The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_dc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/6.1/sys/pci/if_dc.c 156974 2006-03-21 21:10:58Z jhb $");
   35 
   36 /*
   37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
   38  * series chips and several workalikes including the following:
   39  *
   40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
   41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
   42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
   43  * ASIX Electronics AX88140A (www.asix.com.tw)
   44  * ASIX Electronics AX88141 (www.asix.com.tw)
   45  * ADMtek AL981 (www.admtek.com.tw)
   46  * ADMtek AN985 (www.admtek.com.tw)
   47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
   48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
   49  * Accton EN1217 (www.accton.com)
   50  * Xircom X3201 (www.xircom.com)
   51  * Abocom FE2500
   52  * Conexant LANfinity (www.conexant.com)
   53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
   54  *
   55  * Datasheets for the 21143 are available at developer.intel.com.
   56  * Datasheets for the clone parts can be found at their respective sites.
   57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
   58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
   59  * worth noting is that its multicast hash table is only 128 bits wide
   60  * instead of 512.
   61  *
   62  * Written by Bill Paul <wpaul@ee.columbia.edu>
   63  * Electrical Engineering Department
   64  * Columbia University, New York City
   65  */
   66 /*
   67  * The Intel 21143 is the successor to the DEC 21140. It is basically
   68  * the same as the 21140 but with a few new features. The 21143 supports
   69  * three kinds of media attachments:
   70  *
   71  * o MII port, for 10Mbps and 100Mbps support and NWAY
   72  *   autonegotiation provided by an external PHY.
   73  * o SYM port, for symbol mode 100Mbps support.
   74  * o 10baseT port.
   75  * o AUI/BNC port.
   76  *
   77  * The 100Mbps SYM port and 10baseT port can be used together in
   78  * combination with the internal NWAY support to create a 10/100
   79  * autosensing configuration.
   80  *
   81  * Note that not all tulip workalikes are handled in this driver: we only
   82  * deal with those which are relatively well behaved. The Winbond is
   83  * handled separately due to its different register offsets and the
   84  * special handling needed for its various bugs. The PNIC is handled
   85  * here, but I'm not thrilled about it.
   86  *
   87  * All of the workalike chips use some form of MII transceiver support
   88  * with the exception of the Macronix chips, which also have a SYM port.
   89  * The ASIX AX88140A is also documented to have a SYM port, but all
   90  * the cards I've seen use an MII transceiver, probably because the
   91  * AX88140A doesn't support internal NWAY.
   92  */
   93 
   94 #ifdef HAVE_KERNEL_OPTION_HEADERS
   95 #include "opt_device_polling.h"
   96 #endif
   97 
   98 #include <sys/param.h>
   99 #include <sys/endian.h>
  100 #include <sys/systm.h>
  101 #include <sys/sockio.h>
  102 #include <sys/mbuf.h>
  103 #include <sys/malloc.h>
  104 #include <sys/kernel.h>
  105 #include <sys/module.h>
  106 #include <sys/socket.h>
  107 #include <sys/sysctl.h>
  108 
  109 #include <net/if.h>
  110 #include <net/if_arp.h>
  111 #include <net/ethernet.h>
  112 #include <net/if_dl.h>
  113 #include <net/if_media.h>
  114 #include <net/if_types.h>
  115 #include <net/if_vlan_var.h>
  116 
  117 #include <net/bpf.h>
  118 
  119 #include <machine/bus.h>
  120 #include <machine/resource.h>
  121 #include <sys/bus.h>
  122 #include <sys/rman.h>
  123 
  124 #include <dev/mii/mii.h>
  125 #include <dev/mii/miivar.h>
  126 
  127 #include <dev/pci/pcireg.h>
  128 #include <dev/pci/pcivar.h>
  129 
  130 #define DC_USEIOSPACE
  131 #ifdef __alpha__
  132 #define SRM_MEDIA
  133 #endif
  134 
  135 #include <pci/if_dcreg.h>
  136 
  137 #ifdef __sparc64__
  138 #include <dev/ofw/openfirm.h>
  139 #include <machine/ofw_machdep.h>
  140 #endif
  141 
  142 MODULE_DEPEND(dc, pci, 1, 1, 1);
  143 MODULE_DEPEND(dc, ether, 1, 1, 1);
  144 MODULE_DEPEND(dc, miibus, 1, 1, 1);
  145 
  146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  147 #include "miibus_if.h"
  148 
  149 /*
  150  * Various supported device vendors/types and their names.
  151  */
  152 static struct dc_type dc_devs[] = {
  153         { DC_VENDORID_DEC, DC_DEVICEID_21143,
  154                 "Intel 21143 10/100BaseTX" },
  155         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
  156                 "Davicom DM9009 10/100BaseTX" },
  157         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
  158                 "Davicom DM9100 10/100BaseTX" },
  159         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
  160                 "Davicom DM9102 10/100BaseTX" },
  161         { DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
  162                 "Davicom DM9102A 10/100BaseTX" },
  163         { DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
  164                 "ADMtek AL981 10/100BaseTX" },
  165         { DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
  166                 "ADMtek AN985 10/100BaseTX" },
  167         { DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
  168                 "ADMtek ADM9511 10/100BaseTX" },
  169         { DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
  170                 "ADMtek ADM9513 10/100BaseTX" },
  171         { DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
  172                 "Netgear FA511 10/100BaseTX" },
  173         { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
  174                 "ASIX AX88140A 10/100BaseTX" },
  175         { DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
  176                 "ASIX AX88141 10/100BaseTX" },
  177         { DC_VENDORID_MX, DC_DEVICEID_98713,
  178                 "Macronix 98713 10/100BaseTX" },
  179         { DC_VENDORID_MX, DC_DEVICEID_98713,
  180                 "Macronix 98713A 10/100BaseTX" },
  181         { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
  182                 "Compex RL100-TX 10/100BaseTX" },
  183         { DC_VENDORID_CP, DC_DEVICEID_98713_CP,
  184                 "Compex RL100-TX 10/100BaseTX" },
  185         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  186                 "Macronix 98715/98715A 10/100BaseTX" },
  187         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  188                 "Macronix 98715AEC-C 10/100BaseTX" },
  189         { DC_VENDORID_MX, DC_DEVICEID_987x5,
  190                 "Macronix 98725 10/100BaseTX" },
  191         { DC_VENDORID_MX, DC_DEVICEID_98727,
  192                 "Macronix 98727/98732 10/100BaseTX" },
  193         { DC_VENDORID_LO, DC_DEVICEID_82C115,
  194                 "LC82C115 PNIC II 10/100BaseTX" },
  195         { DC_VENDORID_LO, DC_DEVICEID_82C168,
  196                 "82c168 PNIC 10/100BaseTX" },
  197         { DC_VENDORID_LO, DC_DEVICEID_82C168,
  198                 "82c169 PNIC 10/100BaseTX" },
  199         { DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
  200                 "Accton EN1217 10/100BaseTX" },
  201         { DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
  202                 "Accton EN2242 MiniPCI 10/100BaseTX" },
  203         { DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
  204                 "Xircom X3201 10/100BaseTX" },
  205         { DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD,
  206                 "Neteasy DRP-32TXD Cardbus 10/100" },
  207         { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
  208                 "Abocom FE2500 10/100BaseTX" },
  209         { DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
  210                 "Abocom FE2500MX 10/100BaseTX" },
  211         { DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
  212                 "Conexant LANfinity MiniPCI 10/100BaseTX" },
  213         { DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
  214                 "Hawking CB102 CardBus 10/100" },
  215         { DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
  216                 "PlaneX FNW-3602-T CardBus 10/100" },
  217         { DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
  218                 "3Com OfficeConnect 10/100B" },
  219         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
  220                 "Microsoft MN-120 CardBus 10/100" },
  221         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
  222                 "Microsoft MN-130 10/100" },
  223         { DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
  224                 "Microsoft MN-130 10/100" },
  225         { 0, 0, NULL }
  226 };
  227 
  228 static int dc_probe(device_t);
  229 static int dc_attach(device_t);
  230 static int dc_detach(device_t);
  231 static int dc_suspend(device_t);
  232 static int dc_resume(device_t);
  233 static struct dc_type *dc_devtype(device_t);
  234 static int dc_newbuf(struct dc_softc *, int, int);
  235 static int dc_encap(struct dc_softc *, struct mbuf **);
  236 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
  237 static int dc_rx_resync(struct dc_softc *);
  238 static void dc_rxeof(struct dc_softc *);
  239 static void dc_txeof(struct dc_softc *);
  240 static void dc_tick(void *);
  241 static void dc_tx_underrun(struct dc_softc *);
  242 static void dc_intr(void *);
  243 static void dc_start(struct ifnet *);
  244 static void dc_start_locked(struct ifnet *);
  245 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
  246 static void dc_init(void *);
  247 static void dc_init_locked(struct dc_softc *);
  248 static void dc_stop(struct dc_softc *);
  249 static void dc_watchdog(struct ifnet *);
  250 static void dc_shutdown(device_t);
  251 static int dc_ifmedia_upd(struct ifnet *);
  252 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  253 
  254 static void dc_delay(struct dc_softc *);
  255 static void dc_eeprom_idle(struct dc_softc *);
  256 static void dc_eeprom_putbyte(struct dc_softc *, int);
  257 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
  258 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
  259 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
  260 static void dc_eeprom_width(struct dc_softc *);
  261 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
  262 
  263 static void dc_mii_writebit(struct dc_softc *, int);
  264 static int dc_mii_readbit(struct dc_softc *);
  265 static void dc_mii_sync(struct dc_softc *);
  266 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
  267 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
  268 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
  269 static int dc_miibus_readreg(device_t, int, int);
  270 static int dc_miibus_writereg(device_t, int, int, int);
  271 static void dc_miibus_statchg(device_t);
  272 static void dc_miibus_mediainit(device_t);
  273 
  274 static void dc_setcfg(struct dc_softc *, int);
  275 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
  276 static uint32_t dc_mchash_be(const uint8_t *);
  277 static void dc_setfilt_21143(struct dc_softc *);
  278 static void dc_setfilt_asix(struct dc_softc *);
  279 static void dc_setfilt_admtek(struct dc_softc *);
  280 static void dc_setfilt_xircom(struct dc_softc *);
  281 
  282 static void dc_setfilt(struct dc_softc *);
  283 
  284 static void dc_reset(struct dc_softc *);
  285 static int dc_list_rx_init(struct dc_softc *);
  286 static int dc_list_tx_init(struct dc_softc *);
  287 
  288 static void dc_read_srom(struct dc_softc *, int);
  289 static void dc_parse_21143_srom(struct dc_softc *);
  290 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
  291 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
  292 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
  293 static void dc_apply_fixup(struct dc_softc *, int);
  294 
  295 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
  296 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
  297 
  298 #ifdef DC_USEIOSPACE
  299 #define DC_RES                  SYS_RES_IOPORT
  300 #define DC_RID                  DC_PCI_CFBIO
  301 #else
  302 #define DC_RES                  SYS_RES_MEMORY
  303 #define DC_RID                  DC_PCI_CFBMA
  304 #endif
  305 
  306 static device_method_t dc_methods[] = {
  307         /* Device interface */
  308         DEVMETHOD(device_probe,         dc_probe),
  309         DEVMETHOD(device_attach,        dc_attach),
  310         DEVMETHOD(device_detach,        dc_detach),
  311         DEVMETHOD(device_suspend,       dc_suspend),
  312         DEVMETHOD(device_resume,        dc_resume),
  313         DEVMETHOD(device_shutdown,      dc_shutdown),
  314 
  315         /* bus interface */
  316         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  317         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  318 
  319         /* MII interface */
  320         DEVMETHOD(miibus_readreg,       dc_miibus_readreg),
  321         DEVMETHOD(miibus_writereg,      dc_miibus_writereg),
  322         DEVMETHOD(miibus_statchg,       dc_miibus_statchg),
  323         DEVMETHOD(miibus_mediainit,     dc_miibus_mediainit),
  324 
  325         { 0, 0 }
  326 };
  327 
  328 static driver_t dc_driver = {
  329         "dc",
  330         dc_methods,
  331         sizeof(struct dc_softc)
  332 };
  333 
  334 static devclass_t dc_devclass;
  335 #ifdef __i386__
  336 static int dc_quick = 1;
  337 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
  338     "do not m_devget() in dc driver");
  339 #endif
  340 
  341 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
  342 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
  343 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
  344 
  345 #define DC_SETBIT(sc, reg, x)                           \
  346         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  347 
  348 #define DC_CLRBIT(sc, reg, x)                           \
  349         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  350 
  351 #define SIO_SET(x)      DC_SETBIT(sc, DC_SIO, (x))
  352 #define SIO_CLR(x)      DC_CLRBIT(sc, DC_SIO, (x))
  353 
  354 static void
  355 dc_delay(struct dc_softc *sc)
  356 {
  357         int idx;
  358 
  359         for (idx = (300 / 33) + 1; idx > 0; idx--)
  360                 CSR_READ_4(sc, DC_BUSCTL);
  361 }
  362 
  363 static void
  364 dc_eeprom_width(struct dc_softc *sc)
  365 {
  366         int i;
  367 
  368         /* Force EEPROM to idle state. */
  369         dc_eeprom_idle(sc);
  370 
  371         /* Enter EEPROM access mode. */
  372         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  373         dc_delay(sc);
  374         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  375         dc_delay(sc);
  376         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  377         dc_delay(sc);
  378         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  379         dc_delay(sc);
  380 
  381         for (i = 3; i--;) {
  382                 if (6 & (1 << i))
  383                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  384                 else
  385                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  386                 dc_delay(sc);
  387                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  388                 dc_delay(sc);
  389                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  390                 dc_delay(sc);
  391         }
  392 
  393         for (i = 1; i <= 12; i++) {
  394                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  395                 dc_delay(sc);
  396                 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
  397                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  398                         dc_delay(sc);
  399                         break;
  400                 }
  401                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  402                 dc_delay(sc);
  403         }
  404 
  405         /* Turn off EEPROM access mode. */
  406         dc_eeprom_idle(sc);
  407 
  408         if (i < 4 || i > 12)
  409                 sc->dc_romwidth = 6;
  410         else
  411                 sc->dc_romwidth = i;
  412 
  413         /* Enter EEPROM access mode. */
  414         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  415         dc_delay(sc);
  416         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  417         dc_delay(sc);
  418         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  419         dc_delay(sc);
  420         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  421         dc_delay(sc);
  422 
  423         /* Turn off EEPROM access mode. */
  424         dc_eeprom_idle(sc);
  425 }
  426 
  427 static void
  428 dc_eeprom_idle(struct dc_softc *sc)
  429 {
  430         int i;
  431 
  432         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  433         dc_delay(sc);
  434         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  435         dc_delay(sc);
  436         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  437         dc_delay(sc);
  438         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  439         dc_delay(sc);
  440 
  441         for (i = 0; i < 25; i++) {
  442                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  443                 dc_delay(sc);
  444                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  445                 dc_delay(sc);
  446         }
  447 
  448         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  449         dc_delay(sc);
  450         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
  451         dc_delay(sc);
  452         CSR_WRITE_4(sc, DC_SIO, 0x00000000);
  453 }
  454 
  455 /*
  456  * Send a read command and address to the EEPROM, check for ACK.
  457  */
  458 static void
  459 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
  460 {
  461         int d, i;
  462 
  463         d = DC_EECMD_READ >> 6;
  464         for (i = 3; i--; ) {
  465                 if (d & (1 << i))
  466                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  467                 else
  468                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  469                 dc_delay(sc);
  470                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  471                 dc_delay(sc);
  472                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  473                 dc_delay(sc);
  474         }
  475 
  476         /*
  477          * Feed in each bit and strobe the clock.
