCI_CFBIO
  295 #else
  296 #define DC_RES                  SYS_RES_MEMORY
  297 #define DC_RID                  DC_PCI_CFBMA
  298 #endif
  299 
  300 static device_method_t dc_methods[] = {
  301         /* Device interface */
  302         DEVMETHOD(device_probe,         dc_probe),
  303         DEVMETHOD(device_attach,        dc_attach),
  304         DEVMETHOD(device_detach,        dc_detach),
  305         DEVMETHOD(device_suspend,       dc_suspend),
  306         DEVMETHOD(device_resume,        dc_resume),
  307         DEVMETHOD(device_shutdown,      dc_shutdown),
  308 
  309         /* bus interface */
  310         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  311         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  312 
  313         /* MII interface */
  314         DEVMETHOD(miibus_readreg,       dc_miibus_readreg),
  315         DEVMETHOD(miibus_writereg,      dc_miibus_writereg),
  316         DEVMETHOD(miibus_statchg,       dc_miibus_statchg),
  317         DEVMETHOD(miibus_mediainit,     dc_miibus_mediainit),
  318 
  319         { 0, 0 }
  320 };
  321 
  322 static driver_t dc_driver = {
  323         "dc",
  324         dc_methods,
  325         sizeof(struct dc_softc)
  326 };
  327 
  328 static devclass_t dc_devclass;
  329 #ifdef __i386__
  330 static int dc_quick = 1;
  331 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
  332     "do not m_devget() in dc driver");
  333 #endif
  334 
  335 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
  336 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
  337 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
  338 
  339 #define DC_SETBIT(sc, reg, x)                           \
  340         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  341 
  342 #define DC_CLRBIT(sc, reg, x)                           \
  343         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  344 
  345 #define SIO_SET(x)      DC_SETBIT(sc, DC_SIO, (x))
  346 #define SIO_CLR(x)      DC_CLRBIT(sc, DC_SIO, (x))
  347 
  348 #define IS_MPSAFE       0
  349 
  350 static void
  351 dc_delay(struct dc_softc *sc)
  352 {
  353         int idx;
  354 
  355         for (idx = (300 / 33) + 1; idx > 0; idx--)
  356                 CSR_READ_4(sc, DC_BUSCTL);
  357 }
  358 
  359 static void
  360 dc_eeprom_width(struct dc_softc *sc)
  361 {
  362         int i;
  363 
  364         /* Force EEPROM to idle state. */
  365         dc_eeprom_idle(sc);
  366 
  367         /* Enter EEPROM access mode. */
  368         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  369         dc_delay(sc);
  370         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  371         dc_delay(sc);
  372         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  373         dc_delay(sc);
  374         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  375         dc_delay(sc);
  376 
  377         for (i = 3; i--;) {
  378                 if (6 & (1 << i))
  379                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  380                 else
  381                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  382                 dc_delay(sc);
  383                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  384                 dc_delay(sc);
  385                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  386                 dc_delay(sc);
  387         }
  388 
  389         for (i = 1; i <= 12; i++) {
  390                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  391                 dc_delay(sc);
  392                 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
  393                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  394                         dc_delay(sc);
  395                         break;
  396                 }
  397                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  398                 dc_delay(sc);
  399         }
  400 
  401         /* Turn off EEPROM access mode. */
  402         dc_eeprom_idle(sc);
  403 
  404         if (i < 4 || i > 12)
  405                 sc->dc_romwidth = 6;
  406         else
  407                 sc->dc_romwidth = i;
  408 
  409         /* Enter EEPROM access mode. */
  410         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  411         dc_delay(sc);
  412         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  413         dc_delay(sc);
  414         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  415         dc_delay(sc);
  416         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  417         dc_delay(sc);
  418 
  419         /* Turn off EEPROM access mode. */
  420         dc_eeprom_idle(sc);
  421 }
  422 
  423 static void
  424 dc_eeprom_idle(struct dc_softc *sc)
  425 {
  426         int i;
  427 
  428         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  429         dc_delay(sc);
  430         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  431         dc_delay(sc);
  432         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  433         dc_delay(sc);
  434         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  435         dc_delay(sc);
  436 
  437         for (i = 0; i < 25; i++) {
  438                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  439                 dc_delay(sc);
  440                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  441                 dc_delay(sc);
  442         }
  443 
  444         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  445         dc_delay(sc);
  446         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
  447         dc_delay(sc);
  448         CSR_WRITE_4(sc, DC_SIO, 0x00000000);
  449 }
  450 
  451 /*
  452  * Send a read command and address to the EEPROM, check for ACK.
  453  */
  454 static void
  455 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
  456 {
  457         int d, i;
  458 
  459         d = DC_EECMD_READ >> 6;
  460         for (i = 3; i--; ) {
  461                 if (d & (1 << i))
  462                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  463                 else
  464                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  465                 dc_delay(sc);
  466                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  467                 dc_delay(sc);
  468                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  469                 dc_delay(sc);
  470         }
  471 
  472         /*
  473          * Feed in each bit and strobe the clock.
  474          */
  475         for (i = sc->dc_romwidth; i--;) {
  476                 if (addr & (1 << i)) {
  477                         SIO_SET(DC_SIO_EE_DATAIN);
  478                 } else {
  479                         SIO_CLR(DC_SIO_EE_DATAIN);
  480                 }
  481                 dc_delay(sc);
  482                 SIO_SET(DC_SIO_EE_CLK);
  483                 dc_delay(sc);
  484                 SIO_CLR(DC_SIO_EE_CLK);
  485                 dc_delay(sc);
  486         }
  487 }
  488 
  489 /*
  490  * Read a word of data stored in the EEPROM at address 'addr.'
  491  * The PNIC 82c168/82c169 has its own non-standard way to read
  492  * the EEPROM.
  493  */
  494 static void
  495 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
  496 {
  497         int i;
  498         u_int32_t r;
  499 
  500         CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
  501 
  502         for (i = 0; i < DC_TIMEOUT; i++) {
  503                 DELAY(1);
  504                 r = CSR_READ_4(sc, DC_SIO);
  505                 if (!(r & DC_PN_SIOCTL_BUSY)) {
  506                         *dest = (u_int16_t)(r & 0xFFFF);
  507                         return;
  508                 }
  509         }
  510 }
  511 
  512 /*
  513  * Read a word of data stored in the EEPROM at address 'addr.'
  514  * The Xircom X3201 has its own non-standard way to read
  515  * the EEPROM, too.
  516  */
  517 static void
  518 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
  519 {
  520 
  521         SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  522 
  523         addr *= 2;
  524         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  525         *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
  526         addr += 1;
  527         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  528         *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
  529 
  530         SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  531 }
  532 
  533 /*
  534  * Read a word of data stored in the EEPROM at address 'addr.'
  535  */
  536 static void
  537 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
  538 {
  539         int i;
  540         u_int16_t word = 0;
  541 
  542         /* Force EEPROM to idle state. */
  543         dc_eeprom_idle(sc);
  544 
  545         /* Enter EEPROM access mode. */
  546         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  547         dc_delay(sc);
  548         DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
  549         dc_delay(sc);
  550         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  551         dc_delay(sc);
  552         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  553         dc_delay(sc);
  554 
  555         /*
  556          * Send address of word we want to read.
  557          */
  558         dc_eeprom_putbyte(sc, addr);
  559 
  560         /*
  561          * Start reading bits from EEPROM.
  562          */
  563         for (i = 0x8000; i; i >>= 1) {
  564                 SIO_SET(DC_SIO_EE_CLK);
  565                 dc_delay(sc);
  566                 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
  567                         word |= i;
  568                 dc_delay(sc);
  569                 SIO_CLR(DC_SIO_EE_CLK);
  570                 dc_delay(sc);
  571         }
  572 
  573         /* Turn off EEPROM access mode. */
  574         dc_eeprom_idle(sc);
  575 
  576         *dest = word;
  577 }
  578 
  579 /*
  580  * Read a sequence of words from the EEPROM.
  581  */
  582 static void
  583 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
  584 {
  585         int i;
  586         u_int16_t word = 0, *ptr;
  587 
  588         for (i = 0; i < cnt; i++) {
  589                 if (DC_IS_PNIC(sc))
  590                         dc_eeprom_getword_pnic(sc, off + i, &word);
  591                 else if (DC_IS_XIRCOM(sc))
  592                         dc_eeprom_getword_xircom(sc, off + i, &word);
  593                 else
  594                         dc_eeprom_getword(sc, off + i, &word);
  595                 ptr = (u_int16_t *)(dest + (i * 2));
  596                 if (be)
  597                         *ptr = be16toh(word);
  598                 else
  599                         *ptr = le16toh(word);
  600         }
  601 }
  602 
  603 /*
  604  * The following two routines are taken from the Macronix 98713
  605  * Application Notes pp.19-21.
  606  */
  607 /*
  608  * Write a bit to the MII bus.
  609  */
  610 static void
  611 dc_mii_writebit(struct dc_softc *sc, int bit)
  612 {
  613 
  614         if (bit)
  615                 CSR_WRITE_4(sc, DC_SIO,
  616                     DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
  617         else
  618                 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  619 
  620         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  621         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  622 }
  623 
  624 /*
  625  * Read a bit from the MII bus.
  626  */
  627 static int
  628 dc_mii_readbit(struct dc_softc *sc)
  629 {
  630 
  631         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
  632         CSR_READ_4(sc, DC_SIO);
  633         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  634         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  635         if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
  636                 return (1);
  637 
  638         return (0);
  639 }
  640 
  641 /*
  642  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  643  */
  644 static void
  645 dc_mii_sync(struct dc_softc *sc)
  646 {
  647         int i;
  648 
  649         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  650 
  651         for (i = 0; i < 32; i++)
  652                 dc_mii_writebit(sc, 1);
  653 }
  654 
  655 /*
  656  * Clock a series of bits through the MII.
  657  */
  658 static void
  659 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
  660 {
  661         int i;
  662 
  663         for (i = (0x1 << (cnt - 1)); i; i >>= 1)
  664                 dc_mii_writebit(sc, bits & i);
  665 }
  666 
  667 /*
  668  * Read an PHY register through the MII.
  669  */
  670 static int
  671 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
  672 {
  673         int i, ack;
  674 
  675         DC_LOCK(sc);
  676 
  677         /*
  678          * Set up frame for RX.
  679          */
  680         frame->mii_stdelim = DC_MII_STARTDELIM;
  681         frame->mii_opcode = DC_MII_READOP;
  682         frame->mii_turnaround = 0;
  683         frame->mii_data = 0;
  684 
  685         /*
  686          * Sync the PHYs.
  687          */
  688         dc_mii_sync(sc);
  689 
  690         /*
  691          * Send command/address info.
  692          */
  693         dc_mii_send(sc, frame->mii_stdelim, 2);
  694         dc_mii_send(sc, frame->mii_opcode, 2);
  695         dc_mii_send(sc, frame->mii_phyaddr, 5);
  696         dc_mii_send(sc, frame->mii_regaddr, 5);
  697 
  698 #ifdef notdef
  699         /* Idle bit */
  700         dc_mii_writebit(sc, 1);
  701         dc_mii_writebit(sc, 0);
  702 #endif
  703 
  704         /* Check for ack. */
  705         ack = dc_mii_readbit(sc);
  706 
  707         /*
  708          * Now try reading data bits. If the ack failed, we still
  709          * need to clock through 16 cycles to keep the PHY(s) in sync.
  710          */
  711         if (ack) {
  712                 for (i = 0; i < 16; i++)
  713                         dc_mii_readbit(sc);
  714                 goto fail;
  715         }
  716 
  717         for (i = 0x8000; i; i >>= 1) {
  718                 if (!ack) {
  719                         if (dc_mii_readbit(sc))
  720                                 frame->mii_data |= i;
  721                 }
  722         }
  723 
  724 fail:
  725 
  726         dc_mii_writebit(sc, 0);
  727         dc_mii_writebit(sc, 0);
  728 
  729         DC_UNLOCK(sc);
  730 
  731         if (ack)
  732                 return (1);
  733         return (0);
  734 }
  735 
  736 /*
  737  * Write to a PHY register through the MII.
  738  */
  739 static int
  740 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
  741 {
  742 
  743         DC_LOCK(sc);
  744         /*
  745          * Set up frame for TX.
  746          */
  747 
  748         frame->mii_stdelim = DC_MII_STARTDELIM;
  749         frame->mii_opcode = DC_MII_WRITEOP;
  750         frame->mii_turnaround = DC_MII_TURNAROUND;
  751 
  752         /*
  753          * Sync the PHYs.
  754          */
  755         dc_mii_sync(sc);
  756 
  757         dc_mii_send(sc, frame->mii_stdelim, 2);
  758         dc_mii_send(sc, frame->mii_opcode, 2);
  759         dc_mii_send(sc, frame->mii_phyaddr, 5);
  760         dc_mii_send(sc, frame->mii_regaddr, 5);
  761         dc_mii_send(sc, frame->mii_turnaround, 2);
  762         dc_mii_send(sc, frame->mii_data, 16);
  763 
  764         /* Idle bit. */
  765         dc_mii_writebit(sc, 0);
  766         dc_mii_writebit(sc, 0);
  767 
  768         DC_UNLOCK(sc);
  769 
  770         return (0);
  771 }
  772 
  773 static int
  774 dc_miibus_readreg(device_t dev, int phy, int reg)
  775 {
  776         struct dc_mii_frame frame;
  777         struct dc_softc  *sc;
  778         int i, rval, phy_reg = 0;
  779 
  780         sc = device_get_softc(dev);
  781         bzero(&frame, sizeof(frame));
  782 
  783         /*
  784          * Note: both the AL981 and AN985 have internal PHYs,
  785          * however the AL981 provides direct access to the PHY
  786          * registers while the AN985 uses a serial MII interface.
  787          * The AN985's MII interface is also buggy in that you
  788          * can read from any MII address (0 to 31), but only address 1
  789          * behaves normally. To deal with both cases, we pretend
  790          * that the PHY is at MII address 1.
  791          */
  792         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  793                 return (0);
  794 
  795         /*
  796          * Note: the ukphy probes of the RS7112 report a PHY at
  797          * MII address 0 (possibly HomePNA?) and 1 (ethernet)
  798          * so we only respond to correct one.
