The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_dc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/6.2/sys/pci/if_dc.c 164257 2006-11-13 17:24:24Z marius $");
   35 
   36 /*
   37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
   38  * series chips and several workalikes including the following:
   39  *
   40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
   41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
   42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
   43  * ASIX Electronics AX88140A (www.asix.com.tw)
   44  * ASIX Electronics AX88141 (www.asix.com.tw)
   45  * ADMtek AL981 (www.admtek.com.tw)
   46  * ADMtek AN985 (www.admtek.com.tw)
   47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
   48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
   49  * Accton EN1217 (www.accton.com)
   50  * Xircom X3201 (www.xircom.com)
   51  * Abocom FE2500
   52  * Conexant LANfinity (www.conexant.com)
   53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
   54  *
   55  * Datasheets for the 21143 are available at developer.intel.com.
   56  * Datasheets for the clone parts can be found at their respective sites.
   57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
   58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
   59  * worth noting is that its multicast hash table is only 128 bits wide
   60  * instead of 512.
   61  *
   62  * Written by Bill Paul <wpaul@ee.columbia.edu>
   63  * Electrical Engineering Department
   64  * Columbia University, New York City
   65  */
   66 /*
   67  * The Intel 21143 is the successor to the DEC 21140. It is basically
   68  * the same as the 21140 but with a few new features. The 21143 supports
   69  * three kinds of media attachments:
   70  *
   71  * o MII port, for 10Mbps and 100Mbps support and NWAY
   72  *   autonegotiation provided by an external PHY.
   73  * o SYM port, for symbol mode 100Mbps support.
   74  * o 10baseT port.
   75  * o AUI/BNC port.
   76  *
   77  * The 100Mbps SYM port and 10baseT port can be used together in
   78  * combination with the internal NWAY support to create a 10/100
   79  * autosensing configuration.
   80  *
   81  * Note that not all tulip workalikes are handled in this driver: we only
   82  * deal with those which are relatively well behaved. The Winbond is
   83  * handled separately due to its different register offsets and the
   84  * special handling needed for its various bugs. The PNIC is handled
   85  * here, but I'm not thrilled about it.
   86  *
   87  * All of the workalike chips use some form of MII transceiver support
   88  * with the exception of the Macronix chips, which also have a SYM port.
   89  * The ASIX AX88140A is also documented to have a SYM port, but all
   90  * the cards I've seen use an MII transceiver, probably because the
   91  * AX88140A doesn't support internal NWAY.
   92  */
   93 
   94 #ifdef HAVE_KERNEL_OPTION_HEADERS
   95 #include "opt_device_polling.h"
   96 #endif
   97 
   98 #include <sys/param.h>
   99 #include <sys/endian.h>
  100 #include <sys/systm.h>
  101 #include <sys/sockio.h>
  102 #include <sys/mbuf.h>
  103 #include <sys/malloc.h>
  104 #include <sys/kernel.h>
  105 #include <sys/module.h>
  106 #include <sys/socket.h>
  107 #include <sys/sysctl.h>
  108 
  109 #include <net/if.h>
  110 #include <net/if_arp.h>
  111 #include <net/ethernet.h>
  112 #include <net/if_dl.h>
  113 #include <net/if_media.h>
  114 #include <net/if_types.h>
  115 #include <net/if_vlan_var.h>
  116 
  117 #include <net/bpf.h>
  118 
  119 #include <machine/bus.h>
  120 #include <machine/resource.h>
  121 #include <sys/bus.h>
  122 #include <sys/rman.h>
  123 
  124 #include <dev/mii/mii.h>
  125 #include <dev/mii/miivar.h>
  126 
  127 #include <dev/pci/pcireg.h>
  128 #include <dev/pci/pcivar.h>
  129 
  130 #define DC_USEIOSPACE
  131 #ifdef __alpha__
  132 #define SRM_MEDIA
  133 #endif
  134 
  135 #include <pci/if_dcreg.h>
  136 
  137 #ifdef __sparc64__
  138 #include <dev/ofw/openfirm.h>
  139 #include <machine/ofw_machdep.h>
  140 #endif
  141 
  142 MODULE_DEPEND(dc, pci, 1, 1, 1);
  143 MODULE_DEPEND(dc, ether, 1, 1, 1);
  144 MODULE_DEPEND(dc, miibus, 1, 1, 1);
  145 
  146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  147 #include "miibus_if.h"
  148 
  149 /*
  150  * Various supported device vendors/types and their names.
  151  */
  152 static struct dc_type dc_devs[] = {
  153         { DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
  154                 "Intel 21143 10/100BaseTX" },
  155         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
  156                 "Davicom DM9009 10/100BaseTX" },
  157         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
  158                 "Davicom DM9100 10/100BaseTX" },
  159         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
  160                 "Davicom DM9102A 10/100BaseTX" },
  161         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
  162                 "Davicom DM9102 10/100BaseTX" },
  163         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
  164                 "ADMtek AL981 10/100BaseTX" },
  165         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
  166                 "ADMtek AN985 10/100BaseTX" },
  167         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
  168                 "ADMtek ADM9511 10/100BaseTX" },
  169         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
  170                 "ADMtek ADM9513 10/100BaseTX" },
  171         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
  172                 "Netgear FA511 10/100BaseTX" },
  173         { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
  174                 "ASIX AX88141 10/100BaseTX" },
  175         { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
  176                 "ASIX AX88140A 10/100BaseTX" },
  177         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
  178                 "Macronix 98713A 10/100BaseTX" },
  179         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
  180                 "Macronix 98713 10/100BaseTX" },
  181         { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
  182                 "Compex RL100-TX 10/100BaseTX" },
  183         { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
  184                 "Compex RL100-TX 10/100BaseTX" },
  185         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
  186                 "Macronix 98725 10/100BaseTX" },
  187         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
  188                 "Macronix 98715AEC-C 10/100BaseTX" },
  189         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
  190                 "Macronix 98715/98715A 10/100BaseTX" },
  191         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
  192                 "Macronix 98727/98732 10/100BaseTX" },
  193         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
  194                 "LC82C115 PNIC II 10/100BaseTX" },
  195         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
  196                 "82c169 PNIC 10/100BaseTX" },
  197         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
  198                 "82c168 PNIC 10/100BaseTX" },
  199         { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
  200                 "Accton EN1217 10/100BaseTX" },
  201         { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
  202                 "Accton EN2242 MiniPCI 10/100BaseTX" },
  203         { DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
  204                 "Xircom X3201 10/100BaseTX" },
  205         { DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
  206                 "Neteasy DRP-32TXD Cardbus 10/100" },
  207         { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
  208                 "Abocom FE2500 10/100BaseTX" },
  209         { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
  210                 "Abocom FE2500MX 10/100BaseTX" },
  211         { DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
  212                 "Conexant LANfinity MiniPCI 10/100BaseTX" },
  213         { DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
  214                 "Hawking CB102 CardBus 10/100" },
  215         { DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
  216                 "PlaneX FNW-3602-T CardBus 10/100" },
  217         { DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
  218                 "3Com OfficeConnect 10/100B" },
  219         { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
  220                 "Microsoft MN-120 CardBus 10/100" },
  221         { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
  222                 "Microsoft MN-130 10/100" },
  223         { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
  224                 "Linksys PCMPC200 CardBus 10/100" },
  225         { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
  226                 "Linksys PCMPC200 CardBus 10/100" },
  227         { 0, 0, NULL }
  228 };
  229 
  230 static int dc_probe(device_t);
  231 static int dc_attach(device_t);
  232 static int dc_detach(device_t);
  233 static int dc_suspend(device_t);
  234 static int dc_resume(device_t);
  235 static struct dc_type *dc_devtype(device_t);
  236 static int dc_newbuf(struct dc_softc *, int, int);
  237 static int dc_encap(struct dc_softc *, struct mbuf **);
  238 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
  239 static int dc_rx_resync(struct dc_softc *);
  240 static void dc_rxeof(struct dc_softc *);
  241 static void dc_txeof(struct dc_softc *);
  242 static void dc_tick(void *);
  243 static void dc_tx_underrun(struct dc_softc *);
  244 static void dc_intr(void *);
  245 static void dc_start(struct ifnet *);
  246 static void dc_start_locked(struct ifnet *);
  247 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
  248 static void dc_init(void *);
  249 static void dc_init_locked(struct dc_softc *);
  250 static void dc_stop(struct dc_softc *);
  251 static void dc_watchdog(struct ifnet *);
  252 static void dc_shutdown(device_t);
  253 static int dc_ifmedia_upd(struct ifnet *);
  254 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  255 
  256 static void dc_delay(struct dc_softc *);
  257 static void dc_eeprom_idle(struct dc_softc *);
  258 static void dc_eeprom_putbyte(struct dc_softc *, int);
  259 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
  260 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
  261 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
  262 static void dc_eeprom_width(struct dc_softc *);
  263 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
  264 
  265 static void dc_mii_writebit(struct dc_softc *, int);
  266 static int dc_mii_readbit(struct dc_softc *);
  267 static void dc_mii_sync(struct dc_softc *);
  268 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
  269 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
  270 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
  271 static int dc_miibus_readreg(device_t, int, int);
  272 static int dc_miibus_writereg(device_t, int, int, int);
  273 static void dc_miibus_statchg(device_t);
  274 static void dc_miibus_mediainit(device_t);
  275 
  276 static void dc_setcfg(struct dc_softc *, int);
  277 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
  278 static uint32_t dc_mchash_be(const uint8_t *);
  279 static void dc_setfilt_21143(struct dc_softc *);
  280 static void dc_setfilt_asix(struct dc_softc *);
  281 static void dc_setfilt_admtek(struct dc_softc *);
  282 static void dc_setfilt_xircom(struct dc_softc *);
  283 
  284 static void dc_setfilt(struct dc_softc *);
  285 
  286 static void dc_reset(struct dc_softc *);
  287 static int dc_list_rx_init(struct dc_softc *);
  288 static int dc_list_tx_init(struct dc_softc *);
  289 
  290 static void dc_read_srom(struct dc_softc *, int);
  291 static void dc_parse_21143_srom(struct dc_softc *);
  292 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
  293 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
  294 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
  295 static void dc_apply_fixup(struct dc_softc *, int);
  296 
  297 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
  298 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
  299 
  300 #ifdef DC_USEIOSPACE
  301 #define DC_RES                  SYS_RES_IOPORT
  302 #define DC_RID                  DC_PCI_CFBIO
  303 #else
  304 #define DC_RES                  SYS_RES_MEMORY
  305 #define DC_RID                  DC_PCI_CFBMA
  306 #endif
  307 
  308 static device_method_t dc_methods[] = {
  309         /* Device interface */
  310         DEVMETHOD(device_probe,         dc_probe),
  311         DEVMETHOD(device_attach,        dc_attach),
  312         DEVMETHOD(device_detach,        dc_detach),
  313         DEVMETHOD(device_suspend,       dc_suspend),
  314         DEVMETHOD(device_resume,        dc_resume),
  315         DEVMETHOD(device_shutdown,      dc_shutdown),
  316 
  317         /* bus interface */
  318         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  319         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  320 
  321         /* MII interface */
  322         DEVMETHOD(miibus_readreg,       dc_miibus_readreg),
  323         DEVMETHOD(miibus_writereg,      dc_miibus_writereg),
  324         DEVMETHOD(miibus_statchg,       dc_miibus_statchg),
  325         DEVMETHOD(miibus_mediainit,     dc_miibus_mediainit),
  326 
  327         { 0, 0 }
  328 };
  329 
  330 static driver_t dc_driver = {
  331         "dc",
  332         dc_methods,
  333         sizeof(struct dc_softc)
  334 };
  335 
  336 static devclass_t dc_devclass;
  337 #ifdef __NO_STRICT_ALIGNMENT
  338 static int dc_quick = 1;
  339 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
  340     "do not m_devget() in dc driver");
  341 #endif
  342 
  343 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
  344 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
  345 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
  346 
  347 #define DC_SETBIT(sc, reg, x)                           \
  348         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  349 
  350 #define DC_CLRBIT(sc, reg, x)                           \
  351         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  352 
  353 #define SIO_SET(x)      DC_SETBIT(sc, DC_SIO, (x))
  354 #define SIO_CLR(x)      DC_CLRBIT(sc, DC_SIO, (x))
  355 
  356 static void
  357 dc_delay(struct dc_softc *sc)
  358 {
  359         int idx;
  360 
  361         for (idx = (300 / 33) + 1; idx > 0; idx--)
  362                 CSR_READ_4(sc, DC_BUSCTL);
  363 }
  364 
  365 static void
  366 dc_eeprom_width(struct dc_softc *sc)
  367 {
  368         int i;
  369 
  370         /* Force EEPROM to idle state. */
  371         dc_eeprom_idle(sc);
  372 
  373         /* Enter EEPROM access mode. */
  374         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  375         dc_delay(sc);
  376         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  377         dc_delay(sc);
  378         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  379         dc_delay(sc);
  380         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  381         dc_delay(sc);
  382 
  383         for (i = 3; i--;) {
  384                 if (6 & (1 << i))
  385                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  386                 else
  387                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  388                 dc_delay(sc);
  389                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  390                 dc_delay(sc);
  391                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  392                 dc_delay(sc);
  393         }
  394 
  395         for (i = 1; i <= 12; i++) {
  396                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  397                 dc_delay(sc);
  398                 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
  399                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  400                         dc_delay(sc);
  401                         break;
  402                 }
  403                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  404                 dc_delay(sc);
  405         }
  406 
  407         /* Turn off EEPROM access mode. */
  408         dc_eeprom_idle(sc);
  409 
  410         if (i < 4 || i > 12)
  411                 sc->dc_romwidth = 6;
  412         else
  413                 sc->dc_romwidth = i;
  414 
  415         /* Enter EEPROM access mode. */
  416         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  417         dc_delay(sc);
  418         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  419         dc_delay(sc);
  420         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  421         dc_delay(sc);
  422         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  423         dc_delay(sc);
  424 
  425         /* Turn off EEPROM access mode. */
  426         dc_eeprom_idle(sc);
  427 }
  428 
  429 static void
  430 dc_eeprom_idle(struct dc_softc *sc)
  431 {
  432         int i;
  433 
  434         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  435         dc_delay(sc);
  436         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  437         dc_delay(sc);
  438         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  439         dc_delay(sc);
  440         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  441         dc_delay(sc);
  442 
  443         for (i = 0; i < 25; i++) {
  444                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  445                 dc_delay(sc);
  446                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  447                 dc_delay(sc);
  448         }
  449 
  450         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  451         dc_delay(sc);
  452         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
  453         dc_delay(sc);
  454         CSR_WRITE_4(sc, DC_SIO, 0x00000000);
  455 }
  456 
  457 /*
  458  * Send a read command and address to the EEPROM, check for ACK.
  459  */
  460 static void
  461 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
  462 {
  463         int d, i;
  464 
  465         d = DC_EECMD_READ >> 6;
  466         for (i = 3; i--; ) {
  467                 if (d & (1 << i))
  468                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  469                 else
  470                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  471                 dc_delay(sc);
  472                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  473                 dc_delay(sc);
  474                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  475                 dc_delay(sc);
  476         }
  477 
  478         /*
  479          * Feed in each bit and strobe the clock.
  480          */
  481         for (i = sc->dc_romwidth; i--;) {
  482                 if (addr & (1 << i)) {
  483                         SIO_SET(DC_SIO_EE_DATAIN);
  484                 } else {
  485                         SIO_CLR(DC_SIO_EE_DATAIN);
  486                 }
  487                 dc_delay(sc);
  488                 SIO_SET(DC_SIO_EE_CLK);
  489                 dc_delay(sc);
  490                 SIO_CLR(DC_SIO_EE_CLK);
  491                 dc_delay(sc);
  492         }
  493 }
  494 
  495 /*
  496  * Read a word of data stored in the EEPROM at address 'addr.'