  478          */
  479         for (i = sc->dc_romwidth; i--;) {
  480                 if (addr & (1 << i)) {
  481                         SIO_SET(DC_SIO_EE_DATAIN);
  482                 } else {
  483                         SIO_CLR(DC_SIO_EE_DATAIN);
  484                 }
  485                 dc_delay(sc);
  486                 SIO_SET(DC_SIO_EE_CLK);
  487                 dc_delay(sc);
  488                 SIO_CLR(DC_SIO_EE_CLK);
  489                 dc_delay(sc);
  490         }
  491 }
  492 
  493 /*
  494  * Read a word of data stored in the EEPROM at address 'addr.'
  495  * The PNIC 82c168/82c169 has its own non-standard way to read
  496  * the EEPROM.
  497  */
  498 static void
  499 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
  500 {
  501         int i;
  502         u_int32_t r;
  503 
  504         CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
  505 
  506         for (i = 0; i < DC_TIMEOUT; i++) {
  507                 DELAY(1);
  508                 r = CSR_READ_4(sc, DC_SIO);
  509                 if (!(r & DC_PN_SIOCTL_BUSY)) {
  510                         *dest = (u_int16_t)(r & 0xFFFF);
  511                         return;
  512                 }
  513         }
  514 }
  515 
  516 /*
  517  * Read a word of data stored in the EEPROM at address 'addr.'
  518  * The Xircom X3201 has its own non-standard way to read
  519  * the EEPROM, too.
  520  */
  521 static void
  522 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
  523 {
  524 
  525         SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  526 
  527         addr *= 2;
  528         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  529         *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
  530         addr += 1;
  531         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  532         *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
  533 
  534         SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  535 }
  536 
  537 /*
  538  * Read a word of data stored in the EEPROM at address 'addr.'
  539  */
  540 static void
  541 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
  542 {
  543         int i;
  544         u_int16_t word = 0;
  545 
  546         /* Force EEPROM to idle state. */
  547         dc_eeprom_idle(sc);
  548 
  549         /* Enter EEPROM access mode. */
  550         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  551         dc_delay(sc);
  552         DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
  553         dc_delay(sc);
  554         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  555         dc_delay(sc);
  556         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  557         dc_delay(sc);
  558 
  559         /*
  560          * Send address of word we want to read.
  561          */
  562         dc_eeprom_putbyte(sc, addr);
  563 
  564         /*
  565          * Start reading bits from EEPROM.
  566          */
  567         for (i = 0x8000; i; i >>= 1) {
  568                 SIO_SET(DC_SIO_EE_CLK);
  569                 dc_delay(sc);
  570                 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
  571                         word |= i;
  572                 dc_delay(sc);
  573                 SIO_CLR(DC_SIO_EE_CLK);
  574                 dc_delay(sc);
  575         }
  576 
  577         /* Turn off EEPROM access mode. */
  578         dc_eeprom_idle(sc);
  579 
  580         *dest = word;
  581 }
  582 
  583 /*
  584  * Read a sequence of words from the EEPROM.
  585  */
  586 static void
  587 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
  588 {
  589         int i;
  590         u_int16_t word = 0, *ptr;
  591 
  592         for (i = 0; i < cnt; i++) {
  593                 if (DC_IS_PNIC(sc))
  594                         dc_eeprom_getword_pnic(sc, off + i, &word);
  595                 else if (DC_IS_XIRCOM(sc))
  596                         dc_eeprom_getword_xircom(sc, off + i, &word);
  597                 else
  598                         dc_eeprom_getword(sc, off + i, &word);
  599                 ptr = (u_int16_t *)(dest + (i * 2));
  600                 if (be)
  601                         *ptr = be16toh(word);
  602                 else
  603                         *ptr = le16toh(word);
  604         }
  605 }
  606 
  607 /*
  608  * The following two routines are taken from the Macronix 98713
  609  * Application Notes pp.19-21.
  610  */
  611 /*
  612  * Write a bit to the MII bus.
  613  */
  614 static void
  615 dc_mii_writebit(struct dc_softc *sc, int bit)
  616 {
  617 
  618         if (bit)
  619                 CSR_WRITE_4(sc, DC_SIO,
  620                     DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
  621         else
  622                 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  623 
  624         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  625         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  626 }
  627 
  628 /*
  629  * Read a bit from the MII bus.
  630  */
  631 static int
  632 dc_mii_readbit(struct dc_softc *sc)
  633 {
  634 
  635         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
  636         CSR_READ_4(sc, DC_SIO);
  637         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  638         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  639         if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
  640                 return (1);
  641 
  642         return (0);
  643 }
  644 
  645 /*
  646  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  647  */
  648 static void
  649 dc_mii_sync(struct dc_softc *sc)
  650 {
  651         int i;
  652 
  653         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  654 
  655         for (i = 0; i < 32; i++)
  656                 dc_mii_writebit(sc, 1);
  657 }
  658 
  659 /*
  660  * Clock a series of bits through the MII.
  661  */
  662 static void
  663 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
  664 {
  665         int i;
  666 
  667         for (i = (0x1 << (cnt - 1)); i; i >>= 1)
  668                 dc_mii_writebit(sc, bits & i);
  669 }
  670 
  671 /*
  672  * Read an PHY register through the MII.
  673  */
  674 static int
  675 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
  676 {
  677         int i, ack;
  678 
  679         /*
  680          * Set up frame for RX.
  681          */
  682         frame->mii_stdelim = DC_MII_STARTDELIM;
  683         frame->mii_opcode = DC_MII_READOP;
  684         frame->mii_turnaround = 0;
  685         frame->mii_data = 0;
  686 
  687         /*
  688          * Sync the PHYs.
  689          */
  690         dc_mii_sync(sc);
  691 
  692         /*
  693          * Send command/address info.
  694          */
  695         dc_mii_send(sc, frame->mii_stdelim, 2);
  696         dc_mii_send(sc, frame->mii_opcode, 2);
  697         dc_mii_send(sc, frame->mii_phyaddr, 5);
  698         dc_mii_send(sc, frame->mii_regaddr, 5);
  699 
  700 #ifdef notdef
  701         /* Idle bit */
  702         dc_mii_writebit(sc, 1);
  703         dc_mii_writebit(sc, 0);
  704 #endif
  705 
  706         /* Check for ack. */
  707         ack = dc_mii_readbit(sc);
  708 
  709         /*
  710          * Now try reading data bits. If the ack failed, we still
  711          * need to clock through 16 cycles to keep the PHY(s) in sync.
  712          */
  713         if (ack) {
  714                 for (i = 0; i < 16; i++)
  715                         dc_mii_readbit(sc);
  716                 goto fail;
  717         }
  718 
  719         for (i = 0x8000; i; i >>= 1) {
  720                 if (!ack) {
  721                         if (dc_mii_readbit(sc))
  722                                 frame->mii_data |= i;
  723                 }
  724         }
  725 
  726 fail:
  727 
  728         dc_mii_writebit(sc, 0);
  729         dc_mii_writebit(sc, 0);
  730 
  731         if (ack)
  732                 return (1);
  733         return (0);
  734 }
  735 
  736 /*
  737  * Write to a PHY register through the MII.
  738  */
  739 static int
  740 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
  741 {
  742 
  743         /*
  744          * Set up frame for TX.
  745          */
  746 
  747         frame->mii_stdelim = DC_MII_STARTDELIM;
  748         frame->mii_opcode = DC_MII_WRITEOP;
  749         frame->mii_turnaround = DC_MII_TURNAROUND;
  750 
  751         /*
  752          * Sync the PHYs.
  753          */
  754         dc_mii_sync(sc);
  755 
  756         dc_mii_send(sc, frame->mii_stdelim, 2);
  757         dc_mii_send(sc, frame->mii_opcode, 2);
  758         dc_mii_send(sc, frame->mii_phyaddr, 5);
  759         dc_mii_send(sc, frame->mii_regaddr, 5);
  760         dc_mii_send(sc, frame->mii_turnaround, 2);
  761         dc_mii_send(sc, frame->mii_data, 16);
  762 
  763         /* Idle bit. */
  764         dc_mii_writebit(sc, 0);
  765         dc_mii_writebit(sc, 0);
  766 
  767         return (0);
  768 }
  769 
  770 static int
  771 dc_miibus_readreg(device_t dev, int phy, int reg)
  772 {
  773         struct dc_mii_frame frame;
  774         struct dc_softc  *sc;
  775         int i, rval, phy_reg = 0;
  776 
  777         sc = device_get_softc(dev);
  778         bzero(&frame, sizeof(frame));
  779 
  780         /*
  781          * Note: both the AL981 and AN985 have internal PHYs,
  782          * however the AL981 provides direct access to the PHY
  783          * registers while the AN985 uses a serial MII interface.
  784          * The AN985's MII interface is also buggy in that you
  785          * can read from any MII address (0 to 31), but only address 1
  786          * behaves normally. To deal with both cases, we pretend
  787          * that the PHY is at MII address 1.
  788          */
  789         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  790                 return (0);
  791 
  792         /*
  793          * Note: the ukphy probes of the RS7112 report a PHY at
  794          * MII address 0 (possibly HomePNA?) and 1 (ethernet)
  795          * so we only respond to correct one.
  796          */
  797         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  798                 return (0);
  799 
  800         if (sc->dc_pmode != DC_PMODE_MII) {
  801                 if (phy == (MII_NPHY - 1)) {
  802                         switch (reg) {
  803                         case MII_BMSR:
  804                         /*
  805                          * Fake something to make the probe
  806                          * code think there's a PHY here.
  807                          */
  808                                 return (BMSR_MEDIAMASK);
  809                                 break;
  810                         case MII_PHYIDR1:
  811                                 if (DC_IS_PNIC(sc))
  812                                         return (DC_VENDORID_LO);
  813                                 return (DC_VENDORID_DEC);
  814                                 break;
  815                         case MII_PHYIDR2:
  816                                 if (DC_IS_PNIC(sc))
  817                                         return (DC_DEVICEID_82C168);
  818                                 return (DC_DEVICEID_21143);
  819                                 break;
  820                         default:
  821                                 return (0);
  822                                 break;
  823                         }
  824                 } else
  825                         return (0);
  826         }
  827 
  828         if (DC_IS_PNIC(sc)) {
  829                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
  830                     (phy << 23) | (reg << 18));
  831                 for (i = 0; i < DC_TIMEOUT; i++) {
  832                         DELAY(1);
  833                         rval = CSR_READ_4(sc, DC_PN_MII);
  834                         if (!(rval & DC_PN_MII_BUSY)) {
  835                                 rval &= 0xFFFF;
  836                                 return (rval == 0xFFFF ? 0 : rval);
  837                         }
  838                 }
  839                 return (0);
  840         }
  841 
  842         if (DC_IS_COMET(sc)) {
  843                 switch (reg) {
  844                 case MII_BMCR:
  845                         phy_reg = DC_AL_BMCR;
  846                         break;
  847                 case MII_BMSR:
  848                         phy_reg = DC_AL_BMSR;
  849                         break;
  850                 case MII_PHYIDR1:
  851                         phy_reg = DC_AL_VENID;
  852                         break;
  853                 case MII_PHYIDR2:
  854                         phy_reg = DC_AL_DEVID;
  855                         break;
  856                 case MII_ANAR:
  857                         phy_reg = DC_AL_ANAR;
  858                         break;
  859                 case MII_ANLPAR:
  860                         phy_reg = DC_AL_LPAR;
  861                         break;
  862                 case MII_ANER:
  863                         phy_reg = DC_AL_ANER;
  864                         break;
  865                 default:
  866                         device_printf(dev, "phy_read: bad phy register %x\n",
  867                             reg);
  868                         return (0);
  869                         break;
  870                 }
  871 
  872                 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
  873 
  874                 if (rval == 0xFFFF)
  875                         return (0);
  876                 return (rval);
  877         }
  878 
  879         frame.mii_phyaddr = phy;
  880         frame.mii_regaddr = reg;
  881         if (sc->dc_type == DC_TYPE_98713) {
  882                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  883                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  884         }
  885         dc_mii_readreg(sc, &frame);
  886         if (sc->dc_type == DC_TYPE_98713)
  887                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  888 
  889         return (frame.mii_data);
  890 }
  891 
  892 static int
  893 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
  894 {
  895         struct dc_softc *sc;
  896         struct dc_mii_frame frame;
  897         int i, phy_reg = 0;
  898 
  899         sc = device_get_softc(dev);
  900         bzero(&frame, sizeof(frame));
  901 
  902         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  903                 return (0);
  904 
  905         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  906                 return (0);
  907 
  908         if (DC_IS_PNIC(sc)) {
  909                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
  910                     (phy << 23) | (reg << 10) | data);
  911                 for (i = 0; i < DC_TIMEOUT; i++) {
  912                         if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
  913                                 break;
  914                 }
  915                 return (0);
  916         }
  917 
  918         if (DC_IS_COMET(sc)) {
  919                 switch (reg) {
  920                 case MII_BMCR:
  921                         phy_reg = DC_AL_BMCR;
  922                         break;
  923                 case MII_BMSR:
  924                         phy_reg = DC_AL_BMSR;
  925                         break;
  926                 case MII_PHYIDR1:
  927                         phy_reg = DC_AL_VENID;
  928                         break;
  929                 case MII_PHYIDR2:
  930                         phy_reg = DC_AL_DEVID;
  931                         break;
  932                 case MII_ANAR:
  933                         phy_reg = DC_AL_ANAR;
  934                         break;
  935                 case MII_ANLPAR:
  936                         phy_reg = DC_AL_LPAR;
  937                         break;
  938                 case MII_ANER:
  939                         phy_reg = DC_AL_ANER;
  940                         break;
  941                 default:
  942                         device_printf(dev, "phy_write: bad phy register %x\n",
  943                             reg);
  944                         return (0);
  945                         break;
  946                 }
  947 
  948                 CSR_WRITE_4(sc, phy_reg, data);
  949                 return (0);
  950         }
  951 
  952         frame.mii_phyaddr = phy;
  953         frame.mii_regaddr = reg;
  954         frame.mii_data = data;
  955 
  956         if (sc->dc_type == DC_TYPE_98713) {
  957                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  958                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  959         }
  960         dc_mii_writereg(sc, &frame);
  961         if (sc->dc_type == DC_TYPE_98713)
  962                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  963 
  964         return (0);
  965 }
  966 
  967 static void
  968 dc_miibus_statchg(device_t dev)
  969 {
  970         struct dc_softc *sc;
  971         struct mii_data *mii;
  972         struct ifmedia *ifm;
  973 
  974         sc = device_get_softc(dev);
  975         if (DC_IS_ADMTEK(sc))
  976                 return;
  977 
  978         mii = device_get_softc(sc->dc_miibus);
  979         ifm = &mii->mii_media;
  980         if (DC_IS_DAVICOM(sc) &&
  981             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
  982                 dc_setcfg(sc, ifm->ifm_media);
  983                 sc->dc_if_media = ifm->ifm_media;
  984         } else {
  985                 dc_setcfg(sc, mii->mii_media_active);
  986                 sc->dc_if_media = mii->mii_media_active;
  987         }
  988 }
  989 
  990 /*
  991  * Special support for DM9102A cards with HomePNA PHYs. Note:
  992  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
  993  * to be impossible to talk to the management interface of the DM9801
  994  * PHY (its MDIO pin is not connected to anything). Consequently,
  995  * the driver has to just 'know' about the additional mode and deal
  996  * with it itself. *sigh*
  997  */
  998 static void
  999 dc_miibus_mediainit(device_t dev)
 1000 {
 1001         struct dc_softc *sc;
 1002         struct mii_data *mii;
 1003         struct ifmedia *ifm;
 1004         int rev;
 1005 
 1006         rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
 1007 
 1008         sc = device_get_softc(dev);
 1009         mii = device_get_softc(sc->dc_miibus);
 1010         ifm = &mii->mii_media;
 1011 
 1012         if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
 1013                 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
 1014 }
 1015 
 1016 #define DC_BITS_512     9
 1017 #define DC_BITS_128     7
 1018 #define DC_BITS_64      6
 1019 
 1020 static uint32_t
 1021 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
 1022 {
 1023         uint32_t crc;
 1024 
 1025         /* Compute CRC for the address value. */
 1026         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
 1027 
 1028         /*
 1029          * The hash table on the PNIC II and the MX98715AEC-C/D/E
 1030          * chips is only 128 bits wide.