  799          */
  800         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  801                 return (0);
  802 
  803         if (sc->dc_pmode != DC_PMODE_MII) {
  804                 if (phy == (MII_NPHY - 1)) {
  805                         switch (reg) {
  806                         case MII_BMSR:
  807                         /*
  808                          * Fake something to make the probe
  809                          * code think there's a PHY here.
  810                          */
  811                                 return (BMSR_MEDIAMASK);
  812                                 break;
  813                         case MII_PHYIDR1:
  814                                 if (DC_IS_PNIC(sc))
  815                                         return (DC_VENDORID_LO);
  816                                 return (DC_VENDORID_DEC);
  817                                 break;
  818                         case MII_PHYIDR2:
  819                                 if (DC_IS_PNIC(sc))
  820                                         return (DC_DEVICEID_82C168);
  821                                 return (DC_DEVICEID_21143);
  822                                 break;
  823                         default:
  824                                 return (0);
  825                                 break;
  826                         }
  827                 } else
  828                         return (0);
  829         }
  830 
  831         if (DC_IS_PNIC(sc)) {
  832                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
  833                     (phy << 23) | (reg << 18));
  834                 for (i = 0; i < DC_TIMEOUT; i++) {
  835                         DELAY(1);
  836                         rval = CSR_READ_4(sc, DC_PN_MII);
  837                         if (!(rval & DC_PN_MII_BUSY)) {
  838                                 rval &= 0xFFFF;
  839                                 return (rval == 0xFFFF ? 0 : rval);
  840                         }
  841                 }
  842                 return (0);
  843         }
  844 
  845         if (DC_IS_COMET(sc)) {
  846                 switch (reg) {
  847                 case MII_BMCR:
  848                         phy_reg = DC_AL_BMCR;
  849                         break;
  850                 case MII_BMSR:
  851                         phy_reg = DC_AL_BMSR;
  852                         break;
  853                 case MII_PHYIDR1:
  854                         phy_reg = DC_AL_VENID;
  855                         break;
  856                 case MII_PHYIDR2:
  857                         phy_reg = DC_AL_DEVID;
  858                         break;
  859                 case MII_ANAR:
  860                         phy_reg = DC_AL_ANAR;
  861                         break;
  862                 case MII_ANLPAR:
  863                         phy_reg = DC_AL_LPAR;
  864                         break;
  865                 case MII_ANER:
  866                         phy_reg = DC_AL_ANER;
  867                         break;
  868                 default:
  869                         printf("dc%d: phy_read: bad phy register %x\n",
  870                             sc->dc_unit, reg);
  871                         return (0);
  872                         break;
  873                 }
  874 
  875                 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
  876 
  877                 if (rval == 0xFFFF)
  878                         return (0);
  879                 return (rval);
  880         }
  881 
  882         frame.mii_phyaddr = phy;
  883         frame.mii_regaddr = reg;
  884         if (sc->dc_type == DC_TYPE_98713) {
  885                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  886                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  887         }
  888         dc_mii_readreg(sc, &frame);
  889         if (sc->dc_type == DC_TYPE_98713)
  890                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  891 
  892         return (frame.mii_data);
  893 }
  894 
  895 static int
  896 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
  897 {
  898         struct dc_softc *sc;
  899         struct dc_mii_frame frame;
  900         int i, phy_reg = 0;
  901 
  902         sc = device_get_softc(dev);
  903         bzero(&frame, sizeof(frame));
  904 
  905         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  906                 return (0);
  907 
  908         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  909                 return (0);
  910 
  911         if (DC_IS_PNIC(sc)) {
  912                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
  913                     (phy << 23) | (reg << 10) | data);
  914                 for (i = 0; i < DC_TIMEOUT; i++) {
  915                         if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
  916                                 break;
  917                 }
  918                 return (0);
  919         }
  920 
  921         if (DC_IS_COMET(sc)) {
  922                 switch (reg) {
  923                 case MII_BMCR:
  924                         phy_reg = DC_AL_BMCR;
  925                         break;
  926                 case MII_BMSR:
  927                         phy_reg = DC_AL_BMSR;
  928                         break;
  929                 case MII_PHYIDR1:
  930                         phy_reg = DC_AL_VENID;
  931                         break;
  932                 case MII_PHYIDR2:
  933                         phy_reg = DC_AL_DEVID;
  934                         break;
  935                 case MII_ANAR:
  936                         phy_reg = DC_AL_ANAR;
  937                         break;
  938                 case MII_ANLPAR:
  939                         phy_reg = DC_AL_LPAR;
  940                         break;
  941                 case MII_ANER:
  942                         phy_reg = DC_AL_ANER;
  943                         break;
  944                 default:
  945                         printf("dc%d: phy_write: bad phy register %x\n",
  946                             sc->dc_unit, reg);
  947                         return (0);
  948                         break;
  949                 }
  950 
  951                 CSR_WRITE_4(sc, phy_reg, data);
  952                 return (0);
  953         }
  954 
  955         frame.mii_phyaddr = phy;
  956         frame.mii_regaddr = reg;
  957         frame.mii_data = data;
  958 
  959         if (sc->dc_type == DC_TYPE_98713) {
  960                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  961                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  962         }
  963         dc_mii_writereg(sc, &frame);
  964         if (sc->dc_type == DC_TYPE_98713)
  965                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  966 
  967         return (0);
  968 }
  969 
  970 static void
  971 dc_miibus_statchg(device_t dev)
  972 {
  973         struct dc_softc *sc;
  974         struct mii_data *mii;
  975         struct ifmedia *ifm;
  976 
  977         sc = device_get_softc(dev);
  978         if (DC_IS_ADMTEK(sc))
  979                 return;
  980 
  981         mii = device_get_softc(sc->dc_miibus);
  982         ifm = &mii->mii_media;
  983         if (DC_IS_DAVICOM(sc) &&
  984             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
  985                 dc_setcfg(sc, ifm->ifm_media);
  986                 sc->dc_if_media = ifm->ifm_media;
  987         } else {
  988                 dc_setcfg(sc, mii->mii_media_active);
  989                 sc->dc_if_media = mii->mii_media_active;
  990         }
  991 }
  992 
  993 /*
  994  * Special support for DM9102A cards with HomePNA PHYs. Note:
  995  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
  996  * to be impossible to talk to the management interface of the DM9801
  997  * PHY (its MDIO pin is not connected to anything). Consequently,
  998  * the driver has to just 'know' about the additional mode and deal
  999  * with it itself. *sigh*
 1000  */
 1001 static void
 1002 dc_miibus_mediainit(device_t dev)
 1003 {
 1004         struct dc_softc *sc;
 1005         struct mii_data *mii;
 1006         struct ifmedia *ifm;
 1007         int rev;
 1008 
 1009         rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
 1010 
 1011         sc = device_get_softc(dev);
 1012         mii = device_get_softc(sc->dc_miibus);
 1013         ifm = &mii->mii_media;
 1014 
 1015         if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
 1016                 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
 1017 }
 1018 
 1019 #define DC_BITS_512     9
 1020 #define DC_BITS_128     7
 1021 #define DC_BITS_64      6
 1022 
 1023 static uint32_t
 1024 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
 1025 {
 1026         uint32_t crc;
 1027 
 1028         /* Compute CRC for the address value. */
 1029         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
 1030 
 1031         /*
 1032          * The hash table on the PNIC II and the MX98715AEC-C/D/E
 1033          * chips is only 128 bits wide.
 1034          */
 1035         if (sc->dc_flags & DC_128BIT_HASH)
 1036                 return (crc & ((1 << DC_BITS_128) - 1));
 1037 
 1038         /* The hash table on the MX98715BEC is only 64 bits wide. */
 1039         if (sc->dc_flags & DC_64BIT_HASH)
 1040                 return (crc & ((1 << DC_BITS_64) - 1));
 1041 
 1042         /* Xircom's hash filtering table is different (read: weird) */
 1043         /* Xircom uses the LEAST significant bits */
 1044         if (DC_IS_XIRCOM(sc)) {
 1045                 if ((crc & 0x180) == 0x180)
 1046                         return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
 1047                 else
 1048                         return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
 1049                             (12 << 4));
 1050         }
 1051 
 1052         return (crc & ((1 << DC_BITS_512) - 1));
 1053 }
 1054 
 1055 /*
 1056  * Calculate CRC of a multicast group address, return the lower 6 bits.
 1057  */
 1058 static uint32_t
 1059 dc_mchash_be(const uint8_t *addr)
 1060 {
 1061         uint32_t crc;
 1062 
 1063         /* Compute CRC for the address value. */
 1064         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
 1065 
 1066         /* Return the filter bit position. */
 1067         return ((crc >> 26) & 0x0000003F);
 1068 }
 1069 
 1070 /*
 1071  * 21143-style RX filter setup routine. Filter programming is done by
 1072  * downloading a special setup frame into the TX engine. 21143, Macronix,
 1073  * PNIC, PNIC II and Davicom chips are programmed this way.
 1074  *
 1075  * We always program the chip using 'hash perfect' mode, i.e. one perfect
 1076  * address (our node address) and a 512-bit hash filter for multicast
 1077  * frames. We also sneak the broadcast address into the hash filter since
 1078  * we need that too.
 1079  */
 1080 static void
 1081 dc_setfilt_21143(struct dc_softc *sc)
 1082 {
 1083         struct dc_desc *sframe;
 1084         u_int32_t h, *sp;
 1085         struct ifmultiaddr *ifma;
 1086         struct ifnet *ifp;
 1087         int i;
 1088 
 1089         ifp = &sc->arpcom.ac_if;
 1090 
 1091         i = sc->dc_cdata.dc_tx_prod;
 1092         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1093         sc->dc_cdata.dc_tx_cnt++;
 1094         sframe = &sc->dc_ldata->dc_tx_list[i];
 1095         sp = sc->dc_cdata.dc_sbuf;
 1096         bzero(sp, DC_SFRAME_LEN);
 1097 
 1098         sframe->dc_data = htole32(sc->dc_saddr);
 1099         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1100             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1101 
 1102         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1103 
 1104         /* If we want promiscuous mode, set the allframes bit. */
 1105         if (ifp->if_flags & IFF_PROMISC)
 1106                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1107         else
 1108                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1109 
 1110         if (ifp->if_flags & IFF_ALLMULTI)
 1111                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1112         else
 1113                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1114 
 1115         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1116                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1117                         continue;
 1118                 h = dc_mchash_le(sc,
 1119                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1120                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1121         }
 1122 
 1123         if (ifp->if_flags & IFF_BROADCAST) {
 1124                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1125                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1126         }
 1127 
 1128         /* Set our MAC address */
 1129         sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 1130         sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 1131         sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 1132 
 1133         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1134         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1135 
 1136         /*
 1137          * The PNIC takes an exceedingly long time to process its
 1138          * setup frame; wait 10ms after posting the setup frame
 1139          * before proceeding, just so it has time to swallow its
 1140          * medicine.
 1141          */
 1142         DELAY(10000);
 1143 
 1144         ifp->if_timer = 5;
 1145 }
 1146 
 1147 static void
 1148 dc_setfilt_admtek(struct dc_softc *sc)
 1149 {
 1150         struct ifnet *ifp;
 1151         struct ifmultiaddr *ifma;
 1152         int h = 0;
 1153         u_int32_t hashes[2] = { 0, 0 };
 1154 
 1155         ifp = &sc->arpcom.ac_if;
 1156 
 1157         /* Init our MAC address. */
 1158         CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1159         CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1160 
 1161         /* If we want promiscuous mode, set the allframes bit. */
 1162         if (ifp->if_flags & IFF_PROMISC)
 1163                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1164         else
 1165                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1166 
 1167         if (ifp->if_flags & IFF_ALLMULTI)
 1168                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1169         else
 1170                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1171 
 1172         /* First, zot all the existing hash bits. */
 1173         CSR_WRITE_4(sc, DC_AL_MAR0, 0);
 1174         CSR_WRITE_4(sc, DC_AL_MAR1, 0);
 1175 
 1176         /*
 1177          * If we're already in promisc or allmulti mode, we
 1178          * don't have to bother programming the multicast filter.
 1179          */
 1180         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1181                 return;
 1182 
 1183         /* Now program new ones. */
 1184         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1185                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1186                         continue;
 1187                 if (DC_IS_CENTAUR(sc))
 1188                         h = dc_mchash_le(sc,
 1189                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1190                 else
 1191                         h = dc_mchash_be(
 1192                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1193                 if (h < 32)
 1194                         hashes[0] |= (1 << h);
 1195                 else
 1196                         hashes[1] |= (1 << (h - 32));
 1197         }
 1198 
 1199         CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
 1200         CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
 1201 }
 1202 
 1203 static void
 1204 dc_setfilt_asix(struct dc_softc *sc)
 1205 {
 1206         struct ifnet *ifp;
 1207         struct ifmultiaddr *ifma;
 1208         int h = 0;
 1209         u_int32_t hashes[2] = { 0, 0 };
 1210 
 1211         ifp = &sc->arpcom.ac_if;
 1212 
 1213         /* Init our MAC address */
 1214         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
 1215         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1216             *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1217         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
 1218         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1219             *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1220 
 1221         /* If we want promiscuous mode, set the allframes bit. */
 1222         if (ifp->if_flags & IFF_PROMISC)
 1223                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1224         else
 1225                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1226 
 1227         if (ifp->if_flags & IFF_ALLMULTI)
 1228                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1229         else
 1230                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1231 
 1232         /*
 1233          * The ASIX chip has a special bit to enable reception
 1234          * of broadcast frames.
 1235          */
 1236         if (ifp->if_flags & IFF_BROADCAST)
 1237                 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1238         else
 1239                 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1240 
 1241         /* first, zot all the existing hash bits */
 1242         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1243         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1244         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1245         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1246 
 1247         /*
 1248          * If we're already in promisc or allmulti mode, we
 1249          * don't have to bother programming the multicast filter.