  497  * The PNIC 82c168/82c169 has its own non-standard way to read
  498  * the EEPROM.
  499  */
  500 static void
  501 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
  502 {
  503         int i;
  504         u_int32_t r;
  505 
  506         CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
  507 
  508         for (i = 0; i < DC_TIMEOUT; i++) {
  509                 DELAY(1);
  510                 r = CSR_READ_4(sc, DC_SIO);
  511                 if (!(r & DC_PN_SIOCTL_BUSY)) {
  512                         *dest = (u_int16_t)(r & 0xFFFF);
  513                         return;
  514                 }
  515         }
  516 }
  517 
  518 /*
  519  * Read a word of data stored in the EEPROM at address 'addr.'
  520  * The Xircom X3201 has its own non-standard way to read
  521  * the EEPROM, too.
  522  */
  523 static void
  524 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
  525 {
  526 
  527         SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  528 
  529         addr *= 2;
  530         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  531         *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
  532         addr += 1;
  533         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  534         *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
  535 
  536         SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  537 }
  538 
  539 /*
  540  * Read a word of data stored in the EEPROM at address 'addr.'
  541  */
  542 static void
  543 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
  544 {
  545         int i;
  546         u_int16_t word = 0;
  547 
  548         /* Force EEPROM to idle state. */
  549         dc_eeprom_idle(sc);
  550 
  551         /* Enter EEPROM access mode. */
  552         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  553         dc_delay(sc);
  554         DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
  555         dc_delay(sc);
  556         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  557         dc_delay(sc);
  558         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  559         dc_delay(sc);
  560 
  561         /*
  562          * Send address of word we want to read.
  563          */
  564         dc_eeprom_putbyte(sc, addr);
  565 
  566         /*
  567          * Start reading bits from EEPROM.
  568          */
  569         for (i = 0x8000; i; i >>= 1) {
  570                 SIO_SET(DC_SIO_EE_CLK);
  571                 dc_delay(sc);
  572                 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
  573                         word |= i;
  574                 dc_delay(sc);
  575                 SIO_CLR(DC_SIO_EE_CLK);
  576                 dc_delay(sc);
  577         }
  578 
  579         /* Turn off EEPROM access mode. */
  580         dc_eeprom_idle(sc);
  581 
  582         *dest = word;
  583 }
  584 
  585 /*
  586  * Read a sequence of words from the EEPROM.
  587  */
  588 static void
  589 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
  590 {
  591         int i;
  592         u_int16_t word = 0, *ptr;
  593 
  594         for (i = 0; i < cnt; i++) {
  595                 if (DC_IS_PNIC(sc))
  596                         dc_eeprom_getword_pnic(sc, off + i, &word);
  597                 else if (DC_IS_XIRCOM(sc))
  598                         dc_eeprom_getword_xircom(sc, off + i, &word);
  599                 else
  600                         dc_eeprom_getword(sc, off + i, &word);
  601                 ptr = (u_int16_t *)(dest + (i * 2));
  602                 if (be)
  603                         *ptr = be16toh(word);
  604                 else
  605                         *ptr = le16toh(word);
  606         }
  607 }
  608 
  609 /*
  610  * The following two routines are taken from the Macronix 98713
  611  * Application Notes pp.19-21.
  612  */
  613 /*
  614  * Write a bit to the MII bus.
  615  */
  616 static void
  617 dc_mii_writebit(struct dc_softc *sc, int bit)
  618 {
  619 
  620         if (bit)
  621                 CSR_WRITE_4(sc, DC_SIO,
  622                     DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
  623         else
  624                 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  625 
  626         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  627         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  628 }
  629 
  630 /*
  631  * Read a bit from the MII bus.
  632  */
  633 static int
  634 dc_mii_readbit(struct dc_softc *sc)
  635 {
  636 
  637         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
  638         CSR_READ_4(sc, DC_SIO);
  639         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  640         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  641         if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
  642                 return (1);
  643 
  644         return (0);
  645 }
  646 
  647 /*
  648  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  649  */
  650 static void
  651 dc_mii_sync(struct dc_softc *sc)
  652 {
  653         int i;
  654 
  655         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  656 
  657         for (i = 0; i < 32; i++)
  658                 dc_mii_writebit(sc, 1);
  659 }
  660 
  661 /*
  662  * Clock a series of bits through the MII.
  663  */
  664 static void
  665 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
  666 {
  667         int i;
  668 
  669         for (i = (0x1 << (cnt - 1)); i; i >>= 1)
  670                 dc_mii_writebit(sc, bits & i);
  671 }
  672 
  673 /*
  674  * Read an PHY register through the MII.
  675  */
  676 static int
  677 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
  678 {
  679         int i, ack;
  680 
  681         /*
  682          * Set up frame for RX.
  683          */
  684         frame->mii_stdelim = DC_MII_STARTDELIM;
  685         frame->mii_opcode = DC_MII_READOP;
  686         frame->mii_turnaround = 0;
  687         frame->mii_data = 0;
  688 
  689         /*
  690          * Sync the PHYs.
  691          */
  692         dc_mii_sync(sc);
  693 
  694         /*
  695          * Send command/address info.
  696          */
  697         dc_mii_send(sc, frame->mii_stdelim, 2);
  698         dc_mii_send(sc, frame->mii_opcode, 2);
  699         dc_mii_send(sc, frame->mii_phyaddr, 5);
  700         dc_mii_send(sc, frame->mii_regaddr, 5);
  701 
  702 #ifdef notdef
  703         /* Idle bit */
  704         dc_mii_writebit(sc, 1);
  705         dc_mii_writebit(sc, 0);
  706 #endif
  707 
  708         /* Check for ack. */
  709         ack = dc_mii_readbit(sc);
  710 
  711         /*
  712          * Now try reading data bits. If the ack failed, we still
  713          * need to clock through 16 cycles to keep the PHY(s) in sync.
  714          */
  715         if (ack) {
  716                 for (i = 0; i < 16; i++)
  717                         dc_mii_readbit(sc);
  718                 goto fail;
  719         }
  720 
  721         for (i = 0x8000; i; i >>= 1) {
  722                 if (!ack) {
  723                         if (dc_mii_readbit(sc))
  724                                 frame->mii_data |= i;
  725                 }
  726         }
  727 
  728 fail:
  729 
  730         dc_mii_writebit(sc, 0);
  731         dc_mii_writebit(sc, 0);
  732 
  733         if (ack)
  734                 return (1);
  735         return (0);
  736 }
  737 
  738 /*
  739  * Write to a PHY register through the MII.
  740  */
  741 static int
  742 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
  743 {
  744 
  745         /*
  746          * Set up frame for TX.
  747          */
  748 
  749         frame->mii_stdelim = DC_MII_STARTDELIM;
  750         frame->mii_opcode = DC_MII_WRITEOP;
  751         frame->mii_turnaround = DC_MII_TURNAROUND;
  752 
  753         /*
  754          * Sync the PHYs.
  755          */
  756         dc_mii_sync(sc);
  757 
  758         dc_mii_send(sc, frame->mii_stdelim, 2);
  759         dc_mii_send(sc, frame->mii_opcode, 2);
  760         dc_mii_send(sc, frame->mii_phyaddr, 5);
  761         dc_mii_send(sc, frame->mii_regaddr, 5);
  762         dc_mii_send(sc, frame->mii_turnaround, 2);
  763         dc_mii_send(sc, frame->mii_data, 16);
  764 
  765         /* Idle bit. */
  766         dc_mii_writebit(sc, 0);
  767         dc_mii_writebit(sc, 0);
  768 
  769         return (0);
  770 }
  771 
  772 static int
  773 dc_miibus_readreg(device_t dev, int phy, int reg)
  774 {
  775         struct dc_mii_frame frame;
  776         struct dc_softc  *sc;
  777         int i, rval, phy_reg = 0;
  778 
  779         sc = device_get_softc(dev);
  780         bzero(&frame, sizeof(frame));
  781 
  782         /*
  783          * Note: both the AL981 and AN985 have internal PHYs,
  784          * however the AL981 provides direct access to the PHY
  785          * registers while the AN985 uses a serial MII interface.
  786          * The AN985's MII interface is also buggy in that you
  787          * can read from any MII address (0 to 31), but only address 1
  788          * behaves normally. To deal with both cases, we pretend
  789          * that the PHY is at MII address 1.
  790          */
  791         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  792                 return (0);
  793 
  794         /*
  795          * Note: the ukphy probes of the RS7112 report a PHY at
  796          * MII address 0 (possibly HomePNA?) and 1 (ethernet)
  797          * so we only respond to correct one.
  798          */
  799         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  800                 return (0);
  801 
  802         if (sc->dc_pmode != DC_PMODE_MII) {
  803                 if (phy == (MII_NPHY - 1)) {
  804                         switch (reg) {
  805                         case MII_BMSR:
  806                         /*
  807                          * Fake something to make the probe
  808                          * code think there's a PHY here.
  809                          */
  810                                 return (BMSR_MEDIAMASK);
  811                                 break;
  812                         case MII_PHYIDR1:
  813                                 if (DC_IS_PNIC(sc))
  814                                         return (DC_VENDORID_LO);
  815                                 return (DC_VENDORID_DEC);
  816                                 break;
  817                         case MII_PHYIDR2:
  818                                 if (DC_IS_PNIC(sc))
  819                                         return (DC_DEVICEID_82C168);
  820                                 return (DC_DEVICEID_21143);
  821                                 break;
  822                         default:
  823                                 return (0);
  824                                 break;
  825                         }
  826                 } else
  827                         return (0);
  828         }
  829 
  830         if (DC_IS_PNIC(sc)) {
  831                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
  832                     (phy << 23) | (reg << 18));
  833                 for (i = 0; i < DC_TIMEOUT; i++) {
  834                         DELAY(1);
  835                         rval = CSR_READ_4(sc, DC_PN_MII);
  836                         if (!(rval & DC_PN_MII_BUSY)) {
  837                                 rval &= 0xFFFF;
  838                                 return (rval == 0xFFFF ? 0 : rval);
  839                         }
  840                 }
  841                 return (0);
  842         }
  843 
  844         if (DC_IS_COMET(sc)) {
  845                 switch (reg) {
  846                 case MII_BMCR:
  847                         phy_reg = DC_AL_BMCR;
  848                         break;
  849                 case MII_BMSR:
  850                         phy_reg = DC_AL_BMSR;
  851                         break;
  852                 case MII_PHYIDR1:
  853                         phy_reg = DC_AL_VENID;
  854                         break;
  855                 case MII_PHYIDR2:
  856                         phy_reg = DC_AL_DEVID;
  857                         break;
  858                 case MII_ANAR:
  859                         phy_reg = DC_AL_ANAR;
  860                         break;
  861                 case MII_ANLPAR:
  862                         phy_reg = DC_AL_LPAR;
  863                         break;
  864                 case MII_ANER:
  865                         phy_reg = DC_AL_ANER;
  866                         break;
  867                 default:
  868                         device_printf(dev, "phy_read: bad phy register %x\n",
  869                             reg);
  870                         return (0);
  871                         break;
  872                 }
  873 
  874                 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
  875 
  876                 if (rval == 0xFFFF)
  877                         return (0);
  878                 return (rval);
  879         }
  880 
  881         frame.mii_phyaddr = phy;
  882         frame.mii_regaddr = reg;
  883         if (sc->dc_type == DC_TYPE_98713) {
  884                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  885                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  886         }
  887         dc_mii_readreg(sc, &frame);
  888         if (sc->dc_type == DC_TYPE_98713)
  889                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  890 
  891         return (frame.mii_data);
  892 }
  893 
  894 static int
  895 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
  896 {
  897         struct dc_softc *sc;
  898         struct dc_mii_frame frame;
  899         int i, phy_reg = 0;
  900 
  901         sc = device_get_softc(dev);
  902         bzero(&frame, sizeof(frame));
  903 
  904         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  905                 return (0);
  906 
  907         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  908                 return (0);
  909 
  910         if (DC_IS_PNIC(sc)) {
  911                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
  912                     (phy << 23) | (reg << 10) | data);
  913                 for (i = 0; i < DC_TIMEOUT; i++) {
  914                         if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
  915                                 break;
  916                 }
  917                 return (0);
  918         }
  919 
  920         if (DC_IS_COMET(sc)) {
  921                 switch (reg) {
  922                 case MII_BMCR:
  923                         phy_reg = DC_AL_BMCR;
  924                         break;
  925                 case MII_BMSR:
  926                         phy_reg = DC_AL_BMSR;
  927                         break;
  928                 case MII_PHYIDR1:
  929                         phy_reg = DC_AL_VENID;
  930                         break;
  931                 case MII_PHYIDR2:
  932                         phy_reg = DC_AL_DEVID;
  933                         break;
  934                 case MII_ANAR:
  935                         phy_reg = DC_AL_ANAR;
  936                         break;
  937                 case MII_ANLPAR:
  938                         phy_reg = DC_AL_LPAR;
  939                         break;
  940                 case MII_ANER:
  941                         phy_reg = DC_AL_ANER;
  942                         break;
  943                 default:
  944                         device_printf(dev, "phy_write: bad phy register %x\n",
  945                             reg);
  946                         return (0);
  947                         break;
  948                 }
  949 
  950                 CSR_WRITE_4(sc, phy_reg, data);
  951                 return (0);
  952         }
  953 
  954         frame.mii_phyaddr = phy;
  955         frame.mii_regaddr = reg;
  956         frame.mii_data = data;
  957 
  958         if (sc->dc_type == DC_TYPE_98713) {
  959                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  960                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  961         }
  962         dc_mii_writereg(sc, &frame);
  963         if (sc->dc_type == DC_TYPE_98713)
  964                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  965 
  966         return (0);
  967 }
  968 
  969 static void
  970 dc_miibus_statchg(device_t dev)
  971 {
  972         struct dc_softc *sc;
  973         struct mii_data *mii;
  974         struct ifmedia *ifm;
  975 
  976         sc = device_get_softc(dev);
  977         if (DC_IS_ADMTEK(sc))
  978                 return;
  979 
  980         mii = device_get_softc(sc->dc_miibus);
  981         ifm = &mii->mii_media;
  982         if (DC_IS_DAVICOM(sc) &&
  983             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
  984                 dc_setcfg(sc, ifm->ifm_media);
  985                 sc->dc_if_media = ifm->ifm_media;
  986         } else {
  987                 dc_setcfg(sc, mii->mii_media_active);
  988                 sc->dc_if_media = mii->mii_media_active;
  989         }
  990 }
  991 
  992 /*
  993  * Special support for DM9102A cards with HomePNA PHYs. Note:
  994  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
  995  * to be impossible to talk to the management interface of the DM9801
  996  * PHY (its MDIO pin is not connected to anything). Consequently,
  997  * the driver has to just 'know' about the additional mode and deal
  998  * with it itself. *sigh*
  999  */
 1000 static void
 1001 dc_miibus_mediainit(device_t dev)
 1002 {
 1003         struct dc_softc *sc;
 1004         struct mii_data *mii;
 1005         struct ifmedia *ifm;
 1006         int rev;
 1007 
 1008         rev = pci_get_revid(dev);
 1009 
 1010         sc = device_get_softc(dev);
 1011         mii = device_get_softc(sc->dc_miibus);
 1012         ifm = &mii->mii_media;
 1013 
 1014         if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
 1015                 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
 1016 }
 1017 
 1018 #define DC_BITS_512     9
 1019 #define DC_BITS_128     7
 1020 #define DC_BITS_64      6
 1021 
 1022 static uint32_t
 1023 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
 1024 {
 1025         uint32_t crc;
 1026 
 1027         /* Compute CRC for the address value. */
 1028         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
 1029 
 1030         /*
 1031          * The hash table on the PNIC II and the MX98715AEC-C/D/E
 1032          * chips is only 128 bits wide.
