The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_dc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/6.4/sys/pci/if_dc.c 185264 2008-11-24 21:26:26Z marius $");
   35 
   36 /*
   37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
   38  * series chips and several workalikes including the following:
   39  *
   40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
   41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
   42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
   43  * ASIX Electronics AX88140A (www.asix.com.tw)
   44  * ASIX Electronics AX88141 (www.asix.com.tw)
   45  * ADMtek AL981 (www.admtek.com.tw)
   46  * ADMtek AN985 (www.admtek.com.tw)
   47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
   48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
   49  * Accton EN1217 (www.accton.com)
   50  * Xircom X3201 (www.xircom.com)
   51  * Abocom FE2500
   52  * Conexant LANfinity (www.conexant.com)
   53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
   54  *
   55  * Datasheets for the 21143 are available at developer.intel.com.
   56  * Datasheets for the clone parts can be found at their respective sites.
   57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
   58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
   59  * worth noting is that its multicast hash table is only 128 bits wide
   60  * instead of 512.
   61  *
   62  * Written by Bill Paul <wpaul@ee.columbia.edu>
   63  * Electrical Engineering Department
   64  * Columbia University, New York City
   65  */
   66 /*
   67  * The Intel 21143 is the successor to the DEC 21140. It is basically
   68  * the same as the 21140 but with a few new features. The 21143 supports
   69  * three kinds of media attachments:
   70  *
   71  * o MII port, for 10Mbps and 100Mbps support and NWAY
   72  *   autonegotiation provided by an external PHY.
   73  * o SYM port, for symbol mode 100Mbps support.
   74  * o 10baseT port.
   75  * o AUI/BNC port.
   76  *
   77  * The 100Mbps SYM port and 10baseT port can be used together in
   78  * combination with the internal NWAY support to create a 10/100
   79  * autosensing configuration.
   80  *
   81  * Note that not all tulip workalikes are handled in this driver: we only
   82  * deal with those which are relatively well behaved. The Winbond is
   83  * handled separately due to its different register offsets and the
   84  * special handling needed for its various bugs. The PNIC is handled
   85  * here, but I'm not thrilled about it.
   86  *
   87  * All of the workalike chips use some form of MII transceiver support
   88  * with the exception of the Macronix chips, which also have a SYM port.
   89  * The ASIX AX88140A is also documented to have a SYM port, but all
   90  * the cards I've seen use an MII transceiver, probably because the
   91  * AX88140A doesn't support internal NWAY.
   92  */
   93 
   94 #ifdef HAVE_KERNEL_OPTION_HEADERS
   95 #include "opt_device_polling.h"
   96 #endif
   97 
   98 #include <sys/param.h>
   99 #include <sys/endian.h>
  100 #include <sys/systm.h>
  101 #include <sys/sockio.h>
  102 #include <sys/mbuf.h>
  103 #include <sys/malloc.h>
  104 #include <sys/kernel.h>
  105 #include <sys/module.h>
  106 #include <sys/socket.h>
  107 #include <sys/sysctl.h>
  108 
  109 #include <net/if.h>
  110 #include <net/if_arp.h>
  111 #include <net/ethernet.h>
  112 #include <net/if_dl.h>
  113 #include <net/if_media.h>
  114 #include <net/if_types.h>
  115 #include <net/if_vlan_var.h>
  116 
  117 #include <net/bpf.h>
  118 
  119 #include <machine/bus.h>
  120 #include <machine/resource.h>
  121 #include <sys/bus.h>
  122 #include <sys/rman.h>
  123 
  124 #include <dev/mii/mii.h>
  125 #include <dev/mii/miivar.h>
  126 
  127 #include <dev/pci/pcireg.h>
  128 #include <dev/pci/pcivar.h>
  129 
  130 #define DC_USEIOSPACE
  131 #ifdef __alpha__
  132 #define SRM_MEDIA
  133 #endif
  134 
  135 #include <pci/if_dcreg.h>
  136 
  137 #ifdef __sparc64__
  138 #include <dev/ofw/openfirm.h>
  139 #include <machine/ofw_machdep.h>
  140 #endif
  141 
  142 MODULE_DEPEND(dc, pci, 1, 1, 1);
  143 MODULE_DEPEND(dc, ether, 1, 1, 1);
  144 MODULE_DEPEND(dc, miibus, 1, 1, 1);
  145 
  146 /*
  147  * "device miibus" is required in kernel config.  See GENERIC if you get
  148  * errors here.