 1031          */
 1032         if (sc->dc_flags & DC_128BIT_HASH)
 1033                 return (crc & ((1 << DC_BITS_128) - 1));
 1034 
 1035         /* The hash table on the MX98715BEC is only 64 bits wide. */
 1036         if (sc->dc_flags & DC_64BIT_HASH)
 1037                 return (crc & ((1 << DC_BITS_64) - 1));
 1038 
 1039         /* Xircom's hash filtering table is different (read: weird) */
 1040         /* Xircom uses the LEAST significant bits */
 1041         if (DC_IS_XIRCOM(sc)) {
 1042                 if ((crc & 0x180) == 0x180)
 1043                         return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
 1044                 else
 1045                         return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
 1046                             (12 << 4));
 1047         }
 1048 
 1049         return (crc & ((1 << DC_BITS_512) - 1));
 1050 }
 1051 
 1052 /*
 1053  * Calculate CRC of a multicast group address, return the lower 6 bits.
 1054  */
 1055 static uint32_t
 1056 dc_mchash_be(const uint8_t *addr)
 1057 {
 1058         uint32_t crc;
 1059 
 1060         /* Compute CRC for the address value. */
 1061         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
 1062 
 1063         /* Return the filter bit position. */
 1064         return ((crc >> 26) & 0x0000003F);
 1065 }
 1066 
 1067 /*
 1068  * 21143-style RX filter setup routine. Filter programming is done by
 1069  * downloading a special setup frame into the TX engine. 21143, Macronix,
 1070  * PNIC, PNIC II and Davicom chips are programmed this way.
 1071  *
 1072  * We always program the chip using 'hash perfect' mode, i.e. one perfect
 1073  * address (our node address) and a 512-bit hash filter for multicast
 1074  * frames. We also sneak the broadcast address into the hash filter since
 1075  * we need that too.
 1076  */
 1077 static void
 1078 dc_setfilt_21143(struct dc_softc *sc)
 1079 {
 1080         struct dc_desc *sframe;
 1081         u_int32_t h, *sp;
 1082         struct ifmultiaddr *ifma;
 1083         struct ifnet *ifp;
 1084         int i;
 1085 
 1086         ifp = sc->dc_ifp;
 1087 
 1088         i = sc->dc_cdata.dc_tx_prod;
 1089         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1090         sc->dc_cdata.dc_tx_cnt++;
 1091         sframe = &sc->dc_ldata->dc_tx_list[i];
 1092         sp = sc->dc_cdata.dc_sbuf;
 1093         bzero(sp, DC_SFRAME_LEN);
 1094 
 1095         sframe->dc_data = htole32(sc->dc_saddr);
 1096         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1097             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1098 
 1099         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1100 
 1101         /* If we want promiscuous mode, set the allframes bit. */
 1102         if (ifp->if_flags & IFF_PROMISC)
 1103                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1104         else
 1105                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1106 
 1107         if (ifp->if_flags & IFF_ALLMULTI)
 1108                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1109         else
 1110                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1111 
 1112         IF_ADDR_LOCK(ifp);
 1113         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1114                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1115                         continue;
 1116                 h = dc_mchash_le(sc,
 1117                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1118                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1119         }
 1120         IF_ADDR_UNLOCK(ifp);
 1121 
 1122         if (ifp->if_flags & IFF_BROADCAST) {
 1123                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1124                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1125         }
 1126 
 1127         /* Set our MAC address */
 1128         sp[39] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
 1129         sp[40] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
 1130         sp[41] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
 1131 
 1132         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1133         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1134 
 1135         /*
 1136          * The PNIC takes an exceedingly long time to process its
 1137          * setup frame; wait 10ms after posting the setup frame
 1138          * before proceeding, just so it has time to swallow its
 1139          * medicine.
 1140          */
 1141         DELAY(10000);
 1142 
 1143         ifp->if_timer = 5;
 1144 }
 1145 
 1146 static void
 1147 dc_setfilt_admtek(struct dc_softc *sc)
 1148 {
 1149         struct ifnet *ifp;
 1150         struct ifmultiaddr *ifma;
 1151         int h = 0;
 1152         u_int32_t hashes[2] = { 0, 0 };
 1153 
 1154         ifp = sc->dc_ifp;
 1155 
 1156         /* Init our MAC address. */
 1157         CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
 1158         CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
 1159 
 1160         /* If we want promiscuous mode, set the allframes bit. */
 1161         if (ifp->if_flags & IFF_PROMISC)
 1162                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1163         else
 1164                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1165 
 1166         if (ifp->if_flags & IFF_ALLMULTI)
 1167                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1168         else
 1169                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1170 
 1171         /* First, zot all the existing hash bits. */
 1172         CSR_WRITE_4(sc, DC_AL_MAR0, 0);
 1173         CSR_WRITE_4(sc, DC_AL_MAR1, 0);
 1174 
 1175         /*
 1176          * If we're already in promisc or allmulti mode, we
 1177          * don't have to bother programming the multicast filter.
 1178          */
 1179         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1180                 return;
 1181 
 1182         /* Now program new ones. */
 1183         IF_ADDR_LOCK(ifp);
 1184         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1185                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1186                         continue;
 1187                 if (DC_IS_CENTAUR(sc))
 1188                         h = dc_mchash_le(sc,
 1189                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1190                 else
 1191                         h = dc_mchash_be(
 1192                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1193                 if (h < 32)
 1194                         hashes[0] |= (1 << h);
 1195                 else
 1196                         hashes[1] |= (1 << (h - 32));
 1197         }
 1198         IF_ADDR_UNLOCK(ifp);
 1199 
 1200         CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
 1201         CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
 1202 }
 1203 
 1204 static void
 1205 dc_setfilt_asix(struct dc_softc *sc)
 1206 {
 1207         struct ifnet *ifp;
 1208         struct ifmultiaddr *ifma;
 1209         int h = 0;
 1210         u_int32_t hashes[2] = { 0, 0 };
 1211 
 1212         ifp = sc->dc_ifp;
 1213 
 1214         /* Init our MAC address */
 1215         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
 1216         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1217             *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
 1218         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
 1219         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1220             *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
 1221 
 1222         /* If we want promiscuous mode, set the allframes bit. */
 1223         if (ifp->if_flags & IFF_PROMISC)
 1224                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1225         else
 1226                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1227 
 1228         if (ifp->if_flags & IFF_ALLMULTI)
 1229                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1230         else
 1231                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1232 
 1233         /*
 1234          * The ASIX chip has a special bit to enable reception
 1235          * of broadcast frames.
 1236          */
 1237         if (ifp->if_flags & IFF_BROADCAST)
 1238                 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1239         else
 1240                 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1241 
 1242         /* first, zot all the existing hash bits */
 1243         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1244         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1245         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1246         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1247 
 1248         /*
 1249          * If we're already in promisc or allmulti mode, we
 1250          * don't have to bother programming the multicast filter.
 1251          */
 1252         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1253                 return;
 1254 
 1255         /* now program new ones */
 1256         IF_ADDR_LOCK(ifp);
 1257         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1258                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1259                         continue;
 1260                 h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1261                 if (h < 32)
 1262                         hashes[0] |= (1 << h);
 1263                 else
 1264                         hashes[1] |= (1 << (h - 32));
 1265         }
 1266         IF_ADDR_UNLOCK(ifp);
 1267 
 1268         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1269         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
 1270         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1271         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
 1272 }
 1273 
 1274 static void
 1275 dc_setfilt_xircom(struct dc_softc *sc)
 1276 {
 1277         struct ifnet *ifp;
 1278         struct ifmultiaddr *ifma;
 1279         struct dc_desc *sframe;
 1280         u_int32_t h, *sp;
 1281         int i;
 1282 
 1283         ifp = sc->dc_ifp;
 1284         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1285 
 1286         i = sc->dc_cdata.dc_tx_prod;
 1287         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1288         sc->dc_cdata.dc_tx_cnt++;
 1289         sframe = &sc->dc_ldata->dc_tx_list[i];
 1290         sp = sc->dc_cdata.dc_sbuf;
 1291         bzero(sp, DC_SFRAME_LEN);
 1292 
 1293         sframe->dc_data = htole32(sc->dc_saddr);
 1294         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1295             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1296 
 1297         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1298 
 1299         /* If we want promiscuous mode, set the allframes bit. */
 1300         if (ifp->if_flags & IFF_PROMISC)
 1301                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1302         else
 1303                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1304 
 1305         if (ifp->if_flags & IFF_ALLMULTI)
 1306                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1307         else
 1308                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1309 
 1310         IF_ADDR_LOCK(ifp);
 1311         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1312                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1313                         continue;
 1314                 h = dc_mchash_le(sc,
 1315                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1316                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1317         }
 1318         IF_ADDR_UNLOCK(ifp);
 1319 
 1320         if (ifp->if_flags & IFF_BROADCAST) {
 1321                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1322                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1323         }
 1324 
 1325         /* Set our MAC address */
 1326         sp[0] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
 1327         sp[1] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
 1328         sp[2] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
 1329 
 1330         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 1331         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 1332         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1333         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1334         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1335 
 1336         /*
 1337          * Wait some time...
 1338          */
 1339         DELAY(1000);
 1340 
 1341         ifp->if_timer = 5;
 1342 }
 1343 
 1344 static void
 1345 dc_setfilt(struct dc_softc *sc)
 1346 {
 1347 
 1348         if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
 1349             DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
 1350                 dc_setfilt_21143(sc);
 1351 
 1352         if (DC_IS_ASIX(sc))
 1353                 dc_setfilt_asix(sc);
 1354 
 1355         if (DC_IS_ADMTEK(sc))
 1356                 dc_setfilt_admtek(sc);
 1357 
 1358         if (DC_IS_XIRCOM(sc))
 1359                 dc_setfilt_xircom(sc);
 1360 }
 1361 
 1362 /*
 1363  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
 1364  * the netconfig register, we first have to put the transmit and/or
 1365  * receive logic in the idle state.
 1366  */
 1367 static void
 1368 dc_setcfg(struct dc_softc *sc, int media)
 1369 {
 1370         int i, restart = 0, watchdogreg;
 1371         u_int32_t isr;
 1372 
 1373         if (IFM_SUBTYPE(media) == IFM_NONE)
 1374                 return;
 1375 
 1376         if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
 1377                 restart = 1;
 1378                 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1379 
 1380                 for (i = 0; i < DC_TIMEOUT; i++) {
 1381                         isr = CSR_READ_4(sc, DC_ISR);
 1382                         if (isr & DC_ISR_TX_IDLE &&
 1383                             ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1384                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
 1385                                 break;
 1386                         DELAY(10);
 1387                 }
 1388 
 1389                 if (i == DC_TIMEOUT)
 1390                         if_printf(sc->dc_ifp,
 1391                             "failed to force tx and rx to idle state\n");
 1392         }
 1393 
 1394         if (IFM_SUBTYPE(media) == IFM_100_TX) {
 1395                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1396                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1397                 if (sc->dc_pmode == DC_PMODE_MII) {
 1398                         if (DC_IS_INTEL(sc)) {
 1399                         /* There's a write enable bit here that reads as 1. */
 1400                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1401                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1402                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1403                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1404                         } else {
 1405                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1406                         }
 1407                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1408                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1409                         if (sc->dc_type == DC_TYPE_98713)
 1410                                 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1411                                     DC_NETCFG_SCRAMBLER));
 1412                         if (!DC_IS_DAVICOM(sc))
 1413                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1414                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1415                         if (DC_IS_INTEL(sc))
 1416                                 dc_apply_fixup(sc, IFM_AUTO);
 1417                 } else {
 1418                         if (DC_IS_PNIC(sc)) {
 1419                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1420                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1421                                 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1422                         }
 1423                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1424                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1425                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1426                         if (DC_IS_INTEL(sc))
 1427                                 dc_apply_fixup(sc,
 1428                                     (media & IFM_GMASK) == IFM_FDX ?
 1429                                     IFM_100_TX | IFM_FDX : IFM_100_TX);
 1430                 }
 1431         }
 1432 
 1433         if (IFM_SUBTYPE(media) == IFM_10_T) {
 1434                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1435                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1436                 if (sc->dc_pmode == DC_PMODE_MII) {
 1437                         /* There's a write enable bit here that reads as 1. */
 1438                         if (DC_IS_INTEL(sc)) {
 1439                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1440                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1441                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1442                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1443                         } else {
 1444                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1445                         }
 1446                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1447                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1448                         if (sc->dc_type == DC_TYPE_98713)
 1449                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1450                         if (!DC_IS_DAVICOM(sc))
 1451                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1452                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1453                         if (DC_IS_INTEL(sc))
 1454                                 dc_apply_fixup(sc, IFM_AUTO);
 1455                 } else {
 1456                         if (DC_IS_PNIC(sc)) {
 1457                                 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1458                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1459                                 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1460                         }
 1461                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1462                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1463                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1464                         if (DC_IS_INTEL(sc)) {
 1465                                 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1466                                 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1467                                 if ((media & IFM_GMASK) == IFM_FDX)
 1468                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
 1469                                 else
 1470                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
 1471                                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1472                                 DC_CLRBIT(sc, DC_10BTCTRL,
 1473                                     DC_TCTL_AUTONEGENBL);
 1474                                 dc_apply_fixup(sc,
 1475                                     (media & IFM_GMASK) == IFM_FDX ?
 1476                                     IFM_10_T | IFM_FDX : IFM_10_T);
 1477                                 DELAY(20000);
 1478                         }
 1479                 }
 1480         }
 1481 
 1482         /*
 1483          * If this is a Davicom DM9102A card with a DM9801 HomePNA
 1484          * PHY and we want HomePNA mode, set the portsel bit to turn
 1485          * on the external MII port.
 1486          */
 1487         if (DC_IS_DAVICOM(sc)) {
 1488                 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
 1489                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1490                         sc->dc_link = 1;
 1491                 } else {
 1492                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1493                 }
 1494         }
 1495 
 1496         if ((media & IFM_GMASK) == IFM_FDX) {
 1497                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1498                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1499                         DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1500         } else {
 1501                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1502                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1503                         DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1504         }
 1505 
 1506         if (restart)
 1507                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
 1508 }
 1509 
 1510 static void
 1511 dc_reset(struct dc_softc *sc)
 1512 {
 1513         int i;
 1514 
 1515         DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1516 
 1517         for (i = 0; i < DC_TIMEOUT; i++) {
 1518                 DELAY(10);
 1519                 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
 1520                         break;
 1521         }
 1522 
 1523         if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
 1524             DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
 1525                 DELAY(10000);
 1526                 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1527                 i = 0;
 1528         }
 1529 
 1530         if (i == DC_TIMEOUT)
 1531                 if_printf(sc->dc_ifp, "reset never completed!\n");
 1532 
 1533         /* Wait a little while for the chip to get its brains in order. */
 1534         DELAY(1000);
 1535 
 1536         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 1537         CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
 1538         CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
 1539 
 1540         /*
 1541          * Bring the SIA out of reset. In some cases, it looks
 1542          * like failing to unreset the SIA soon enough gets it
 1543          * into a state where it will never come out of reset
 1544          * until we reset the whole chip again.