 1033          */
 1034         if (sc->dc_flags & DC_128BIT_HASH)
 1035                 return (crc & ((1 << DC_BITS_128) - 1));
 1036 
 1037         /* The hash table on the MX98715BEC is only 64 bits wide. */
 1038         if (sc->dc_flags & DC_64BIT_HASH)
 1039                 return (crc & ((1 << DC_BITS_64) - 1));
 1040 
 1041         /* Xircom's hash filtering table is different (read: weird) */
 1042         /* Xircom uses the LEAST significant bits */
 1043         if (DC_IS_XIRCOM(sc)) {
 1044                 if ((crc & 0x180) == 0x180)
 1045                         return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
 1046                 else
 1047                         return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
 1048                             (12 << 4));
 1049         }
 1050 
 1051         return (crc & ((1 << DC_BITS_512) - 1));
 1052 }
 1053 
 1054 /*
 1055  * Calculate CRC of a multicast group address, return the lower 6 bits.
 1056  */
 1057 static uint32_t
 1058 dc_mchash_be(const uint8_t *addr)
 1059 {
 1060         uint32_t crc;
 1061 
 1062         /* Compute CRC for the address value. */
 1063         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
 1064 
 1065         /* Return the filter bit position. */
 1066         return ((crc >> 26) & 0x0000003F);
 1067 }
 1068 
 1069 /*
 1070  * 21143-style RX filter setup routine. Filter programming is done by
 1071  * downloading a special setup frame into the TX engine. 21143, Macronix,
 1072  * PNIC, PNIC II and Davicom chips are programmed this way.
 1073  *
 1074  * We always program the chip using 'hash perfect' mode, i.e. one perfect
 1075  * address (our node address) and a 512-bit hash filter for multicast
 1076  * frames. We also sneak the broadcast address into the hash filter since
 1077  * we need that too.
 1078  */
 1079 static void
 1080 dc_setfilt_21143(struct dc_softc *sc)
 1081 {
 1082         struct dc_desc *sframe;
 1083         u_int32_t h, *sp;
 1084         struct ifmultiaddr *ifma;
 1085         struct ifnet *ifp;
 1086         int i;
 1087 
 1088         ifp = sc->dc_ifp;
 1089 
 1090         i = sc->dc_cdata.dc_tx_prod;
 1091         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1092         sc->dc_cdata.dc_tx_cnt++;
 1093         sframe = &sc->dc_ldata->dc_tx_list[i];
 1094         sp = sc->dc_cdata.dc_sbuf;
 1095         bzero(sp, DC_SFRAME_LEN);
 1096 
 1097         sframe->dc_data = htole32(sc->dc_saddr);
 1098         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1099             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1100 
 1101         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1102 
 1103         /* If we want promiscuous mode, set the allframes bit. */
 1104         if (ifp->if_flags & IFF_PROMISC)
 1105                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1106         else
 1107                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1108 
 1109         if (ifp->if_flags & IFF_ALLMULTI)
 1110                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1111         else
 1112                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1113 
 1114         IF_ADDR_LOCK(ifp);
 1115         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1116                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1117                         continue;
 1118                 h = dc_mchash_le(sc,
 1119                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1120                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1121         }
 1122         IF_ADDR_UNLOCK(ifp);
 1123 
 1124         if (ifp->if_flags & IFF_BROADCAST) {
 1125                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1126                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1127         }
 1128 
 1129         /* Set our MAC address */
 1130         sp[39] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
 1131         sp[40] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
 1132         sp[41] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
 1133 
 1134         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1135         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1136 
 1137         /*
 1138          * The PNIC takes an exceedingly long time to process its
 1139          * setup frame; wait 10ms after posting the setup frame
 1140          * before proceeding, just so it has time to swallow its
 1141          * medicine.
 1142          */
 1143         DELAY(10000);
 1144 
 1145         ifp->if_timer = 5;
 1146 }
 1147 
 1148 static void
 1149 dc_setfilt_admtek(struct dc_softc *sc)
 1150 {
 1151         struct ifnet *ifp;
 1152         struct ifmultiaddr *ifma;
 1153         int h = 0;
 1154         u_int32_t hashes[2] = { 0, 0 };
 1155 
 1156         ifp = sc->dc_ifp;
 1157 
 1158         /* Init our MAC address. */
 1159         CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
 1160         CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
 1161 
 1162         /* If we want promiscuous mode, set the allframes bit. */
 1163         if (ifp->if_flags & IFF_PROMISC)
 1164                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1165         else
 1166                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1167 
 1168         if (ifp->if_flags & IFF_ALLMULTI)
 1169                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1170         else
 1171                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1172 
 1173         /* First, zot all the existing hash bits. */
 1174         CSR_WRITE_4(sc, DC_AL_MAR0, 0);
 1175         CSR_WRITE_4(sc, DC_AL_MAR1, 0);
 1176 
 1177         /*
 1178          * If we're already in promisc or allmulti mode, we
 1179          * don't have to bother programming the multicast filter.
 1180          */
 1181         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1182                 return;
 1183 
 1184         /* Now program new ones. */
 1185         IF_ADDR_LOCK(ifp);
 1186         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1187                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1188                         continue;
 1189                 if (DC_IS_CENTAUR(sc))
 1190                         h = dc_mchash_le(sc,
 1191                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1192                 else
 1193                         h = dc_mchash_be(
 1194                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1195                 if (h < 32)
 1196                         hashes[0] |= (1 << h);
 1197                 else
 1198                         hashes[1] |= (1 << (h - 32));
 1199         }
 1200         IF_ADDR_UNLOCK(ifp);
 1201 
 1202         CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
 1203         CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
 1204 }
 1205 
 1206 static void
 1207 dc_setfilt_asix(struct dc_softc *sc)
 1208 {
 1209         struct ifnet *ifp;
 1210         struct ifmultiaddr *ifma;
 1211         int h = 0;
 1212         u_int32_t hashes[2] = { 0, 0 };
 1213 
 1214         ifp = sc->dc_ifp;
 1215 
 1216         /* Init our MAC address */
 1217         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
 1218         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1219             *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
 1220         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
 1221         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1222             *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
 1223 
 1224         /* If we want promiscuous mode, set the allframes bit. */
 1225         if (ifp->if_flags & IFF_PROMISC)
 1226                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1227         else
 1228                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1229 
 1230         if (ifp->if_flags & IFF_ALLMULTI)
 1231                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1232         else
 1233                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1234 
 1235         /*
 1236          * The ASIX chip has a special bit to enable reception
 1237          * of broadcast frames.
 1238          */
 1239         if (ifp->if_flags & IFF_BROADCAST)
 1240                 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1241         else
 1242                 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1243 
 1244         /* first, zot all the existing hash bits */
 1245         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1246         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1247         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1248         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1249 
 1250         /*
 1251          * If we're already in promisc or allmulti mode, we
 1252          * don't have to bother programming the multicast filter.
 1253          */
 1254         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1255                 return;
 1256 
 1257         /* now program new ones */
 1258         IF_ADDR_LOCK(ifp);
 1259         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1260                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1261                         continue;
 1262                 h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1263                 if (h < 32)
 1264                         hashes[0] |= (1 << h);
 1265                 else
 1266                         hashes[1] |= (1 << (h - 32));
 1267         }
 1268         IF_ADDR_UNLOCK(ifp);
 1269 
 1270         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1271         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
 1272         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1273         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
 1274 }
 1275 
 1276 static void
 1277 dc_setfilt_xircom(struct dc_softc *sc)
 1278 {
 1279         struct ifnet *ifp;
 1280         struct ifmultiaddr *ifma;
 1281         struct dc_desc *sframe;
 1282         u_int32_t h, *sp;
 1283         int i;
 1284 
 1285         ifp = sc->dc_ifp;
 1286         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1287 
 1288         i = sc->dc_cdata.dc_tx_prod;
 1289         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1290         sc->dc_cdata.dc_tx_cnt++;
 1291         sframe = &sc->dc_ldata->dc_tx_list[i];
 1292         sp = sc->dc_cdata.dc_sbuf;
 1293         bzero(sp, DC_SFRAME_LEN);
 1294 
 1295         sframe->dc_data = htole32(sc->dc_saddr);
 1296         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1297             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1298 
 1299         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1300 
 1301         /* If we want promiscuous mode, set the allframes bit. */
 1302         if (ifp->if_flags & IFF_PROMISC)
 1303                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1304         else
 1305                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1306 
 1307         if (ifp->if_flags & IFF_ALLMULTI)
 1308                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1309         else
 1310                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1311 
 1312         IF_ADDR_LOCK(ifp);
 1313         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1314                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1315                         continue;
 1316                 h = dc_mchash_le(sc,
 1317                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1318                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1319         }
 1320         IF_ADDR_UNLOCK(ifp);
 1321 
 1322         if (ifp->if_flags & IFF_BROADCAST) {
 1323                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1324                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1325         }
 1326 
 1327         /* Set our MAC address */
 1328         sp[0] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
 1329         sp[1] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
 1330         sp[2] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
 1331 
 1332         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 1333         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 1334         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1335         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1336         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1337 
 1338         /*
 1339          * Wait some time...
 1340          */
 1341         DELAY(1000);
 1342 
 1343         ifp->if_timer = 5;
 1344 }
 1345 
 1346 static void
 1347 dc_setfilt(struct dc_softc *sc)
 1348 {
 1349 
 1350         if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
 1351             DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
 1352                 dc_setfilt_21143(sc);
 1353 
 1354         if (DC_IS_ASIX(sc))
 1355                 dc_setfilt_asix(sc);
 1356 
 1357         if (DC_IS_ADMTEK(sc))
 1358                 dc_setfilt_admtek(sc);
 1359 
 1360         if (DC_IS_XIRCOM(sc))
 1361                 dc_setfilt_xircom(sc);
 1362 }
 1363 
 1364 /*
 1365  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
 1366  * the netconfig register, we first have to put the transmit and/or
 1367  * receive logic in the idle state.
 1368  */
 1369 static void
 1370 dc_setcfg(struct dc_softc *sc, int media)
 1371 {
 1372         int i, restart = 0, watchdogreg;
 1373         u_int32_t isr;
 1374 
 1375         if (IFM_SUBTYPE(media) == IFM_NONE)
 1376                 return;
 1377 
 1378         if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
 1379                 restart = 1;
 1380                 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1381 
 1382                 for (i = 0; i < DC_TIMEOUT; i++) {
 1383                         isr = CSR_READ_4(sc, DC_ISR);
 1384                         if (isr & DC_ISR_TX_IDLE &&
 1385                             ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1386                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
 1387                                 break;
 1388                         DELAY(10);
 1389                 }
 1390 
 1391                 if (i == DC_TIMEOUT) {
 1392                         if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
 1393                                 device_printf(sc->dc_dev,
 1394                                     "%s: failed to force tx to idle state\n",
 1395                                     __func__);
 1396                         if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1397                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
 1398                             !(DC_IS_CENTAUR(sc) || DC_IS_CONEXANT(sc) ||
 1399                             (DC_IS_DAVICOM(sc) && pci_get_revid(sc->dc_dev) >=
 1400                             DC_REVISION_DM9102A)))
 1401                                 device_printf(sc->dc_dev,
 1402                                     "%s: failed to force rx to idle state\n",
 1403                                     __func__);
 1404                 }
 1405         }
 1406 
 1407         if (IFM_SUBTYPE(media) == IFM_100_TX) {
 1408                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1409                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1410                 if (sc->dc_pmode == DC_PMODE_MII) {
 1411                         if (DC_IS_INTEL(sc)) {
 1412                         /* There's a write enable bit here that reads as 1. */
 1413                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1414                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1415                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1416                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1417                         } else {
 1418                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1419                         }
 1420                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1421                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1422                         if (sc->dc_type == DC_TYPE_98713)
 1423                                 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1424                                     DC_NETCFG_SCRAMBLER));
 1425                         if (!DC_IS_DAVICOM(sc))
 1426                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1427                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1428                         if (DC_IS_INTEL(sc))
 1429                                 dc_apply_fixup(sc, IFM_AUTO);
 1430                 } else {
 1431                         if (DC_IS_PNIC(sc)) {
 1432                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1433                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1434                                 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1435                         }
 1436                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1437                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1438                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1439                         if (DC_IS_INTEL(sc))
 1440                                 dc_apply_fixup(sc,
 1441                                     (media & IFM_GMASK) == IFM_FDX ?
 1442                                     IFM_100_TX | IFM_FDX : IFM_100_TX);
 1443                 }
 1444         }
 1445 
 1446         if (IFM_SUBTYPE(media) == IFM_10_T) {
 1447                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1448                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1449                 if (sc->dc_pmode == DC_PMODE_MII) {
 1450                         /* There's a write enable bit here that reads as 1. */
 1451                         if (DC_IS_INTEL(sc)) {
 1452                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1453                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1454                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1455                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1456                         } else {
 1457                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1458                         }
 1459                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1460                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1461                         if (sc->dc_type == DC_TYPE_98713)
 1462                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1463                         if (!DC_IS_DAVICOM(sc))
 1464                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1465                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1466                         if (DC_IS_INTEL(sc))
 1467                                 dc_apply_fixup(sc, IFM_AUTO);
 1468                 } else {
 1469                         if (DC_IS_PNIC(sc)) {
 1470                                 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1471                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1472                                 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1473                         }
 1474                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1475                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1476                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1477                         if (DC_IS_INTEL(sc)) {
 1478                                 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1479                                 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1480                                 if ((media & IFM_GMASK) == IFM_FDX)
 1481                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
 1482                                 else
 1483                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
 1484                                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1485                                 DC_CLRBIT(sc, DC_10BTCTRL,
 1486                                     DC_TCTL_AUTONEGENBL);
 1487                                 dc_apply_fixup(sc,
 1488                                     (media & IFM_GMASK) == IFM_FDX ?
 1489                                     IFM_10_T | IFM_FDX : IFM_10_T);
 1490                                 DELAY(20000);
 1491                         }
 1492                 }
 1493         }
 1494 
 1495         /*
 1496          * If this is a Davicom DM9102A card with a DM9801 HomePNA
 1497          * PHY and we want HomePNA mode, set the portsel bit to turn
 1498          * on the external MII port.
 1499          */
 1500         if (DC_IS_DAVICOM(sc)) {
 1501                 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
 1502                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1503                         sc->dc_link = 1;
 1504                 } else {
 1505                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1506                 }
 1507         }
 1508 
 1509         if ((media & IFM_GMASK) == IFM_FDX) {
 1510                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1511                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1512                         DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1513         } else {
 1514                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1515                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1516                         DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1517         }
 1518 
 1519         if (restart)
 1520                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
 1521 }
 1522 
 1523 static void
 1524 dc_reset(struct dc_softc *sc)
 1525 {
 1526         int i;
 1527 
 1528         DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1529 
 1530         for (i = 0; i < DC_TIMEOUT; i++) {
 1531                 DELAY(10);
 1532                 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
 1533                         break;
 1534         }
 1535 
 1536         if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
 1537             DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
 1538                 DELAY(10000);
 1539                 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1540                 i = 0;
 1541         }
 1542 
 1543         if (i == DC_TIMEOUT)
 1544                 device_printf(sc->dc_dev, "reset never completed!\n");
 1545 
 1546         /* Wait a little while for the chip to get its brains in order. */
 1547         DELAY(1000);
 1548 
 1549         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 1550         CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
 1551         CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
 1552 
 1553         /*
 1554          * Bring the SIA out of reset. In some cases, it looks
 1555          * like failing to unreset the SIA soon enough gets it
 1556          * into a state where it will never come out of reset
 1557          * until we reset the whole chip again.