  149  */
  150 #include "miibus_if.h"
  151 
  152 /*
  153  * Various supported device vendors/types and their names.
  154  */
  155 static const struct dc_type dc_devs[] = {
  156         { DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
  157                 "Intel 21143 10/100BaseTX" },
  158         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
  159                 "Davicom DM9009 10/100BaseTX" },
  160         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
  161                 "Davicom DM9100 10/100BaseTX" },
  162         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
  163                 "Davicom DM9102A 10/100BaseTX" },
  164         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
  165                 "Davicom DM9102 10/100BaseTX" },
  166         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
  167                 "ADMtek AL981 10/100BaseTX" },
  168         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
  169                 "ADMtek AN985 10/100BaseTX" },
  170         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
  171                 "ADMtek ADM9511 10/100BaseTX" },
  172         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
  173                 "ADMtek ADM9513 10/100BaseTX" },
  174         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
  175                 "Netgear FA511 10/100BaseTX" },
  176         { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
  177                 "ASIX AX88141 10/100BaseTX" },
  178         { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
  179                 "ASIX AX88140A 10/100BaseTX" },
  180         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
  181                 "Macronix 98713A 10/100BaseTX" },
  182         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
  183                 "Macronix 98713 10/100BaseTX" },
  184         { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
  185                 "Compex RL100-TX 10/100BaseTX" },
  186         { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
  187                 "Compex RL100-TX 10/100BaseTX" },
  188         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
  189                 "Macronix 98725 10/100BaseTX" },
  190         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
  191                 "Macronix 98715AEC-C 10/100BaseTX" },
  192         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
  193                 "Macronix 98715/98715A 10/100BaseTX" },
  194         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
  195                 "Macronix 98727/98732 10/100BaseTX" },
  196         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
  197                 "LC82C115 PNIC II 10/100BaseTX" },
  198         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
  199                 "82c169 PNIC 10/100BaseTX" },
  200         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
  201                 "82c168 PNIC 10/100BaseTX" },
  202         { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
  203                 "Accton EN1217 10/100BaseTX" },
  204         { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
  205                 "Accton EN2242 MiniPCI 10/100BaseTX" },
  206         { DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
  207                 "Xircom X3201 10/100BaseTX" },
  208         { DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
  209                 "Neteasy DRP-32TXD Cardbus 10/100" },
  210         { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
  211                 "Abocom FE2500 10/100BaseTX" },
  212         { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
  213                 "Abocom FE2500MX 10/100BaseTX" },
  214         { DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
  215                 "Conexant LANfinity MiniPCI 10/100BaseTX" },
  216         { DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
  217                 "Hawking CB102 CardBus 10/100" },
  218         { DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
  219                 "PlaneX FNW-3602-T CardBus 10/100" },
  220         { DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
  221                 "3Com OfficeConnect 10/100B" },
  222         { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
  223                 "Microsoft MN-120 CardBus 10/100" },
  224         { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
  225                 "Microsoft MN-130 10/100" },
  226         { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
  227                 "Linksys PCMPC200 CardBus 10/100" },
  228         { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
  229                 "Linksys PCMPC200 CardBus 10/100" },
  230         { 0, 0, NULL }
  231 };
  232 
  233 static int dc_probe(device_t);
  234 static int dc_attach(device_t);
  235 static int dc_detach(device_t);
  236 static int dc_suspend(device_t);
  237 static int dc_resume(device_t);
  238 static const struct dc_type *dc_devtype(device_t);
  239 static int dc_newbuf(struct dc_softc *, int, int);
  240 static int dc_encap(struct dc_softc *, struct mbuf **);
  241 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
  242 static int dc_rx_resync(struct dc_softc *);
  243 static void dc_rxeof(struct dc_softc *);