 1250          */
 1251         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1252                 return;
 1253 
 1254         /* now program new ones */
 1255         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1256                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1257                         continue;
 1258                 h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1259                 if (h < 32)
 1260                         hashes[0] |= (1 << h);
 1261                 else
 1262                         hashes[1] |= (1 << (h - 32));
 1263         }
 1264 
 1265         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1266         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
 1267         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1268         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
 1269 }
 1270 
 1271 static void
 1272 dc_setfilt_xircom(struct dc_softc *sc)
 1273 {
 1274         struct ifnet *ifp;
 1275         struct ifmultiaddr *ifma;
 1276         struct dc_desc *sframe;
 1277         u_int32_t h, *sp;
 1278         int i;
 1279 
 1280         ifp = &sc->arpcom.ac_if;
 1281         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1282 
 1283         i = sc->dc_cdata.dc_tx_prod;
 1284         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1285         sc->dc_cdata.dc_tx_cnt++;
 1286         sframe = &sc->dc_ldata->dc_tx_list[i];
 1287         sp = sc->dc_cdata.dc_sbuf;
 1288         bzero(sp, DC_SFRAME_LEN);
 1289 
 1290         sframe->dc_data = htole32(sc->dc_saddr);
 1291         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1292             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1293 
 1294         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1295 
 1296         /* If we want promiscuous mode, set the allframes bit. */
 1297         if (ifp->if_flags & IFF_PROMISC)
 1298                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1299         else
 1300                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1301 
 1302         if (ifp->if_flags & IFF_ALLMULTI)
 1303                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1304         else
 1305                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1306 
 1307         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1308                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1309                         continue;
 1310                 h = dc_mchash_le(sc,
 1311                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1312                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1313         }
 1314 
 1315         if (ifp->if_flags & IFF_BROADCAST) {
 1316                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1317                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1318         }
 1319 
 1320         /* Set our MAC address */
 1321         sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 1322         sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 1323         sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 1324 
 1325         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 1326         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 1327         ifp->if_flags |= IFF_RUNNING;
 1328         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1329         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1330 
 1331         /*
 1332          * Wait some time...
 1333          */
 1334         DELAY(1000);
 1335 
 1336         ifp->if_timer = 5;
 1337 }
 1338 
 1339 static void
 1340 dc_setfilt(struct dc_softc *sc)
 1341 {
 1342 
 1343         if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
 1344             DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
 1345                 dc_setfilt_21143(sc);
 1346 
 1347         if (DC_IS_ASIX(sc))
 1348                 dc_setfilt_asix(sc);
 1349 
 1350         if (DC_IS_ADMTEK(sc))
 1351                 dc_setfilt_admtek(sc);
 1352 
 1353         if (DC_IS_XIRCOM(sc))
 1354                 dc_setfilt_xircom(sc);
 1355 }
 1356 
 1357 /*
 1358  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
 1359  * the netconfig register, we first have to put the transmit and/or
 1360  * receive logic in the idle state.
 1361  */
 1362 static void
 1363 dc_setcfg(struct dc_softc *sc, int media)
 1364 {
 1365         int i, restart = 0, watchdogreg;
 1366         u_int32_t isr;
 1367 
 1368         if (IFM_SUBTYPE(media) == IFM_NONE)
 1369                 return;
 1370 
 1371         if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
 1372                 restart = 1;
 1373                 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1374 
 1375                 for (i = 0; i < DC_TIMEOUT; i++) {
 1376                         isr = CSR_READ_4(sc, DC_ISR);
 1377                         if (isr & DC_ISR_TX_IDLE &&
 1378                             ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1379                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
 1380                                 break;
 1381                         DELAY(10);
 1382                 }
 1383 
 1384                 if (i == DC_TIMEOUT)
 1385                         printf("dc%d: failed to force tx and "
 1386                                 "rx to idle state\n", sc->dc_unit);
 1387         }
 1388 
 1389         if (IFM_SUBTYPE(media) == IFM_100_TX) {
 1390                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1391                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1392                 if (sc->dc_pmode == DC_PMODE_MII) {
 1393                         if (DC_IS_INTEL(sc)) {
 1394                         /* There's a write enable bit here that reads as 1. */
 1395                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1396                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1397                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1398                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1399                         } else {
 1400                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1401                         }
 1402                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1403                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1404                         if (sc->dc_type == DC_TYPE_98713)
 1405                                 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1406                                     DC_NETCFG_SCRAMBLER));
 1407                         if (!DC_IS_DAVICOM(sc))
 1408                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1409                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1410                         if (DC_IS_INTEL(sc))
 1411                                 dc_apply_fixup(sc, IFM_AUTO);
 1412                 } else {
 1413                         if (DC_IS_PNIC(sc)) {
 1414                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1415                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1416                                 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1417                         }
 1418                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1419                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1420                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1421                         if (DC_IS_INTEL(sc))
 1422                                 dc_apply_fixup(sc,
 1423                                     (media & IFM_GMASK) == IFM_FDX ?
 1424                                     IFM_100_TX | IFM_FDX : IFM_100_TX);
 1425                 }
 1426         }
 1427 
 1428         if (IFM_SUBTYPE(media) == IFM_10_T) {
 1429                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1430                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1431                 if (sc->dc_pmode == DC_PMODE_MII) {
 1432                         /* There's a write enable bit here that reads as 1. */
 1433                         if (DC_IS_INTEL(sc)) {
 1434                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1435                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1436                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1437                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1438                         } else {
 1439                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1440                         }
 1441                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1442                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1443                         if (sc->dc_type == DC_TYPE_98713)
 1444                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1445                         if (!DC_IS_DAVICOM(sc))
 1446                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1447                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1448                         if (DC_IS_INTEL(sc))
 1449                                 dc_apply_fixup(sc, IFM_AUTO);
 1450                 } else {
 1451                         if (DC_IS_PNIC(sc)) {
 1452                                 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1453                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1454                                 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1455                         }
 1456                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1457                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1458                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1459                         if (DC_IS_INTEL(sc)) {
 1460                                 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1461                                 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1462                                 if ((media & IFM_GMASK) == IFM_FDX)
 1463                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
 1464                                 else
 1465                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
 1466                                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1467                                 DC_CLRBIT(sc, DC_10BTCTRL,
 1468                                     DC_TCTL_AUTONEGENBL);
 1469                                 dc_apply_fixup(sc,
 1470                                     (media & IFM_GMASK) == IFM_FDX ?
 1471                                     IFM_10_T | IFM_FDX : IFM_10_T);
 1472                                 DELAY(20000);
 1473                         }
 1474                 }
 1475         }
 1476 
 1477         /*
 1478          * If this is a Davicom DM9102A card with a DM9801 HomePNA
 1479          * PHY and we want HomePNA mode, set the portsel bit to turn
 1480          * on the external MII port.
 1481          */
 1482         if (DC_IS_DAVICOM(sc)) {
 1483                 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
 1484                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1485                         sc->dc_link = 1;
 1486                 } else {
 1487                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1488                 }
 1489         }
 1490 
 1491         if ((media & IFM_GMASK) == IFM_FDX) {
 1492                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1493                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1494                         DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1495         } else {
 1496                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1497                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1498                         DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1499         }
 1500 
 1501         if (restart)
 1502                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
 1503 }
 1504 
 1505 static void
 1506 dc_reset(struct dc_softc *sc)
 1507 {
 1508         int i;
 1509 
 1510         DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1511 
 1512         for (i = 0; i < DC_TIMEOUT; i++) {
 1513                 DELAY(10);
 1514                 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
 1515                         break;
 1516         }
 1517 
 1518         if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
 1519             DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
 1520                 DELAY(10000);
 1521                 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1522                 i = 0;
 1523         }
 1524 
 1525         if (i == DC_TIMEOUT)
 1526                 printf("dc%d: reset never completed!\n", sc->dc_unit);
 1527 
 1528         /* Wait a little while for the chip to get its brains in order. */
 1529         DELAY(1000);
 1530 
 1531         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 1532         CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
 1533         CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
 1534 
 1535         /*
 1536          * Bring the SIA out of reset. In some cases, it looks
 1537          * like failing to unreset the SIA soon enough gets it
 1538          * into a state where it will never come out of reset
 1539          * until we reset the whole chip again.
 1540          */
 1541         if (DC_IS_INTEL(sc)) {
 1542                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1543                 CSR_WRITE_4(sc, DC_10BTCTRL, 0);
 1544                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 1545         }
 1546 }
 1547 
 1548 static struct dc_type *
 1549 dc_devtype(device_t dev)
 1550 {
 1551         struct dc_type *t;
 1552         u_int32_t rev;
 1553 
 1554         t = dc_devs;
 1555 
 1556         while (t->dc_name != NULL) {
 1557                 if ((pci_get_vendor(dev) == t->dc_vid) &&
 1558                     (pci_get_device(dev) == t->dc_did)) {
 1559                         /* Check the PCI revision */
 1560                         rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
 1561                         if (t->dc_did == DC_DEVICEID_98713 &&
 1562                             rev >= DC_REVISION_98713A)
 1563                                 t++;
 1564                         if (t->dc_did == DC_DEVICEID_98713_CP &&
 1565                             rev >= DC_REVISION_98713A)
 1566                                 t++;
 1567                         if (t->dc_did == DC_DEVICEID_987x5 &&
 1568                             rev >= DC_REVISION_98715AEC_C)
 1569                                 t++;
 1570                         if (t->dc_did == DC_DEVICEID_987x5 &&
 1571                             rev >= DC_REVISION_98725)
 1572                                 t++;
 1573                         if (t->dc_did == DC_DEVICEID_AX88140A &&
 1574                             rev >= DC_REVISION_88141)
 1575                                 t++;
 1576                         if (t->dc_did == DC_DEVICEID_82C168 &&
 1577                             rev >= DC_REVISION_82C169)
 1578                                 t++;
 1579                         if (t->dc_did == DC_DEVICEID_DM9102 &&
 1580                             rev >= DC_REVISION_DM9102A)
 1581                                 t++;
 1582                         /*
 1583                          * The Microsoft MN-130 has a device ID of 0x0002,
 1584                          * which happens to be the same as the PNIC 82c168.
 1585                          * To keep dc_attach() from getting confused, we
 1586                          * pretend its ID is something different.
 1587                          * XXX: ideally, dc_attach() should be checking
 1588                          * vendorid+deviceid together to avoid such
 1589                          * collisions.
 1590                          */
 1591                         if (t->dc_vid == DC_VENDORID_MICROSOFT &&
 1592                             t->dc_did == DC_DEVICEID_MSMN130)
 1593                                 t++;
 1594                         return (t);
 1595                 }
 1596                 t++;
 1597         }
 1598 
 1599         return (NULL);
 1600 }
 1601 
 1602 /*
 1603  * Probe for a 21143 or clone chip. Check the PCI vendor and device
 1604  * IDs against our list and return a device name if we find a match.
 1605  * We do a little bit of extra work to identify the exact type of
 1606  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
 1607  * but different revision IDs. The same is true for 98715/98715A
 1608  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
 1609  * cases, the exact chip revision affects driver behavior.
 1610  */
 1611 static int
 1612 dc_probe(device_t dev)
 1613 {
 1614         struct dc_type *t;
 1615 
 1616         t = dc_devtype(dev);
 1617 
 1618         if (t != NULL) {
 1619                 device_set_desc(dev, t->dc_name);
 1620                 return (BUS_PROBE_DEFAULT);
 1621         }
 1622 
 1623         return (ENXIO);
 1624 }
 1625 
 1626 static void
 1627 dc_apply_fixup(struct dc_softc *sc, int media)
 1628 {
 1629         struct dc_mediainfo *m;
 1630         u_int8_t *p;
 1631         int i;
 1632         u_int32_t reg;
 1633 
 1634         m = sc->dc_mi;
 1635 
 1636         while (m != NULL) {
 1637                 if (m->dc_media == media)
 1638                         break;
 1639                 m = m->dc_next;
 1640         }
 1641 
 1642         if (m == NULL)
 1643                 return;
 1644 
 1645         for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
 1646                 reg = (p[0] | (p[1] << 8)) << 16;
 1647                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1648         }
 1649 
 1650         for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
 1651                 reg = (p[0] | (p[1] << 8)) << 16;
 1652                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1653         }
 1654 }
 1655 
 1656 static void
 1657 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
 1658 {
 1659         struct dc_mediainfo *m;
 1660 
 1661         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1662         switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
 1663         case DC_SIA_CODE_10BT:
 1664                 m->dc_media = IFM_10_T;
 1665                 break;
 1666         case DC_SIA_CODE_10BT_FDX:
 1667                 m->dc_media = IFM_10_T | IFM_FDX;
 1668                 break;
 1669         case DC_SIA_CODE_10B2:
 1670                 m->dc_media = IFM_10_2;
 1671                 break;
 1672         case DC_SIA_CODE_10B5:
 1673                 m->dc_media = IFM_10_5;
 1674                 break;
 1675         default:
 1676                 break;
 1677         }
 1678 
 1679         /*
 1680          * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
 1681          * Things apparently already work for cards that do
 1682          * supply Media Specific Data.
 1683          */
 1684         if (l->dc_sia_code & DC_SIA_CODE_EXT) {
 1685                 m->dc_gp_len = 2;
 1686                 m->dc_gp_ptr =
 1687                 (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
 1688         } else {
 1689                 m->dc_gp_len = 2;
 1690                 m->dc_gp_ptr =
 1691                 (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
 1692         }
 1693 
 1694         m->dc_next = sc->dc_mi;
 1695         sc->dc_mi = m;
 1696 
 1697         sc->dc_pmode = DC_PMODE_SIA;
 1698 }
 1699 
 1700 static void
 1701 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
 1702 {
 1703         struct dc_mediainfo *m;
 1704 
 1705         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1706         if (l->dc_sym_code == DC_SYM_CODE_100BT)
 1707                 m->dc_media = IFM_100_TX;
 1708 
 1709         if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
 1710                 m->dc_media = IFM_100_TX | IFM_FDX;
 1711 
 1712         m->dc_gp_len = 2;
 1713         m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
 1714 
 1715         m->dc_next = sc->dc_mi;
 1716         sc->dc_mi = m;
 1717 
 1718         sc->dc_pmode = DC_PMODE_SYM;
 1719 }
 1720 
 1721 static void
 1722 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
 1723 {
 1724         struct dc_mediainfo *m;
 1725         u_int8_t *p;
 1726 
 1727         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1728         /* We abuse IFM_AUTO to represent MII. */
 1729         m->dc_media = IFM_AUTO;
 1730         m->dc_gp_len = l->dc_gpr_len;
 1731 
 1732         p = (u_int8_t *)l;
 1733         p += sizeof(struct dc_eblock_mii);
 1734         m->dc_gp_ptr = p;
 1735         p += 2 * l->dc_gpr_len;
 1736         m->dc_reset_len = *p;
 1737         p++;
 1738         m->dc_reset_ptr = p;
 1739 
 1740         m->dc_next = sc->dc_mi;
 1741         sc->dc_mi = m;
 1742 }
 1743 
 1744 static void
 1745 dc_read_srom(struct dc_softc *sc, int bits)
 1746 {
 1747         int size;
 1748 
 1749         size = 2 << bits;
 1750         sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
 1751         dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
 1752 }
 1753 
 1754 static void
 1755 dc_parse_21143_srom(struct dc_softc *sc)
 1756 {
 1757         struct dc_leaf_hdr *lhdr;
 1758         struct dc_eblock_hdr *hdr;
 1759         int have_mii, i, loff;
 1760         char *ptr;
 1761 
 1762         have_mii = 0;
 1763         loff = sc->dc_srom[27];
 1764         lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
 1765 
 1766         ptr = (char *)lhdr;
 1767         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1768         /*
 1769          * Look if we got a MII media block.