 1545          */
 1546         if (DC_IS_INTEL(sc)) {
 1547                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1548                 CSR_WRITE_4(sc, DC_10BTCTRL, 0);
 1549                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 1550         }
 1551 }
 1552 
 1553 static struct dc_type *
 1554 dc_devtype(device_t dev)
 1555 {
 1556         struct dc_type *t;
 1557         u_int32_t rev;
 1558 
 1559         t = dc_devs;
 1560 
 1561         while (t->dc_name != NULL) {
 1562                 if ((pci_get_vendor(dev) == t->dc_vid) &&
 1563                     (pci_get_device(dev) == t->dc_did)) {
 1564                         /* Check the PCI revision */
 1565                         rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
 1566                         if (t->dc_did == DC_DEVICEID_98713 &&
 1567                             rev >= DC_REVISION_98713A)
 1568                                 t++;
 1569                         if (t->dc_did == DC_DEVICEID_98713_CP &&
 1570                             rev >= DC_REVISION_98713A)
 1571                                 t++;
 1572                         if (t->dc_did == DC_DEVICEID_987x5 &&
 1573                             rev >= DC_REVISION_98715AEC_C)
 1574                                 t++;
 1575                         if (t->dc_did == DC_DEVICEID_987x5 &&
 1576                             rev >= DC_REVISION_98725)
 1577                                 t++;
 1578                         if (t->dc_did == DC_DEVICEID_AX88140A &&
 1579                             rev >= DC_REVISION_88141)
 1580                                 t++;
 1581                         if (t->dc_did == DC_DEVICEID_82C168 &&
 1582                             rev >= DC_REVISION_82C169)
 1583                                 t++;
 1584                         if (t->dc_did == DC_DEVICEID_DM9102 &&
 1585                             rev >= DC_REVISION_DM9102A)
 1586                                 t++;
 1587                         /*
 1588                          * The Microsoft MN-130 has a device ID of 0x0002,
 1589                          * which happens to be the same as the PNIC 82c168.
 1590                          * To keep dc_attach() from getting confused, we
 1591                          * pretend its ID is something different.
 1592                          * XXX: ideally, dc_attach() should be checking
 1593                          * vendorid+deviceid together to avoid such
 1594                          * collisions.
 1595                          */
 1596                         if (t->dc_vid == DC_VENDORID_MICROSOFT &&
 1597                             t->dc_did == DC_DEVICEID_MSMN130)
 1598                                 t++;
 1599                         return (t);
 1600                 }
 1601                 t++;
 1602         }
 1603 
 1604         return (NULL);
 1605 }
 1606 
 1607 /*
 1608  * Probe for a 21143 or clone chip. Check the PCI vendor and device
 1609  * IDs against our list and return a device name if we find a match.
 1610  * We do a little bit of extra work to identify the exact type of
 1611  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
 1612  * but different revision IDs. The same is true for 98715/98715A
 1613  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
 1614  * cases, the exact chip revision affects driver behavior.
 1615  */
 1616 static int
 1617 dc_probe(device_t dev)
 1618 {
 1619         struct dc_type *t;
 1620 
 1621         t = dc_devtype(dev);
 1622 
 1623         if (t != NULL) {
 1624                 device_set_desc(dev, t->dc_name);
 1625                 return (BUS_PROBE_DEFAULT);
 1626         }
 1627 
 1628         return (ENXIO);
 1629 }
 1630 
 1631 static void
 1632 dc_apply_fixup(struct dc_softc *sc, int media)
 1633 {
 1634         struct dc_mediainfo *m;
 1635         u_int8_t *p;
 1636         int i;
 1637         u_int32_t reg;
 1638 
 1639         m = sc->dc_mi;
 1640 
 1641         while (m != NULL) {
 1642                 if (m->dc_media == media)
 1643                         break;
 1644                 m = m->dc_next;
 1645         }
 1646 
 1647         if (m == NULL)
 1648                 return;
 1649 
 1650         for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
 1651                 reg = (p[0] | (p[1] << 8)) << 16;
 1652                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1653         }
 1654 
 1655         for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
 1656                 reg = (p[0] | (p[1] << 8)) << 16;
 1657                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1658         }
 1659 }
 1660 
 1661 static void
 1662 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
 1663 {
 1664         struct dc_mediainfo *m;
 1665 
 1666         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1667         switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
 1668         case DC_SIA_CODE_10BT:
 1669                 m->dc_media = IFM_10_T;
 1670                 break;
 1671         case DC_SIA_CODE_10BT_FDX:
 1672                 m->dc_media = IFM_10_T | IFM_FDX;
 1673                 break;
 1674         case DC_SIA_CODE_10B2:
 1675                 m->dc_media = IFM_10_2;
 1676                 break;
 1677         case DC_SIA_CODE_10B5:
 1678                 m->dc_media = IFM_10_5;
 1679                 break;
 1680         default:
 1681                 break;
 1682         }
 1683 
 1684         /*
 1685          * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
 1686          * Things apparently already work for cards that do
 1687          * supply Media Specific Data.
 1688          */
 1689         if (l->dc_sia_code & DC_SIA_CODE_EXT) {
 1690                 m->dc_gp_len = 2;
 1691                 m->dc_gp_ptr =
 1692                 (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
 1693         } else {
 1694                 m->dc_gp_len = 2;
 1695                 m->dc_gp_ptr =
 1696                 (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
 1697         }
 1698 
 1699         m->dc_next = sc->dc_mi;
 1700         sc->dc_mi = m;
 1701 
 1702         sc->dc_pmode = DC_PMODE_SIA;
 1703 }
 1704 
 1705 static void
 1706 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
 1707 {
 1708         struct dc_mediainfo *m;
 1709 
 1710         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1711         if (l->dc_sym_code == DC_SYM_CODE_100BT)
 1712                 m->dc_media = IFM_100_TX;
 1713 
 1714         if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
 1715                 m->dc_media = IFM_100_TX | IFM_FDX;
 1716 
 1717         m->dc_gp_len = 2;
 1718         m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
 1719 
 1720         m->dc_next = sc->dc_mi;
 1721         sc->dc_mi = m;
 1722 
 1723         sc->dc_pmode = DC_PMODE_SYM;
 1724 }
 1725 
 1726 static void
 1727 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
 1728 {
 1729         struct dc_mediainfo *m;
 1730         u_int8_t *p;
 1731 
 1732         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1733         /* We abuse IFM_AUTO to represent MII. */
 1734         m->dc_media = IFM_AUTO;
 1735         m->dc_gp_len = l->dc_gpr_len;
 1736 
 1737         p = (u_int8_t *)l;
 1738         p += sizeof(struct dc_eblock_mii);
 1739         m->dc_gp_ptr = p;
 1740         p += 2 * l->dc_gpr_len;
 1741         m->dc_reset_len = *p;
 1742         p++;
 1743         m->dc_reset_ptr = p;
 1744 
 1745         m->dc_next = sc->dc_mi;
 1746         sc->dc_mi = m;
 1747 }
 1748 
 1749 static void
 1750 dc_read_srom(struct dc_softc *sc, int bits)
 1751 {
 1752         int size;
 1753 
 1754         size = 2 << bits;
 1755         sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
 1756         dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
 1757 }
 1758 
 1759 static void
 1760 dc_parse_21143_srom(struct dc_softc *sc)
 1761 {
 1762         struct dc_leaf_hdr *lhdr;
 1763         struct dc_eblock_hdr *hdr;
 1764         int have_mii, i, loff;
 1765         char *ptr;
 1766 
 1767         have_mii = 0;
 1768         loff = sc->dc_srom[27];
 1769         lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
 1770 
 1771         ptr = (char *)lhdr;
 1772         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1773         /*
 1774          * Look if we got a MII media block.
 1775          */
 1776         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1777                 hdr = (struct dc_eblock_hdr *)ptr;
 1778                 if (hdr->dc_type == DC_EBLOCK_MII)
 1779                     have_mii++;
 1780 
 1781                 ptr += (hdr->dc_len & 0x7F);
 1782                 ptr++;
 1783         }
 1784 
 1785         /*
 1786          * Do the same thing again. Only use SIA and SYM media
 1787          * blocks if no MII media block is available.
 1788          */
 1789         ptr = (char *)lhdr;
 1790         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1791         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1792                 hdr = (struct dc_eblock_hdr *)ptr;
 1793                 switch (hdr->dc_type) {
 1794                 case DC_EBLOCK_MII:
 1795                         dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
 1796                         break;
 1797                 case DC_EBLOCK_SIA:
 1798                         if (! have_mii)
 1799                                 dc_decode_leaf_sia(sc,
 1800                                     (struct dc_eblock_sia *)hdr);
 1801                         break;
 1802                 case DC_EBLOCK_SYM:
 1803                         if (! have_mii)
 1804                                 dc_decode_leaf_sym(sc,
 1805                                     (struct dc_eblock_sym *)hdr);
 1806                         break;
 1807                 default:
 1808                         /* Don't care. Yet. */
 1809                         break;
 1810                 }
 1811                 ptr += (hdr->dc_len & 0x7F);
 1812                 ptr++;
 1813         }
 1814 }
 1815 
 1816 static void
 1817 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1818 {
 1819         u_int32_t *paddr;
 1820 
 1821         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 1822         paddr = arg;
 1823         *paddr = segs->ds_addr;
 1824 }
 1825 
 1826 /*
 1827  * Attach the interface. Allocate softc structures, do ifmedia
 1828  * setup and ethernet/BPF attach.
 1829  */
 1830 static int
 1831 dc_attach(device_t dev)
 1832 {
 1833         int tmp = 0;
 1834         u_char eaddr[ETHER_ADDR_LEN];
 1835         u_int32_t command;
 1836         struct dc_softc *sc;
 1837         struct ifnet *ifp;
 1838         u_int32_t revision;
 1839         int error = 0, rid, mac_offset;
 1840         int i;
 1841         u_int8_t *mac;
 1842 
 1843         sc = device_get_softc(dev);
 1844 
 1845         mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1846             MTX_DEF);
 1847 
 1848         /*
 1849          * Map control/status registers.
 1850          */
 1851         pci_enable_busmaster(dev);
 1852 
 1853         rid = DC_RID;
 1854         sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
 1855 
 1856         if (sc->dc_res == NULL) {
 1857                 device_printf(dev, "couldn't map ports/memory\n");
 1858                 error = ENXIO;
 1859                 goto fail;
 1860         }
 1861 
 1862         sc->dc_btag = rman_get_bustag(sc->dc_res);
 1863         sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
 1864 
 1865         /* Allocate interrupt. */
 1866         rid = 0;
 1867         sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1868             RF_SHAREABLE | RF_ACTIVE);
 1869 
 1870         if (sc->dc_irq == NULL) {
 1871                 device_printf(dev, "couldn't map interrupt\n");
 1872                 error = ENXIO;
 1873                 goto fail;
 1874         }
 1875 
 1876         /* Need this info to decide on a chip type. */
 1877         sc->dc_info = dc_devtype(dev);
 1878         revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
 1879 
 1880         /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
 1881         if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
 1882            sc->dc_info->dc_did != DC_DEVICEID_X3201)
 1883                 dc_eeprom_width(sc);
 1884 
 1885         switch (sc->dc_info->dc_did) {
 1886         case DC_DEVICEID_21143:
 1887                 sc->dc_type = DC_TYPE_21143;
 1888                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1889                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1890                 /* Save EEPROM contents so we can parse them later. */
 1891                 dc_read_srom(sc, sc->dc_romwidth);
 1892                 break;
 1893         case DC_DEVICEID_DM9009:
 1894         case DC_DEVICEID_DM9100:
 1895         case DC_DEVICEID_DM9102:
 1896                 sc->dc_type = DC_TYPE_DM9102;
 1897                 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
 1898                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
 1899                 sc->dc_flags |= DC_TX_ALIGN;
 1900                 sc->dc_pmode = DC_PMODE_MII;
 1901                 /* Increase the latency timer value. */
 1902                 command = pci_read_config(dev, DC_PCI_CFLT, 4);
 1903                 command &= 0xFFFF00FF;
 1904                 command |= 0x00008000;
 1905                 pci_write_config(dev, DC_PCI_CFLT, command, 4);
 1906                 break;
 1907         case DC_DEVICEID_AL981:
 1908                 sc->dc_type = DC_TYPE_AL981;
 1909                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1910                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1911                 sc->dc_pmode = DC_PMODE_MII;
 1912                 dc_read_srom(sc, sc->dc_romwidth);
 1913                 break;
 1914         case DC_DEVICEID_AN985:
 1915         case DC_DEVICEID_ADM9511:
 1916         case DC_DEVICEID_ADM9513:
 1917         case DC_DEVICEID_DRP32TXD:
 1918         case DC_DEVICEID_FA511:
 1919         case DC_DEVICEID_FE2500:
 1920         case DC_DEVICEID_EN2242:
 1921         case DC_DEVICEID_HAWKING_PN672TX:
 1922         case DC_DEVICEID_3CSOHOB:
 1923         case DC_DEVICEID_MSMN120:
 1924         case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
 1925                 sc->dc_type = DC_TYPE_AN985;
 1926                 sc->dc_flags |= DC_64BIT_HASH;
 1927                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1928                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1929                 sc->dc_pmode = DC_PMODE_MII;
 1930                 /* Don't read SROM for - auto-loaded on reset */
 1931                 break;
 1932         case DC_DEVICEID_98713:
 1933         case DC_DEVICEID_98713_CP:
 1934                 if (revision < DC_REVISION_98713A) {
 1935                         sc->dc_type = DC_TYPE_98713;
 1936                 }
 1937                 if (revision >= DC_REVISION_98713A) {
 1938                         sc->dc_type = DC_TYPE_98713A;
 1939                         sc->dc_flags |= DC_21143_NWAY;
 1940                 }
 1941                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1942                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1943                 break;
 1944         case DC_DEVICEID_987x5:
 1945         case DC_DEVICEID_EN1217:
 1946                 /*
 1947                  * Macronix MX98715AEC-C/D/E parts have only a
 1948                  * 128-bit hash table. We need to deal with these
 1949                  * in the same manner as the PNIC II so that we
 1950                  * get the right number of bits out of the
 1951                  * CRC routine.
 1952                  */
 1953                 if (revision >= DC_REVISION_98715AEC_C &&
 1954                     revision < DC_REVISION_98725)
 1955                         sc->dc_flags |= DC_128BIT_HASH;
 1956                 sc->dc_type = DC_TYPE_987x5;
 1957                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1958                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1959                 break;
 1960         case DC_DEVICEID_98727:
 1961                 sc->dc_type = DC_TYPE_987x5;
 1962                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1963                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1964                 break;
 1965         case DC_DEVICEID_82C115:
 1966                 sc->dc_type = DC_TYPE_PNICII;
 1967                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
 1968                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1969                 break;
 1970         case DC_DEVICEID_82C168:
 1971                 sc->dc_type = DC_TYPE_PNIC;
 1972                 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
 1973                 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
 1974                 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
 1975                 if (revision < DC_REVISION_82C169)
 1976                         sc->dc_pmode = DC_PMODE_SYM;
 1977                 break;
 1978         case DC_DEVICEID_AX88140A:
 1979                 sc->dc_type = DC_TYPE_ASIX;
 1980                 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
 1981                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1982                 sc->dc_pmode = DC_PMODE_MII;
 1983                 break;
 1984         case DC_DEVICEID_X3201:
 1985                 sc->dc_type = DC_TYPE_XIRCOM;
 1986                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 1987                                 DC_TX_ALIGN;
 1988                 /*
 1989                  * We don't actually need to coalesce, but we're doing
 1990                  * it to obtain a double word aligned buffer.
 1991                  * The DC_TX_COALESCE flag is required.