  244 static void dc_txeof(struct dc_softc *);
  245 static void dc_tick(void *);
  246 static void dc_tx_underrun(struct dc_softc *);
  247 static void dc_intr(void *);
  248 static void dc_start(struct ifnet *);
  249 static void dc_start_locked(struct ifnet *);
  250 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
  251 static void dc_init(void *);
  252 static void dc_init_locked(struct dc_softc *);
  253 static void dc_stop(struct dc_softc *);
  254 static void dc_watchdog(void *);
  255 static int dc_shutdown(device_t);
  256 static int dc_ifmedia_upd(struct ifnet *);
  257 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  258 
  259 static void dc_delay(struct dc_softc *);
  260 static void dc_eeprom_idle(struct dc_softc *);
  261 static void dc_eeprom_putbyte(struct dc_softc *, int);
  262 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
  263 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
  264 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
  265 static void dc_eeprom_width(struct dc_softc *);
  266 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
  267 
  268 static void dc_mii_writebit(struct dc_softc *, int);
  269 static int dc_mii_readbit(struct dc_softc *);
  270 static void dc_mii_sync(struct dc_softc *);
  271 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
  272 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
  273 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
  274 static int dc_miibus_readreg(device_t, int, int);
  275 static int dc_miibus_writereg(device_t, int, int, int);
  276 static void dc_miibus_statchg(device_t);
  277 static void dc_miibus_mediainit(device_t);
  278 
  279 static void dc_setcfg(struct dc_softc *, int);
  280 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
  281 static uint32_t dc_mchash_be(const uint8_t *);
  282 static void dc_setfilt_21143(struct dc_softc *);
  283 static void dc_setfilt_asix(struct dc_softc *);
  284 static void dc_setfilt_admtek(struct dc_softc *);
  285 static void dc_setfilt_xircom(struct dc_softc *);
  286 
  287 static void dc_setfilt(struct dc_softc *);
  288 
  289 static void dc_reset(struct dc_softc *);
  290 static int dc_list_rx_init(struct dc_softc *);
  291 static int dc_list_tx_init(struct dc_softc *);
  292 
  293 static void dc_read_srom(struct dc_softc *, int);
  294 static void dc_parse_21143_srom(struct dc_softc *);
  295 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
  296 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
  297 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
  298 static void dc_apply_fixup(struct dc_softc *, int);
  299 
  300 #ifdef DC_USEIOSPACE
  301 #define DC_RES                  SYS_RES_IOPORT
  302 #define DC_RID                  DC_PCI_CFBIO
  303 #else
  304 #define DC_RES                  SYS_RES_MEMORY
  305 #define DC_RID                  DC_PCI_CFBMA
  306 #endif
  307 
  308 static device_method_t dc_methods[] = {
  309         /* Device interface */
  310         DEVMETHOD(device_probe,         dc_probe),
  311         DEVMETHOD(device_attach,        dc_attach),
  312         DEVMETHOD(device_detach,        dc_detach),
  313         DEVMETHOD(device_suspend,       dc_suspend),
  314         DEVMETHOD(device_resume,        dc_resume),
  315         DEVMETHOD(device_shutdown,      dc_shutdown),
  316 
  317         /* bus interface */
  318         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  319         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  320 
  321         /* MII interface */
  322         DEVMETHOD(miibus_readreg,       dc_miibus_readreg),
  323         DEVMETHOD(miibus_writereg,      dc_miibus_writereg),
  324         DEVMETHOD(miibus_statchg,       dc_miibus_statchg),
  325         DEVMETHOD(miibus_mediainit,     dc_miibus_mediainit),
  326 
  327         { 0, 0 }
  328 };
  329 
  330 static driver_t dc_driver = {
  331         "dc",
  332         dc_methods,
  333         sizeof(struct dc_softc)
  334 };
  335 
  336 static devclass_t dc_devclass;
  337 #ifdef __NO_STRICT_ALIGNMENT
  338 static int dc_quick = 1;
  339 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
  340     "do not m_devget() in dc driver");
  341 #endif
  342 
  343 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
  344 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
  345 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
  346 
  347 #define DC_SETBIT(sc, reg, x)                           \
  348         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  349 
  350 #define DC_CLRBIT(sc, reg, x)                           \
  351         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  352 
  353 #define SIO_SET(x)      DC_SETBIT(sc, DC_SIO, (x))
  354 #define SIO_CLR(x)      DC_CLRBIT(sc, DC_SIO, (x))
  355 
  356 static void
  357 dc_delay(struct dc_softc *sc)
  358 {
  359         int idx;
  360 
  361         for (idx = (300 / 33) + 1; idx > 0; idx--)
  362                 CSR_READ_4(sc, DC_BUSCTL);
  363 }
  364 
  365 static void
  366 dc_eeprom_width(struct dc_softc *sc)
  367 {
  368         int i;
  369 
  370         /* Force EEPROM to idle state. */
  371         dc_eeprom_idle(sc);
  372 
  373         /* Enter EEPROM access mode. */
  374         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  375         dc_delay(sc);