 1558          */
 1559         if (DC_IS_INTEL(sc)) {
 1560                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1561                 CSR_WRITE_4(sc, DC_10BTCTRL, 0);
 1562                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 1563         }
 1564 }
 1565 
 1566 static struct dc_type *
 1567 dc_devtype(device_t dev)
 1568 {
 1569         struct dc_type *t;
 1570         u_int32_t devid;
 1571         u_int8_t rev;
 1572 
 1573         t = dc_devs;
 1574         devid = pci_get_devid(dev);
 1575         rev = pci_get_revid(dev);
 1576 
 1577         while (t->dc_name != NULL) {
 1578                 if (devid == t->dc_devid && rev >= t->dc_minrev)
 1579                         return (t);
 1580                 t++;
 1581         }
 1582 
 1583         return (NULL);
 1584 }
 1585 
 1586 /*
 1587  * Probe for a 21143 or clone chip. Check the PCI vendor and device
 1588  * IDs against our list and return a device name if we find a match.
 1589  * We do a little bit of extra work to identify the exact type of
 1590  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
 1591  * but different revision IDs. The same is true for 98715/98715A
 1592  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
 1593  * cases, the exact chip revision affects driver behavior.
 1594  */
 1595 static int
 1596 dc_probe(device_t dev)
 1597 {
 1598         struct dc_type *t;
 1599 
 1600         t = dc_devtype(dev);
 1601 
 1602         if (t != NULL) {
 1603                 device_set_desc(dev, t->dc_name);
 1604                 return (BUS_PROBE_DEFAULT);
 1605         }
 1606 
 1607         return (ENXIO);
 1608 }
 1609 
 1610 static void
 1611 dc_apply_fixup(struct dc_softc *sc, int media)
 1612 {
 1613         struct dc_mediainfo *m;
 1614         u_int8_t *p;
 1615         int i;
 1616         u_int32_t reg;
 1617 
 1618         m = sc->dc_mi;
 1619 
 1620         while (m != NULL) {
 1621                 if (m->dc_media == media)
 1622                         break;
 1623                 m = m->dc_next;
 1624         }
 1625 
 1626         if (m == NULL)
 1627                 return;
 1628 
 1629         for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
 1630                 reg = (p[0] | (p[1] << 8)) << 16;
 1631                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1632         }
 1633 
 1634         for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
 1635                 reg = (p[0] | (p[1] << 8)) << 16;
 1636                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1637         }
 1638 }
 1639 
 1640 static void
 1641 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
 1642 {
 1643         struct dc_mediainfo *m;
 1644 
 1645         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1646         switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
 1647         case DC_SIA_CODE_10BT:
 1648                 m->dc_media = IFM_10_T;
 1649                 break;
 1650         case DC_SIA_CODE_10BT_FDX:
 1651                 m->dc_media = IFM_10_T | IFM_FDX;
 1652                 break;
 1653         case DC_SIA_CODE_10B2:
 1654                 m->dc_media = IFM_10_2;
 1655                 break;
 1656         case DC_SIA_CODE_10B5:
 1657                 m->dc_media = IFM_10_5;
 1658                 break;
 1659         default:
 1660                 break;
 1661         }
 1662 
 1663         /*
 1664          * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
 1665          * Things apparently already work for cards that do
 1666          * supply Media Specific Data.
 1667          */
 1668         if (l->dc_sia_code & DC_SIA_CODE_EXT) {
 1669                 m->dc_gp_len = 2;
 1670                 m->dc_gp_ptr =
 1671                 (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
 1672         } else {
 1673                 m->dc_gp_len = 2;
 1674                 m->dc_gp_ptr =
 1675                 (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
 1676         }
 1677 
 1678         m->dc_next = sc->dc_mi;
 1679         sc->dc_mi = m;
 1680 
 1681         sc->dc_pmode = DC_PMODE_SIA;
 1682 }
 1683 
 1684 static void
 1685 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
 1686 {
 1687         struct dc_mediainfo *m;
 1688 
 1689         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1690         if (l->dc_sym_code == DC_SYM_CODE_100BT)
 1691                 m->dc_media = IFM_100_TX;
 1692 
 1693         if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
 1694                 m->dc_media = IFM_100_TX | IFM_FDX;
 1695 
 1696         m->dc_gp_len = 2;
 1697         m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
 1698 
 1699         m->dc_next = sc->dc_mi;
 1700         sc->dc_mi = m;
 1701 
 1702         sc->dc_pmode = DC_PMODE_SYM;
 1703 }
 1704 
 1705 static void
 1706 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
 1707 {
 1708         struct dc_mediainfo *m;
 1709         u_int8_t *p;
 1710 
 1711         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1712         /* We abuse IFM_AUTO to represent MII. */
 1713         m->dc_media = IFM_AUTO;
 1714         m->dc_gp_len = l->dc_gpr_len;
 1715 
 1716         p = (u_int8_t *)l;
 1717         p += sizeof(struct dc_eblock_mii);
 1718         m->dc_gp_ptr = p;
 1719         p += 2 * l->dc_gpr_len;
 1720         m->dc_reset_len = *p;
 1721         p++;
 1722         m->dc_reset_ptr = p;
 1723 
 1724         m->dc_next = sc->dc_mi;
 1725         sc->dc_mi = m;
 1726 }
 1727 
 1728 static void
 1729 dc_read_srom(struct dc_softc *sc, int bits)
 1730 {
 1731         int size;
 1732 
 1733         size = 2 << bits;
 1734         sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
 1735         dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
 1736 }
 1737 
 1738 static void
 1739 dc_parse_21143_srom(struct dc_softc *sc)
 1740 {
 1741         struct dc_leaf_hdr *lhdr;
 1742         struct dc_eblock_hdr *hdr;
 1743         int have_mii, i, loff;
 1744         char *ptr;
 1745 
 1746         have_mii = 0;
 1747         loff = sc->dc_srom[27];
 1748         lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
 1749 
 1750         ptr = (char *)lhdr;
 1751         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1752         /*
 1753          * Look if we got a MII media block.
 1754          */
 1755         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1756                 hdr = (struct dc_eblock_hdr *)ptr;
 1757                 if (hdr->dc_type == DC_EBLOCK_MII)
 1758                     have_mii++;
 1759 
 1760                 ptr += (hdr->dc_len & 0x7F);
 1761                 ptr++;
 1762         }
 1763 
 1764         /*
 1765          * Do the same thing again. Only use SIA and SYM media
 1766          * blocks if no MII media block is available.
 1767          */
 1768         ptr = (char *)lhdr;
 1769         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1770         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1771                 hdr = (struct dc_eblock_hdr *)ptr;
 1772                 switch (hdr->dc_type) {
 1773                 case DC_EBLOCK_MII:
 1774                         dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
 1775                         break;
 1776                 case DC_EBLOCK_SIA:
 1777                         if (! have_mii)
 1778                                 dc_decode_leaf_sia(sc,
 1779                                     (struct dc_eblock_sia *)hdr);
 1780                         break;
 1781                 case DC_EBLOCK_SYM:
 1782                         if (! have_mii)
 1783                                 dc_decode_leaf_sym(sc,
 1784                                     (struct dc_eblock_sym *)hdr);
 1785                         break;
 1786                 default:
 1787                         /* Don't care. Yet. */
 1788                         break;
 1789                 }
 1790                 ptr += (hdr->dc_len & 0x7F);
 1791                 ptr++;
 1792         }
 1793 }
 1794 
 1795 static void
 1796 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1797 {
 1798         u_int32_t *paddr;
 1799 
 1800         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 1801         paddr = arg;
 1802         *paddr = segs->ds_addr;
 1803 }
 1804 
 1805 /*
 1806  * Attach the interface. Allocate softc structures, do ifmedia
 1807  * setup and ethernet/BPF attach.
 1808  */
 1809 static int
 1810 dc_attach(device_t dev)
 1811 {
 1812         int tmp = 0;
 1813         u_char eaddr[ETHER_ADDR_LEN];
 1814         u_int32_t command;
 1815         struct dc_softc *sc;
 1816         struct ifnet *ifp;
 1817         u_int32_t revision;
 1818         int error = 0, rid, mac_offset;
 1819         int i;
 1820         u_int8_t *mac;
 1821 
 1822         sc = device_get_softc(dev);
 1823         sc->dc_dev = dev;
 1824 
 1825         mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1826             MTX_DEF);
 1827 
 1828         /*
 1829          * Map control/status registers.
 1830          */
 1831         pci_enable_busmaster(dev);
 1832 
 1833         rid = DC_RID;
 1834         sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
 1835 
 1836         if (sc->dc_res == NULL) {
 1837                 device_printf(dev, "couldn't map ports/memory\n");
 1838                 error = ENXIO;
 1839                 goto fail;
 1840         }
 1841 
 1842         sc->dc_btag = rman_get_bustag(sc->dc_res);
 1843         sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
 1844 
 1845         /* Allocate interrupt. */
 1846         rid = 0;
 1847         sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1848             RF_SHAREABLE | RF_ACTIVE);
 1849 
 1850         if (sc->dc_irq == NULL) {
 1851                 device_printf(dev, "couldn't map interrupt\n");
 1852                 error = ENXIO;
 1853                 goto fail;
 1854         }
 1855 
 1856         /* Need this info to decide on a chip type. */
 1857         sc->dc_info = dc_devtype(dev);
 1858         revision = pci_get_revid(dev);
 1859 
 1860         /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
 1861         if (sc->dc_info->dc_devid !=
 1862             DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
 1863             sc->dc_info->dc_devid !=
 1864             DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
 1865                 dc_eeprom_width(sc);
 1866 
 1867         switch (sc->dc_info->dc_devid) {
 1868         case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
 1869                 sc->dc_type = DC_TYPE_21143;
 1870                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1871                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1872                 /* Save EEPROM contents so we can parse them later. */
 1873                 dc_read_srom(sc, sc->dc_romwidth);
 1874                 break;
 1875         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
 1876         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
 1877         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
 1878                 sc->dc_type = DC_TYPE_DM9102;
 1879                 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
 1880                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
 1881                 sc->dc_flags |= DC_TX_ALIGN;
 1882                 sc->dc_pmode = DC_PMODE_MII;
 1883 
 1884                 /* Increase the latency timer value. */
 1885                 pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
 1886                 break;
 1887         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
 1888                 sc->dc_type = DC_TYPE_AL981;
 1889                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1890                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1891                 sc->dc_pmode = DC_PMODE_MII;
 1892                 dc_read_srom(sc, sc->dc_romwidth);
 1893                 break;
 1894         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
 1895         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
 1896         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
 1897         case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
 1898         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
 1899         case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
 1900         case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
 1901         case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
 1902         case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
 1903         case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
 1904         case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
 1905         case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
 1906         case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
 1907         case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
 1908         case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
 1909                 sc->dc_type = DC_TYPE_AN985;
 1910                 sc->dc_flags |= DC_64BIT_HASH;
 1911                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1912                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1913                 sc->dc_pmode = DC_PMODE_MII;
 1914                 /* Don't read SROM for - auto-loaded on reset */
 1915                 break;
 1916         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
 1917         case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
 1918                 if (revision < DC_REVISION_98713A) {
 1919                         sc->dc_type = DC_TYPE_98713;
 1920                 }
 1921                 if (revision >= DC_REVISION_98713A) {
 1922                         sc->dc_type = DC_TYPE_98713A;
 1923                         sc->dc_flags |= DC_21143_NWAY;
 1924                 }
 1925                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1926                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1927                 break;
 1928         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
 1929         case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
 1930                 /*
 1931                  * Macronix MX98715AEC-C/D/E parts have only a
 1932                  * 128-bit hash table. We need to deal with these
 1933                  * in the same manner as the PNIC II so that we
 1934                  * get the right number of bits out of the
 1935                  * CRC routine.
 1936                  */
 1937                 if (revision >= DC_REVISION_98715AEC_C &&
 1938                     revision < DC_REVISION_98725)
 1939                         sc->dc_flags |= DC_128BIT_HASH;
 1940                 sc->dc_type = DC_TYPE_987x5;
 1941                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1942                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1943                 break;
 1944         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
 1945                 sc->dc_type = DC_TYPE_987x5;
 1946                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1947                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1948                 break;
 1949         case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
 1950                 sc->dc_type = DC_TYPE_PNICII;
 1951                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
 1952                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1953                 break;
 1954         case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
 1955                 sc->dc_type = DC_TYPE_PNIC;
 1956                 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
 1957                 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
 1958                 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
 1959                 if (revision < DC_REVISION_82C169)
 1960                         sc->dc_pmode = DC_PMODE_SYM;
 1961                 break;
 1962         case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
 1963                 sc->dc_type = DC_TYPE_ASIX;
 1964                 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
 1965                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1966                 sc->dc_pmode = DC_PMODE_MII;
 1967                 break;
 1968         case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
 1969                 sc->dc_type = DC_TYPE_XIRCOM;
 1970                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 1971                                 DC_TX_ALIGN;
 1972                 /*
 1973                  * We don't actually need to coalesce, but we're doing
 1974                  * it to obtain a double word aligned buffer.
 1975                  * The DC_TX_COALESCE flag is required.
 1976                  */
 1977                 sc->dc_pmode = DC_PMODE_MII;
 1978                 break;
 1979         case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
 1980                 sc->dc_type = DC_TYPE_CONEXANT;
 1981                 sc->dc_flags |= DC_TX_INTR_ALWAYS;
 1982                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1983                 sc->dc_pmode = DC_PMODE_MII;
 1984                 dc_read_srom(sc, sc->dc_romwidth);
 1985                 break;
 1986         default:
 1987                 device_printf(dev, "unknown device: %x\n",
 1988                     sc->dc_info->dc_devid);
 1989                 break;
 1990         }
 1991 
 1992         /* Save the cache line size. */
 1993         if (DC_IS_DAVICOM(sc))
 1994                 sc->dc_cachesize = 0;
 1995         else
 1996                 sc->dc_cachesize = pci_get_cachelnsz(dev);
 1997 
 1998         /* Reset the adapter. */
 1999         dc_reset(sc);
 2000 
 2001         /* Take 21143 out of snooze mode */
 2002         if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
 2003                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2004                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2005                 pci_write_config(dev, DC_PCI_CFDD, command, 4);
 2006         }
 2007 
 2008         /*
 2009          * Try to learn something about the supported media.
 2010          * We know that ASIX and ADMtek and Davicom devices
 2011          * will *always* be using MII media, so that's a no-brainer.
 2012          * The tricky ones are the Macronix/PNIC II and the
 2013          * Intel 21143.
 2014          */
 2015         if (DC_IS_INTEL(sc))
 2016                 dc_parse_21143_srom(sc);
 2017         else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 2018                 if (sc->dc_type == DC_TYPE_98713)
 2019                         sc->dc_pmode = DC_PMODE_MII;
 2020                 else
 2021                         sc->dc_pmode = DC_PMODE_SYM;
 2022         } else if (!sc->dc_pmode)
 2023                 sc->dc_pmode = DC_PMODE_MII;
 2024 
 2025         /*
 2026          * Get station address from the EEPROM.