 1770          */
 1771         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1772                 hdr = (struct dc_eblock_hdr *)ptr;
 1773                 if (hdr->dc_type == DC_EBLOCK_MII)
 1774                     have_mii++;
 1775 
 1776                 ptr += (hdr->dc_len & 0x7F);
 1777                 ptr++;
 1778         }
 1779 
 1780         /*
 1781          * Do the same thing again. Only use SIA and SYM media
 1782          * blocks if no MII media block is available.
 1783          */
 1784         ptr = (char *)lhdr;
 1785         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1786         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1787                 hdr = (struct dc_eblock_hdr *)ptr;
 1788                 switch (hdr->dc_type) {
 1789                 case DC_EBLOCK_MII:
 1790                         dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
 1791                         break;
 1792                 case DC_EBLOCK_SIA:
 1793                         if (! have_mii)
 1794                                 dc_decode_leaf_sia(sc,
 1795                                     (struct dc_eblock_sia *)hdr);
 1796                         break;
 1797                 case DC_EBLOCK_SYM:
 1798                         if (! have_mii)
 1799                                 dc_decode_leaf_sym(sc,
 1800                                     (struct dc_eblock_sym *)hdr);
 1801                         break;
 1802                 default:
 1803                         /* Don't care. Yet. */
 1804                         break;
 1805                 }
 1806                 ptr += (hdr->dc_len & 0x7F);
 1807                 ptr++;
 1808         }
 1809 }
 1810 
 1811 static void
 1812 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1813 {
 1814         u_int32_t *paddr;
 1815 
 1816         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 1817         paddr = arg;
 1818         *paddr = segs->ds_addr;
 1819 }
 1820 
 1821 /*
 1822  * Attach the interface. Allocate softc structures, do ifmedia
 1823  * setup and ethernet/BPF attach.
 1824  */
 1825 static int
 1826 dc_attach(device_t dev)
 1827 {
 1828         int tmp = 0;
 1829         u_char eaddr[ETHER_ADDR_LEN];
 1830         u_int32_t command;
 1831         struct dc_softc *sc;
 1832         struct ifnet *ifp;
 1833         u_int32_t revision;
 1834         int unit, error = 0, rid, mac_offset;
 1835         int i;
 1836         u_int8_t *mac;
 1837 
 1838         sc = device_get_softc(dev);
 1839         unit = device_get_unit(dev);
 1840 
 1841         mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1842             MTX_DEF | MTX_RECURSE);
 1843 
 1844         /*
 1845          * Map control/status registers.
 1846          */
 1847         pci_enable_busmaster(dev);
 1848 
 1849         rid = DC_RID;
 1850         sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
 1851 
 1852         if (sc->dc_res == NULL) {
 1853                 printf("dc%d: couldn't map ports/memory\n", unit);
 1854                 error = ENXIO;
 1855                 goto fail;
 1856         }
 1857 
 1858         sc->dc_btag = rman_get_bustag(sc->dc_res);
 1859         sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
 1860 
 1861         /* Allocate interrupt. */
 1862         rid = 0;
 1863         sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1864             RF_SHAREABLE | RF_ACTIVE);
 1865 
 1866         if (sc->dc_irq == NULL) {
 1867                 printf("dc%d: couldn't map interrupt\n", unit);
 1868                 error = ENXIO;
 1869                 goto fail;
 1870         }
 1871 
 1872         /* Need this info to decide on a chip type. */
 1873         sc->dc_info = dc_devtype(dev);
 1874         revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
 1875 
 1876         /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
 1877         if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
 1878            sc->dc_info->dc_did != DC_DEVICEID_X3201)
 1879                 dc_eeprom_width(sc);
 1880 
 1881         switch (sc->dc_info->dc_did) {
 1882         case DC_DEVICEID_21143:
 1883                 sc->dc_type = DC_TYPE_21143;
 1884                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1885                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1886                 /* Save EEPROM contents so we can parse them later. */
 1887                 dc_read_srom(sc, sc->dc_romwidth);
 1888                 break;
 1889         case DC_DEVICEID_DM9009:
 1890         case DC_DEVICEID_DM9100:
 1891         case DC_DEVICEID_DM9102:
 1892                 sc->dc_type = DC_TYPE_DM9102;
 1893                 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
 1894                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
 1895                 sc->dc_flags |= DC_TX_ALIGN;
 1896                 sc->dc_pmode = DC_PMODE_MII;
 1897                 /* Increase the latency timer value. */
 1898                 command = pci_read_config(dev, DC_PCI_CFLT, 4);
 1899                 command &= 0xFFFF00FF;
 1900                 command |= 0x00008000;
 1901                 pci_write_config(dev, DC_PCI_CFLT, command, 4);
 1902                 break;
 1903         case DC_DEVICEID_AL981:
 1904                 sc->dc_type = DC_TYPE_AL981;
 1905                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1906                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1907                 sc->dc_pmode = DC_PMODE_MII;
 1908                 dc_read_srom(sc, sc->dc_romwidth);
 1909                 break;
 1910         case DC_DEVICEID_AN985:
 1911         case DC_DEVICEID_ADM9511:
 1912         case DC_DEVICEID_ADM9513:
 1913         case DC_DEVICEID_FA511:
 1914         case DC_DEVICEID_FE2500:
 1915         case DC_DEVICEID_EN2242:
 1916         case DC_DEVICEID_HAWKING_PN672TX:
 1917         case DC_DEVICEID_3CSOHOB:
 1918         case DC_DEVICEID_MSMN120:
 1919         case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
 1920                 sc->dc_type = DC_TYPE_AN985;
 1921                 sc->dc_flags |= DC_64BIT_HASH;
 1922                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1923                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1924                 sc->dc_pmode = DC_PMODE_MII;
 1925                 /* Don't read SROM for - auto-loaded on reset */
 1926                 break;
 1927         case DC_DEVICEID_98713:
 1928         case DC_DEVICEID_98713_CP:
 1929                 if (revision < DC_REVISION_98713A) {
 1930                         sc->dc_type = DC_TYPE_98713;
 1931                 }
 1932                 if (revision >= DC_REVISION_98713A) {
 1933                         sc->dc_type = DC_TYPE_98713A;
 1934                         sc->dc_flags |= DC_21143_NWAY;
 1935                 }
 1936                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1937                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1938                 break;
 1939         case DC_DEVICEID_987x5:
 1940         case DC_DEVICEID_EN1217:
 1941                 /*
 1942                  * Macronix MX98715AEC-C/D/E parts have only a
 1943                  * 128-bit hash table. We need to deal with these
 1944                  * in the same manner as the PNIC II so that we
 1945                  * get the right number of bits out of the
 1946                  * CRC routine.
 1947                  */
 1948                 if (revision >= DC_REVISION_98715AEC_C &&
 1949                     revision < DC_REVISION_98725)
 1950                         sc->dc_flags |= DC_128BIT_HASH;
 1951                 sc->dc_type = DC_TYPE_987x5;
 1952                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1953                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1954                 break;
 1955         case DC_DEVICEID_98727:
 1956                 sc->dc_type = DC_TYPE_987x5;
 1957                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1958                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1959                 break;
 1960         case DC_DEVICEID_82C115:
 1961                 sc->dc_type = DC_TYPE_PNICII;
 1962                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
 1963                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1964                 break;
 1965         case DC_DEVICEID_82C168:
 1966                 sc->dc_type = DC_TYPE_PNIC;
 1967                 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
 1968                 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
 1969                 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
 1970                 if (revision < DC_REVISION_82C169)
 1971                         sc->dc_pmode = DC_PMODE_SYM;
 1972                 break;
 1973         case DC_DEVICEID_AX88140A:
 1974                 sc->dc_type = DC_TYPE_ASIX;
 1975                 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
 1976                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1977                 sc->dc_pmode = DC_PMODE_MII;
 1978                 break;
 1979         case DC_DEVICEID_X3201:
 1980                 sc->dc_type = DC_TYPE_XIRCOM;
 1981                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 1982                                 DC_TX_ALIGN;
 1983                 /*
 1984                  * We don't actually need to coalesce, but we're doing
 1985                  * it to obtain a double word aligned buffer.
 1986                  * The DC_TX_COALESCE flag is required.
 1987                  */
 1988                 sc->dc_pmode = DC_PMODE_MII;
 1989                 break;
 1990         case DC_DEVICEID_RS7112:
 1991                 sc->dc_type = DC_TYPE_CONEXANT;
 1992                 sc->dc_flags |= DC_TX_INTR_ALWAYS;
 1993                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1994                 sc->dc_pmode = DC_PMODE_MII;
 1995                 dc_read_srom(sc, sc->dc_romwidth);
 1996                 break;
 1997         default:
 1998                 printf("dc%d: unknown device: %x\n", sc->dc_unit,
 1999                     sc->dc_info->dc_did);
 2000                 break;
 2001         }
 2002 
 2003         /* Save the cache line size. */
 2004         if (DC_IS_DAVICOM(sc))
 2005                 sc->dc_cachesize = 0;
 2006         else
 2007                 sc->dc_cachesize = pci_read_config(dev,
 2008                     DC_PCI_CFLT, 4) & 0xFF;
 2009 
 2010         /* Reset the adapter. */
 2011         dc_reset(sc);
 2012 
 2013         /* Take 21143 out of snooze mode */
 2014         if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
 2015                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2016                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2017                 pci_write_config(dev, DC_PCI_CFDD, command, 4);
 2018         }
 2019 
 2020         /*
 2021          * Try to learn something about the supported media.
 2022          * We know that ASIX and ADMtek and Davicom devices
 2023          * will *always* be using MII media, so that's a no-brainer.
 2024          * The tricky ones are the Macronix/PNIC II and the
 2025          * Intel 21143.
 2026          */
 2027         if (DC_IS_INTEL(sc))
 2028                 dc_parse_21143_srom(sc);
 2029         else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 2030                 if (sc->dc_type == DC_TYPE_98713)
 2031                         sc->dc_pmode = DC_PMODE_MII;
 2032                 else
 2033                         sc->dc_pmode = DC_PMODE_SYM;
 2034         } else if (!sc->dc_pmode)
 2035                 sc->dc_pmode = DC_PMODE_MII;
 2036 
 2037         /*
 2038          * Get station address from the EEPROM.
 2039          */
 2040         switch(sc->dc_type) {
 2041         case DC_TYPE_98713:
 2042         case DC_TYPE_98713A:
 2043         case DC_TYPE_987x5:
 2044         case DC_TYPE_PNICII:
 2045                 dc_read_eeprom(sc, (caddr_t)&mac_offset,
 2046                     (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
 2047                 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
 2048                 break;
 2049         case DC_TYPE_PNIC:
 2050                 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
 2051                 break;
 2052         case DC_TYPE_DM9102:
 2053                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2054 #ifdef __sparc64__
 2055                 /*
 2056                  * If this is an onboard dc(4) the station address read from
 2057                  * the EEPROM is all zero and we have to get it from the fcode.
 2058                  */
 2059                 for (i = 0; i < ETHER_ADDR_LEN; i++)
 2060                         if (eaddr[i] != 0x00)
 2061                                 break;
 2062                 if (i >= ETHER_ADDR_LEN)
 2063                         OF_getetheraddr(dev, eaddr);
 2064 #endif
 2065                 break;
 2066         case DC_TYPE_21143:
 2067         case DC_TYPE_ASIX:
 2068                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2069                 break;
 2070         case DC_TYPE_AL981:
 2071         case DC_TYPE_AN985:
 2072                 *(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
 2073                 *(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
 2074                 break;
 2075         case DC_TYPE_CONEXANT:
 2076                 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
 2077                     ETHER_ADDR_LEN);
 2078                 break;
 2079         case DC_TYPE_XIRCOM:
 2080                 /* The MAC comes from the CIS. */
 2081                 mac = pci_get_ether(dev);
 2082                 if (!mac) {
 2083                         device_printf(dev, "No station address in CIS!\n");
 2084                         error = ENXIO;
 2085                         goto fail;
 2086                 }
 2087                 bcopy(mac, eaddr, ETHER_ADDR_LEN);
 2088                 break;
 2089         default:
 2090                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2091                 break;
 2092         }
 2093 
 2094         sc->dc_unit = unit;
 2095         bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
 2096 
 2097         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 2098         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2099             BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
 2100             sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
 2101         if (error) {
 2102                 printf("dc%d: failed to allocate busdma tag\n", unit);
 2103                 error = ENXIO;
 2104                 goto fail;
 2105         }
 2106         error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
 2107             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
 2108         if (error) {
 2109                 printf("dc%d: failed to allocate DMA safe memory\n", unit);
 2110                 error = ENXIO;
 2111                 goto fail;
 2112         }
 2113         error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
 2114             sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
 2115             BUS_DMA_NOWAIT);
 2116         if (error) {
 2117                 printf("dc%d: cannot get address of the descriptors\n", unit);
 2118                 error = ENXIO;
 2119                 goto fail;
 2120         }
 2121 
 2122         /*
 2123          * Allocate a busdma tag and DMA safe memory for the multicast
 2124          * setup frame.