  376         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  377         dc_delay(sc);
  378         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  379         dc_delay(sc);
  380         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  381         dc_delay(sc);
  382 
  383         for (i = 3; i--;) {
  384                 if (6 & (1 << i))
  385                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  386                 else
  387                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  388                 dc_delay(sc);
  389                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  390                 dc_delay(sc);
  391                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  392                 dc_delay(sc);
  393         }
  394 
  395         for (i = 1; i <= 12; i++) {
  396                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  397                 dc_delay(sc);
  398                 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
  399                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  400                         dc_delay(sc);
  401                         break;
  402                 }
  403                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  404                 dc_delay(sc);
  405         }
  406 
  407         /* Turn off EEPROM access mode. */
  408         dc_eeprom_idle(sc);
  409 
  410         if (i < 4 || i > 12)
  411                 sc->dc_romwidth = 6;
  412         else
  413                 sc->dc_romwidth = i;
  414 
  415         /* Enter EEPROM access mode. */
  416         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  417         dc_delay(sc);
  418         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  419         dc_delay(sc);
  420         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  421         dc_delay(sc);
  422         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  423         dc_delay(sc);
  424 
  425         /* Turn off EEPROM access mode. */
  426         dc_eeprom_idle(sc);
  427 }
  428 
  429 static void
  430 dc_eeprom_idle(struct dc_softc *sc)
  431 {
  432         int i;
  433 
  434         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  435         dc_delay(sc);
  436         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  437         dc_delay(sc);
  438         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  439         dc_delay(sc);
  440         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  441         dc_delay(sc);
  442 
  443         for (i = 0; i < 25; i++) {
  444                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  445                 dc_delay(sc);
  446                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  447                 dc_delay(sc);
  448         }
  449 
  450         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  451         dc_delay(sc);
  452         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
  453         dc_delay(sc);
  454         CSR_WRITE_4(sc, DC_SIO, 0x00000000);
  455 }
  456 
  457 /*
  458  * Send a read command and address to the EEPROM, check for ACK.
  459  */
  460 static void
  461 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
  462 {
  463         int d, i;
  464 
  465         d = DC_EECMD_READ >> 6;
  466         for (i = 3; i--; ) {
  467                 if (d & (1 << i))
  468                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  469                 else
  470                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  471                 dc_delay(sc);
  472                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  473                 dc_delay(sc);
  474                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  475                 dc_delay(sc);
  476         }
  477 
  478         /*
  479          * Feed in each bit and strobe the clock.
  480          */
  481         for (i = sc->dc_romwidth; i--;) {
  482                 if (addr & (1 << i)) {
  483                         SIO_SET(DC_SIO_EE_DATAIN);
  484                 } else {
  485                         SIO_CLR(DC_SIO_EE_DATAIN);
  486                 }
  487                 dc_delay(sc);
  488                 SIO_SET(DC_SIO_EE_CLK);
  489                 dc_delay(sc);
  490                 SIO_CLR(DC_SIO_EE_CLK);
  491                 dc_delay(sc);
  492         }
  493 }
  494 
  495 /*
  496  * Read a word of data stored in the EEPROM at address 'addr.'
  497  * The PNIC 82c168/82c169 has its own non-standard way to read
  498  * the EEPROM.
  499  */
  500 static void
  501 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
  502 {
  503         int i;
  504         u_int32_t r;
  505 
  506         CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
  507 
  508         for (i = 0; i < DC_TIMEOUT; i++) {
  509                 DELAY(1);
  510                 r = CSR_READ_4(sc, DC_SIO);
  511                 if (!(r & DC_PN_SIOCTL_BUSY)) {
  512                         *dest = (u_int16_t)(r & 0xFFFF);
  513                         return;
  514                 }
  515         }
  516 }
  517 
  518 /*
  519  * Read a word of data stored in the EEPROM at address 'addr.'