 2027          */
 2028         switch(sc->dc_type) {
 2029         case DC_TYPE_98713:
 2030         case DC_TYPE_98713A:
 2031         case DC_TYPE_987x5:
 2032         case DC_TYPE_PNICII:
 2033                 dc_read_eeprom(sc, (caddr_t)&mac_offset,
 2034                     (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
 2035                 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
 2036                 break;
 2037         case DC_TYPE_PNIC:
 2038                 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
 2039                 break;
 2040         case DC_TYPE_DM9102:
 2041                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2042 #ifdef __sparc64__
 2043                 /*
 2044                  * If this is an onboard dc(4) the station address read from
 2045                  * the EEPROM is all zero and we have to get it from the fcode.
 2046                  */
 2047                 for (i = 0; i < ETHER_ADDR_LEN; i++)
 2048                         if (eaddr[i] != 0x00)
 2049                                 break;
 2050                 if (i >= ETHER_ADDR_LEN)
 2051                         OF_getetheraddr(dev, eaddr);
 2052 #endif
 2053                 break;
 2054         case DC_TYPE_21143:
 2055         case DC_TYPE_ASIX:
 2056                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2057                 break;
 2058         case DC_TYPE_AL981:
 2059         case DC_TYPE_AN985:
 2060                 *(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
 2061                 *(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
 2062                 break;
 2063         case DC_TYPE_CONEXANT:
 2064                 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
 2065                     ETHER_ADDR_LEN);
 2066                 break;
 2067         case DC_TYPE_XIRCOM:
 2068                 /* The MAC comes from the CIS. */
 2069                 mac = pci_get_ether(dev);
 2070                 if (!mac) {
 2071                         device_printf(dev, "No station address in CIS!\n");
 2072                         error = ENXIO;
 2073                         goto fail;
 2074                 }
 2075                 bcopy(mac, eaddr, ETHER_ADDR_LEN);
 2076                 break;
 2077         default:
 2078                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2079                 break;
 2080         }
 2081 
 2082         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 2083         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2084             BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
 2085             sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
 2086         if (error) {
 2087                 device_printf(dev, "failed to allocate busdma tag\n");
 2088                 error = ENXIO;
 2089                 goto fail;
 2090         }
 2091         error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
 2092             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
 2093         if (error) {
 2094                 device_printf(dev, "failed to allocate DMA safe memory\n");
 2095                 error = ENXIO;
 2096                 goto fail;
 2097         }
 2098         error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
 2099             sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
 2100             BUS_DMA_NOWAIT);
 2101         if (error) {
 2102                 device_printf(dev, "cannot get address of the descriptors\n");
 2103                 error = ENXIO;
 2104                 goto fail;
 2105         }
 2106 
 2107         /*
 2108          * Allocate a busdma tag and DMA safe memory for the multicast
 2109          * setup frame.
 2110          */
 2111         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
 2112             BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
 2113             DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
 2114         if (error) {
 2115                 device_printf(dev, "failed to allocate busdma tag\n");
 2116                 error = ENXIO;
 2117                 goto fail;
 2118         }
 2119         error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
 2120             BUS_DMA_NOWAIT, &sc->dc_smap);
 2121         if (error) {
 2122                 device_printf(dev, "failed to allocate DMA safe memory\n");
 2123                 error = ENXIO;
 2124                 goto fail;
 2125         }
 2126         error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
 2127             DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
 2128         if (error) {
 2129                 device_printf(dev, "cannot get address of the descriptors\n");
 2130                 error = ENXIO;
 2131                 goto fail;
 2132         }
 2133 
 2134         /* Allocate a busdma tag for mbufs. */
 2135         error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
 2136             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
 2137             0, NULL, NULL, &sc->dc_mtag);
 2138         if (error) {
 2139                 device_printf(dev, "failed to allocate busdma tag\n");
 2140                 error = ENXIO;
 2141                 goto fail;
 2142         }
 2143 
 2144         /* Create the TX/RX busdma maps. */
 2145         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2146                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2147                     &sc->dc_cdata.dc_tx_map[i]);
 2148                 if (error) {
 2149                         device_printf(dev, "failed to init TX ring\n");
 2150                         error = ENXIO;
 2151                         goto fail;
 2152                 }
 2153         }
 2154         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2155                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2156                     &sc->dc_cdata.dc_rx_map[i]);
 2157                 if (error) {
 2158                         device_printf(dev, "failed to init RX ring\n");
 2159                         error = ENXIO;
 2160                         goto fail;
 2161                 }
 2162         }
 2163         error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
 2164         if (error) {
 2165                 device_printf(dev, "failed to init RX ring\n");
 2166                 error = ENXIO;
 2167                 goto fail;
 2168         }
 2169 
 2170         ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
 2171         if (ifp == NULL) {
 2172                 device_printf(dev, "can not if_alloc()\n");
 2173                 error = ENOSPC;
 2174                 goto fail;
 2175         }
 2176         ifp->if_softc = sc;
 2177         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2178         /* XXX: bleah, MTU gets overwritten in ether_ifattach() */
 2179         ifp->if_mtu = ETHERMTU;
 2180         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2181         ifp->if_ioctl = dc_ioctl;
 2182         ifp->if_start = dc_start;
 2183         ifp->if_watchdog = dc_watchdog;
 2184         ifp->if_init = dc_init;
 2185         IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
 2186         ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
 2187         IFQ_SET_READY(&ifp->if_snd);
 2188 
 2189         /*
 2190          * Do MII setup. If this is a 21143, check for a PHY on the
 2191          * MII bus after applying any necessary fixups to twiddle the
 2192          * GPIO bits. If we don't end up finding a PHY, restore the
 2193          * old selection (SIA only or SIA/SYM) and attach the dcphy
 2194          * driver instead.
 2195          */
 2196         if (DC_IS_INTEL(sc)) {
 2197                 dc_apply_fixup(sc, IFM_AUTO);
 2198                 tmp = sc->dc_pmode;
 2199                 sc->dc_pmode = DC_PMODE_MII;
 2200         }
 2201 
 2202         /*
 2203          * Setup General Purpose port mode and data so the tulip can talk
 2204          * to the MII.  This needs to be done before mii_phy_probe so that
 2205          * we can actually see them.
 2206          */
 2207         if (DC_IS_XIRCOM(sc)) {
 2208                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 2209                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2210                 DELAY(10);
 2211                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 2212                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2213                 DELAY(10);
 2214         }
 2215 
 2216         error = mii_phy_probe(dev, &sc->dc_miibus,
 2217             dc_ifmedia_upd, dc_ifmedia_sts);
 2218 
 2219         if (error && DC_IS_INTEL(sc)) {
 2220                 sc->dc_pmode = tmp;
 2221                 if (sc->dc_pmode != DC_PMODE_SIA)
 2222                         sc->dc_pmode = DC_PMODE_SYM;
 2223                 sc->dc_flags |= DC_21143_NWAY;
 2224                 mii_phy_probe(dev, &sc->dc_miibus,
 2225                     dc_ifmedia_upd, dc_ifmedia_sts);
 2226                 /*
 2227                  * For non-MII cards, we need to have the 21143
 2228                  * drive the LEDs. Except there are some systems
 2229                  * like the NEC VersaPro NoteBook PC which have no
 2230                  * LEDs, and twiddling these bits has adverse effects
 2231                  * on them. (I.e. you suddenly can't get a link.)
 2232                  */
 2233                 if (!(pci_get_subvendor(dev) == 0x1033 &&
 2234                     pci_get_subdevice(dev) == 0x8028))
 2235                         sc->dc_flags |= DC_TULIP_LEDS;
 2236                 error = 0;
 2237         }
 2238 
 2239         if (error) {
 2240                 device_printf(dev, "MII without any PHY!\n");
 2241                 goto fail;
 2242         }
 2243 
 2244         if (DC_IS_ADMTEK(sc)) {
 2245                 /*
 2246                  * Set automatic TX underrun recovery for the ADMtek chips
 2247                  */
 2248                 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
 2249         }
 2250 
 2251         /*
 2252          * Tell the upper layer(s) we support long frames.
 2253          */
 2254         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 2255         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 2256         ifp->if_capenable = ifp->if_capabilities;
 2257 #ifdef DEVICE_POLLING
 2258         ifp->if_capabilities |= IFCAP_POLLING;
 2259 #endif
 2260 
 2261         callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
 2262 
 2263 #ifdef SRM_MEDIA
 2264         sc->dc_srm_media = 0;
 2265 
 2266         /* Remember the SRM console media setting */
 2267         if (DC_IS_INTEL(sc)) {
 2268                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2269                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2270                 switch ((command >> 8) & 0xff) {
 2271                 case 3:
 2272                         sc->dc_srm_media = IFM_10_T;
 2273                         break;
 2274                 case 4:
 2275                         sc->dc_srm_media = IFM_10_T | IFM_FDX;
 2276                         break;
 2277                 case 5:
 2278                         sc->dc_srm_media = IFM_100_TX;
 2279                         break;
 2280                 case 6:
 2281                         sc->dc_srm_media = IFM_100_TX | IFM_FDX;
 2282                         break;
 2283                 }
 2284                 if (sc->dc_srm_media)
 2285                         sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
 2286         }
 2287 #endif
 2288 
 2289         /*
 2290          * Call MI attach routine.
 2291          */
 2292         ether_ifattach(ifp, eaddr);
 2293 
 2294         /* Hook interrupt last to avoid having to lock softc */
 2295         error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2296             dc_intr, sc, &sc->dc_intrhand);
 2297 
 2298         if (error) {
 2299                 device_printf(dev, "couldn't set up irq\n");
 2300                 ether_ifdetach(ifp);
 2301                 goto fail;
 2302         }
 2303 
 2304 fail:
 2305         if (error)
 2306                 dc_detach(dev);
 2307         return (error);
 2308 }
 2309 
 2310 /*
 2311  * Shutdown hardware and free up resources. This can be called any
 2312  * time after the mutex has been initialized. It is called in both
 2313  * the error case in attach and the normal detach case so it needs
 2314  * to be careful about only freeing resources that have actually been
 2315  * allocated.
 2316  */
 2317 static int
 2318 dc_detach(device_t dev)
 2319 {
 2320         struct dc_softc *sc;
 2321         struct ifnet *ifp;
 2322         struct dc_mediainfo *m;
 2323         int i;
 2324 
 2325         sc = device_get_softc(dev);
 2326         KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
 2327 
 2328         ifp = sc->dc_ifp;
 2329 
 2330 #ifdef DEVICE_POLLING
 2331         if (ifp->if_capenable & IFCAP_POLLING)
 2332                 ether_poll_deregister(ifp);
 2333 #endif
 2334 
 2335         /* These should only be active if attach succeeded */
 2336         if (device_is_attached(dev)) {
 2337                 DC_LOCK(sc);
 2338                 dc_stop(sc);
 2339                 DC_UNLOCK(sc);
 2340                 callout_drain(&sc->dc_stat_ch);
 2341                 ether_ifdetach(ifp);
 2342         }
 2343         if (ifp)
 2344                 if_free(ifp);
 2345         if (sc->dc_miibus)
 2346                 device_delete_child(dev, sc->dc_miibus);
 2347         bus_generic_detach(dev);
 2348 
 2349         if (sc->dc_intrhand)
 2350                 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
 2351         if (sc->dc_irq)
 2352                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
 2353         if (sc->dc_res)
 2354                 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
 2355 
 2356         if (sc->dc_cdata.dc_sbuf != NULL)
 2357                 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
 2358         if (sc->dc_ldata != NULL)
 2359                 bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
 2360         if (sc->dc_mtag) {
 2361                 for (i = 0; i < DC_TX_LIST_CNT; i++)
 2362                         if (sc->dc_cdata.dc_tx_map[i] != NULL)
 2363                                 bus_dmamap_destroy(sc->dc_mtag,
 2364                                     sc->dc_cdata.dc_tx_map[i]);
 2365                 for (i = 0; i < DC_RX_LIST_CNT; i++)
 2366                         if (sc->dc_cdata.dc_rx_map[i] != NULL)
 2367                                 bus_dmamap_destroy(sc->dc_mtag,
 2368                                     sc->dc_cdata.dc_rx_map[i]);
 2369                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
 2370         }
 2371         if (sc->dc_stag)
 2372                 bus_dma_tag_destroy(sc->dc_stag);
 2373         if (sc->dc_mtag)
 2374                 bus_dma_tag_destroy(sc->dc_mtag);
 2375         if (sc->dc_ltag)
 2376                 bus_dma_tag_destroy(sc->dc_ltag);
 2377 
 2378         free(sc->dc_pnic_rx_buf, M_DEVBUF);
 2379 
 2380         while (sc->dc_mi != NULL) {
 2381                 m = sc->dc_mi->dc_next;
 2382                 free(sc->dc_mi, M_DEVBUF);
 2383                 sc->dc_mi = m;
 2384         }
 2385         free(sc->dc_srom, M_DEVBUF);
 2386 
 2387         mtx_destroy(&sc->dc_mtx);
 2388 
 2389         return (0);
 2390 }
 2391 
 2392 /*
 2393  * Initialize the transmit descriptors.
 2394  */
 2395 static int
 2396 dc_list_tx_init(struct dc_softc *sc)
 2397 {
 2398         struct dc_chain_data *cd;
 2399         struct dc_list_data *ld;
 2400         int i, nexti;
 2401 
 2402         cd = &sc->dc_cdata;
 2403         ld = sc->dc_ldata;
 2404         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2405                 if (i == DC_TX_LIST_CNT - 1)
 2406                         nexti = 0;
 2407                 else
 2408                         nexti = i + 1;
 2409                 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
 2410                 cd->dc_tx_chain[i] = NULL;
 2411                 ld->dc_tx_list[i].dc_data = 0;
 2412                 ld->dc_tx_list[i].dc_ctl = 0;
 2413         }
 2414 
 2415         cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
 2416         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2417             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2418         return (0);
 2419 }
 2420 
 2421 
 2422 /*
 2423  * Initialize the RX descriptors and allocate mbufs for them. Note that
 2424  * we arrange the descriptors in a closed ring, so that the last descriptor
 2425  * points back to the first.
 2426  */
 2427 static int
 2428 dc_list_rx_init(struct dc_softc *sc)
 2429 {
 2430         struct dc_chain_data *cd;
 2431         struct dc_list_data *ld;
 2432         int i, nexti;
 2433 
 2434         cd = &sc->dc_cdata;
 2435         ld = sc->dc_ldata;
 2436 
 2437         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2438                 if (dc_newbuf(sc, i, 1) != 0)
 2439                         return (ENOBUFS);
 2440                 if (i == DC_RX_LIST_CNT - 1)
 2441                         nexti = 0;
 2442                 else
 2443                         nexti = i + 1;
 2444                 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
 2445         }
 2446 
 2447         cd->dc_rx_prod = 0;
 2448         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2449             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2450         return (0);
 2451 }
 2452 
 2453 static void
 2454 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
 2455         void *arg;
 2456         bus_dma_segment_t *segs;
 2457         int nseg;
 2458         bus_size_t mapsize;
 2459         int error;
 2460 {
 2461         struct dc_softc *sc;
 2462         struct dc_desc *c;
 2463 
 2464         sc = arg;
 2465         c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
 2466         if (error) {
 2467                 sc->dc_cdata.dc_rx_err = error;
 2468                 return;
 2469         }
 2470 
 2471         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 2472         sc->dc_cdata.dc_rx_err = 0;
 2473         c->dc_data = htole32(segs->ds_addr);
 2474 }
 2475 
 2476 /*
 2477  * Initialize an RX descriptor and attach an MBUF cluster.