 2125          */
 2126         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2127             BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
 2128             DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
 2129         if (error) {
 2130                 printf("dc%d: failed to allocate busdma tag\n", unit);
 2131                 error = ENXIO;
 2132                 goto fail;
 2133         }
 2134         error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
 2135             BUS_DMA_NOWAIT, &sc->dc_smap);
 2136         if (error) {
 2137                 printf("dc%d: failed to allocate DMA safe memory\n", unit);
 2138                 error = ENXIO;
 2139                 goto fail;
 2140         }
 2141         error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
 2142             DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
 2143         if (error) {
 2144                 printf("dc%d: cannot get address of the descriptors\n", unit);
 2145                 error = ENXIO;
 2146                 goto fail;
 2147         }
 2148 
 2149         /* Allocate a busdma tag for mbufs. */
 2150         error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
 2151             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
 2152             0, NULL, NULL, &sc->dc_mtag);
 2153         if (error) {
 2154                 printf("dc%d: failed to allocate busdma tag\n", unit);
 2155                 error = ENXIO;
 2156                 goto fail;
 2157         }
 2158 
 2159         /* Create the TX/RX busdma maps. */
 2160         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2161                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2162                     &sc->dc_cdata.dc_tx_map[i]);
 2163                 if (error) {
 2164                         printf("dc%d: failed to init TX ring\n", unit);
 2165                         error = ENXIO;
 2166                         goto fail;
 2167                 }
 2168         }
 2169         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2170                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2171                     &sc->dc_cdata.dc_rx_map[i]);
 2172                 if (error) {
 2173                         printf("dc%d: failed to init RX ring\n", unit);
 2174                         error = ENXIO;
 2175                         goto fail;
 2176                 }
 2177         }
 2178         error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
 2179         if (error) {
 2180                 printf("dc%d: failed to init RX ring\n", unit);
 2181                 error = ENXIO;
 2182                 goto fail;
 2183         }
 2184 
 2185         ifp = &sc->arpcom.ac_if;
 2186         ifp->if_softc = sc;
 2187         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2188         /* XXX: bleah, MTU gets overwritten in ether_ifattach() */
 2189         ifp->if_mtu = ETHERMTU;
 2190         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2191         if (!IS_MPSAFE)
 2192                 ifp->if_flags |= IFF_NEEDSGIANT;
 2193         ifp->if_ioctl = dc_ioctl;
 2194         ifp->if_start = dc_start;
 2195         ifp->if_watchdog = dc_watchdog;
 2196         ifp->if_init = dc_init;
 2197         ifp->if_baudrate = 10000000;
 2198         IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
 2199         ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
 2200         IFQ_SET_READY(&ifp->if_snd);
 2201 
 2202         /*
 2203          * Do MII setup. If this is a 21143, check for a PHY on the
 2204          * MII bus after applying any necessary fixups to twiddle the
 2205          * GPIO bits. If we don't end up finding a PHY, restore the
 2206          * old selection (SIA only or SIA/SYM) and attach the dcphy
 2207          * driver instead.
 2208          */
 2209         if (DC_IS_INTEL(sc)) {
 2210                 dc_apply_fixup(sc, IFM_AUTO);
 2211                 tmp = sc->dc_pmode;
 2212                 sc->dc_pmode = DC_PMODE_MII;
 2213         }
 2214 
 2215         /*
 2216          * Setup General Purpose port mode and data so the tulip can talk
 2217          * to the MII.  This needs to be done before mii_phy_probe so that
 2218          * we can actually see them.
 2219          */
 2220         if (DC_IS_XIRCOM(sc)) {
 2221                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 2222                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2223                 DELAY(10);
 2224                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 2225                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2226                 DELAY(10);
 2227         }
 2228 
 2229         error = mii_phy_probe(dev, &sc->dc_miibus,
 2230             dc_ifmedia_upd, dc_ifmedia_sts);
 2231 
 2232         if (error && DC_IS_INTEL(sc)) {
 2233                 sc->dc_pmode = tmp;
 2234                 if (sc->dc_pmode != DC_PMODE_SIA)
 2235                         sc->dc_pmode = DC_PMODE_SYM;
 2236                 sc->dc_flags |= DC_21143_NWAY;
 2237                 mii_phy_probe(dev, &sc->dc_miibus,
 2238                     dc_ifmedia_upd, dc_ifmedia_sts);
 2239                 /*
 2240                  * For non-MII cards, we need to have the 21143
 2241                  * drive the LEDs. Except there are some systems
 2242                  * like the NEC VersaPro NoteBook PC which have no
 2243                  * LEDs, and twiddling these bits has adverse effects
 2244                  * on them. (I.e. you suddenly can't get a link.)
 2245                  */
 2246                 if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
 2247                         sc->dc_flags |= DC_TULIP_LEDS;
 2248                 error = 0;
 2249         }
 2250 
 2251         if (error) {
 2252                 printf("dc%d: MII without any PHY!\n", sc->dc_unit);
 2253                 goto fail;
 2254         }
 2255 
 2256         if (DC_IS_ADMTEK(sc)) {
 2257                 /*
 2258                  * Set automatic TX underrun recovery for the ADMtek chips
 2259                  */
 2260                 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
 2261         }
 2262 
 2263         /*
 2264          * Tell the upper layer(s) we support long frames.
 2265          */
 2266         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 2267         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 2268 #ifdef DEVICE_POLLING
 2269         ifp->if_capabilities |= IFCAP_POLLING;
 2270 #endif
 2271         ifp->if_capenable = ifp->if_capabilities;
 2272 
 2273         callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
 2274 
 2275 #ifdef SRM_MEDIA
 2276         sc->dc_srm_media = 0;
 2277 
 2278         /* Remember the SRM console media setting */
 2279         if (DC_IS_INTEL(sc)) {
 2280                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2281                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2282                 switch ((command >> 8) & 0xff) {
 2283                 case 3:
 2284                         sc->dc_srm_media = IFM_10_T;
 2285                         break;
 2286                 case 4:
 2287                         sc->dc_srm_media = IFM_10_T | IFM_FDX;
 2288                         break;
 2289                 case 5:
 2290                         sc->dc_srm_media = IFM_100_TX;
 2291                         break;
 2292                 case 6:
 2293                         sc->dc_srm_media = IFM_100_TX | IFM_FDX;
 2294                         break;
 2295                 }
 2296                 if (sc->dc_srm_media)
 2297                         sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
 2298         }
 2299 #endif
 2300 
 2301         /*
 2302          * Call MI attach routine.
 2303          */
 2304         ether_ifattach(ifp, eaddr);
 2305 
 2306         /* Hook interrupt last to avoid having to lock softc */
 2307         error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
 2308             (IS_MPSAFE ? INTR_MPSAFE : 0),
 2309             dc_intr, sc, &sc->dc_intrhand);
 2310 
 2311         if (error) {
 2312                 printf("dc%d: couldn't set up irq\n", unit);
 2313                 ether_ifdetach(ifp);
 2314                 goto fail;
 2315         }
 2316 
 2317 fail:
 2318         if (error)
 2319                 dc_detach(dev);
 2320         return (error);
 2321 }
 2322 
 2323 /*
 2324  * Shutdown hardware and free up resources. This can be called any
 2325  * time after the mutex has been initialized. It is called in both
 2326  * the error case in attach and the normal detach case so it needs
 2327  * to be careful about only freeing resources that have actually been
 2328  * allocated.
 2329  */
 2330 static int
 2331 dc_detach(device_t dev)
 2332 {
 2333         struct dc_softc *sc;
 2334         struct ifnet *ifp;
 2335         struct dc_mediainfo *m;
 2336         int i;
 2337 
 2338         sc = device_get_softc(dev);
 2339         KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
 2340         DC_LOCK(sc);
 2341 
 2342         ifp = &sc->arpcom.ac_if;
 2343 
 2344         /* These should only be active if attach succeeded */
 2345         if (device_is_attached(dev)) {
 2346                 dc_stop(sc);
 2347                 ether_ifdetach(ifp);
 2348         }
 2349         if (sc->dc_miibus)
 2350                 device_delete_child(dev, sc->dc_miibus);
 2351         bus_generic_detach(dev);
 2352 
 2353         if (sc->dc_intrhand)
 2354                 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
 2355         if (sc->dc_irq)
 2356                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
 2357         if (sc->dc_res)
 2358                 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
 2359 
 2360         if (sc->dc_cdata.dc_sbuf != NULL)
 2361                 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
 2362         if (sc->dc_ldata != NULL)
 2363                 bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
 2364         for (i = 0; i < DC_TX_LIST_CNT; i++)
 2365                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
 2366         for (i = 0; i < DC_RX_LIST_CNT; i++)
 2367                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2368         bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
 2369         if (sc->dc_stag)
 2370                 bus_dma_tag_destroy(sc->dc_stag);
 2371         if (sc->dc_mtag)
 2372                 bus_dma_tag_destroy(sc->dc_mtag);
 2373         if (sc->dc_ltag)
 2374                 bus_dma_tag_destroy(sc->dc_ltag);
 2375 
 2376         free(sc->dc_pnic_rx_buf, M_DEVBUF);
 2377 
 2378         while (sc->dc_mi != NULL) {
 2379                 m = sc->dc_mi->dc_next;
 2380                 free(sc->dc_mi, M_DEVBUF);
 2381                 sc->dc_mi = m;
 2382         }
 2383         free(sc->dc_srom, M_DEVBUF);
 2384 
 2385         DC_UNLOCK(sc);
 2386         mtx_destroy(&sc->dc_mtx);
 2387 
 2388         return (0);
 2389 }
 2390 
 2391 /*
 2392  * Initialize the transmit descriptors.
 2393  */
 2394 static int
 2395 dc_list_tx_init(struct dc_softc *sc)
 2396 {
 2397         struct dc_chain_data *cd;
 2398         struct dc_list_data *ld;
 2399         int i, nexti;
 2400 
 2401         cd = &sc->dc_cdata;
 2402         ld = sc->dc_ldata;
 2403         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2404                 if (i == DC_TX_LIST_CNT - 1)
 2405                         nexti = 0;
 2406                 else
 2407                         nexti = i + 1;
 2408                 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
 2409                 cd->dc_tx_chain[i] = NULL;
 2410                 ld->dc_tx_list[i].dc_data = 0;
 2411                 ld->dc_tx_list[i].dc_ctl = 0;
 2412         }
 2413 
 2414         cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
 2415         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2416             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2417         return (0);
 2418 }
 2419 
 2420 
 2421 /*
 2422  * Initialize the RX descriptors and allocate mbufs for them. Note that
 2423  * we arrange the descriptors in a closed ring, so that the last descriptor
 2424  * points back to the first.
 2425  */
 2426 static int
 2427 dc_list_rx_init(struct dc_softc *sc)
 2428 {
 2429         struct dc_chain_data *cd;
 2430         struct dc_list_data *ld;
 2431         int i, nexti;
 2432 
 2433         cd = &sc->dc_cdata;
 2434         ld = sc->dc_ldata;
 2435 
 2436         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2437                 if (dc_newbuf(sc, i, 1) != 0)
 2438                         return (ENOBUFS);
 2439                 if (i == DC_RX_LIST_CNT - 1)
 2440                         nexti = 0;
 2441                 else
 2442                         nexti = i + 1;
 2443                 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
 2444         }
 2445 
 2446         cd->dc_rx_prod = 0;
 2447         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2448             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2449         return (0);
 2450 }
 2451 
 2452 static void
 2453 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
 2454         void *arg;
 2455         bus_dma_segment_t *segs;
 2456         int nseg;
 2457         bus_size_t mapsize;
 2458         int error;
 2459 {
 2460         struct dc_softc *sc;
 2461         struct dc_desc *c;
 2462 
 2463         sc = arg;
 2464         c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
 2465         if (error) {
 2466                 sc->dc_cdata.dc_rx_err = error;
 2467                 return;
 2468         }
 2469 
 2470         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 2471         sc->dc_cdata.dc_rx_err = 0;
 2472         c->dc_data = htole32(segs->ds_addr);
 2473 }
 2474 
 2475 /*
 2476  * Initialize an RX descriptor and attach an MBUF cluster.
 2477  */
 2478 static int
 2479 dc_newbuf(struct dc_softc *sc, int i, int alloc)
 2480 {
 2481         struct mbuf *m_new;
 2482         bus_dmamap_t tmp;
 2483         int error;
 2484 
 2485         if (alloc) {
 2486                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2487                 if (m_new == NULL)
 2488                         return (ENOBUFS);
 2489         } else {
 2490                 m_new = sc->dc_cdata.dc_rx_chain[i];
 2491                 m_new->m_data = m_new->m_ext.ext_buf;
 2492         }
 2493         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 2494         m_adj(m_new, sizeof(u_int64_t));
 2495 
 2496         /*
 2497          * If this is a PNIC chip, zero the buffer. This is part
 2498          * of the workaround for the receive bug in the 82c168 and
 2499          * 82c169 chips.
 2500          */
 2501         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
 2502                 bzero(mtod(m_new, char *), m_new->m_len);
 2503 
 2504         /* No need to remap the mbuf if we're reusing it. */
 2505         if (alloc) {
 2506                 sc->dc_cdata.dc_rx_cur = i;
 2507                 error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
 2508                     m_new, dc_dma_map_rxbuf, sc, 0);
 2509                 if (error) {
 2510                         m_freem(m_new);
 2511                         return (error);
 2512                 }
 2513                 if (sc->dc_cdata.dc_rx_err != 0) {
 2514                         m_freem(m_new);
 2515                         return (sc->dc_cdata.dc_rx_err);
 2516                 }
 2517                 bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2518                 tmp = sc->dc_cdata.dc_rx_map[i];
 2519                 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
 2520                 sc->dc_sparemap = tmp;
 2521                 sc->dc_cdata.dc_rx_chain[i] = m_new;
 2522         }
 2523 
 2524         sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2525         sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2526         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2527             BUS_DMASYNC_PREREAD);
 2528         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2529             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2530         return (0);
 2531 }
 2532 
 2533 /*
 2534  * Grrrrr.
 2535  * The PNIC chip has a terrible bug in it that manifests itself during
 2536  * periods of heavy activity. The exact mode of failure if difficult to
 2537  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
 2538  * will happen on slow machines. The bug is that sometimes instead of
 2539  * uploading one complete frame during reception, it uploads what looks
 2540  * like the entire contents of its FIFO memory. The frame we want is at
 2541  * the end of the whole mess, but we never know exactly how much data has
 2542  * been uploaded, so salvaging the frame is hard.
 2543  *
 2544  * There is only one way to do it reliably, and it's disgusting.
 2545  * Here's what we know:
 2546  *
 2547  * - We know there will always be somewhere between one and three extra
 2548  *   descriptors uploaded.
 2549  *
 2550  * - We know the desired received frame will always be at the end of the
 2551  *   total data upload.