  520  * The Xircom X3201 has its own non-standard way to read
  521  * the EEPROM, too.
  522  */
  523 static void
  524 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
  525 {
  526 
  527         SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  528 
  529         addr *= 2;
  530         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  531         *dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
  532         addr += 1;
  533         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  534         *dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
  535 
  536         SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  537 }
  538 
  539 /*
  540  * Read a word of data stored in the EEPROM at address 'addr.'
  541  */
  542 static void
  543 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
  544 {
  545         int i;
  546         u_int16_t word = 0;
  547 
  548         /* Force EEPROM to idle state. */
  549         dc_eeprom_idle(sc);
  550 
  551         /* Enter EEPROM access mode. */
  552         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  553         dc_delay(sc);
  554         DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
  555         dc_delay(sc);
  556         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  557         dc_delay(sc);
  558         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  559         dc_delay(sc);
  560 
  561         /*
  562          * Send address of word we want to read.
  563          */
  564         dc_eeprom_putbyte(sc, addr);
  565 
  566         /*
  567          * Start reading bits from EEPROM.
  568          */
  569         for (i = 0x8000; i; i >>= 1) {
  570                 SIO_SET(DC_SIO_EE_CLK);
  571                 dc_delay(sc);
  572                 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
  573                         word |= i;
  574                 dc_delay(sc);
  575                 SIO_CLR(DC_SIO_EE_CLK);
  576                 dc_delay(sc);
  577         }
  578 
  579         /* Turn off EEPROM access mode. */
  580         dc_eeprom_idle(sc);
  581 
  582         *dest = word;
  583 }
  584 
  585 /*
  586  * Read a sequence of words from the EEPROM.
  587  */
  588 static void
  589 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
  590 {
  591         int i;
  592         u_int16_t word = 0, *ptr;
  593 
  594         for (i = 0; i < cnt; i++) {
  595                 if (DC_IS_PNIC(sc))
  596                         dc_eeprom_getword_pnic(sc, off + i, &word);
  597                 else if (DC_IS_XIRCOM(sc))
  598                         dc_eeprom_getword_xircom(sc, off + i, &word);
  599                 else
  600                         dc_eeprom_getword(sc, off + i, &word);
  601                 ptr = (u_int16_t *)(dest + (i * 2));
  602                 if (be)
  603                         *ptr = be16toh(word);
  604                 else
  605                         *ptr = le16toh(word);
  606         }
  607 }
  608 
  609 /*
  610  * The following two routines are taken from the Macronix 98713
  611  * Application Notes pp.19-21.
  612  */
  613 /*
  614  * Write a bit to the MII bus.
  615  */
  616 static void
  617 dc_mii_writebit(struct dc_softc *sc, int bit)
  618 {
  619 
  620         if (bit)
  621                 CSR_WRITE_4(sc, DC_SIO,
  622                     DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
  623         else
  624                 CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  625 
  626         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  627         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  628 }
  629 
  630 /*
  631  * Read a bit from the MII bus.
  632  */
  633 static int
  634 dc_mii_readbit(struct dc_softc *sc)
  635 {
  636 
  637         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
  638         CSR_READ_4(sc, DC_SIO);
  639         DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  640         DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
  641         if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
  642                 return (1);
  643 
  644         return (0);
  645 }
  646 
  647 /*
  648  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  649  */
  650 static void
  651 dc_mii_sync(struct dc_softc *sc)
  652 {
  653         int i;
  654 
  655         CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
  656 
  657         for (i = 0; i < 32; i++)
  658                 dc_mii_writebit(sc, 1);
  659 }
  660 
  661 /*
  662  * Clock a series of bits through the MII.
  663  */
  664 static void
  665 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
  666 {
  667         int i;
  668 
  669         for (i = (0x1 << (cnt - 1)); i; i >>= 1)
  670                 dc_mii_writebit(sc, bits & i);
  671 }
  672 
  673 /*
  674  * Read an PHY register through the MII.
  675  */
  676 static int
  677 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
  678 {
  679         int i, ack;
  680 
  681         /*
  682          * Set up frame for RX.
  683          */
  684         frame->mii_stdelim = DC_MII_STARTDELIM;
  685         frame->mii_opcode = DC_MII_READOP;
  686         frame->mii_turnaround = 0;
  687         frame->mii_data = 0;
  688 
  689         /*
  690          * Sync the PHYs.