 2478  */
 2479 static int
 2480 dc_newbuf(struct dc_softc *sc, int i, int alloc)
 2481 {
 2482         struct mbuf *m_new;
 2483         bus_dmamap_t tmp;
 2484         int error;
 2485 
 2486         if (alloc) {
 2487                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2488                 if (m_new == NULL)
 2489                         return (ENOBUFS);
 2490         } else {
 2491                 m_new = sc->dc_cdata.dc_rx_chain[i];
 2492                 m_new->m_data = m_new->m_ext.ext_buf;
 2493         }
 2494         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 2495         m_adj(m_new, sizeof(u_int64_t));
 2496 
 2497         /*
 2498          * If this is a PNIC chip, zero the buffer. This is part
 2499          * of the workaround for the receive bug in the 82c168 and
 2500          * 82c169 chips.
 2501          */
 2502         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
 2503                 bzero(mtod(m_new, char *), m_new->m_len);
 2504 
 2505         /* No need to remap the mbuf if we're reusing it. */
 2506         if (alloc) {
 2507                 sc->dc_cdata.dc_rx_cur = i;
 2508                 error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
 2509                     m_new, dc_dma_map_rxbuf, sc, 0);
 2510                 if (error) {
 2511                         m_freem(m_new);
 2512                         return (error);
 2513                 }
 2514                 if (sc->dc_cdata.dc_rx_err != 0) {
 2515                         m_freem(m_new);
 2516                         return (sc->dc_cdata.dc_rx_err);
 2517                 }
 2518                 bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2519                 tmp = sc->dc_cdata.dc_rx_map[i];
 2520                 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
 2521                 sc->dc_sparemap = tmp;
 2522                 sc->dc_cdata.dc_rx_chain[i] = m_new;
 2523         }
 2524 
 2525         sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2526         sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2527         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2528             BUS_DMASYNC_PREREAD);
 2529         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2530             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2531         return (0);
 2532 }
 2533 
 2534 /*
 2535  * Grrrrr.
 2536  * The PNIC chip has a terrible bug in it that manifests itself during
 2537  * periods of heavy activity. The exact mode of failure if difficult to
 2538  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
 2539  * will happen on slow machines. The bug is that sometimes instead of
 2540  * uploading one complete frame during reception, it uploads what looks
 2541  * like the entire contents of its FIFO memory. The frame we want is at
 2542  * the end of the whole mess, but we never know exactly how much data has
 2543  * been uploaded, so salvaging the frame is hard.
 2544  *
 2545  * There is only one way to do it reliably, and it's disgusting.
 2546  * Here's what we know:
 2547  *
 2548  * - We know there will always be somewhere between one and three extra
 2549  *   descriptors uploaded.
 2550  *
 2551  * - We know the desired received frame will always be at the end of the
 2552  *   total data upload.
 2553  *
 2554  * - We know the size of the desired received frame because it will be
 2555  *   provided in the length field of the status word in the last descriptor.
 2556  *
 2557  * Here's what we do:
 2558  *
 2559  * - When we allocate buffers for the receive ring, we bzero() them.
 2560  *   This means that we know that the buffer contents should be all
 2561  *   zeros, except for data uploaded by the chip.
 2562  *
 2563  * - We also force the PNIC chip to upload frames that include the
 2564  *   ethernet CRC at the end.
 2565  *
 2566  * - We gather all of the bogus frame data into a single buffer.
 2567  *
 2568  * - We then position a pointer at the end of this buffer and scan
 2569  *   backwards until we encounter the first non-zero byte of data.
 2570  *   This is the end of the received frame. We know we will encounter
 2571  *   some data at the end of the frame because the CRC will always be
 2572  *   there, so even if the sender transmits a packet of all zeros,
 2573  *   we won't be fooled.
 2574  *
 2575  * - We know the size of the actual received frame, so we subtract
 2576  *   that value from the current pointer location. This brings us
 2577  *   to the start of the actual received packet.
 2578  *
 2579  * - We copy this into an mbuf and pass it on, along with the actual
 2580  *   frame length.
 2581  *
 2582  * The performance hit is tremendous, but it beats dropping frames all
 2583  * the time.
 2584  */
 2585 
 2586 #define DC_WHOLEFRAME   (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
 2587 static void
 2588 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
 2589 {
 2590         struct dc_desc *cur_rx;
 2591         struct dc_desc *c = NULL;
 2592         struct mbuf *m = NULL;
 2593         unsigned char *ptr;
 2594         int i, total_len;
 2595         u_int32_t rxstat = 0;
 2596 
 2597         i = sc->dc_pnic_rx_bug_save;
 2598         cur_rx = &sc->dc_ldata->dc_rx_list[idx];
 2599         ptr = sc->dc_pnic_rx_buf;
 2600         bzero(ptr, DC_RXLEN * 5);
 2601 
 2602         /* Copy all the bytes from the bogus buffers. */
 2603         while (1) {
 2604                 c = &sc->dc_ldata->dc_rx_list[i];
 2605                 rxstat = le32toh(c->dc_status);
 2606                 m = sc->dc_cdata.dc_rx_chain[i];
 2607                 bcopy(mtod(m, char *), ptr, DC_RXLEN);
 2608                 ptr += DC_RXLEN;
 2609                 /* If this is the last buffer, break out. */
 2610                 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
 2611                         break;
 2612                 dc_newbuf(sc, i, 0);
 2613                 DC_INC(i, DC_RX_LIST_CNT);
 2614         }
 2615 
 2616         /* Find the length of the actual receive frame. */
 2617         total_len = DC_RXBYTES(rxstat);
 2618 
 2619         /* Scan backwards until we hit a non-zero byte. */
 2620         while (*ptr == 0x00)
 2621                 ptr--;
 2622 
 2623         /* Round off. */
 2624         if ((uintptr_t)(ptr) & 0x3)
 2625                 ptr -= 1;
 2626 
 2627         /* Now find the start of the frame. */
 2628         ptr -= total_len;
 2629         if (ptr < sc->dc_pnic_rx_buf)
 2630                 ptr = sc->dc_pnic_rx_buf;
 2631 
 2632         /*
 2633          * Now copy the salvaged frame to the last mbuf and fake up
 2634          * the status word to make it look like a successful
 2635          * frame reception.
 2636          */
 2637         dc_newbuf(sc, i, 0);
 2638         bcopy(ptr, mtod(m, char *), total_len);
 2639         cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
 2640 }
 2641 
 2642 /*
 2643  * This routine searches the RX ring for dirty descriptors in the
 2644  * event that the rxeof routine falls out of sync with the chip's
 2645  * current descriptor pointer. This may happen sometimes as a result
 2646  * of a "no RX buffer available" condition that happens when the chip
 2647  * consumes all of the RX buffers before the driver has a chance to
 2648  * process the RX ring. This routine may need to be called more than
 2649  * once to bring the driver back in sync with the chip, however we
 2650  * should still be getting RX DONE interrupts to drive the search
 2651  * for new packets in the RX ring, so we should catch up eventually.
 2652  */
 2653 static int
 2654 dc_rx_resync(struct dc_softc *sc)
 2655 {
 2656         struct dc_desc *cur_rx;
 2657         int i, pos;
 2658 
 2659         pos = sc->dc_cdata.dc_rx_prod;
 2660 
 2661         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2662                 cur_rx = &sc->dc_ldata->dc_rx_list[pos];
 2663                 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
 2664                         break;
 2665                 DC_INC(pos, DC_RX_LIST_CNT);
 2666         }
 2667 
 2668         /* If the ring really is empty, then just return. */
 2669         if (i == DC_RX_LIST_CNT)
 2670                 return (0);
 2671 
 2672         /* We've fallen behing the chip: catch it. */
 2673         sc->dc_cdata.dc_rx_prod = pos;
 2674 
 2675         return (EAGAIN);
 2676 }
 2677 
 2678 /*
 2679  * A frame has been uploaded: pass the resulting mbuf chain up to
 2680  * the higher level protocols.
 2681  */
 2682 static void
 2683 dc_rxeof(struct dc_softc *sc)
 2684 {
 2685         struct mbuf *m, *m0;
 2686         struct ifnet *ifp;
 2687         struct dc_desc *cur_rx;
 2688         int i, total_len = 0;
 2689         u_int32_t rxstat;
 2690 
 2691         DC_LOCK_ASSERT(sc);
 2692 
 2693         ifp = sc->dc_ifp;
 2694         i = sc->dc_cdata.dc_rx_prod;
 2695 
 2696         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2697         while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
 2698             DC_RXSTAT_OWN)) {
 2699 #ifdef DEVICE_POLLING
 2700                 if (ifp->if_capenable & IFCAP_POLLING) {
 2701                         if (sc->rxcycles <= 0)
 2702                                 break;
 2703                         sc->rxcycles--;
 2704                 }
 2705 #endif
 2706                 cur_rx = &sc->dc_ldata->dc_rx_list[i];
 2707                 rxstat = le32toh(cur_rx->dc_status);
 2708                 m = sc->dc_cdata.dc_rx_chain[i];
 2709                 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2710                     BUS_DMASYNC_POSTREAD);
 2711                 total_len = DC_RXBYTES(rxstat);
 2712 
 2713                 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2714                         if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
 2715                                 if (rxstat & DC_RXSTAT_FIRSTFRAG)
 2716                                         sc->dc_pnic_rx_bug_save = i;
 2717                                 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
 2718                                         DC_INC(i, DC_RX_LIST_CNT);
 2719                                         continue;
 2720                                 }
 2721                                 dc_pnic_rx_bug_war(sc, i);
 2722                                 rxstat = le32toh(cur_rx->dc_status);
 2723                                 total_len = DC_RXBYTES(rxstat);
 2724                         }
 2725                 }
 2726 
 2727                 /*
 2728                  * If an error occurs, update stats, clear the
 2729                  * status word and leave the mbuf cluster in place:
 2730                  * it should simply get re-used next time this descriptor
 2731                  * comes up in the ring.  However, don't report long
 2732                  * frames as errors since they could be vlans.
 2733                  */
 2734                 if ((rxstat & DC_RXSTAT_RXERR)) {
 2735                         if (!(rxstat & DC_RXSTAT_GIANT) ||
 2736                             (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
 2737                                        DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
 2738                                        DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
 2739                                 ifp->if_ierrors++;
 2740                                 if (rxstat & DC_RXSTAT_COLLSEEN)
 2741                                         ifp->if_collisions++;
 2742                                 dc_newbuf(sc, i, 0);
 2743                                 if (rxstat & DC_RXSTAT_CRCERR) {
 2744                                         DC_INC(i, DC_RX_LIST_CNT);
 2745                                         continue;
 2746                                 } else {
 2747                                         dc_init_locked(sc);
 2748                                         return;
 2749                                 }
 2750                         }
 2751                 }
 2752 
 2753                 /* No errors; receive the packet. */
 2754                 total_len -= ETHER_CRC_LEN;
 2755 #ifdef __NO_STRICT_ALIGNMENT
 2756                 /*
 2757                  * On architectures without alignment problems we try to
 2758                  * allocate a new buffer for the receive ring, and pass up
 2759                  * the one where the packet is already, saving the expensive
 2760                  * copy done in m_devget().
 2761                  * If we are on an architecture with alignment problems, or
 2762                  * if the allocation fails, then use m_devget and leave the
 2763                  * existing buffer in the receive ring.
 2764                  */
 2765                 if (dc_newbuf(sc, i, 1) == 0) {
 2766                         m->m_pkthdr.rcvif = ifp;
 2767                         m->m_pkthdr.len = m->m_len = total_len;
 2768                         DC_INC(i, DC_RX_LIST_CNT);
 2769                 } else
 2770 #endif
 2771                 {
 2772                         m0 = m_devget(mtod(m, char *), total_len,
 2773                                 ETHER_ALIGN, ifp, NULL);
 2774                         dc_newbuf(sc, i, 0);
 2775                         DC_INC(i, DC_RX_LIST_CNT);
 2776                         if (m0 == NULL) {
 2777                                 ifp->if_ierrors++;
 2778                                 continue;
 2779                         }
 2780                         m = m0;
 2781                 }
 2782 
 2783                 ifp->if_ipackets++;
 2784                 DC_UNLOCK(sc);
 2785                 (*ifp->if_input)(ifp, m);
 2786                 DC_LOCK(sc);
 2787         }
 2788 
 2789         sc->dc_cdata.dc_rx_prod = i;
 2790 }
 2791 
 2792 /*
 2793  * A frame was downloaded to the chip. It's safe for us to clean up
 2794  * the list buffers.
 2795  */
 2796 
 2797 static void
 2798 dc_txeof(struct dc_softc *sc)
 2799 {
 2800         struct dc_desc *cur_tx = NULL;
 2801         struct ifnet *ifp;
 2802         int idx;
 2803         u_int32_t ctl, txstat;
 2804 
 2805         ifp = sc->dc_ifp;
 2806 
 2807         /*
 2808          * Go through our tx list and free mbufs for those
 2809          * frames that have been transmitted.
 2810          */
 2811         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2812         idx = sc->dc_cdata.dc_tx_cons;
 2813         while (idx != sc->dc_cdata.dc_tx_prod) {
 2814 
 2815                 cur_tx = &sc->dc_ldata->dc_tx_list[idx];
 2816                 txstat = le32toh(cur_tx->dc_status);
 2817                 ctl = le32toh(cur_tx->dc_ctl);
 2818 
 2819                 if (txstat & DC_TXSTAT_OWN)
 2820                         break;
 2821 
 2822                 if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
 2823                         if (ctl & DC_TXCTL_SETUP) {
 2824                                 /*
 2825                                  * Yes, the PNIC is so brain damaged
 2826                                  * that it will sometimes generate a TX
 2827                                  * underrun error while DMAing the RX
 2828                                  * filter setup frame. If we detect this,
 2829                                  * we have to send the setup frame again,
 2830                                  * or else the filter won't be programmed
 2831                                  * correctly.
 2832                                  */
 2833                                 if (DC_IS_PNIC(sc)) {
 2834                                         if (txstat & DC_TXSTAT_ERRSUM)
 2835                                                 dc_setfilt(sc);
 2836                                 }
 2837                                 sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2838                         }
 2839                         sc->dc_cdata.dc_tx_cnt--;
 2840                         DC_INC(idx, DC_TX_LIST_CNT);
 2841                         continue;
 2842                 }
 2843 
 2844                 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
 2845                         /*
 2846                          * XXX: Why does my Xircom taunt me so?
 2847                          * For some reason it likes setting the CARRLOST flag
 2848                          * even when the carrier is there. wtf?!?
 2849                          * Who knows, but Conexant chips have the
 2850                          * same problem. Maybe they took lessons
 2851                          * from Xircom.