 2552  *
 2553  * - We know the size of the desired received frame because it will be
 2554  *   provided in the length field of the status word in the last descriptor.
 2555  *
 2556  * Here's what we do:
 2557  *
 2558  * - When we allocate buffers for the receive ring, we bzero() them.
 2559  *   This means that we know that the buffer contents should be all
 2560  *   zeros, except for data uploaded by the chip.
 2561  *
 2562  * - We also force the PNIC chip to upload frames that include the
 2563  *   ethernet CRC at the end.
 2564  *
 2565  * - We gather all of the bogus frame data into a single buffer.
 2566  *
 2567  * - We then position a pointer at the end of this buffer and scan
 2568  *   backwards until we encounter the first non-zero byte of data.
 2569  *   This is the end of the received frame. We know we will encounter
 2570  *   some data at the end of the frame because the CRC will always be
 2571  *   there, so even if the sender transmits a packet of all zeros,
 2572  *   we won't be fooled.
 2573  *
 2574  * - We know the size of the actual received frame, so we subtract
 2575  *   that value from the current pointer location. This brings us
 2576  *   to the start of the actual received packet.
 2577  *
 2578  * - We copy this into an mbuf and pass it on, along with the actual
 2579  *   frame length.
 2580  *
 2581  * The performance hit is tremendous, but it beats dropping frames all
 2582  * the time.
 2583  */
 2584 
 2585 #define DC_WHOLEFRAME   (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
 2586 static void
 2587 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
 2588 {
 2589         struct dc_desc *cur_rx;
 2590         struct dc_desc *c = NULL;
 2591         struct mbuf *m = NULL;
 2592         unsigned char *ptr;
 2593         int i, total_len;
 2594         u_int32_t rxstat = 0;
 2595 
 2596         i = sc->dc_pnic_rx_bug_save;
 2597         cur_rx = &sc->dc_ldata->dc_rx_list[idx];
 2598         ptr = sc->dc_pnic_rx_buf;
 2599         bzero(ptr, DC_RXLEN * 5);
 2600 
 2601         /* Copy all the bytes from the bogus buffers. */
 2602         while (1) {
 2603                 c = &sc->dc_ldata->dc_rx_list[i];
 2604                 rxstat = le32toh(c->dc_status);
 2605                 m = sc->dc_cdata.dc_rx_chain[i];
 2606                 bcopy(mtod(m, char *), ptr, DC_RXLEN);
 2607                 ptr += DC_RXLEN;
 2608                 /* If this is the last buffer, break out. */
 2609                 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
 2610                         break;
 2611                 dc_newbuf(sc, i, 0);
 2612                 DC_INC(i, DC_RX_LIST_CNT);
 2613         }
 2614 
 2615         /* Find the length of the actual receive frame. */
 2616         total_len = DC_RXBYTES(rxstat);
 2617 
 2618         /* Scan backwards until we hit a non-zero byte. */
 2619         while (*ptr == 0x00)
 2620                 ptr--;
 2621 
 2622         /* Round off. */
 2623         if ((uintptr_t)(ptr) & 0x3)
 2624                 ptr -= 1;
 2625 
 2626         /* Now find the start of the frame. */
 2627         ptr -= total_len;
 2628         if (ptr < sc->dc_pnic_rx_buf)
 2629                 ptr = sc->dc_pnic_rx_buf;
 2630 
 2631         /*
 2632          * Now copy the salvaged frame to the last mbuf and fake up
 2633          * the status word to make it look like a successful
 2634          * frame reception.
 2635          */
 2636         dc_newbuf(sc, i, 0);
 2637         bcopy(ptr, mtod(m, char *), total_len);
 2638         cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
 2639 }
 2640 
 2641 /*
 2642  * This routine searches the RX ring for dirty descriptors in the
 2643  * event that the rxeof routine falls out of sync with the chip's
 2644  * current descriptor pointer. This may happen sometimes as a result
 2645  * of a "no RX buffer available" condition that happens when the chip
 2646  * consumes all of the RX buffers before the driver has a chance to
 2647  * process the RX ring. This routine may need to be called more than
 2648  * once to bring the driver back in sync with the chip, however we
 2649  * should still be getting RX DONE interrupts to drive the search
 2650  * for new packets in the RX ring, so we should catch up eventually.
 2651  */
 2652 static int
 2653 dc_rx_resync(struct dc_softc *sc)
 2654 {
 2655         struct dc_desc *cur_rx;
 2656         int i, pos;
 2657 
 2658         pos = sc->dc_cdata.dc_rx_prod;
 2659 
 2660         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2661                 cur_rx = &sc->dc_ldata->dc_rx_list[pos];
 2662                 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
 2663                         break;
 2664                 DC_INC(pos, DC_RX_LIST_CNT);
 2665         }
 2666 
 2667         /* If the ring really is empty, then just return. */
 2668         if (i == DC_RX_LIST_CNT)
 2669                 return (0);
 2670 
 2671         /* We've fallen behing the chip: catch it. */
 2672         sc->dc_cdata.dc_rx_prod = pos;
 2673 
 2674         return (EAGAIN);
 2675 }
 2676 
 2677 /*
 2678  * A frame has been uploaded: pass the resulting mbuf chain up to
 2679  * the higher level protocols.
 2680  */
 2681 static void
 2682 dc_rxeof(struct dc_softc *sc)
 2683 {
 2684         struct mbuf *m;
 2685         struct ifnet *ifp;
 2686         struct dc_desc *cur_rx;
 2687         int i, total_len = 0;
 2688         u_int32_t rxstat;
 2689 
 2690         DC_LOCK_ASSERT(sc);
 2691 
 2692         ifp = &sc->arpcom.ac_if;
 2693         i = sc->dc_cdata.dc_rx_prod;
 2694 
 2695         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2696         while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
 2697             DC_RXSTAT_OWN)) {
 2698 #ifdef DEVICE_POLLING
 2699                 if (ifp->if_flags & IFF_POLLING) {
 2700                         if (sc->rxcycles <= 0)
 2701                                 break;
 2702                         sc->rxcycles--;
 2703                 }
 2704 #endif
 2705                 cur_rx = &sc->dc_ldata->dc_rx_list[i];
 2706                 rxstat = le32toh(cur_rx->dc_status);
 2707                 m = sc->dc_cdata.dc_rx_chain[i];
 2708                 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2709                     BUS_DMASYNC_POSTREAD);
 2710                 total_len = DC_RXBYTES(rxstat);
 2711 
 2712                 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2713                         if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
 2714                                 if (rxstat & DC_RXSTAT_FIRSTFRAG)
 2715                                         sc->dc_pnic_rx_bug_save = i;
 2716                                 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
 2717                                         DC_INC(i, DC_RX_LIST_CNT);
 2718                                         continue;
 2719                                 }
 2720                                 dc_pnic_rx_bug_war(sc, i);
 2721                                 rxstat = le32toh(cur_rx->dc_status);
 2722                                 total_len = DC_RXBYTES(rxstat);
 2723                         }
 2724                 }
 2725 
 2726                 /*
 2727                  * If an error occurs, update stats, clear the
 2728                  * status word and leave the mbuf cluster in place:
 2729                  * it should simply get re-used next time this descriptor
 2730                  * comes up in the ring.  However, don't report long
 2731                  * frames as errors since they could be vlans.
 2732                  */
 2733                 if ((rxstat & DC_RXSTAT_RXERR)) {
 2734                         if (!(rxstat & DC_RXSTAT_GIANT) ||
 2735                             (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
 2736                                        DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
 2737                                        DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
 2738                                 ifp->if_ierrors++;
 2739                                 if (rxstat & DC_RXSTAT_COLLSEEN)
 2740                                         ifp->if_collisions++;
 2741                                 dc_newbuf(sc, i, 0);
 2742                                 if (rxstat & DC_RXSTAT_CRCERR) {
 2743                                         DC_INC(i, DC_RX_LIST_CNT);
 2744                                         continue;
 2745                                 } else {
 2746                                         dc_init(sc);
 2747                                         return;
 2748                                 }
 2749                         }
 2750                 }
 2751 
 2752                 /* No errors; receive the packet. */
 2753                 total_len -= ETHER_CRC_LEN;
 2754 #ifdef __i386__
 2755                 /*
 2756                  * On the x86 we do not have alignment problems, so try to
 2757                  * allocate a new buffer for the receive ring, and pass up
 2758                  * the one where the packet is already, saving the expensive
 2759                  * copy done in m_devget().
 2760                  * If we are on an architecture with alignment problems, or
 2761                  * if the allocation fails, then use m_devget and leave the
 2762                  * existing buffer in the receive ring.
 2763                  */
 2764                 if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
 2765                         m->m_pkthdr.rcvif = ifp;
 2766                         m->m_pkthdr.len = m->m_len = total_len;
 2767                         DC_INC(i, DC_RX_LIST_CNT);
 2768                 } else
 2769 #endif
 2770                 {
 2771                         struct mbuf *m0;
 2772 
 2773                         m0 = m_devget(mtod(m, char *), total_len,
 2774                                 ETHER_ALIGN, ifp, NULL);
 2775                         dc_newbuf(sc, i, 0);
 2776                         DC_INC(i, DC_RX_LIST_CNT);
 2777                         if (m0 == NULL) {
 2778                                 ifp->if_ierrors++;
 2779                                 continue;
 2780                         }
 2781                         m = m0;
 2782                 }
 2783 
 2784                 ifp->if_ipackets++;
 2785                 DC_UNLOCK(sc);
 2786                 (*ifp->if_input)(ifp, m);
 2787                 DC_LOCK(sc);
 2788         }
 2789 
 2790         sc->dc_cdata.dc_rx_prod = i;
 2791 }
 2792 
 2793 /*
 2794  * A frame was downloaded to the chip. It's safe for us to clean up
 2795  * the list buffers.
 2796  */
 2797 
 2798 static void
 2799 dc_txeof(struct dc_softc *sc)
 2800 {
 2801         struct dc_desc *cur_tx = NULL;
 2802         struct ifnet *ifp;
 2803         int idx;
 2804         u_int32_t ctl, txstat;
 2805 
 2806         ifp = &sc->arpcom.ac_if;
 2807 
 2808         /*
 2809          * Go through our tx list and free mbufs for those
 2810          * frames that have been transmitted.
 2811          */
 2812         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2813         idx = sc->dc_cdata.dc_tx_cons;
 2814         while (idx != sc->dc_cdata.dc_tx_prod) {
 2815 
 2816                 cur_tx = &sc->dc_ldata->dc_tx_list[idx];
 2817                 txstat = le32toh(cur_tx->dc_status);
 2818                 ctl = le32toh(cur_tx->dc_ctl);
 2819 
 2820                 if (txstat & DC_TXSTAT_OWN)
 2821                         break;
 2822 
 2823                 if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
 2824                         if (ctl & DC_TXCTL_SETUP) {
 2825                                 /*
 2826                                  * Yes, the PNIC is so brain damaged
 2827                                  * that it will sometimes generate a TX
 2828                                  * underrun error while DMAing the RX
 2829                                  * filter setup frame. If we detect this,
 2830                                  * we have to send the setup frame again,
 2831                                  * or else the filter won't be programmed
 2832                                  * correctly.
 2833                                  */
 2834                                 if (DC_IS_PNIC(sc)) {
 2835                                         if (txstat & DC_TXSTAT_ERRSUM)
 2836                                                 dc_setfilt(sc);
 2837                                 }
 2838                                 sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2839                         }
 2840                         sc->dc_cdata.dc_tx_cnt--;
 2841                         DC_INC(idx, DC_TX_LIST_CNT);
 2842                         continue;
 2843                 }
 2844 
 2845                 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
 2846                         /*
 2847                          * XXX: Why does my Xircom taunt me so?
 2848                          * For some reason it likes setting the CARRLOST flag
 2849                          * even when the carrier is there. wtf?!?
 2850                          * Who knows, but Conexant chips have the
 2851                          * same problem. Maybe they took lessons
 2852                          * from Xircom.
 2853                          */
 2854                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2855                             sc->dc_pmode == DC_PMODE_MII &&
 2856                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2857                             DC_TXSTAT_NOCARRIER)))
 2858                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2859                 } else {
 2860                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2861                             sc->dc_pmode == DC_PMODE_MII &&
 2862                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2863                             DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
 2864                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2865                 }
 2866 
 2867                 if (txstat & DC_TXSTAT_ERRSUM) {
 2868                         ifp->if_oerrors++;
 2869                         if (txstat & DC_TXSTAT_EXCESSCOLL)
 2870                                 ifp->if_collisions++;
 2871                         if (txstat & DC_TXSTAT_LATECOLL)
 2872                                 ifp->if_collisions++;
 2873                         if (!(txstat & DC_TXSTAT_UNDERRUN)) {
 2874                                 dc_init(sc);
 2875                                 return;
 2876                         }
 2877                 }
 2878 
 2879                 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
 2880 
 2881                 ifp->if_opackets++;
 2882                 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
 2883                         bus_dmamap_sync(sc->dc_mtag,
 2884                             sc->dc_cdata.dc_tx_map[idx],
 2885                             BUS_DMASYNC_POSTWRITE);
 2886                         bus_dmamap_unload(sc->dc_mtag,
 2887                             sc->dc_cdata.dc_tx_map[idx]);
 2888                         m_freem(sc->dc_cdata.dc_tx_chain[idx]);
 2889                         sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2890                 }
 2891 
 2892                 sc->dc_cdata.dc_tx_cnt--;
 2893                 DC_INC(idx, DC_TX_LIST_CNT);
 2894         }
 2895 
 2896         if (idx != sc->dc_cdata.dc_tx_cons) {
 2897                 /* Some buffers have been freed. */
 2898                 sc->dc_cdata.dc_tx_cons = idx;
 2899                 ifp->if_flags &= ~IFF_OACTIVE;
 2900         }
 2901         ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
 2902 }
 2903 
 2904 static void
 2905 dc_tick(void *xsc)
 2906 {
 2907         struct dc_softc *sc;
 2908         struct mii_data *mii;
 2909         struct ifnet *ifp;
 2910         u_int32_t r;
 2911 
 2912         sc = xsc;
 2913         DC_LOCK(sc);
 2914         ifp = &sc->arpcom.ac_if;
 2915         mii = device_get_softc(sc->dc_miibus);
 2916 
 2917         if (sc->dc_flags & DC_REDUCED_MII_POLL) {
 2918                 if (sc->dc_flags & DC_21143_NWAY) {
 2919                         r = CSR_READ_4(sc, DC_10BTSTAT);
 2920                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2921                             IFM_100_TX && (r & DC_TSTAT_LS100)) {
 2922                                 sc->dc_link = 0;
 2923                                 mii_mediachg(mii);
 2924                         }
 2925                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2926                             IFM_10_T && (r & DC_TSTAT_LS10)) {
 2927                                 sc->dc_link = 0;
 2928                                 mii_mediachg(mii);
 2929                         }
 2930                         if (sc->dc_link == 0)
 2931                                 mii_tick(mii);
 2932                 } else {
 2933                         r = CSR_READ_4(sc, DC_ISR);
 2934                         if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
 2935                             sc->dc_cdata.dc_tx_cnt == 0) {
 2936                                 mii_tick(mii);
 2937                                 if (!(mii->mii_media_status & IFM_ACTIVE))
 2938                                         sc->dc_link = 0;
 2939                         }
 2940                 }
 2941         } else
 2942                 mii_tick(mii);
 2943 
 2944         /*
 2945          * When the init routine completes, we expect to be able to send
 2946          * packets right away, and in fact the network code will send a
 2947          * gratuitous ARP the moment the init routine marks the interface
 2948          * as running. However, even though the MAC may have been initialized,
 2949          * there may be a delay of a few seconds before the PHY completes
 2950          * autonegotiation and the link is brought up. Any transmissions
 2951          * made during that delay will be lost. Dealing with this is tricky:
 2952          * we can't just pause in the init routine while waiting for the
 2953          * PHY to come ready since that would bring the whole system to
 2954          * a screeching halt for several seconds.