 1992                  */
 1993                 sc->dc_pmode = DC_PMODE_MII;
 1994                 break;
 1995         case DC_DEVICEID_RS7112:
 1996                 sc->dc_type = DC_TYPE_CONEXANT;
 1997                 sc->dc_flags |= DC_TX_INTR_ALWAYS;
 1998                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1999                 sc->dc_pmode = DC_PMODE_MII;
 2000                 dc_read_srom(sc, sc->dc_romwidth);
 2001                 break;
 2002         default:
 2003                 device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
 2004                 break;
 2005         }
 2006 
 2007         /* Save the cache line size. */
 2008         if (DC_IS_DAVICOM(sc))
 2009                 sc->dc_cachesize = 0;
 2010         else
 2011                 sc->dc_cachesize = pci_read_config(dev,
 2012                     DC_PCI_CFLT, 4) & 0xFF;
 2013 
 2014         /* Reset the adapter. */
 2015         dc_reset(sc);
 2016 
 2017         /* Take 21143 out of snooze mode */
 2018         if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
 2019                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2020                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2021                 pci_write_config(dev, DC_PCI_CFDD, command, 4);
 2022         }
 2023 
 2024         /*
 2025          * Try to learn something about the supported media.
 2026          * We know that ASIX and ADMtek and Davicom devices
 2027          * will *always* be using MII media, so that's a no-brainer.
 2028          * The tricky ones are the Macronix/PNIC II and the
 2029          * Intel 21143.
 2030          */
 2031         if (DC_IS_INTEL(sc))
 2032                 dc_parse_21143_srom(sc);
 2033         else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 2034                 if (sc->dc_type == DC_TYPE_98713)
 2035                         sc->dc_pmode = DC_PMODE_MII;
 2036                 else
 2037                         sc->dc_pmode = DC_PMODE_SYM;
 2038         } else if (!sc->dc_pmode)
 2039                 sc->dc_pmode = DC_PMODE_MII;
 2040 
 2041         /*
 2042          * Get station address from the EEPROM.
 2043          */
 2044         switch(sc->dc_type) {
 2045         case DC_TYPE_98713:
 2046         case DC_TYPE_98713A:
 2047         case DC_TYPE_987x5:
 2048         case DC_TYPE_PNICII:
 2049                 dc_read_eeprom(sc, (caddr_t)&mac_offset,
 2050                     (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
 2051                 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
 2052                 break;
 2053         case DC_TYPE_PNIC:
 2054                 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
 2055                 break;
 2056         case DC_TYPE_DM9102:
 2057                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2058 #ifdef __sparc64__
 2059                 /*
 2060                  * If this is an onboard dc(4) the station address read from
 2061                  * the EEPROM is all zero and we have to get it from the fcode.
 2062                  */
 2063                 for (i = 0; i < ETHER_ADDR_LEN; i++)
 2064                         if (eaddr[i] != 0x00)
 2065                                 break;
 2066                 if (i >= ETHER_ADDR_LEN)
 2067                         OF_getetheraddr(dev, eaddr);
 2068 #endif
 2069                 break;
 2070         case DC_TYPE_21143:
 2071         case DC_TYPE_ASIX:
 2072                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2073                 break;
 2074         case DC_TYPE_AL981:
 2075         case DC_TYPE_AN985:
 2076                 *(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
 2077                 *(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
 2078                 break;
 2079         case DC_TYPE_CONEXANT:
 2080                 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
 2081                     ETHER_ADDR_LEN);
 2082                 break;
 2083         case DC_TYPE_XIRCOM:
 2084                 /* The MAC comes from the CIS. */
 2085                 mac = pci_get_ether(dev);
 2086                 if (!mac) {
 2087                         device_printf(dev, "No station address in CIS!\n");
 2088                         error = ENXIO;
 2089                         goto fail;
 2090                 }
 2091                 bcopy(mac, eaddr, ETHER_ADDR_LEN);
 2092                 break;
 2093         default:
 2094                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2095                 break;
 2096         }
 2097 
 2098         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 2099         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2100             BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
 2101             sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
 2102         if (error) {
 2103                 device_printf(dev, "failed to allocate busdma tag\n");
 2104                 error = ENXIO;
 2105                 goto fail;
 2106         }
 2107         error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
 2108             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
 2109         if (error) {
 2110                 device_printf(dev, "failed to allocate DMA safe memory\n");
 2111                 error = ENXIO;
 2112                 goto fail;
 2113         }
 2114         error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
 2115             sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
 2116             BUS_DMA_NOWAIT);
 2117         if (error) {
 2118                 device_printf(dev, "cannot get address of the descriptors\n");
 2119                 error = ENXIO;
 2120                 goto fail;
 2121         }
 2122 
 2123         /*
 2124          * Allocate a busdma tag and DMA safe memory for the multicast
 2125          * setup frame.
 2126          */
 2127         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2128             BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
 2129             DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
 2130         if (error) {
 2131                 device_printf(dev, "failed to allocate busdma tag\n");
 2132                 error = ENXIO;
 2133                 goto fail;
 2134         }
 2135         error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
 2136             BUS_DMA_NOWAIT, &sc->dc_smap);
 2137         if (error) {
 2138                 device_printf(dev, "failed to allocate DMA safe memory\n");
 2139                 error = ENXIO;
 2140                 goto fail;
 2141         }
 2142         error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
 2143             DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
 2144         if (error) {
 2145                 device_printf(dev, "cannot get address of the descriptors\n");
 2146                 error = ENXIO;
 2147                 goto fail;
 2148         }
 2149 
 2150         /* Allocate a busdma tag for mbufs. */
 2151         error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
 2152             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
 2153             0, NULL, NULL, &sc->dc_mtag);
 2154         if (error) {
 2155                 device_printf(dev, "failed to allocate busdma tag\n");
 2156                 error = ENXIO;
 2157                 goto fail;
 2158         }
 2159 
 2160         /* Create the TX/RX busdma maps. */
 2161         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2162                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2163                     &sc->dc_cdata.dc_tx_map[i]);
 2164                 if (error) {
 2165                         device_printf(dev, "failed to init TX ring\n");
 2166                         error = ENXIO;
 2167                         goto fail;
 2168                 }
 2169         }
 2170         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2171                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2172                     &sc->dc_cdata.dc_rx_map[i]);
 2173                 if (error) {
 2174                         device_printf(dev, "failed to init RX ring\n");
 2175                         error = ENXIO;
 2176                         goto fail;
 2177                 }
 2178         }
 2179         error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
 2180         if (error) {
 2181                 device_printf(dev, "failed to init RX ring\n");
 2182                 error = ENXIO;
 2183                 goto fail;
 2184         }
 2185 
 2186         ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
 2187         if (ifp == NULL) {
 2188                 device_printf(dev, "can not if_alloc()\n");
 2189                 error = ENOSPC;
 2190                 goto fail;
 2191         }
 2192         ifp->if_softc = sc;
 2193         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2194         /* XXX: bleah, MTU gets overwritten in ether_ifattach() */
 2195         ifp->if_mtu = ETHERMTU;
 2196         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2197         ifp->if_ioctl = dc_ioctl;
 2198         ifp->if_start = dc_start;
 2199         ifp->if_watchdog = dc_watchdog;
 2200         ifp->if_init = dc_init;
 2201         IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
 2202         ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
 2203         IFQ_SET_READY(&ifp->if_snd);
 2204 
 2205         /*
 2206          * Do MII setup. If this is a 21143, check for a PHY on the
 2207          * MII bus after applying any necessary fixups to twiddle the
 2208          * GPIO bits. If we don't end up finding a PHY, restore the
 2209          * old selection (SIA only or SIA/SYM) and attach the dcphy
 2210          * driver instead.
 2211          */
 2212         if (DC_IS_INTEL(sc)) {
 2213                 dc_apply_fixup(sc, IFM_AUTO);
 2214                 tmp = sc->dc_pmode;
 2215                 sc->dc_pmode = DC_PMODE_MII;
 2216         }
 2217 
 2218         /*
 2219          * Setup General Purpose port mode and data so the tulip can talk
 2220          * to the MII.  This needs to be done before mii_phy_probe so that
 2221          * we can actually see them.
 2222          */
 2223         if (DC_IS_XIRCOM(sc)) {
 2224                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 2225                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2226                 DELAY(10);
 2227                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 2228                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2229                 DELAY(10);
 2230         }
 2231 
 2232         error = mii_phy_probe(dev, &sc->dc_miibus,
 2233             dc_ifmedia_upd, dc_ifmedia_sts);
 2234 
 2235         if (error && DC_IS_INTEL(sc)) {
 2236                 sc->dc_pmode = tmp;
 2237                 if (sc->dc_pmode != DC_PMODE_SIA)
 2238                         sc->dc_pmode = DC_PMODE_SYM;
 2239                 sc->dc_flags |= DC_21143_NWAY;
 2240                 mii_phy_probe(dev, &sc->dc_miibus,
 2241                     dc_ifmedia_upd, dc_ifmedia_sts);
 2242                 /*
 2243                  * For non-MII cards, we need to have the 21143
 2244                  * drive the LEDs. Except there are some systems
 2245                  * like the NEC VersaPro NoteBook PC which have no
 2246                  * LEDs, and twiddling these bits has adverse effects
 2247                  * on them. (I.e. you suddenly can't get a link.)
 2248                  */
 2249                 if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
 2250                         sc->dc_flags |= DC_TULIP_LEDS;
 2251                 error = 0;
 2252         }
 2253 
 2254         if (error) {
 2255                 device_printf(dev, "MII without any PHY!\n");
 2256                 goto fail;
 2257         }
 2258 
 2259         if (DC_IS_ADMTEK(sc)) {
 2260                 /*
 2261                  * Set automatic TX underrun recovery for the ADMtek chips
 2262                  */
 2263                 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
 2264         }
 2265 
 2266         /*
 2267          * Tell the upper layer(s) we support long frames.
 2268          */
 2269         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 2270         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 2271         ifp->if_capenable = ifp->if_capabilities;
 2272 #ifdef DEVICE_POLLING
 2273         ifp->if_capabilities |= IFCAP_POLLING;
 2274 #endif
 2275 
 2276         callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
 2277 
 2278 #ifdef SRM_MEDIA
 2279         sc->dc_srm_media = 0;
 2280 
 2281         /* Remember the SRM console media setting */
 2282         if (DC_IS_INTEL(sc)) {
 2283                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2284                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2285                 switch ((command >> 8) & 0xff) {
 2286                 case 3:
 2287                         sc->dc_srm_media = IFM_10_T;
 2288                         break;
 2289                 case 4:
 2290                         sc->dc_srm_media = IFM_10_T | IFM_FDX;
 2291                         break;
 2292                 case 5:
 2293                         sc->dc_srm_media = IFM_100_TX;
 2294                         break;
 2295                 case 6:
 2296                         sc->dc_srm_media = IFM_100_TX | IFM_FDX;
 2297                         break;
 2298                 }
 2299                 if (sc->dc_srm_media)
 2300                         sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
 2301         }
 2302 #endif
 2303 
 2304         /*
 2305          * Call MI attach routine.
 2306          */
 2307         ether_ifattach(ifp, eaddr);
 2308 
 2309         /* Hook interrupt last to avoid having to lock softc */
 2310         error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2311             dc_intr, sc, &sc->dc_intrhand);
 2312 
 2313         if (error) {
 2314                 device_printf(dev, "couldn't set up irq\n");
 2315                 ether_ifdetach(ifp);
 2316                 goto fail;
 2317         }
 2318 
 2319 fail:
 2320         if (error)
 2321                 dc_detach(dev);
 2322         return (error);
 2323 }
 2324 
 2325 /*
 2326  * Shutdown hardware and free up resources. This can be called any
 2327  * time after the mutex has been initialized. It is called in both
 2328  * the error case in attach and the normal detach case so it needs
 2329  * to be careful about only freeing resources that have actually been
 2330  * allocated.
 2331  */
 2332 static int
 2333 dc_detach(device_t dev)
 2334 {
 2335         struct dc_softc *sc;
 2336         struct ifnet *ifp;
 2337         struct dc_mediainfo *m;
 2338         int i;
 2339 
 2340         sc = device_get_softc(dev);
 2341         KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
 2342 
 2343         ifp = sc->dc_ifp;
 2344 
 2345 #ifdef DEVICE_POLLING
 2346         if (ifp->if_capenable & IFCAP_POLLING)
 2347                 ether_poll_deregister(ifp);
 2348 #endif
 2349 
 2350         /* These should only be active if attach succeeded */
 2351         if (device_is_attached(dev)) {
 2352                 DC_LOCK(sc);
 2353                 dc_stop(sc);
 2354                 DC_UNLOCK(sc);
 2355                 callout_drain(&sc->dc_stat_ch);
 2356                 ether_ifdetach(ifp);
 2357         }
 2358         if (ifp)
 2359                 if_free(ifp);
 2360         if (sc->dc_miibus)
 2361                 device_delete_child(dev, sc->dc_miibus);
 2362         bus_generic_detach(dev);
 2363 
 2364         if (sc->dc_intrhand)
 2365                 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
 2366         if (sc->dc_irq)
 2367                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
 2368         if (sc->dc_res)
 2369                 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
 2370 
 2371         if (sc->dc_cdata.dc_sbuf != NULL)
 2372                 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
 2373         if (sc->dc_ldata != NULL)
 2374                 bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
 2375         if (sc->dc_mtag) {
 2376                 for (i = 0; i < DC_TX_LIST_CNT; i++)
 2377                         if (sc->dc_cdata.dc_tx_map[i] != NULL)
 2378                                 bus_dmamap_destroy(sc->dc_mtag,
 2379                                     sc->dc_cdata.dc_tx_map[i]);
 2380                 for (i = 0; i < DC_RX_LIST_CNT; i++)
 2381                         if (sc->dc_cdata.dc_rx_map[i] != NULL)
 2382                                 bus_dmamap_destroy(sc->dc_mtag,
 2383                                     sc->dc_cdata.dc_rx_map[i]);
 2384                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
 2385         }
 2386         if (sc->dc_stag)
 2387                 bus_dma_tag_destroy(sc->dc_stag);
 2388         if (sc->dc_mtag)
 2389                 bus_dma_tag_destroy(sc->dc_mtag);
 2390         if (sc->dc_ltag)
 2391                 bus_dma_tag_destroy(sc->dc_ltag);
 2392 
 2393         free(sc->dc_pnic_rx_buf, M_DEVBUF);
 2394 
 2395         while (sc->dc_mi != NULL) {
 2396                 m = sc->dc_mi->dc_next;
 2397                 free(sc->dc_mi, M_DEVBUF);
 2398                 sc->dc_mi = m;
 2399         }
 2400         free(sc->dc_srom, M_DEVBUF);
 2401 
 2402         mtx_destroy(&sc->dc_mtx);
 2403 
 2404         return (0);
 2405 }
 2406 
 2407 /*
 2408  * Initialize the transmit descriptors.
 2409  */
 2410 static int
 2411 dc_list_tx_init(struct dc_softc *sc)
 2412 {
 2413         struct dc_chain_data *cd;
 2414         struct dc_list_data *ld;
 2415         int i, nexti;
 2416 
 2417         cd = &sc->dc_cdata;
 2418         ld = sc->dc_ldata;
 2419         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2420                 if (i == DC_TX_LIST_CNT - 1)
 2421                         nexti = 0;
 2422                 else
 2423                         nexti = i + 1;
 2424                 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
 2425                 cd->dc_tx_chain[i] = NULL;
 2426                 ld->dc_tx_list[i].dc_data = 0;
 2427                 ld->dc_tx_list[i].dc_ctl = 0;
 2428         }
 2429 
 2430         cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
 2431         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2432             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2433         return (0);
 2434 }
 2435 
 2436 
 2437 /*
 2438  * Initialize the RX descriptors and allocate mbufs for them. Note that
 2439  * we arrange the descriptors in a closed ring, so that the last descriptor
 2440  * points back to the first.