 2852                          */
 2853                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2854                             sc->dc_pmode == DC_PMODE_MII &&
 2855                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2856                             DC_TXSTAT_NOCARRIER)))
 2857                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2858                 } else {
 2859                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2860                             sc->dc_pmode == DC_PMODE_MII &&
 2861                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2862                             DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
 2863                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2864                 }
 2865 
 2866                 if (txstat & DC_TXSTAT_ERRSUM) {
 2867                         ifp->if_oerrors++;
 2868                         if (txstat & DC_TXSTAT_EXCESSCOLL)
 2869                                 ifp->if_collisions++;
 2870                         if (txstat & DC_TXSTAT_LATECOLL)
 2871                                 ifp->if_collisions++;
 2872                         if (!(txstat & DC_TXSTAT_UNDERRUN)) {
 2873                                 dc_init_locked(sc);
 2874                                 return;
 2875                         }
 2876                 }
 2877 
 2878                 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
 2879 
 2880                 ifp->if_opackets++;
 2881                 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
 2882                         bus_dmamap_sync(sc->dc_mtag,
 2883                             sc->dc_cdata.dc_tx_map[idx],
 2884                             BUS_DMASYNC_POSTWRITE);
 2885                         bus_dmamap_unload(sc->dc_mtag,
 2886                             sc->dc_cdata.dc_tx_map[idx]);
 2887                         m_freem(sc->dc_cdata.dc_tx_chain[idx]);
 2888                         sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2889                 }
 2890 
 2891                 sc->dc_cdata.dc_tx_cnt--;
 2892                 DC_INC(idx, DC_TX_LIST_CNT);
 2893         }
 2894 
 2895         if (idx != sc->dc_cdata.dc_tx_cons) {
 2896                 /* Some buffers have been freed. */
 2897                 sc->dc_cdata.dc_tx_cons = idx;
 2898                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2899         }
 2900         ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
 2901 }
 2902 
 2903 static void
 2904 dc_tick(void *xsc)
 2905 {
 2906         struct dc_softc *sc;
 2907         struct mii_data *mii;
 2908         struct ifnet *ifp;
 2909         u_int32_t r;
 2910 
 2911         sc = xsc;
 2912         DC_LOCK_ASSERT(sc);
 2913         ifp = sc->dc_ifp;
 2914         mii = device_get_softc(sc->dc_miibus);
 2915 
 2916         if (sc->dc_flags & DC_REDUCED_MII_POLL) {
 2917                 if (sc->dc_flags & DC_21143_NWAY) {
 2918                         r = CSR_READ_4(sc, DC_10BTSTAT);
 2919                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2920                             IFM_100_TX && (r & DC_TSTAT_LS100)) {
 2921                                 sc->dc_link = 0;
 2922                                 mii_mediachg(mii);
 2923                         }
 2924                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2925                             IFM_10_T && (r & DC_TSTAT_LS10)) {
 2926                                 sc->dc_link = 0;
 2927                                 mii_mediachg(mii);
 2928                         }
 2929                         if (sc->dc_link == 0)
 2930                                 mii_tick(mii);
 2931                 } else {
 2932                         r = CSR_READ_4(sc, DC_ISR);
 2933                         if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
 2934                             sc->dc_cdata.dc_tx_cnt == 0) {
 2935                                 mii_tick(mii);
 2936                                 if (!(mii->mii_media_status & IFM_ACTIVE))
 2937                                         sc->dc_link = 0;
 2938                         }
 2939                 }
 2940         } else
 2941                 mii_tick(mii);
 2942 
 2943         /*
 2944          * When the init routine completes, we expect to be able to send
 2945          * packets right away, and in fact the network code will send a
 2946          * gratuitous ARP the moment the init routine marks the interface
 2947          * as running. However, even though the MAC may have been initialized,
 2948          * there may be a delay of a few seconds before the PHY completes
 2949          * autonegotiation and the link is brought up. Any transmissions
 2950          * made during that delay will be lost. Dealing with this is tricky:
 2951          * we can't just pause in the init routine while waiting for the
 2952          * PHY to come ready since that would bring the whole system to
 2953          * a screeching halt for several seconds.
 2954          *
 2955          * What we do here is prevent the TX start routine from sending
 2956          * any packets until a link has been established. After the
 2957          * interface has been initialized, the tick routine will poll
 2958          * the state of the PHY until the IFM_ACTIVE flag is set. Until
 2959          * that time, packets will stay in the send queue, and once the
 2960          * link comes up, they will be flushed out to the wire.
 2961          */
 2962         if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
 2963             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 2964                 sc->dc_link++;
 2965                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2966                         dc_start_locked(ifp);
 2967         }
 2968 
 2969         if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
 2970                 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 2971         else
 2972                 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 2973 }
 2974 
 2975 /*
 2976  * A transmit underrun has occurred.  Back off the transmit threshold,
 2977  * or switch to store and forward mode if we have to.
 2978  */
 2979 static void
 2980 dc_tx_underrun(struct dc_softc *sc)
 2981 {
 2982         u_int32_t isr;
 2983         int i;
 2984 
 2985         if (DC_IS_DAVICOM(sc))
 2986                 dc_init_locked(sc);
 2987 
 2988         if (DC_IS_INTEL(sc)) {
 2989                 /*
 2990                  * The real 21143 requires that the transmitter be idle
 2991                  * in order to change the transmit threshold or store
 2992                  * and forward state.
 2993                  */
 2994                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 2995 
 2996                 for (i = 0; i < DC_TIMEOUT; i++) {
 2997                         isr = CSR_READ_4(sc, DC_ISR);
 2998                         if (isr & DC_ISR_TX_IDLE)
 2999                                 break;
 3000                         DELAY(10);
 3001                 }
 3002                 if (i == DC_TIMEOUT) {
 3003                         device_printf(sc->dc_dev,
 3004                             "%s: failed to force tx to idle state\n",
 3005                             __func__);
 3006                         dc_init_locked(sc);
 3007                 }
 3008         }
 3009 
 3010         device_printf(sc->dc_dev, "TX underrun -- ");
 3011         sc->dc_txthresh += DC_TXTHRESH_INC;
 3012         if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3013                 printf("using store and forward mode\n");
 3014                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3015         } else {
 3016                 printf("increasing TX threshold\n");
 3017                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3018                 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3019         }
 3020 
 3021         if (DC_IS_INTEL(sc))
 3022                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3023 }
 3024 
 3025 #ifdef DEVICE_POLLING
 3026 static poll_handler_t dc_poll;
 3027 
 3028 static void
 3029 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3030 {
 3031         struct dc_softc *sc = ifp->if_softc;
 3032 
 3033         DC_LOCK(sc);
 3034 
 3035         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3036                 DC_UNLOCK(sc);
 3037                 return;
 3038         }
 3039 
 3040         sc->rxcycles = count;
 3041         dc_rxeof(sc);
 3042         dc_txeof(sc);
 3043         if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
 3044             !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
 3045                 dc_start_locked(ifp);
 3046 
 3047         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 3048                 u_int32_t       status;
 3049 
 3050                 status = CSR_READ_4(sc, DC_ISR);
 3051                 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
 3052                         DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
 3053                         DC_ISR_BUS_ERR);
 3054                 if (!status) {
 3055                         DC_UNLOCK(sc);
 3056                         return;
 3057                 }
 3058                 /* ack what we have */
 3059                 CSR_WRITE_4(sc, DC_ISR, status);
 3060 
 3061                 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
 3062                         u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3063                         ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
 3064 
 3065                         if (dc_rx_resync(sc))
 3066                                 dc_rxeof(sc);
 3067                 }
 3068                 /* restart transmit unit if necessary */
 3069                 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
 3070                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3071 
 3072                 if (status & DC_ISR_TX_UNDERRUN)
 3073                         dc_tx_underrun(sc);
 3074 
 3075                 if (status & DC_ISR_BUS_ERR) {
 3076                         if_printf(ifp, "%s: bus error\n", __func__);
 3077                         dc_reset(sc);
 3078                         dc_init_locked(sc);
 3079                 }
 3080         }
 3081         DC_UNLOCK(sc);
 3082 }
 3083 #endif /* DEVICE_POLLING */
 3084 
 3085 static void
 3086 dc_intr(void *arg)
 3087 {
 3088         struct dc_softc *sc;
 3089         struct ifnet *ifp;
 3090         u_int32_t status;
 3091 
 3092         sc = arg;
 3093 
 3094         if (sc->suspended)
 3095                 return;
 3096 
 3097         if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
 3098                 return;
 3099 
 3100         DC_LOCK(sc);
 3101         ifp = sc->dc_ifp;
 3102 #ifdef DEVICE_POLLING
 3103         if (ifp->if_capenable & IFCAP_POLLING) {
 3104                 DC_UNLOCK(sc);
 3105                 return;
 3106         }
 3107 #endif
 3108 
 3109         /* Suppress unwanted interrupts */
 3110         if (!(ifp->if_flags & IFF_UP)) {
 3111                 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
 3112                         dc_stop(sc);
 3113                 DC_UNLOCK(sc);
 3114                 return;
 3115         }
 3116 
 3117         /* Disable interrupts. */
 3118         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3119 
 3120         while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
 3121             status != 0xFFFFFFFF &&
 3122             (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3123 
 3124                 CSR_WRITE_4(sc, DC_ISR, status);
 3125 
 3126                 if (status & DC_ISR_RX_OK) {
 3127                         int             curpkts;
 3128                         curpkts = ifp->if_ipackets;
 3129                         dc_rxeof(sc);
 3130                         if (curpkts == ifp->if_ipackets) {
 3131                                 while (dc_rx_resync(sc))
 3132                                         dc_rxeof(sc);
 3133                         }
 3134                 }
 3135 
 3136                 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
 3137                         dc_txeof(sc);
 3138 
 3139                 if (status & DC_ISR_TX_IDLE) {
 3140                         dc_txeof(sc);
 3141                         if (sc->dc_cdata.dc_tx_cnt) {
 3142                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3143                                 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3144                         }
 3145                 }
 3146 
 3147                 if (status & DC_ISR_TX_UNDERRUN)
 3148                         dc_tx_underrun(sc);
 3149 
 3150                 if ((status & DC_ISR_RX_WATDOGTIMEO)
 3151                     || (status & DC_ISR_RX_NOBUF)) {
 3152                         int             curpkts;
 3153                         curpkts = ifp->if_ipackets;
 3154                         dc_rxeof(sc);
 3155                         if (curpkts == ifp->if_ipackets) {
 3156                                 while (dc_rx_resync(sc))
 3157                                         dc_rxeof(sc);
 3158                         }
 3159                 }
 3160 
 3161                 if (status & DC_ISR_BUS_ERR) {
 3162                         dc_reset(sc);
 3163                         dc_init_locked(sc);
 3164                 }
 3165         }
 3166 
 3167         /* Re-enable interrupts. */
 3168         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3169 
 3170         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3171                 dc_start_locked(ifp);
 3172 
 3173         DC_UNLOCK(sc);
 3174 }
 3175 
 3176 static void
 3177 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
 3178         void *arg;
 3179         bus_dma_segment_t *segs;
 3180         int nseg;
 3181         bus_size_t mapsize;
 3182         int error;
 3183 {
 3184         struct dc_softc *sc;
 3185         struct dc_desc *f;
 3186         int cur, first, frag, i;
 3187 
 3188         sc = arg;
 3189         if (error) {
 3190                 sc->dc_cdata.dc_tx_err = error;
 3191                 return;
 3192         }
 3193 
 3194         first = cur = frag = sc->dc_cdata.dc_tx_prod;
 3195         for (i = 0; i < nseg; i++) {
 3196                 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
 3197                     (frag == (DC_TX_LIST_CNT - 1)) &&
 3198                     (first != sc->dc_cdata.dc_tx_first)) {
 3199                         bus_dmamap_unload(sc->dc_mtag,
 3200                             sc->dc_cdata.dc_tx_map[first]);
 3201                         sc->dc_cdata.dc_tx_err = ENOBUFS;
 3202                         return;
 3203                 }
 3204 
 3205                 f = &sc->dc_ldata->dc_tx_list[frag];
 3206                 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
 3207                 if (i == 0) {
 3208                         f->dc_status = 0;
 3209                         f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
 3210                 } else
 3211                         f->dc_status = htole32(DC_TXSTAT_OWN);
 3212                 f->dc_data = htole32(segs[i].ds_addr);
 3213                 cur = frag;
 3214                 DC_INC(frag, DC_TX_LIST_CNT);
 3215         }
 3216 
 3217         sc->dc_cdata.dc_tx_err = 0;
 3218         sc->dc_cdata.dc_tx_prod = frag;
 3219         sc->dc_cdata.dc_tx_cnt += nseg;
 3220         sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
 3221         sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
 3222         if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
 3223                 sc->dc_ldata->dc_tx_list[first].dc_ctl |=
 3224                     htole32(DC_TXCTL_FINT);
 3225         if (sc->dc_flags & DC_TX_INTR_ALWAYS)
 3226                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3227         if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
 3228                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3229         sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
 3230 }
 3231 
 3232 /*
 3233  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 3234  * pointers to the fragment pointers.
 3235  */
 3236 static int
 3237 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
 3238 {
 3239         struct mbuf *m;
 3240         int error, idx, chainlen = 0;
 3241 
 3242         /*
 3243          * If there's no way we can send any packets, return now.
 3244          */
 3245         if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
 3246                 return (ENOBUFS);
 3247 
 3248         /*
 3249          * Count the number of frags in this chain to see if
 3250          * we need to m_defrag.  Since the descriptor list is shared
 3251          * by all packets, we'll m_defrag long chains so that they
 3252          * do not use up the entire list, even if they would fit.
 3253          */
 3254         for (m = *m_head; m != NULL; m = m->m_next)
 3255                 chainlen++;
 3256 
 3257         if ((chainlen > DC_TX_LIST_CNT / 4) ||
 3258             ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
 3259                 m = m_defrag(*m_head, M_DONTWAIT);
 3260                 if (m == NULL)
 3261                         return (ENOBUFS);
 3262                 *m_head = m;
 3263         }
 3264 
 3265         /*
 3266          * Start packing the mbufs in this chain into
 3267          * the fragment pointers. Stop when we run out
 3268          * of fragments or hit the end of the mbuf chain.
 3269          */
 3270         idx = sc->dc_cdata.dc_tx_prod;
 3271         sc->dc_cdata.dc_tx_mapping = *m_head;
 3272         error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3273             *m_head, dc_dma_map_txbuf, sc, 0);
 3274         if (error)
 3275                 return (error);
 3276         if (sc->dc_cdata.dc_tx_err != 0)
 3277                 return (sc->dc_cdata.dc_tx_err);
 3278         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3279             BUS_DMASYNC_PREWRITE);
 3280         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 3281             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 3282         return (0);
 3283 }
 3284 
 3285 /*
 3286  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3287  * to the mbuf data regions directly in the transmit lists. We also save a
 3288  * copy of the pointers since the transmit list fragment pointers are
 3289  * physical addresses.
 3290  */
 3291 
 3292 static void
 3293 dc_start(struct ifnet *ifp)
 3294 {
 3295         struct dc_softc *sc;
 3296 
 3297         sc = ifp->if_softc;
 3298         DC_LOCK(sc);
 3299         dc_start_locked(ifp);
 3300         DC_UNLOCK(sc);
 3301 }
 3302 
 3303 static void
 3304 dc_start_locked(struct ifnet *ifp)
 3305 {
 3306         struct dc_softc *sc;
 3307         struct mbuf *m_head = NULL, *m;
 3308         unsigned int queued = 0;
 3309         int idx;
 3310 
 3311         sc = ifp->if_softc;
 3312 
 3313         DC_LOCK_ASSERT(sc);
 3314 
 3315         if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
 3316                 return;
 3317 
 3318         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
 3319                 return;
 3320 
 3321         idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
 3322 
 3323         while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
 3324                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3325                 if (m_head == NULL)
 3326                         break;
 3327 
 3328                 if (sc->dc_flags & DC_TX_COALESCE &&
 3329                     (m_head->m_next != NULL ||
 3330                      sc->dc_flags & DC_TX_ALIGN)) {
 3331                         m = m_defrag(m_head, M_DONTWAIT);
 3332                         if (m == NULL) {
 3333                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3334                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3335                                 break;
 3336                         } else {
 3337                                 m_head = m;
 3338                         }
 3339                 }
 3340 
 3341                 if (dc_encap(sc, &m_head)) {
 3342                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3343                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3344                         break;
 3345                 }
 3346                 idx = sc->dc_cdata.dc_tx_prod;
 3347 
 3348                 queued++;
 3349                 /*
 3350                  * If there's a BPF listener, bounce a copy of this frame
 3351                  * to him.