 2955          *
 2956          * What we do here is prevent the TX start routine from sending
 2957          * any packets until a link has been established. After the
 2958          * interface has been initialized, the tick routine will poll
 2959          * the state of the PHY until the IFM_ACTIVE flag is set. Until
 2960          * that time, packets will stay in the send queue, and once the
 2961          * link comes up, they will be flushed out to the wire.
 2962          */
 2963         if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
 2964             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 2965                 sc->dc_link++;
 2966                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2967                         dc_start(ifp);
 2968         }
 2969 
 2970         if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
 2971                 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 2972         else
 2973                 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 2974 
 2975         DC_UNLOCK(sc);
 2976 }
 2977 
 2978 /*
 2979  * A transmit underrun has occurred.  Back off the transmit threshold,
 2980  * or switch to store and forward mode if we have to.
 2981  */
 2982 static void
 2983 dc_tx_underrun(struct dc_softc *sc)
 2984 {
 2985         u_int32_t isr;
 2986         int i;
 2987 
 2988         if (DC_IS_DAVICOM(sc))
 2989                 dc_init(sc);
 2990 
 2991         if (DC_IS_INTEL(sc)) {
 2992                 /*
 2993                  * The real 21143 requires that the transmitter be idle
 2994                  * in order to change the transmit threshold or store
 2995                  * and forward state.
 2996                  */
 2997                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 2998 
 2999                 for (i = 0; i < DC_TIMEOUT; i++) {
 3000                         isr = CSR_READ_4(sc, DC_ISR);
 3001                         if (isr & DC_ISR_TX_IDLE)
 3002                                 break;
 3003                         DELAY(10);
 3004                 }
 3005                 if (i == DC_TIMEOUT) {
 3006                         printf("dc%d: failed to force tx to idle state\n",
 3007                             sc->dc_unit);
 3008                         dc_init(sc);
 3009                 }
 3010         }
 3011 
 3012         printf("dc%d: TX underrun -- ", sc->dc_unit);
 3013         sc->dc_txthresh += DC_TXTHRESH_INC;
 3014         if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3015                 printf("using store and forward mode\n");
 3016                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3017         } else {
 3018                 printf("increasing TX threshold\n");
 3019                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3020                 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3021         }
 3022 
 3023         if (DC_IS_INTEL(sc))
 3024                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3025 }
 3026 
 3027 #ifdef DEVICE_POLLING
 3028 static poll_handler_t dc_poll;
 3029 
 3030 static void
 3031 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3032 {
 3033         struct dc_softc *sc = ifp->if_softc;
 3034 
 3035         if (!(ifp->if_capenable & IFCAP_POLLING)) {
 3036                 ether_poll_deregister(ifp);
 3037                 cmd = POLL_DEREGISTER;
 3038         }
 3039         if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
 3040                 /* Re-enable interrupts. */
 3041                 CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3042                 return;
 3043         }
 3044         DC_LOCK(sc);
 3045         sc->rxcycles = count;
 3046         dc_rxeof(sc);
 3047         dc_txeof(sc);
 3048         if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
 3049                 dc_start(ifp);
 3050 
 3051         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 3052                 u_int32_t       status;
 3053 
 3054                 status = CSR_READ_4(sc, DC_ISR);
 3055                 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
 3056                         DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
 3057                         DC_ISR_BUS_ERR);
 3058                 if (!status) {
 3059                         DC_UNLOCK(sc);
 3060                         return;
 3061                 }
 3062                 /* ack what we have */
 3063                 CSR_WRITE_4(sc, DC_ISR, status);
 3064 
 3065                 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
 3066                         u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3067                         ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
 3068 
 3069                         if (dc_rx_resync(sc))
 3070                                 dc_rxeof(sc);
 3071                 }
 3072                 /* restart transmit unit if necessary */
 3073                 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
 3074                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3075 
 3076                 if (status & DC_ISR_TX_UNDERRUN)
 3077                         dc_tx_underrun(sc);
 3078 
 3079                 if (status & DC_ISR_BUS_ERR) {
 3080                         printf("dc_poll: dc%d bus error\n", sc->dc_unit);
 3081                         dc_reset(sc);
 3082                         dc_init(sc);
 3083                 }
 3084         }
 3085         DC_UNLOCK(sc);
 3086 }
 3087 #endif /* DEVICE_POLLING */
 3088 
 3089 static void
 3090 dc_intr(void *arg)
 3091 {
 3092         struct dc_softc *sc;
 3093         struct ifnet *ifp;
 3094         u_int32_t status;
 3095 
 3096         sc = arg;
 3097 
 3098         if (sc->suspended)
 3099                 return;
 3100 
 3101         if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
 3102                 return;
 3103 
 3104         DC_LOCK(sc);
 3105         ifp = &sc->arpcom.ac_if;
 3106 #ifdef DEVICE_POLLING
 3107         if (ifp->if_flags & IFF_POLLING)
 3108                 goto done;
 3109         if ((ifp->if_capenable & IFCAP_POLLING) &&
 3110             ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
 3111                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3112                 goto done;
 3113         }
 3114 #endif
 3115 
 3116         /* Suppress unwanted interrupts */
 3117         if (!(ifp->if_flags & IFF_UP)) {
 3118                 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
 3119                         dc_stop(sc);
 3120                 DC_UNLOCK(sc);
 3121                 return;
 3122         }
 3123 
 3124         /* Disable interrupts. */
 3125         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3126 
 3127         while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
 3128               && status != 0xFFFFFFFF) {
 3129 
 3130                 CSR_WRITE_4(sc, DC_ISR, status);
 3131 
 3132                 if (status & DC_ISR_RX_OK) {
 3133                         int             curpkts;
 3134                         curpkts = ifp->if_ipackets;
 3135                         dc_rxeof(sc);
 3136                         if (curpkts == ifp->if_ipackets) {
 3137                                 while (dc_rx_resync(sc))
 3138                                         dc_rxeof(sc);
 3139                         }
 3140                 }
 3141 
 3142                 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
 3143                         dc_txeof(sc);
 3144 
 3145                 if (status & DC_ISR_TX_IDLE) {
 3146                         dc_txeof(sc);
 3147                         if (sc->dc_cdata.dc_tx_cnt) {
 3148                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3149                                 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3150                         }
 3151                 }
 3152 
 3153                 if (status & DC_ISR_TX_UNDERRUN)
 3154                         dc_tx_underrun(sc);
 3155 
 3156                 if ((status & DC_ISR_RX_WATDOGTIMEO)
 3157                     || (status & DC_ISR_RX_NOBUF)) {
 3158                         int             curpkts;
 3159                         curpkts = ifp->if_ipackets;
 3160                         dc_rxeof(sc);
 3161                         if (curpkts == ifp->if_ipackets) {
 3162                                 while (dc_rx_resync(sc))
 3163                                         dc_rxeof(sc);
 3164                         }
 3165                 }
 3166 
 3167                 if (status & DC_ISR_BUS_ERR) {
 3168                         dc_reset(sc);
 3169                         dc_init(sc);
 3170                 }
 3171         }
 3172 
 3173         /* Re-enable interrupts. */
 3174         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3175 
 3176         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3177                 dc_start(ifp);
 3178 
 3179 #ifdef DEVICE_POLLING
 3180 done:
 3181 #endif
 3182 
 3183         DC_UNLOCK(sc);
 3184 }
 3185 
 3186 static void
 3187 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
 3188         void *arg;
 3189         bus_dma_segment_t *segs;
 3190         int nseg;
 3191         bus_size_t mapsize;
 3192         int error;
 3193 {
 3194         struct dc_softc *sc;
 3195         struct dc_desc *f;
 3196         int cur, first, frag, i;
 3197 
 3198         sc = arg;
 3199         if (error) {
 3200                 sc->dc_cdata.dc_tx_err = error;
 3201                 return;
 3202         }
 3203 
 3204         first = cur = frag = sc->dc_cdata.dc_tx_prod;
 3205         for (i = 0; i < nseg; i++) {
 3206                 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
 3207                     (frag == (DC_TX_LIST_CNT - 1)) &&
 3208                     (first != sc->dc_cdata.dc_tx_first)) {
 3209                         bus_dmamap_unload(sc->dc_mtag,
 3210                             sc->dc_cdata.dc_tx_map[first]);
 3211                         sc->dc_cdata.dc_tx_err = ENOBUFS;
 3212                         return;
 3213                 }
 3214 
 3215                 f = &sc->dc_ldata->dc_tx_list[frag];
 3216                 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
 3217                 if (i == 0) {
 3218                         f->dc_status = 0;
 3219                         f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
 3220                 } else
 3221                         f->dc_status = htole32(DC_TXSTAT_OWN);
 3222                 f->dc_data = htole32(segs[i].ds_addr);
 3223                 cur = frag;
 3224                 DC_INC(frag, DC_TX_LIST_CNT);
 3225         }
 3226 
 3227         sc->dc_cdata.dc_tx_err = 0;
 3228         sc->dc_cdata.dc_tx_prod = frag;
 3229         sc->dc_cdata.dc_tx_cnt += nseg;
 3230         sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
 3231         sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
 3232         if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
 3233                 sc->dc_ldata->dc_tx_list[first].dc_ctl |=
 3234                     htole32(DC_TXCTL_FINT);
 3235         if (sc->dc_flags & DC_TX_INTR_ALWAYS)
 3236                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3237         if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
 3238                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3239         sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
 3240 }
 3241 
 3242 /*
 3243  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 3244  * pointers to the fragment pointers.
 3245  */
 3246 static int
 3247 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
 3248 {
 3249         struct mbuf *m;
 3250         int error, idx, chainlen = 0;
 3251 
 3252         /*
 3253          * If there's no way we can send any packets, return now.
 3254          */
 3255         if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
 3256                 return (ENOBUFS);
 3257 
 3258         /*
 3259          * Count the number of frags in this chain to see if
 3260          * we need to m_defrag.  Since the descriptor list is shared
 3261          * by all packets, we'll m_defrag long chains so that they
 3262          * do not use up the entire list, even if they would fit.
 3263          */
 3264         for (m = *m_head; m != NULL; m = m->m_next)
 3265                 chainlen++;
 3266 
 3267         if ((chainlen > DC_TX_LIST_CNT / 4) ||
 3268             ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
 3269                 m = m_defrag(*m_head, M_DONTWAIT);
 3270                 if (m == NULL)
 3271                         return (ENOBUFS);
 3272                 *m_head = m;
 3273         }
 3274 
 3275         /*
 3276          * Start packing the mbufs in this chain into
 3277          * the fragment pointers. Stop when we run out
 3278          * of fragments or hit the end of the mbuf chain.
 3279          */
 3280         idx = sc->dc_cdata.dc_tx_prod;
 3281         sc->dc_cdata.dc_tx_mapping = *m_head;
 3282         error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3283             *m_head, dc_dma_map_txbuf, sc, 0);
 3284         if (error)
 3285                 return (error);
 3286         if (sc->dc_cdata.dc_tx_err != 0)
 3287                 return (sc->dc_cdata.dc_tx_err);
 3288         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3289             BUS_DMASYNC_PREWRITE);
 3290         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 3291             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 3292         return (0);
 3293 }
 3294 
 3295 /*
 3296  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3297  * to the mbuf data regions directly in the transmit lists. We also save a
 3298  * copy of the pointers since the transmit list fragment pointers are
 3299  * physical addresses.
 3300  */
 3301 
 3302 static void
 3303 dc_start(struct ifnet *ifp)
 3304 {
 3305         struct dc_softc *sc;
 3306         struct mbuf *m_head = NULL, *m;
 3307         unsigned int queued = 0;
 3308         int idx;
 3309 
 3310         sc = ifp->if_softc;
 3311 
 3312         DC_LOCK(sc);
 3313 
 3314         if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
 3315                 DC_UNLOCK(sc);
 3316                 return;
 3317         }
 3318 
 3319         if (ifp->if_flags & IFF_OACTIVE) {
 3320                 DC_UNLOCK(sc);
 3321                 return;
 3322         }
 3323 
 3324         idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
 3325 
 3326         while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
 3327                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3328                 if (m_head == NULL)
 3329                         break;
 3330 
 3331                 if (sc->dc_flags & DC_TX_COALESCE &&
 3332                     (m_head->m_next != NULL ||
 3333                      sc->dc_flags & DC_TX_ALIGN)) {
 3334                         m = m_defrag(m_head, M_DONTWAIT);
 3335                         if (m == NULL) {
 3336                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3337                                 ifp->if_flags |= IFF_OACTIVE;
 3338                                 break;
 3339                         } else {
 3340                                 m_head = m;
 3341                         }
 3342                 }
 3343 
 3344                 if (dc_encap(sc, &m_head)) {
 3345                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3346                         ifp->if_flags |= IFF_OACTIVE;
 3347                         break;
 3348                 }
 3349                 idx = sc->dc_cdata.dc_tx_prod;
 3350 
 3351                 queued++;
 3352                 /*
 3353                  * If there's a BPF listener, bounce a copy of this frame
 3354                  * to him.