 2441  */
 2442 static int
 2443 dc_list_rx_init(struct dc_softc *sc)
 2444 {
 2445         struct dc_chain_data *cd;
 2446         struct dc_list_data *ld;
 2447         int i, nexti;
 2448 
 2449         cd = &sc->dc_cdata;
 2450         ld = sc->dc_ldata;
 2451 
 2452         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2453                 if (dc_newbuf(sc, i, 1) != 0)
 2454                         return (ENOBUFS);
 2455                 if (i == DC_RX_LIST_CNT - 1)
 2456                         nexti = 0;
 2457                 else
 2458                         nexti = i + 1;
 2459                 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
 2460         }
 2461 
 2462         cd->dc_rx_prod = 0;
 2463         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2464             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2465         return (0);
 2466 }
 2467 
 2468 static void
 2469 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
 2470         void *arg;
 2471         bus_dma_segment_t *segs;
 2472         int nseg;
 2473         bus_size_t mapsize;
 2474         int error;
 2475 {
 2476         struct dc_softc *sc;
 2477         struct dc_desc *c;
 2478 
 2479         sc = arg;
 2480         c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
 2481         if (error) {
 2482                 sc->dc_cdata.dc_rx_err = error;
 2483                 return;
 2484         }
 2485 
 2486         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 2487         sc->dc_cdata.dc_rx_err = 0;
 2488         c->dc_data = htole32(segs->ds_addr);
 2489 }
 2490 
 2491 /*
 2492  * Initialize an RX descriptor and attach an MBUF cluster.
 2493  */
 2494 static int
 2495 dc_newbuf(struct dc_softc *sc, int i, int alloc)
 2496 {
 2497         struct mbuf *m_new;
 2498         bus_dmamap_t tmp;
 2499         int error;
 2500 
 2501         if (alloc) {
 2502                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2503                 if (m_new == NULL)
 2504                         return (ENOBUFS);
 2505         } else {
 2506                 m_new = sc->dc_cdata.dc_rx_chain[i];
 2507                 m_new->m_data = m_new->m_ext.ext_buf;
 2508         }
 2509         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 2510         m_adj(m_new, sizeof(u_int64_t));
 2511 
 2512         /*
 2513          * If this is a PNIC chip, zero the buffer. This is part
 2514          * of the workaround for the receive bug in the 82c168 and
 2515          * 82c169 chips.
 2516          */
 2517         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
 2518                 bzero(mtod(m_new, char *), m_new->m_len);
 2519 
 2520         /* No need to remap the mbuf if we're reusing it. */
 2521         if (alloc) {
 2522                 sc->dc_cdata.dc_rx_cur = i;
 2523                 error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
 2524                     m_new, dc_dma_map_rxbuf, sc, 0);
 2525                 if (error) {
 2526                         m_freem(m_new);
 2527                         return (error);
 2528                 }
 2529                 if (sc->dc_cdata.dc_rx_err != 0) {
 2530                         m_freem(m_new);
 2531                         return (sc->dc_cdata.dc_rx_err);
 2532                 }
 2533                 bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2534                 tmp = sc->dc_cdata.dc_rx_map[i];
 2535                 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
 2536                 sc->dc_sparemap = tmp;
 2537                 sc->dc_cdata.dc_rx_chain[i] = m_new;
 2538         }
 2539 
 2540         sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2541         sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2542         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2543             BUS_DMASYNC_PREREAD);
 2544         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2545             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2546         return (0);
 2547 }
 2548 
 2549 /*
 2550  * Grrrrr.
 2551  * The PNIC chip has a terrible bug in it that manifests itself during
 2552  * periods of heavy activity. The exact mode of failure if difficult to
 2553  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
 2554  * will happen on slow machines. The bug is that sometimes instead of
 2555  * uploading one complete frame during reception, it uploads what looks
 2556  * like the entire contents of its FIFO memory. The frame we want is at
 2557  * the end of the whole mess, but we never know exactly how much data has
 2558  * been uploaded, so salvaging the frame is hard.
 2559  *
 2560  * There is only one way to do it reliably, and it's disgusting.
 2561  * Here's what we know:
 2562  *
 2563  * - We know there will always be somewhere between one and three extra
 2564  *   descriptors uploaded.
 2565  *
 2566  * - We know the desired received frame will always be at the end of the
 2567  *   total data upload.
 2568  *
 2569  * - We know the size of the desired received frame because it will be
 2570  *   provided in the length field of the status word in the last descriptor.
 2571  *
 2572  * Here's what we do:
 2573  *
 2574  * - When we allocate buffers for the receive ring, we bzero() them.
 2575  *   This means that we know that the buffer contents should be all
 2576  *   zeros, except for data uploaded by the chip.
 2577  *
 2578  * - We also force the PNIC chip to upload frames that include the
 2579  *   ethernet CRC at the end.
 2580  *
 2581  * - We gather all of the bogus frame data into a single buffer.
 2582  *
 2583  * - We then position a pointer at the end of this buffer and scan
 2584  *   backwards until we encounter the first non-zero byte of data.
 2585  *   This is the end of the received frame. We know we will encounter
 2586  *   some data at the end of the frame because the CRC will always be
 2587  *   there, so even if the sender transmits a packet of all zeros,
 2588  *   we won't be fooled.
 2589  *
 2590  * - We know the size of the actual received frame, so we subtract
 2591  *   that value from the current pointer location. This brings us
 2592  *   to the start of the actual received packet.
 2593  *
 2594  * - We copy this into an mbuf and pass it on, along with the actual
 2595  *   frame length.
 2596  *
 2597  * The performance hit is tremendous, but it beats dropping frames all
 2598  * the time.
 2599  */
 2600 
 2601 #define DC_WHOLEFRAME   (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
 2602 static void
 2603 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
 2604 {
 2605         struct dc_desc *cur_rx;
 2606         struct dc_desc *c = NULL;
 2607         struct mbuf *m = NULL;
 2608         unsigned char *ptr;
 2609         int i, total_len;
 2610         u_int32_t rxstat = 0;
 2611 
 2612         i = sc->dc_pnic_rx_bug_save;
 2613         cur_rx = &sc->dc_ldata->dc_rx_list[idx];
 2614         ptr = sc->dc_pnic_rx_buf;
 2615         bzero(ptr, DC_RXLEN * 5);
 2616 
 2617         /* Copy all the bytes from the bogus buffers. */
 2618         while (1) {
 2619                 c = &sc->dc_ldata->dc_rx_list[i];
 2620                 rxstat = le32toh(c->dc_status);
 2621                 m = sc->dc_cdata.dc_rx_chain[i];
 2622                 bcopy(mtod(m, char *), ptr, DC_RXLEN);
 2623                 ptr += DC_RXLEN;
 2624                 /* If this is the last buffer, break out. */
 2625                 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
 2626                         break;
 2627                 dc_newbuf(sc, i, 0);
 2628                 DC_INC(i, DC_RX_LIST_CNT);
 2629         }
 2630 
 2631         /* Find the length of the actual receive frame. */
 2632         total_len = DC_RXBYTES(rxstat);
 2633 
 2634         /* Scan backwards until we hit a non-zero byte. */
 2635         while (*ptr == 0x00)
 2636                 ptr--;
 2637 
 2638         /* Round off. */
 2639         if ((uintptr_t)(ptr) & 0x3)
 2640                 ptr -= 1;
 2641 
 2642         /* Now find the start of the frame. */
 2643         ptr -= total_len;
 2644         if (ptr < sc->dc_pnic_rx_buf)
 2645                 ptr = sc->dc_pnic_rx_buf;
 2646 
 2647         /*
 2648          * Now copy the salvaged frame to the last mbuf and fake up
 2649          * the status word to make it look like a successful
 2650          * frame reception.
 2651          */
 2652         dc_newbuf(sc, i, 0);
 2653         bcopy(ptr, mtod(m, char *), total_len);
 2654         cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
 2655 }
 2656 
 2657 /*
 2658  * This routine searches the RX ring for dirty descriptors in the
 2659  * event that the rxeof routine falls out of sync with the chip's
 2660  * current descriptor pointer. This may happen sometimes as a result
 2661  * of a "no RX buffer available" condition that happens when the chip
 2662  * consumes all of the RX buffers before the driver has a chance to
 2663  * process the RX ring. This routine may need to be called more than
 2664  * once to bring the driver back in sync with the chip, however we
 2665  * should still be getting RX DONE interrupts to drive the search
 2666  * for new packets in the RX ring, so we should catch up eventually.
 2667  */
 2668 static int
 2669 dc_rx_resync(struct dc_softc *sc)
 2670 {
 2671         struct dc_desc *cur_rx;
 2672         int i, pos;
 2673 
 2674         pos = sc->dc_cdata.dc_rx_prod;
 2675 
 2676         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2677                 cur_rx = &sc->dc_ldata->dc_rx_list[pos];
 2678                 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
 2679                         break;
 2680                 DC_INC(pos, DC_RX_LIST_CNT);
 2681         }
 2682 
 2683         /* If the ring really is empty, then just return. */
 2684         if (i == DC_RX_LIST_CNT)
 2685                 return (0);
 2686 
 2687         /* We've fallen behing the chip: catch it. */
 2688         sc->dc_cdata.dc_rx_prod = pos;
 2689 
 2690         return (EAGAIN);
 2691 }
 2692 
 2693 /*
 2694  * A frame has been uploaded: pass the resulting mbuf chain up to
 2695  * the higher level protocols.
 2696  */
 2697 static void
 2698 dc_rxeof(struct dc_softc *sc)
 2699 {
 2700         struct mbuf *m;
 2701         struct ifnet *ifp;
 2702         struct dc_desc *cur_rx;
 2703         int i, total_len = 0;
 2704         u_int32_t rxstat;
 2705 
 2706         DC_LOCK_ASSERT(sc);
 2707 
 2708         ifp = sc->dc_ifp;
 2709         i = sc->dc_cdata.dc_rx_prod;
 2710 
 2711         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2712         while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
 2713             DC_RXSTAT_OWN)) {
 2714 #ifdef DEVICE_POLLING
 2715                 if (ifp->if_capenable & IFCAP_POLLING) {
 2716                         if (sc->rxcycles <= 0)
 2717                                 break;
 2718                         sc->rxcycles--;
 2719                 }
 2720 #endif
 2721                 cur_rx = &sc->dc_ldata->dc_rx_list[i];
 2722                 rxstat = le32toh(cur_rx->dc_status);
 2723                 m = sc->dc_cdata.dc_rx_chain[i];
 2724                 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2725                     BUS_DMASYNC_POSTREAD);
 2726                 total_len = DC_RXBYTES(rxstat);
 2727 
 2728                 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2729                         if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
 2730                                 if (rxstat & DC_RXSTAT_FIRSTFRAG)
 2731                                         sc->dc_pnic_rx_bug_save = i;
 2732                                 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
 2733                                         DC_INC(i, DC_RX_LIST_CNT);
 2734                                         continue;
 2735                                 }
 2736                                 dc_pnic_rx_bug_war(sc, i);
 2737                                 rxstat = le32toh(cur_rx->dc_status);
 2738                                 total_len = DC_RXBYTES(rxstat);
 2739                         }
 2740                 }
 2741 
 2742                 /*
 2743                  * If an error occurs, update stats, clear the
 2744                  * status word and leave the mbuf cluster in place:
 2745                  * it should simply get re-used next time this descriptor
 2746                  * comes up in the ring.  However, don't report long
 2747                  * frames as errors since they could be vlans.
 2748                  */
 2749                 if ((rxstat & DC_RXSTAT_RXERR)) {
 2750                         if (!(rxstat & DC_RXSTAT_GIANT) ||
 2751                             (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
 2752                                        DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
 2753                                        DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
 2754                                 ifp->if_ierrors++;
 2755                                 if (rxstat & DC_RXSTAT_COLLSEEN)
 2756                                         ifp->if_collisions++;
 2757                                 dc_newbuf(sc, i, 0);
 2758                                 if (rxstat & DC_RXSTAT_CRCERR) {
 2759                                         DC_INC(i, DC_RX_LIST_CNT);
 2760                                         continue;
 2761                                 } else {
 2762                                         dc_init_locked(sc);
 2763                                         return;
 2764                                 }
 2765                         }
 2766                 }
 2767 
 2768                 /* No errors; receive the packet. */
 2769                 total_len -= ETHER_CRC_LEN;
 2770 #ifdef __i386__
 2771                 /*
 2772                  * On the x86 we do not have alignment problems, so try to
 2773                  * allocate a new buffer for the receive ring, and pass up
 2774                  * the one where the packet is already, saving the expensive
 2775                  * copy done in m_devget().
 2776                  * If we are on an architecture with alignment problems, or
 2777                  * if the allocation fails, then use m_devget and leave the
 2778                  * existing buffer in the receive ring.
 2779                  */
 2780                 if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
 2781                         m->m_pkthdr.rcvif = ifp;
 2782                         m->m_pkthdr.len = m->m_len = total_len;
 2783                         DC_INC(i, DC_RX_LIST_CNT);
 2784                 } else
 2785 #endif
 2786                 {
 2787                         struct mbuf *m0;
 2788 
 2789                         m0 = m_devget(mtod(m, char *), total_len,
 2790                                 ETHER_ALIGN, ifp, NULL);
 2791                         dc_newbuf(sc, i, 0);
 2792                         DC_INC(i, DC_RX_LIST_CNT);
 2793                         if (m0 == NULL) {
 2794                                 ifp->if_ierrors++;
 2795                                 continue;
 2796                         }
 2797                         m = m0;
 2798                 }
 2799 
 2800                 ifp->if_ipackets++;
 2801                 DC_UNLOCK(sc);
 2802                 (*ifp->if_input)(ifp, m);
 2803                 DC_LOCK(sc);
 2804         }
 2805 
 2806         sc->dc_cdata.dc_rx_prod = i;
 2807 }
 2808 
 2809 /*
 2810  * A frame was downloaded to the chip. It's safe for us to clean up
 2811  * the list buffers.
 2812  */
 2813 
 2814 static void
 2815 dc_txeof(struct dc_softc *sc)
 2816 {
 2817         struct dc_desc *cur_tx = NULL;
 2818         struct ifnet *ifp;
 2819         int idx;
 2820         u_int32_t ctl, txstat;
 2821 
 2822         ifp = sc->dc_ifp;
 2823 
 2824         /*
 2825          * Go through our tx list and free mbufs for those
 2826          * frames that have been transmitted.
 2827          */
 2828         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2829         idx = sc->dc_cdata.dc_tx_cons;
 2830         while (idx != sc->dc_cdata.dc_tx_prod) {
 2831 
 2832                 cur_tx = &sc->dc_ldata->dc_tx_list[idx];
 2833                 txstat = le32toh(cur_tx->dc_status);
 2834                 ctl = le32toh(cur_tx->dc_ctl);
 2835 
 2836                 if (txstat & DC_TXSTAT_OWN)
 2837                         break;
 2838 
 2839                 if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
 2840                         if (ctl & DC_TXCTL_SETUP) {
 2841                                 /*
 2842                                  * Yes, the PNIC is so brain damaged
 2843                                  * that it will sometimes generate a TX
 2844                                  * underrun error while DMAing the RX
 2845                                  * filter setup frame. If we detect this,
 2846                                  * we have to send the setup frame again,
 2847                                  * or else the filter won't be programmed
 2848                                  * correctly.
 2849                                  */
 2850                                 if (DC_IS_PNIC(sc)) {
 2851                                         if (txstat & DC_TXSTAT_ERRSUM)
 2852                                                 dc_setfilt(sc);
 2853                                 }
 2854                                 sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2855                         }
 2856                         sc->dc_cdata.dc_tx_cnt--;
 2857                         DC_INC(idx, DC_TX_LIST_CNT);
 2858                         continue;
 2859                 }
 2860 
 2861                 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
 2862                         /*
 2863                          * XXX: Why does my Xircom taunt me so?
 2864                          * For some reason it likes setting the CARRLOST flag
 2865                          * even when the carrier is there. wtf?!?
 2866                          * Who knows, but Conexant chips have the
 2867                          * same problem. Maybe they took lessons
 2868                          * from Xircom.