  691          */
  692         dc_mii_sync(sc);
  693 
  694         /*
  695          * Send command/address info.
  696          */
  697         dc_mii_send(sc, frame->mii_stdelim, 2);
  698         dc_mii_send(sc, frame->mii_opcode, 2);
  699         dc_mii_send(sc, frame->mii_phyaddr, 5);
  700         dc_mii_send(sc, frame->mii_regaddr, 5);
  701 
  702 #ifdef notdef
  703         /* Idle bit */
  704         dc_mii_writebit(sc, 1);
  705         dc_mii_writebit(sc, 0);
  706 #endif
  707 
  708         /* Check for ack. */
  709         ack = dc_mii_readbit(sc);
  710 
  711         /*
  712          * Now try reading data bits. If the ack failed, we still
  713          * need to clock through 16 cycles to keep the PHY(s) in sync.
  714          */
  715         if (ack) {
  716                 for (i = 0; i < 16; i++)
  717                         dc_mii_readbit(sc);
  718                 goto fail;
  719         }
  720 
  721         for (i = 0x8000; i; i >>= 1) {
  722                 if (!ack) {
  723                         if (dc_mii_readbit(sc))
  724                                 frame->mii_data |= i;
  725                 }
  726         }
  727 
  728 fail:
  729 
  730         dc_mii_writebit(sc, 0);
  731         dc_mii_writebit(sc, 0);
  732 
  733         if (ack)
  734                 return (1);
  735         return (0);
  736 }
  737 
  738 /*
  739  * Write to a PHY register through the MII.
  740  */
  741 static int
  742 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
  743 {
  744 
  745         /*
  746          * Set up frame for TX.
  747          */
  748 
  749         frame->mii_stdelim = DC_MII_STARTDELIM;
  750         frame->mii_opcode = DC_MII_WRITEOP;
  751         frame->mii_turnaround = DC_MII_TURNAROUND;
  752 
  753         /*
  754          * Sync the PHYs.
  755          */
  756         dc_mii_sync(sc);
  757 
  758         dc_mii_send(sc, frame->mii_stdelim, 2);
  759         dc_mii_send(sc, frame->mii_opcode, 2);
  760         dc_mii_send(sc, frame->mii_phyaddr, 5);
  761         dc_mii_send(sc, frame->mii_regaddr, 5);
  762         dc_mii_send(sc, frame->mii_turnaround, 2);
  763         dc_mii_send(sc, frame->mii_data, 16);
  764 
  765         /* Idle bit. */
  766         dc_mii_writebit(sc, 0);
  767         dc_mii_writebit(sc, 0);
  768 
  769         return (0);
  770 }
  771 
  772 static int
  773 dc_miibus_readreg(device_t dev, int phy, int reg)
  774 {
  775         struct dc_mii_frame frame;
  776         struct dc_softc  *sc;
  777         int i, rval, phy_reg = 0;
  778 
  779         sc = device_get_softc(dev);
  780         bzero(&frame, sizeof(frame));
  781 
  782         /*
  783          * Note: both the AL981 and AN985 have internal PHYs,
  784          * however the AL981 provides direct access to the PHY
  785          * registers while the AN985 uses a serial MII interface.
  786          * The AN985's MII interface is also buggy in that you
  787          * can read from any MII address (0 to 31), but only address 1
  788          * behaves normally. To deal with both cases, we pretend
  789          * that the PHY is at MII address 1.
  790          */
  791         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  792                 return (0);
  793 
  794         /*
  795          * Note: the ukphy probes of the RS7112 report a PHY at
  796          * MII address 0 (possibly HomePNA?) and 1 (ethernet)
  797          * so we only respond to correct one.
  798          */
  799         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  800                 return (0);
  801 
  802         if (sc->dc_pmode != DC_PMODE_MII) {
  803                 if (phy == (MII_NPHY - 1)) {
  804                         switch (reg) {
  805                         case MII_BMSR:
  806                         /*
  807                          * Fake something to make the probe
  808                          * code think there's a PHY here.