 3352                  */
 3353                 BPF_MTAP(ifp, m_head);
 3354 
 3355                 if (sc->dc_flags & DC_TX_ONE) {
 3356                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3357                         break;
 3358                 }
 3359         }
 3360 
 3361         if (queued > 0) {
 3362                 /* Transmit */
 3363                 if (!(sc->dc_flags & DC_TX_POLL))
 3364                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3365 
 3366                 /*
 3367                  * Set a timeout in case the chip goes out to lunch.
 3368                  */
 3369                 ifp->if_timer = 5;
 3370         }
 3371 }
 3372 
 3373 static void
 3374 dc_init(void *xsc)
 3375 {
 3376         struct dc_softc *sc = xsc;
 3377 
 3378         DC_LOCK(sc);
 3379         dc_init_locked(sc);
 3380 #ifdef SRM_MEDIA
 3381         if(sc->dc_srm_media) {
 3382                 struct ifreq ifr;
 3383                 struct mii_data *mii;
 3384 
 3385                 ifr.ifr_media = sc->dc_srm_media;
 3386                 sc->dc_srm_media = 0;
 3387                 DC_UNLOCK(sc);
 3388                 mii = device_get_softc(sc->dc_miibus);
 3389                 ifmedia_ioctl(sc->dc_ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
 3390         } else
 3391 #endif
 3392                 DC_UNLOCK(sc);
 3393 }
 3394 
 3395 static void
 3396 dc_init_locked(struct dc_softc *sc)
 3397 {
 3398         struct ifnet *ifp = sc->dc_ifp;
 3399         struct mii_data *mii;
 3400 
 3401         DC_LOCK_ASSERT(sc);
 3402 
 3403         mii = device_get_softc(sc->dc_miibus);
 3404 
 3405         /*
 3406          * Cancel pending I/O and free all RX/TX buffers.
 3407          */
 3408         dc_stop(sc);
 3409         dc_reset(sc);
 3410 
 3411         /*
 3412          * Set cache alignment and burst length.
 3413          */
 3414         if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
 3415                 CSR_WRITE_4(sc, DC_BUSCTL, 0);
 3416         else
 3417                 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
 3418         /*
 3419          * Evenly share the bus between receive and transmit process.
 3420          */
 3421         if (DC_IS_INTEL(sc))
 3422                 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
 3423         if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
 3424                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
 3425         } else {
 3426                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
 3427         }
 3428         if (sc->dc_flags & DC_TX_POLL)
 3429                 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
 3430         switch(sc->dc_cachesize) {
 3431         case 32:
 3432                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
 3433                 break;
 3434         case 16:
 3435                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
 3436                 break;
 3437         case 8:
 3438                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
 3439                 break;
 3440         case 0:
 3441         default:
 3442                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
 3443                 break;
 3444         }
 3445 
 3446         if (sc->dc_flags & DC_TX_STORENFWD)
 3447                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3448         else {
 3449                 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3450                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3451                 } else {
 3452                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3453                         DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3454                 }
 3455         }
 3456 
 3457         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
 3458         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
 3459 
 3460         if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 3461                 /*
 3462                  * The app notes for the 98713 and 98715A say that
 3463                  * in order to have the chips operate properly, a magic
 3464                  * number must be written to CSR16. Macronix does not
 3465                  * document the meaning of these bits so there's no way
 3466                  * to know exactly what they do. The 98713 has a magic
 3467                  * number all its own; the rest all use a different one.
 3468                  */
 3469                 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
 3470                 if (sc->dc_type == DC_TYPE_98713)
 3471                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
 3472                 else
 3473                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
 3474         }
 3475 
 3476         if (DC_IS_XIRCOM(sc)) {
 3477                 /*
 3478                  * setup General Purpose Port mode and data so the tulip
 3479                  * can talk to the MII.
 3480                  */
 3481                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 3482                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3483                 DELAY(10);
 3484                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 3485                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3486                 DELAY(10);
 3487         }
 3488 
 3489         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3490         DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
 3491 
 3492         /* Init circular RX list. */
 3493         if (dc_list_rx_init(sc) == ENOBUFS) {
 3494                 device_printf(sc->dc_dev,
 3495                     "initialization failed: no memory for rx buffers\n");
 3496                 dc_stop(sc);
 3497                 return;
 3498         }
 3499 
 3500         /*
 3501          * Init TX descriptors.
 3502          */
 3503         dc_list_tx_init(sc);
 3504 
 3505         /*
 3506          * Load the address of the RX list.
 3507          */
 3508         CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
 3509         CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
 3510 
 3511         /*
 3512          * Enable interrupts.
 3513          */
 3514 #ifdef DEVICE_POLLING
 3515         /*
 3516          * ... but only if we are not polling, and make sure they are off in
 3517          * the case of polling. Some cards (e.g. fxp) turn interrupts on
 3518          * after a reset.
 3519          */
 3520         if (ifp->if_capenable & IFCAP_POLLING)
 3521                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3522         else
 3523 #endif
 3524         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3525         CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
 3526 
 3527         /* Enable transmitter. */
 3528         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3529 
 3530         /*
 3531          * If this is an Intel 21143 and we're not using the
 3532          * MII port, program the LED control pins so we get
 3533          * link and activity indications.
 3534          */
 3535         if (sc->dc_flags & DC_TULIP_LEDS) {
 3536                 CSR_WRITE_4(sc, DC_WATCHDOG,
 3537                     DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
 3538                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 3539         }
 3540 
 3541         /*
 3542          * Load the RX/multicast filter. We do this sort of late
 3543          * because the filter programming scheme on the 21143 and
 3544          * some clones requires DMAing a setup frame via the TX
 3545          * engine, and we need the transmitter enabled for that.
 3546          */
 3547         dc_setfilt(sc);
 3548 
 3549         /* Enable receiver. */
 3550         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 3551         CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
 3552 
 3553         mii_mediachg(mii);
 3554         dc_setcfg(sc, sc->dc_if_media);
 3555 
 3556         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3557         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3558 
 3559         /* Don't start the ticker if this is a homePNA link. */
 3560         if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
 3561                 sc->dc_link = 1;
 3562         else {
 3563                 if (sc->dc_flags & DC_21143_NWAY)
 3564                         callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3565                 else
 3566                         callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3567         }
 3568 }
 3569 
 3570 /*
 3571  * Set media options.
 3572  */
 3573 static int
 3574 dc_ifmedia_upd(struct ifnet *ifp)
 3575 {
 3576         struct dc_softc *sc;
 3577         struct mii_data *mii;
 3578         struct ifmedia *ifm;
 3579 
 3580         sc = ifp->if_softc;
 3581         mii = device_get_softc(sc->dc_miibus);
 3582         DC_LOCK(sc);
 3583         mii_mediachg(mii);
 3584         ifm = &mii->mii_media;
 3585 
 3586         if (DC_IS_DAVICOM(sc) &&
 3587             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
 3588                 dc_setcfg(sc, ifm->ifm_media);
 3589         else
 3590                 sc->dc_link = 0;
 3591         DC_UNLOCK(sc);
 3592 
 3593         return (0);
 3594 }
 3595 
 3596 /*
 3597  * Report current media status.
 3598  */
 3599 static void
 3600 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3601 {
 3602         struct dc_softc *sc;
 3603         struct mii_data *mii;
 3604         struct ifmedia *ifm;
 3605 
 3606         sc = ifp->if_softc;
 3607         mii = device_get_softc(sc->dc_miibus);
 3608         DC_LOCK(sc);
 3609         mii_pollstat(mii);
 3610         ifm = &mii->mii_media;
 3611         if (DC_IS_DAVICOM(sc)) {
 3612                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
 3613                         ifmr->ifm_active = ifm->ifm_media;
 3614                         ifmr->ifm_status = 0;
 3615                         DC_UNLOCK(sc);
 3616                         return;
 3617                 }
 3618         }
 3619         ifmr->ifm_active = mii->mii_media_active;
 3620         ifmr->ifm_status = mii->mii_media_status;
 3621         DC_UNLOCK(sc);
 3622 }
 3623 
 3624 static int
 3625 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3626 {
 3627         struct dc_softc *sc = ifp->if_softc;
 3628         struct ifreq *ifr = (struct ifreq *)data;
 3629         struct mii_data *mii;
 3630         int error = 0;
 3631 
 3632         switch (command) {
 3633         case SIOCSIFFLAGS:
 3634                 DC_LOCK(sc);
 3635                 if (ifp->if_flags & IFF_UP) {
 3636                         int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
 3637                                 (IFF_PROMISC | IFF_ALLMULTI);
 3638 
 3639                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3640                                 if (need_setfilt)
 3641                                         dc_setfilt(sc);
 3642                         } else {
 3643                                 sc->dc_txthresh = 0;
 3644                                 dc_init_locked(sc);
 3645                         }
 3646                 } else {
 3647                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3648                                 dc_stop(sc);
 3649                 }
 3650                 sc->dc_if_flags = ifp->if_flags;
 3651                 DC_UNLOCK(sc);
 3652                 error = 0;
 3653                 break;
 3654         case SIOCADDMULTI:
 3655         case SIOCDELMULTI:
 3656                 DC_LOCK(sc);
 3657                 dc_setfilt(sc);
 3658                 DC_UNLOCK(sc);
 3659                 error = 0;
 3660                 break;
 3661         case SIOCGIFMEDIA:
 3662         case SIOCSIFMEDIA:
 3663                 mii = device_get_softc(sc->dc_miibus);
 3664                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3665 #ifdef SRM_MEDIA
 3666                 DC_LOCK(sc);
 3667                 if (sc->dc_srm_media)
 3668                         sc->dc_srm_media = 0;
 3669                 DC_UNLOCK(sc);
 3670 #endif
 3671                 break;
 3672         case SIOCSIFCAP:
 3673 #ifdef DEVICE_POLLING
 3674                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 3675                     !(ifp->if_capenable & IFCAP_POLLING)) {
 3676                         error = ether_poll_register(dc_poll, ifp);
 3677                         if (error)
 3678                                 return(error);
 3679                         DC_LOCK(sc);
 3680                         /* Disable interrupts */
 3681                         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3682                         ifp->if_capenable |= IFCAP_POLLING;
 3683                         DC_UNLOCK(sc);
 3684                         return (error);
 3685                         
 3686                 }
 3687                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 3688                     ifp->if_capenable & IFCAP_POLLING) {
 3689                         error = ether_poll_deregister(ifp);
 3690                         /* Enable interrupts. */
 3691                         DC_LOCK(sc);
 3692                         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3693                         ifp->if_capenable &= ~IFCAP_POLLING;
 3694                         DC_UNLOCK(sc);
 3695                         return (error);
 3696                 }
 3697 #endif /* DEVICE_POLLING */
 3698                 break;
 3699         default:
 3700                 error = ether_ioctl(ifp, command, data);
 3701                 break;
 3702         }
 3703 
 3704         return (error);
 3705 }
 3706 
 3707 static void
 3708 dc_watchdog(struct ifnet *ifp)
 3709 {
 3710         struct dc_softc *sc;
 3711 
 3712         sc = ifp->if_softc;
 3713 
 3714         DC_LOCK(sc);
 3715 
 3716         ifp->if_oerrors++;
 3717         if_printf(ifp, "watchdog timeout\n");
 3718 
 3719         dc_stop(sc);
 3720         dc_reset(sc);
 3721         dc_init_locked(sc);
 3722 
 3723         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3724                 dc_start_locked(ifp);
 3725 
 3726         DC_UNLOCK(sc);
 3727 }
 3728 
 3729 /*
 3730  * Stop the adapter and free any mbufs allocated to the
 3731  * RX and TX lists.
 3732  */
 3733 static void
 3734 dc_stop(struct dc_softc *sc)
 3735 {
 3736         struct ifnet *ifp;
 3737         struct dc_list_data *ld;
 3738         struct dc_chain_data *cd;
 3739         int i;
 3740         u_int32_t ctl;
 3741 
 3742         DC_LOCK_ASSERT(sc);
 3743 
 3744         ifp = sc->dc_ifp;
 3745         ifp->if_timer = 0;
 3746         ld = sc->dc_ldata;
 3747         cd = &sc->dc_cdata;
 3748 
 3749         callout_stop(&sc->dc_stat_ch);
 3750 
 3751         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3752 
 3753         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
 3754         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3755         CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
 3756         CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
 3757         sc->dc_link = 0;
 3758 
 3759         /*
 3760          * Free data in the RX lists.
 3761          */
 3762         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 3763                 if (cd->dc_rx_chain[i] != NULL) {
 3764                         m_freem(cd->dc_rx_chain[i]);
 3765                         cd->dc_rx_chain[i] = NULL;
 3766                 }
 3767         }
 3768         bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
 3769 
 3770         /*
 3771          * Free the TX list buffers.
 3772          */
 3773         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 3774                 if (cd->dc_tx_chain[i] != NULL) {
 3775                         ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
 3776                         if ((ctl & DC_TXCTL_SETUP) ||
 3777                             !(ctl & DC_TXCTL_LASTFRAG)) {
 3778                                 cd->dc_tx_chain[i] = NULL;
 3779                                 continue;
 3780                         }
 3781                         bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
 3782                         m_freem(cd->dc_tx_chain[i]);
 3783                         cd->dc_tx_chain[i] = NULL;
 3784                 }
 3785         }
 3786         bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
 3787 }
 3788 
 3789 /*
 3790  * Device suspend routine.  Stop the interface and save some PCI
 3791  * settings in case the BIOS doesn't restore them properly on
 3792  * resume.
 3793  */
 3794 static int
 3795 dc_suspend(device_t dev)
 3796 {
 3797         struct dc_softc *sc;
 3798 
 3799         sc = device_get_softc(dev);
 3800         DC_LOCK(sc);
 3801         dc_stop(sc);
 3802         sc->suspended = 1;
 3803         DC_UNLOCK(sc);
 3804 
 3805         return (0);
 3806 }
 3807 
 3808 /*
 3809  * Device resume routine.  Restore some PCI settings in case the BIOS
 3810  * doesn't, re-enable busmastering, and restart the interface if
 3811  * appropriate.
 3812  */
 3813 static int
 3814 dc_resume(device_t dev)
 3815 {
 3816         struct dc_softc *sc;
 3817         struct ifnet *ifp;
 3818 
 3819         sc = device_get_softc(dev);
 3820         ifp = sc->dc_ifp;
 3821 
 3822         /* reinitialize interface if necessary */
 3823         DC_LOCK(sc);
 3824         if (ifp->if_flags & IFF_UP)
 3825                 dc_init_locked(sc);
 3826 
 3827         sc->suspended = 0;
 3828         DC_UNLOCK(sc);
 3829 
 3830         return (0);
 3831 }
 3832 
 3833 /*
 3834  * Stop all chip I/O so that the kernel's probe routines don't
 3835  * get confused by errant DMAs when rebooting.
 3836  */
 3837 static void
 3838 dc_shutdown(device_t dev)
 3839 {
 3840         struct dc_softc *sc;
 3841 
 3842         sc = device_get_softc(dev);
 3843 
 3844         DC_LOCK(sc);
 3845         dc_stop(sc);
 3846         DC_UNLOCK(sc);
 3847 }

Cache object: 48097f968c6de46739bde5f84f948e49


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.