 2869                          */
 2870                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2871                             sc->dc_pmode == DC_PMODE_MII &&
 2872                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2873                             DC_TXSTAT_NOCARRIER)))
 2874                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2875                 } else {
 2876                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2877                             sc->dc_pmode == DC_PMODE_MII &&
 2878                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2879                             DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
 2880                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2881                 }
 2882 
 2883                 if (txstat & DC_TXSTAT_ERRSUM) {
 2884                         ifp->if_oerrors++;
 2885                         if (txstat & DC_TXSTAT_EXCESSCOLL)
 2886                                 ifp->if_collisions++;
 2887                         if (txstat & DC_TXSTAT_LATECOLL)
 2888                                 ifp->if_collisions++;
 2889                         if (!(txstat & DC_TXSTAT_UNDERRUN)) {
 2890                                 dc_init_locked(sc);
 2891                                 return;
 2892                         }
 2893                 }
 2894 
 2895                 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
 2896 
 2897                 ifp->if_opackets++;
 2898                 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
 2899                         bus_dmamap_sync(sc->dc_mtag,
 2900                             sc->dc_cdata.dc_tx_map[idx],
 2901                             BUS_DMASYNC_POSTWRITE);
 2902                         bus_dmamap_unload(sc->dc_mtag,
 2903                             sc->dc_cdata.dc_tx_map[idx]);
 2904                         m_freem(sc->dc_cdata.dc_tx_chain[idx]);
 2905                         sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2906                 }
 2907 
 2908                 sc->dc_cdata.dc_tx_cnt--;
 2909                 DC_INC(idx, DC_TX_LIST_CNT);
 2910         }
 2911 
 2912         if (idx != sc->dc_cdata.dc_tx_cons) {
 2913                 /* Some buffers have been freed. */
 2914                 sc->dc_cdata.dc_tx_cons = idx;
 2915                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2916         }
 2917         ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
 2918 }
 2919 
 2920 static void
 2921 dc_tick(void *xsc)
 2922 {
 2923         struct dc_softc *sc;
 2924         struct mii_data *mii;
 2925         struct ifnet *ifp;
 2926         u_int32_t r;
 2927 
 2928         sc = xsc;
 2929         DC_LOCK_ASSERT(sc);
 2930         ifp = sc->dc_ifp;
 2931         mii = device_get_softc(sc->dc_miibus);
 2932 
 2933         if (sc->dc_flags & DC_REDUCED_MII_POLL) {
 2934                 if (sc->dc_flags & DC_21143_NWAY) {
 2935                         r = CSR_READ_4(sc, DC_10BTSTAT);
 2936                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2937                             IFM_100_TX && (r & DC_TSTAT_LS100)) {
 2938                                 sc->dc_link = 0;
 2939                                 mii_mediachg(mii);
 2940                         }
 2941                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2942                             IFM_10_T && (r & DC_TSTAT_LS10)) {
 2943                                 sc->dc_link = 0;
 2944                                 mii_mediachg(mii);
 2945                         }
 2946                         if (sc->dc_link == 0)
 2947                                 mii_tick(mii);
 2948                 } else {
 2949                         r = CSR_READ_4(sc, DC_ISR);
 2950                         if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
 2951                             sc->dc_cdata.dc_tx_cnt == 0) {
 2952                                 mii_tick(mii);
 2953                                 if (!(mii->mii_media_status & IFM_ACTIVE))
 2954                                         sc->dc_link = 0;
 2955                         }
 2956                 }
 2957         } else
 2958                 mii_tick(mii);
 2959 
 2960         /*
 2961          * When the init routine completes, we expect to be able to send
 2962          * packets right away, and in fact the network code will send a
 2963          * gratuitous ARP the moment the init routine marks the interface
 2964          * as running. However, even though the MAC may have been initialized,
 2965          * there may be a delay of a few seconds before the PHY completes
 2966          * autonegotiation and the link is brought up. Any transmissions
 2967          * made during that delay will be lost. Dealing with this is tricky:
 2968          * we can't just pause in the init routine while waiting for the
 2969          * PHY to come ready since that would bring the whole system to
 2970          * a screeching halt for several seconds.
 2971          *
 2972          * What we do here is prevent the TX start routine from sending
 2973          * any packets until a link has been established. After the
 2974          * interface has been initialized, the tick routine will poll
 2975          * the state of the PHY until the IFM_ACTIVE flag is set. Until
 2976          * that time, packets will stay in the send queue, and once the
 2977          * link comes up, they will be flushed out to the wire.
 2978          */
 2979         if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
 2980             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 2981                 sc->dc_link++;
 2982                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2983                         dc_start_locked(ifp);
 2984         }
 2985 
 2986         if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
 2987                 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 2988         else
 2989                 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 2990 }
 2991 
 2992 /*
 2993  * A transmit underrun has occurred.  Back off the transmit threshold,
 2994  * or switch to store and forward mode if we have to.
 2995  */
 2996 static void
 2997 dc_tx_underrun(struct dc_softc *sc)
 2998 {
 2999         u_int32_t isr;
 3000         int i;
 3001 
 3002         if (DC_IS_DAVICOM(sc))
 3003                 dc_init_locked(sc);
 3004 
 3005         if (DC_IS_INTEL(sc)) {
 3006                 /*
 3007                  * The real 21143 requires that the transmitter be idle
 3008                  * in order to change the transmit threshold or store
 3009                  * and forward state.
 3010                  */
 3011                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3012 
 3013                 for (i = 0; i < DC_TIMEOUT; i++) {
 3014                         isr = CSR_READ_4(sc, DC_ISR);
 3015                         if (isr & DC_ISR_TX_IDLE)
 3016                                 break;
 3017                         DELAY(10);
 3018                 }
 3019                 if (i == DC_TIMEOUT) {
 3020                         if_printf(sc->dc_ifp,
 3021                             "failed to force tx to idle state\n");
 3022                         dc_init_locked(sc);
 3023                 }
 3024         }
 3025 
 3026         if_printf(sc->dc_ifp, "TX underrun -- ");
 3027         sc->dc_txthresh += DC_TXTHRESH_INC;
 3028         if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3029                 printf("using store and forward mode\n");
 3030                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3031         } else {
 3032                 printf("increasing TX threshold\n");
 3033                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3034                 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3035         }
 3036 
 3037         if (DC_IS_INTEL(sc))
 3038                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3039 }
 3040 
 3041 #ifdef DEVICE_POLLING
 3042 static poll_handler_t dc_poll;
 3043 
 3044 static void
 3045 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3046 {
 3047         struct dc_softc *sc = ifp->if_softc;
 3048 
 3049         DC_LOCK(sc);
 3050 
 3051         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3052                 DC_UNLOCK(sc);
 3053                 return;
 3054         }
 3055 
 3056         sc->rxcycles = count;
 3057         dc_rxeof(sc);
 3058         dc_txeof(sc);
 3059         if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
 3060             !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
 3061                 dc_start_locked(ifp);
 3062 
 3063         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 3064                 u_int32_t       status;
 3065 
 3066                 status = CSR_READ_4(sc, DC_ISR);
 3067                 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
 3068                         DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
 3069                         DC_ISR_BUS_ERR);
 3070                 if (!status) {
 3071                         DC_UNLOCK(sc);
 3072                         return;
 3073                 }
 3074                 /* ack what we have */
 3075                 CSR_WRITE_4(sc, DC_ISR, status);
 3076 
 3077                 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
 3078                         u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3079                         ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
 3080 
 3081                         if (dc_rx_resync(sc))
 3082                                 dc_rxeof(sc);
 3083                 }
 3084                 /* restart transmit unit if necessary */
 3085                 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
 3086                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3087 
 3088                 if (status & DC_ISR_TX_UNDERRUN)
 3089                         dc_tx_underrun(sc);
 3090 
 3091                 if (status & DC_ISR_BUS_ERR) {
 3092                         if_printf(ifp, "dc_poll: bus error\n");
 3093                         dc_reset(sc);
 3094                         dc_init_locked(sc);
 3095                 }
 3096         }
 3097         DC_UNLOCK(sc);
 3098 }
 3099 #endif /* DEVICE_POLLING */
 3100 
 3101 static void
 3102 dc_intr(void *arg)
 3103 {
 3104         struct dc_softc *sc;
 3105         struct ifnet *ifp;
 3106         u_int32_t status;
 3107 
 3108         sc = arg;
 3109 
 3110         if (sc->suspended)
 3111                 return;
 3112 
 3113         if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
 3114                 return;
 3115 
 3116         DC_LOCK(sc);
 3117         ifp = sc->dc_ifp;
 3118 #ifdef DEVICE_POLLING
 3119         if (ifp->if_capenable & IFCAP_POLLING) {
 3120                 DC_UNLOCK(sc);
 3121                 return;
 3122         }
 3123 #endif
 3124 
 3125         /* Suppress unwanted interrupts */
 3126         if (!(ifp->if_flags & IFF_UP)) {
 3127                 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
 3128                         dc_stop(sc);
 3129                 DC_UNLOCK(sc);
 3130                 return;
 3131         }
 3132 
 3133         /* Disable interrupts. */
 3134         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3135 
 3136         while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
 3137             status != 0xFFFFFFFF &&
 3138             (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3139 
 3140                 CSR_WRITE_4(sc, DC_ISR, status);
 3141 
 3142                 if (status & DC_ISR_RX_OK) {
 3143                         int             curpkts;
 3144                         curpkts = ifp->if_ipackets;
 3145                         dc_rxeof(sc);
 3146                         if (curpkts == ifp->if_ipackets) {
 3147                                 while (dc_rx_resync(sc))
 3148                                         dc_rxeof(sc);
 3149                         }
 3150                 }
 3151 
 3152                 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
 3153                         dc_txeof(sc);
 3154 
 3155                 if (status & DC_ISR_TX_IDLE) {
 3156                         dc_txeof(sc);
 3157                         if (sc->dc_cdata.dc_tx_cnt) {
 3158                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3159                                 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3160                         }
 3161                 }
 3162 
 3163                 if (status & DC_ISR_TX_UNDERRUN)
 3164                         dc_tx_underrun(sc);
 3165 
 3166                 if ((status & DC_ISR_RX_WATDOGTIMEO)
 3167                     || (status & DC_ISR_RX_NOBUF)) {
 3168                         int             curpkts;
 3169                         curpkts = ifp->if_ipackets;
 3170                         dc_rxeof(sc);
 3171                         if (curpkts == ifp->if_ipackets) {
 3172                                 while (dc_rx_resync(sc))
 3173                                         dc_rxeof(sc);
 3174                         }
 3175                 }
 3176 
 3177                 if (status & DC_ISR_BUS_ERR) {
 3178                         dc_reset(sc);
 3179                         dc_init_locked(sc);
 3180                 }
 3181         }
 3182 
 3183         /* Re-enable interrupts. */
 3184         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3185 
 3186         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3187                 dc_start_locked(ifp);
 3188 
 3189         DC_UNLOCK(sc);
 3190 }
 3191 
 3192 static void
 3193 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
 3194         void *arg;
 3195         bus_dma_segment_t *segs;
 3196         int nseg;
 3197         bus_size_t mapsize;
 3198         int error;
 3199 {
 3200         struct dc_softc *sc;
 3201         struct dc_desc *f;
 3202         int cur, first, frag, i;
 3203 
 3204         sc = arg;
 3205         if (error) {
 3206                 sc->dc_cdata.dc_tx_err = error;
 3207                 return;
 3208         }
 3209 
 3210         first = cur = frag = sc->dc_cdata.dc_tx_prod;
 3211         for (i = 0; i < nseg; i++) {
 3212                 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
 3213                     (frag == (DC_TX_LIST_CNT - 1)) &&
 3214                     (first != sc->dc_cdata.dc_tx_first)) {
 3215                         bus_dmamap_unload(sc->dc_mtag,
 3216                             sc->dc_cdata.dc_tx_map[first]);
 3217                         sc->dc_cdata.dc_tx_err = ENOBUFS;
 3218                         return;
 3219                 }
 3220 
 3221                 f = &sc->dc_ldata->dc_tx_list[frag];
 3222                 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
 3223                 if (i == 0) {
 3224                         f->dc_status = 0;
 3225                         f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
 3226                 } else
 3227                         f->dc_status = htole32(DC_TXSTAT_OWN);
 3228                 f->dc_data = htole32(segs[i].ds_addr);
 3229                 cur = frag;
 3230                 DC_INC(frag, DC_TX_LIST_CNT);
 3231         }
 3232 
 3233         sc->dc_cdata.dc_tx_err = 0;
 3234         sc->dc_cdata.dc_tx_prod = frag;
 3235         sc->dc_cdata.dc_tx_cnt += nseg;
 3236         sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
 3237         sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
 3238         if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
 3239                 sc->dc_ldata->dc_tx_list[first].dc_ctl |=
 3240                     htole32(DC_TXCTL_FINT);
 3241         if (sc->dc_flags & DC_TX_INTR_ALWAYS)
 3242                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3243         if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
 3244                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3245         sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
 3246 }
 3247 
 3248 /*
 3249  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 3250  * pointers to the fragment pointers.
 3251  */
 3252 static int
 3253 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
 3254 {
 3255         struct mbuf *m;
 3256         int error, idx, chainlen = 0;
 3257 
 3258         /*
 3259          * If there's no way we can send any packets, return now.
 3260          */
 3261         if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
 3262                 return (ENOBUFS);
 3263 
 3264         /*
 3265          * Count the number of frags in this chain to see if
 3266          * we need to m_defrag.  Since the descriptor list is shared
 3267          * by all packets, we'll m_defrag long chains so that they
 3268          * do not use up the entire list, even if they would fit.
 3269          */
 3270         for (m = *m_head; m != NULL; m = m->m_next)
 3271                 chainlen++;
 3272 
 3273         if ((chainlen > DC_TX_LIST_CNT / 4) ||
 3274             ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
 3275                 m = m_defrag(*m_head, M_DONTWAIT);
 3276                 if (m == NULL)
 3277                         return (ENOBUFS);
 3278                 *m_head = m;
 3279         }
 3280 
 3281         /*
 3282          * Start packing the mbufs in this chain into
 3283          * the fragment pointers. Stop when we run out
 3284          * of fragments or hit the end of the mbuf chain.
 3285          */
 3286         idx = sc->dc_cdata.dc_tx_prod;
 3287         sc->dc_cdata.dc_tx_mapping = *m_head;
 3288         error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3289             *m_head, dc_dma_map_txbuf, sc, 0);
 3290         if (error)
 3291                 return (error);
 3292         if (sc->dc_cdata.dc_tx_err != 0)
 3293                 return (sc->dc_cdata.dc_tx_err);
 3294         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3295             BUS_DMASYNC_PREWRITE);
 3296         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 3297             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 3298         return (0);
 3299 }
 3300 
 3301 /*
 3302  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3303  * to the mbuf data regions directly in the transmit lists. We also save a
 3304  * copy of the pointers since the transmit list fragment pointers are
 3305  * physical addresses.
 3306  */
 3307 
 3308 static void
 3309 dc_start(struct ifnet *ifp)
 3310 {
 3311         struct dc_softc *sc;
 3312 
 3313         sc = ifp->if_softc;
 3314         DC_LOCK(sc);
 3315         dc_start_locked(ifp);
 3316         DC_UNLOCK(sc);
 3317 }
 3318 
 3319 static void
 3320 dc_start_locked(struct ifnet *ifp)
 3321 {
 3322         struct dc_softc *sc;
 3323         struct mbuf *m_head = NULL, *m;
 3324         unsigned int queued = 0;
 3325         int idx;
 3326 
 3327         sc = ifp->if_softc;
 3328 
 3329         DC_LOCK_ASSERT(sc);
 3330 
 3331         if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
 3332                 return;
 3333 
 3334         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
 3335                 return;
 3336 
 3337         idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
 3338 
 3339         while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
 3340                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3341                 if (m_head == NULL)
 3342                         break;
 3343 
 3344                 if (sc->dc_flags & DC_TX_COALESCE &&
 3345                     (m_head->m_next != NULL ||
 3346                      sc->dc_flags & DC_TX_ALIGN)) {
 3347                         m = m_defrag(m_head, M_DONTWAIT);
 3348                         if (m == NULL) {
 3349                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3350                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3351                                 break;
 3352                         } else {
 3353                                 m_head = m;
 3354                         }
 3355                 }
 3356 
 3357                 if (dc_encap(sc, &m_head)) {
 3358                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3359                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3360                         break;
 3361                 }
 3362                 idx = sc->dc_cdata.dc_tx_prod;
 3363 
 3364                 queued++;
 3365                 /*
 3366                  * If there's a BPF listener, bounce a copy of this frame
 3367                  * to him.