 3355                  */
 3356                 BPF_MTAP(ifp, m_head);
 3357 
 3358                 if (sc->dc_flags & DC_TX_ONE) {
 3359                         ifp->if_flags |= IFF_OACTIVE;
 3360                         break;
 3361                 }
 3362         }
 3363 
 3364         if (queued > 0) {
 3365                 /* Transmit */
 3366                 if (!(sc->dc_flags & DC_TX_POLL))
 3367                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3368 
 3369                 /*
 3370                  * Set a timeout in case the chip goes out to lunch.
 3371                  */
 3372                 ifp->if_timer = 5;
 3373         }
 3374 
 3375         DC_UNLOCK(sc);
 3376 }
 3377 
 3378 static void
 3379 dc_init(void *xsc)
 3380 {
 3381         struct dc_softc *sc = xsc;
 3382         struct ifnet *ifp = &sc->arpcom.ac_if;
 3383         struct mii_data *mii;
 3384 
 3385         DC_LOCK(sc);
 3386 
 3387         mii = device_get_softc(sc->dc_miibus);
 3388 
 3389         /*
 3390          * Cancel pending I/O and free all RX/TX buffers.
 3391          */
 3392         dc_stop(sc);
 3393         dc_reset(sc);
 3394 
 3395         /*
 3396          * Set cache alignment and burst length.
 3397          */
 3398         if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
 3399                 CSR_WRITE_4(sc, DC_BUSCTL, 0);
 3400         else
 3401                 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
 3402         /*
 3403          * Evenly share the bus between receive and transmit process.
 3404          */
 3405         if (DC_IS_INTEL(sc))
 3406                 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
 3407         if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
 3408                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
 3409         } else {
 3410                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
 3411         }
 3412         if (sc->dc_flags & DC_TX_POLL)
 3413                 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
 3414         switch(sc->dc_cachesize) {
 3415         case 32:
 3416                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
 3417                 break;
 3418         case 16:
 3419                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
 3420                 break;
 3421         case 8:
 3422                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
 3423                 break;
 3424         case 0:
 3425         default:
 3426                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
 3427                 break;
 3428         }
 3429 
 3430         if (sc->dc_flags & DC_TX_STORENFWD)
 3431                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3432         else {
 3433                 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3434                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3435                 } else {
 3436                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3437                         DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3438                 }
 3439         }
 3440 
 3441         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
 3442         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
 3443 
 3444         if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 3445                 /*
 3446                  * The app notes for the 98713 and 98715A say that
 3447                  * in order to have the chips operate properly, a magic
 3448                  * number must be written to CSR16. Macronix does not
 3449                  * document the meaning of these bits so there's no way
 3450                  * to know exactly what they do. The 98713 has a magic
 3451                  * number all its own; the rest all use a different one.
 3452                  */
 3453                 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
 3454                 if (sc->dc_type == DC_TYPE_98713)
 3455                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
 3456                 else
 3457                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
 3458         }
 3459 
 3460         if (DC_IS_XIRCOM(sc)) {
 3461                 /*
 3462                  * setup General Purpose Port mode and data so the tulip
 3463                  * can talk to the MII.
 3464                  */
 3465                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 3466                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3467                 DELAY(10);
 3468                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 3469                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3470                 DELAY(10);
 3471         }
 3472 
 3473         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3474         DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
 3475 
 3476         /* Init circular RX list. */
 3477         if (dc_list_rx_init(sc) == ENOBUFS) {
 3478                 printf("dc%d: initialization failed: no "
 3479                     "memory for rx buffers\n", sc->dc_unit);
 3480                 dc_stop(sc);
 3481                 DC_UNLOCK(sc);
 3482                 return;
 3483         }
 3484 
 3485         /*
 3486          * Init TX descriptors.
 3487          */
 3488         dc_list_tx_init(sc);
 3489 
 3490         /*
 3491          * Load the address of the RX list.
 3492          */
 3493         CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
 3494         CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
 3495 
 3496         /*
 3497          * Enable interrupts.
 3498          */
 3499 #ifdef DEVICE_POLLING
 3500         /*
 3501          * ... but only if we are not polling, and make sure they are off in
 3502          * the case of polling. Some cards (e.g. fxp) turn interrupts on
 3503          * after a reset.
 3504          */
 3505         if (ifp->if_flags & IFF_POLLING)
 3506                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3507         else
 3508 #endif
 3509         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3510         CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
 3511 
 3512         /* Enable transmitter. */
 3513         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3514 
 3515         /*
 3516          * If this is an Intel 21143 and we're not using the
 3517          * MII port, program the LED control pins so we get
 3518          * link and activity indications.
 3519          */
 3520         if (sc->dc_flags & DC_TULIP_LEDS) {
 3521                 CSR_WRITE_4(sc, DC_WATCHDOG,
 3522                     DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
 3523                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 3524         }
 3525 
 3526         /*
 3527          * Load the RX/multicast filter. We do this sort of late
 3528          * because the filter programming scheme on the 21143 and
 3529          * some clones requires DMAing a setup frame via the TX
 3530          * engine, and we need the transmitter enabled for that.
 3531          */
 3532         dc_setfilt(sc);
 3533 
 3534         /* Enable receiver. */
 3535         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 3536         CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
 3537 
 3538         mii_mediachg(mii);
 3539         dc_setcfg(sc, sc->dc_if_media);
 3540 
 3541         ifp->if_flags |= IFF_RUNNING;
 3542         ifp->if_flags &= ~IFF_OACTIVE;
 3543 
 3544         /* Don't start the ticker if this is a homePNA link. */
 3545         if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
 3546                 sc->dc_link = 1;
 3547         else {
 3548                 if (sc->dc_flags & DC_21143_NWAY)
 3549                         callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3550                 else
 3551                         callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3552         }
 3553 
 3554 #ifdef SRM_MEDIA
 3555         if(sc->dc_srm_media) {
 3556                 struct ifreq ifr;
 3557 
 3558                 ifr.ifr_media = sc->dc_srm_media;
 3559                 ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
 3560                 sc->dc_srm_media = 0;
 3561         }
 3562 #endif
 3563         DC_UNLOCK(sc);
 3564 }
 3565 
 3566 /*
 3567  * Set media options.
 3568  */
 3569 static int
 3570 dc_ifmedia_upd(struct ifnet *ifp)
 3571 {
 3572         struct dc_softc *sc;
 3573         struct mii_data *mii;
 3574         struct ifmedia *ifm;
 3575 
 3576         sc = ifp->if_softc;
 3577         mii = device_get_softc(sc->dc_miibus);
 3578         mii_mediachg(mii);
 3579         ifm = &mii->mii_media;
 3580 
 3581         if (DC_IS_DAVICOM(sc) &&
 3582             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
 3583                 dc_setcfg(sc, ifm->ifm_media);
 3584         else
 3585                 sc->dc_link = 0;
 3586 
 3587         return (0);
 3588 }
 3589 
 3590 /*
 3591  * Report current media status.
 3592  */
 3593 static void
 3594 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3595 {
 3596         struct dc_softc *sc;
 3597         struct mii_data *mii;
 3598         struct ifmedia *ifm;
 3599 
 3600         sc = ifp->if_softc;
 3601         mii = device_get_softc(sc->dc_miibus);
 3602         mii_pollstat(mii);
 3603         ifm = &mii->mii_media;
 3604         if (DC_IS_DAVICOM(sc)) {
 3605                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
 3606                         ifmr->ifm_active = ifm->ifm_media;
 3607                         ifmr->ifm_status = 0;
 3608                         return;
 3609                 }
 3610         }
 3611         ifmr->ifm_active = mii->mii_media_active;
 3612         ifmr->ifm_status = mii->mii_media_status;
 3613 }
 3614 
 3615 static int
 3616 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3617 {
 3618         struct dc_softc *sc = ifp->if_softc;
 3619         struct ifreq *ifr = (struct ifreq *)data;
 3620         struct mii_data *mii;
 3621         int error = 0;
 3622 
 3623         DC_LOCK(sc);
 3624 
 3625         switch (command) {
 3626         case SIOCSIFFLAGS:
 3627                 if (ifp->if_flags & IFF_UP) {
 3628                         int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
 3629                                 (IFF_PROMISC | IFF_ALLMULTI);
 3630 
 3631                         if (ifp->if_flags & IFF_RUNNING) {
 3632                                 if (need_setfilt)
 3633                                         dc_setfilt(sc);
 3634                         } else {
 3635                                 sc->dc_txthresh = 0;
 3636                                 dc_init(sc);
 3637                         }
 3638                 } else {
 3639                         if (ifp->if_flags & IFF_RUNNING)
 3640                                 dc_stop(sc);
 3641                 }
 3642                 sc->dc_if_flags = ifp->if_flags;
 3643                 error = 0;
 3644                 break;
 3645         case SIOCADDMULTI:
 3646         case SIOCDELMULTI:
 3647                 dc_setfilt(sc);
 3648                 error = 0;
 3649                 break;
 3650         case SIOCGIFMEDIA:
 3651         case SIOCSIFMEDIA:
 3652                 mii = device_get_softc(sc->dc_miibus);
 3653                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3654 #ifdef SRM_MEDIA
 3655                 if (sc->dc_srm_media)
 3656                         sc->dc_srm_media = 0;
 3657 #endif
 3658                 break;
 3659         case SIOCSIFCAP:
 3660                 ifp->if_capenable &= ~IFCAP_POLLING;
 3661                 ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
 3662                 break;
 3663         default:
 3664                 error = ether_ioctl(ifp, command, data);
 3665                 break;
 3666         }
 3667 
 3668         DC_UNLOCK(sc);
 3669 
 3670         return (error);
 3671 }
 3672 
 3673 static void
 3674 dc_watchdog(struct ifnet *ifp)
 3675 {
 3676         struct dc_softc *sc;
 3677 
 3678         sc = ifp->if_softc;
 3679 
 3680         DC_LOCK(sc);
 3681 
 3682         ifp->if_oerrors++;
 3683         printf("dc%d: watchdog timeout\n", sc->dc_unit);
 3684 
 3685         dc_stop(sc);
 3686         dc_reset(sc);
 3687         dc_init(sc);
 3688 
 3689         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3690                 dc_start(ifp);
 3691 
 3692         DC_UNLOCK(sc);
 3693 }
 3694 
 3695 /*
 3696  * Stop the adapter and free any mbufs allocated to the
 3697  * RX and TX lists.
 3698  */
 3699 static void
 3700 dc_stop(struct dc_softc *sc)
 3701 {
 3702         struct ifnet *ifp;
 3703         struct dc_list_data *ld;
 3704         struct dc_chain_data *cd;
 3705         int i;
 3706         u_int32_t ctl;
 3707 
 3708         DC_LOCK(sc);
 3709 
 3710         ifp = &sc->arpcom.ac_if;
 3711         ifp->if_timer = 0;
 3712         ld = sc->dc_ldata;
 3713         cd = &sc->dc_cdata;
 3714 
 3715         callout_stop(&sc->dc_stat_ch);
 3716 
 3717         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 3718 #ifdef DEVICE_POLLING
 3719         ether_poll_deregister(ifp);
 3720 #endif
 3721 
 3722         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
 3723         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3724         CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
 3725         CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
 3726         sc->dc_link = 0;
 3727 
 3728         /*
 3729          * Free data in the RX lists.
 3730          */
 3731         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 3732                 if (cd->dc_rx_chain[i] != NULL) {
 3733                         m_freem(cd->dc_rx_chain[i]);
 3734                         cd->dc_rx_chain[i] = NULL;
 3735                 }
 3736         }
 3737         bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
 3738 
 3739         /*
 3740          * Free the TX list buffers.
 3741          */
 3742         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 3743                 if (cd->dc_tx_chain[i] != NULL) {
 3744                         ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
 3745                         if ((ctl & DC_TXCTL_SETUP) ||
 3746                             !(ctl & DC_TXCTL_LASTFRAG)) {
 3747                                 cd->dc_tx_chain[i] = NULL;
 3748                                 continue;
 3749                         }
 3750                         bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
 3751                         m_freem(cd->dc_tx_chain[i]);
 3752                         cd->dc_tx_chain[i] = NULL;
 3753                 }
 3754         }
 3755         bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
 3756 
 3757         DC_UNLOCK(sc);
 3758 }
 3759 
 3760 /*
 3761  * Device suspend routine.  Stop the interface and save some PCI
 3762  * settings in case the BIOS doesn't restore them properly on
 3763  * resume.
 3764  */
 3765 static int
 3766 dc_suspend(device_t dev)
 3767 {
 3768         struct dc_softc *sc;
 3769         int s;
 3770 
 3771         s = splimp();
 3772 
 3773         sc = device_get_softc(dev);
 3774         dc_stop(sc);
 3775         sc->suspended = 1;
 3776 
 3777         splx(s);
 3778         return (0);
 3779 }
 3780 
 3781 /*
 3782  * Device resume routine.  Restore some PCI settings in case the BIOS
 3783  * doesn't, re-enable busmastering, and restart the interface if
 3784  * appropriate.
 3785  */
 3786 static int
 3787 dc_resume(device_t dev)
 3788 {
 3789         struct dc_softc *sc;
 3790         struct ifnet *ifp;
 3791         int s;
 3792 
 3793         s = splimp();
 3794 
 3795         sc = device_get_softc(dev);
 3796         ifp = &sc->arpcom.ac_if;
 3797 
 3798         /* reinitialize interface if necessary */
 3799         if (ifp->if_flags & IFF_UP)
 3800                 dc_init(sc);
 3801 
 3802         sc->suspended = 0;
 3803 
 3804         splx(s);
 3805         return (0);
 3806 }
 3807 
 3808 /*
 3809  * Stop all chip I/O so that the kernel's probe routines don't
 3810  * get confused by errant DMAs when rebooting.
 3811  */
 3812 static void
 3813 dc_shutdown(device_t dev)
 3814 {
 3815         struct dc_softc *sc;
 3816 
 3817         sc = device_get_softc(dev);
 3818 
 3819         dc_stop(sc);
 3820 }

Cache object: 71be1f90ec28a0fb08aec0c3384682dd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.