 3368                  */
 3369                 BPF_MTAP(ifp, m_head);
 3370 
 3371                 if (sc->dc_flags & DC_TX_ONE) {
 3372                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3373                         break;
 3374                 }
 3375         }
 3376 
 3377         if (queued > 0) {
 3378                 /* Transmit */
 3379                 if (!(sc->dc_flags & DC_TX_POLL))
 3380                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3381 
 3382                 /*
 3383                  * Set a timeout in case the chip goes out to lunch.
 3384                  */
 3385                 ifp->if_timer = 5;
 3386         }
 3387 }
 3388 
 3389 static void
 3390 dc_init(void *xsc)
 3391 {
 3392         struct dc_softc *sc = xsc;
 3393 
 3394         DC_LOCK(sc);
 3395         dc_init_locked(sc);
 3396 #ifdef SRM_MEDIA
 3397         if(sc->dc_srm_media) {
 3398                 struct ifreq ifr;
 3399                 struct mii_data *mii;
 3400 
 3401                 ifr.ifr_media = sc->dc_srm_media;
 3402                 sc->dc_srm_media = 0;
 3403                 DC_UNLOCK(sc);
 3404                 mii = device_get_softc(sc->dc_miibus);
 3405                 ifmedia_ioctl(sc->dc_ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
 3406         } else
 3407 #endif
 3408                 DC_UNLOCK(sc);
 3409 }
 3410 
 3411 static void
 3412 dc_init_locked(struct dc_softc *sc)
 3413 {
 3414         struct ifnet *ifp = sc->dc_ifp;
 3415         struct mii_data *mii;
 3416 
 3417         DC_LOCK_ASSERT(sc);
 3418 
 3419         mii = device_get_softc(sc->dc_miibus);
 3420 
 3421         /*
 3422          * Cancel pending I/O and free all RX/TX buffers.
 3423          */
 3424         dc_stop(sc);
 3425         dc_reset(sc);
 3426 
 3427         /*
 3428          * Set cache alignment and burst length.
 3429          */
 3430         if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
 3431                 CSR_WRITE_4(sc, DC_BUSCTL, 0);
 3432         else
 3433                 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
 3434         /*
 3435          * Evenly share the bus between receive and transmit process.
 3436          */
 3437         if (DC_IS_INTEL(sc))
 3438                 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
 3439         if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
 3440                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
 3441         } else {
 3442                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
 3443         }
 3444         if (sc->dc_flags & DC_TX_POLL)
 3445                 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
 3446         switch(sc->dc_cachesize) {
 3447         case 32:
 3448                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
 3449                 break;
 3450         case 16:
 3451                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
 3452                 break;
 3453         case 8:
 3454                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
 3455                 break;
 3456         case 0:
 3457         default:
 3458                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
 3459                 break;
 3460         }
 3461 
 3462         if (sc->dc_flags & DC_TX_STORENFWD)
 3463                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3464         else {
 3465                 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3466                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3467                 } else {
 3468                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3469                         DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3470                 }
 3471         }
 3472 
 3473         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
 3474         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
 3475 
 3476         if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 3477                 /*
 3478                  * The app notes for the 98713 and 98715A say that
 3479                  * in order to have the chips operate properly, a magic
 3480                  * number must be written to CSR16. Macronix does not
 3481                  * document the meaning of these bits so there's no way
 3482                  * to know exactly what they do. The 98713 has a magic
 3483                  * number all its own; the rest all use a different one.
 3484                  */
 3485                 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
 3486                 if (sc->dc_type == DC_TYPE_98713)
 3487                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
 3488                 else
 3489                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
 3490         }
 3491 
 3492         if (DC_IS_XIRCOM(sc)) {
 3493                 /*
 3494                  * setup General Purpose Port mode and data so the tulip
 3495                  * can talk to the MII.
 3496                  */
 3497                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 3498                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3499                 DELAY(10);
 3500                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 3501                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3502                 DELAY(10);
 3503         }
 3504 
 3505         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3506         DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
 3507 
 3508         /* Init circular RX list. */
 3509         if (dc_list_rx_init(sc) == ENOBUFS) {
 3510                 if_printf(ifp,
 3511                     "initialization failed: no memory for rx buffers\n");
 3512                 dc_stop(sc);
 3513                 return;
 3514         }
 3515 
 3516         /*
 3517          * Init TX descriptors.
 3518          */
 3519         dc_list_tx_init(sc);
 3520 
 3521         /*
 3522          * Load the address of the RX list.
 3523          */
 3524         CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
 3525         CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
 3526 
 3527         /*
 3528          * Enable interrupts.
 3529          */
 3530 #ifdef DEVICE_POLLING
 3531         /*
 3532          * ... but only if we are not polling, and make sure they are off in
 3533          * the case of polling. Some cards (e.g. fxp) turn interrupts on
 3534          * after a reset.
 3535          */
 3536         if (ifp->if_capenable & IFCAP_POLLING)
 3537                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3538         else
 3539 #endif
 3540         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3541         CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
 3542 
 3543         /* Enable transmitter. */
 3544         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3545 
 3546         /*
 3547          * If this is an Intel 21143 and we're not using the
 3548          * MII port, program the LED control pins so we get
 3549          * link and activity indications.
 3550          */
 3551         if (sc->dc_flags & DC_TULIP_LEDS) {
 3552                 CSR_WRITE_4(sc, DC_WATCHDOG,
 3553                     DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
 3554                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 3555         }
 3556 
 3557         /*
 3558          * Load the RX/multicast filter. We do this sort of late
 3559          * because the filter programming scheme on the 21143 and
 3560          * some clones requires DMAing a setup frame via the TX
 3561          * engine, and we need the transmitter enabled for that.
 3562          */
 3563         dc_setfilt(sc);
 3564 
 3565         /* Enable receiver. */
 3566         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 3567         CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
 3568 
 3569         mii_mediachg(mii);
 3570         dc_setcfg(sc, sc->dc_if_media);
 3571 
 3572         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3573         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3574 
 3575         /* Don't start the ticker if this is a homePNA link. */
 3576         if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
 3577                 sc->dc_link = 1;
 3578         else {
 3579                 if (sc->dc_flags & DC_21143_NWAY)
 3580                         callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3581                 else
 3582                         callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3583         }
 3584 }
 3585 
 3586 /*
 3587  * Set media options.
 3588  */
 3589 static int
 3590 dc_ifmedia_upd(struct ifnet *ifp)
 3591 {
 3592         struct dc_softc *sc;
 3593         struct mii_data *mii;
 3594         struct ifmedia *ifm;
 3595 
 3596         sc = ifp->if_softc;
 3597         mii = device_get_softc(sc->dc_miibus);
 3598         DC_LOCK(sc);
 3599         mii_mediachg(mii);
 3600         ifm = &mii->mii_media;
 3601 
 3602         if (DC_IS_DAVICOM(sc) &&
 3603             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
 3604                 dc_setcfg(sc, ifm->ifm_media);
 3605         else
 3606                 sc->dc_link = 0;
 3607         DC_UNLOCK(sc);
 3608 
 3609         return (0);
 3610 }
 3611 
 3612 /*
 3613  * Report current media status.
 3614  */
 3615 static void
 3616 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3617 {
 3618         struct dc_softc *sc;
 3619         struct mii_data *mii;
 3620         struct ifmedia *ifm;
 3621 
 3622         sc = ifp->if_softc;
 3623         mii = device_get_softc(sc->dc_miibus);
 3624         DC_LOCK(sc);
 3625         mii_pollstat(mii);
 3626         ifm = &mii->mii_media;
 3627         if (DC_IS_DAVICOM(sc)) {
 3628                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
 3629                         ifmr->ifm_active = ifm->ifm_media;
 3630                         ifmr->ifm_status = 0;
 3631                         return;
 3632                 }
 3633         }
 3634         ifmr->ifm_active = mii->mii_media_active;
 3635         ifmr->ifm_status = mii->mii_media_status;
 3636         DC_UNLOCK(sc);
 3637 }
 3638 
 3639 static int
 3640 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3641 {
 3642         struct dc_softc *sc = ifp->if_softc;
 3643         struct ifreq *ifr = (struct ifreq *)data;
 3644         struct mii_data *mii;
 3645         int error = 0;
 3646 
 3647         switch (command) {
 3648         case SIOCSIFFLAGS:
 3649                 DC_LOCK(sc);
 3650                 if (ifp->if_flags & IFF_UP) {
 3651                         int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
 3652                                 (IFF_PROMISC | IFF_ALLMULTI);
 3653 
 3654                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3655                                 if (need_setfilt)
 3656                                         dc_setfilt(sc);
 3657                         } else {
 3658                                 sc->dc_txthresh = 0;
 3659                                 dc_init_locked(sc);
 3660                         }
 3661                 } else {
 3662                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3663                                 dc_stop(sc);
 3664                 }
 3665                 sc->dc_if_flags = ifp->if_flags;
 3666                 DC_UNLOCK(sc);
 3667                 error = 0;
 3668                 break;
 3669         case SIOCADDMULTI:
 3670         case SIOCDELMULTI:
 3671                 DC_LOCK(sc);
 3672                 dc_setfilt(sc);
 3673                 DC_UNLOCK(sc);
 3674                 error = 0;
 3675                 break;
 3676         case SIOCGIFMEDIA:
 3677         case SIOCSIFMEDIA:
 3678                 mii = device_get_softc(sc->dc_miibus);
 3679                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3680 #ifdef SRM_MEDIA
 3681                 DC_LOCK(sc);
 3682                 if (sc->dc_srm_media)
 3683                         sc->dc_srm_media = 0;
 3684                 DC_UNLOCK(sc);
 3685 #endif
 3686                 break;
 3687         case SIOCSIFCAP:
 3688 #ifdef DEVICE_POLLING
 3689                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 3690                     !(ifp->if_capenable & IFCAP_POLLING)) {
 3691                         error = ether_poll_register(dc_poll, ifp);
 3692                         if (error)
 3693                                 return(error);
 3694                         DC_LOCK(sc);
 3695                         /* Disable interrupts */
 3696                         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3697                         ifp->if_capenable |= IFCAP_POLLING;
 3698                         DC_UNLOCK(sc);
 3699                         return (error);
 3700                         
 3701                 }
 3702                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 3703                     ifp->if_capenable & IFCAP_POLLING) {
 3704                         error = ether_poll_deregister(ifp);
 3705                         /* Enable interrupts. */
 3706                         DC_LOCK(sc);
 3707                         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3708                         ifp->if_capenable &= ~IFCAP_POLLING;
 3709                         DC_UNLOCK(sc);
 3710                         return (error);
 3711                 }
 3712 #endif /* DEVICE_POLLING */
 3713                 break;
 3714         default:
 3715                 error = ether_ioctl(ifp, command, data);
 3716                 break;
 3717         }
 3718 
 3719         return (error);
 3720 }
 3721 
 3722 static void
 3723 dc_watchdog(struct ifnet *ifp)
 3724 {
 3725         struct dc_softc *sc;
 3726 
 3727         sc = ifp->if_softc;
 3728 
 3729         DC_LOCK(sc);
 3730 
 3731         ifp->if_oerrors++;
 3732         if_printf(ifp, "watchdog timeout\n");
 3733 
 3734         dc_stop(sc);
 3735         dc_reset(sc);
 3736         dc_init_locked(sc);
 3737 
 3738         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3739                 dc_start_locked(ifp);
 3740 
 3741         DC_UNLOCK(sc);
 3742 }
 3743 
 3744 /*
 3745  * Stop the adapter and free any mbufs allocated to the
 3746  * RX and TX lists.
 3747  */
 3748 static void
 3749 dc_stop(struct dc_softc *sc)
 3750 {
 3751         struct ifnet *ifp;
 3752         struct dc_list_data *ld;
 3753         struct dc_chain_data *cd;
 3754         int i;
 3755         u_int32_t ctl;
 3756 
 3757         DC_LOCK_ASSERT(sc);
 3758 
 3759         ifp = sc->dc_ifp;
 3760         ifp->if_timer = 0;
 3761         ld = sc->dc_ldata;
 3762         cd = &sc->dc_cdata;
 3763 
 3764         callout_stop(&sc->dc_stat_ch);
 3765 
 3766         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3767 
 3768         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
 3769         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3770         CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
 3771         CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
 3772         sc->dc_link = 0;
 3773 
 3774         /*
 3775          * Free data in the RX lists.
 3776          */
 3777         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 3778                 if (cd->dc_rx_chain[i] != NULL) {
 3779                         m_freem(cd->dc_rx_chain[i]);
 3780                         cd->dc_rx_chain[i] = NULL;
 3781                 }
 3782         }
 3783         bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
 3784 
 3785         /*
 3786          * Free the TX list buffers.
 3787          */
 3788         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 3789                 if (cd->dc_tx_chain[i] != NULL) {
 3790                         ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
 3791                         if ((ctl & DC_TXCTL_SETUP) ||
 3792                             !(ctl & DC_TXCTL_LASTFRAG)) {
 3793                                 cd->dc_tx_chain[i] = NULL;
 3794                                 continue;
 3795                         }
 3796                         bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
 3797                         m_freem(cd->dc_tx_chain[i]);
 3798                         cd->dc_tx_chain[i] = NULL;
 3799                 }
 3800         }
 3801         bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
 3802 }
 3803 
 3804 /*
 3805  * Device suspend routine.  Stop the interface and save some PCI
 3806  * settings in case the BIOS doesn't restore them properly on
 3807  * resume.
 3808  */
 3809 static int
 3810 dc_suspend(device_t dev)
 3811 {
 3812         struct dc_softc *sc;
 3813 
 3814         sc = device_get_softc(dev);
 3815         DC_LOCK(sc);
 3816         dc_stop(sc);
 3817         sc->suspended = 1;
 3818         DC_UNLOCK(sc);
 3819 
 3820         return (0);
 3821 }
 3822 
 3823 /*
 3824  * Device resume routine.  Restore some PCI settings in case the BIOS
 3825  * doesn't, re-enable busmastering, and restart the interface if
 3826  * appropriate.
 3827  */
 3828 static int
 3829 dc_resume(device_t dev)
 3830 {
 3831         struct dc_softc *sc;
 3832         struct ifnet *ifp;
 3833 
 3834         sc = device_get_softc(dev);
 3835         ifp = sc->dc_ifp;
 3836 
 3837         /* reinitialize interface if necessary */
 3838         DC_LOCK(sc);
 3839         if (ifp->if_flags & IFF_UP)
 3840                 dc_init_locked(sc);
 3841 
 3842         sc->suspended = 0;
 3843         DC_UNLOCK(sc);
 3844 
 3845         return (0);
 3846 }
 3847 
 3848 /*
 3849  * Stop all chip I/O so that the kernel's probe routines don't
 3850  * get confused by errant DMAs when rebooting.
 3851  */
 3852 static void
 3853 dc_shutdown(device_t dev)
 3854 {
 3855         struct dc_softc *sc;
 3856 
 3857         sc = device_get_softc(dev);
 3858 
 3859         DC_LOCK(sc);
 3860         dc_stop(sc);
 3861         DC_UNLOCK(sc);
 3862 }

Cache object: a7a878d48d4932613b9d038d8b1b604e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.