  809                          */
  810                                 return (BMSR_MEDIAMASK);
  811                                 break;
  812                         case MII_PHYIDR1:
  813                                 if (DC_IS_PNIC(sc))
  814                                         return (DC_VENDORID_LO);
  815                                 return (DC_VENDORID_DEC);
  816                                 break;
  817                         case MII_PHYIDR2:
  818                                 if (DC_IS_PNIC(sc))
  819                                         return (DC_DEVICEID_82C168);
  820                                 return (DC_DEVICEID_21143);
  821                                 break;
  822                         default:
  823                                 return (0);
  824                                 break;
  825                         }
  826                 } else
  827                         return (0);
  828         }
  829 
  830         if (DC_IS_PNIC(sc)) {
  831                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
  832                     (phy << 23) | (reg << 18));
  833                 for (i = 0; i < DC_TIMEOUT; i++) {
  834                         DELAY(1);
  835                         rval = CSR_READ_4(sc, DC_PN_MII);
  836                         if (!(rval & DC_PN_MII_BUSY)) {
  837                                 rval &= 0xFFFF;
  838                                 return (rval == 0xFFFF ? 0 : rval);
  839                         }
  840                 }
  841                 return (0);
  842         }
  843 
  844         if (DC_IS_COMET(sc)) {
  845                 switch (reg) {
  846                 case MII_BMCR:
  847                         phy_reg = DC_AL_BMCR;
  848                         break;
  849                 case MII_BMSR:
  850                         phy_reg = DC_AL_BMSR;
  851                         break;
  852                 case MII_PHYIDR1:
  853                         phy_reg = DC_AL_VENID;
  854                         break;
  855                 case MII_PHYIDR2:
  856                         phy_reg = DC_AL_DEVID;
  857                         break;
  858                 case MII_ANAR:
  859                         phy_reg = DC_AL_ANAR;
  860                         break;
  861                 case MII_ANLPAR:
  862                         phy_reg = DC_AL_LPAR;
  863                         break;
  864                 case MII_ANER:
  865                         phy_reg = DC_AL_ANER;
  866                         break;
  867                 default:
  868                         device_printf(dev, "phy_read: bad phy register %x\n",
  869                             reg);
  870                         return (0);
  871                         break;
  872                 }
  873 
  874                 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
  875 
  876                 if (rval == 0xFFFF)
  877                         return (0);
  878                 return (rval);
  879         }
  880 
  881         frame.mii_phyaddr = phy;
  882         frame.mii_regaddr = reg;
  883         if (sc->dc_type == DC_TYPE_98713) {
  884                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  885                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  886         }
  887         dc_mii_readreg(sc, &frame);
  888         if (sc->dc_type == DC_TYPE_98713)
  889                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  890 
  891         return (frame.mii_data);
  892 }
  893 
  894 static int
  895 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
  896 {
  897         struct dc_softc *sc;
  898         struct dc_mii_frame frame;
  899         int i, phy_reg = 0;
  900 
  901         sc = device_get_softc(dev);
  902         bzero(&frame, sizeof(frame));
  903 
  904         if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
  905                 return (0);
  906 
  907         if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
  908                 return (0);
  909 
  910         if (DC_IS_PNIC(sc)) {
  911                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
  912                     (phy << 23) | (reg << 10) | data);
  913                 for (i = 0; i < DC_TIMEOUT; i++) {
  914                         if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
  915                                 break;
  916                 }
  917                 return (0);
  918         }
  919 
  920         if (DC_IS_COMET(sc)) {
  921                 switch (reg) {
  922                 case MII_BMCR:
  923                         phy_reg = DC_AL_BMCR;
  924                         break;
  925                 case MII_BMSR:
  926                         phy_reg = DC_AL_BMSR;
  927                         break;
  928                 case MII_PHYIDR1:
  929                         phy_reg = DC_AL_VENID;
  930                         break;
  931                 case MII_PHYIDR2:
  932                         phy_reg = DC_AL_DEVID;
  933                         break;
  934                 case MII_ANAR:
  935                         phy_reg = DC_AL_ANAR;
  936                         break;
  937                 case MII_ANLPAR:
  938                         phy_reg = DC_AL_LPAR;
  939                         break;
  940                 case MII_ANER:
  941                         phy_reg = DC_AL_ANER;
  942                         break;
  943                 default:
  944                         device_printf(dev, "phy_write: bad phy register %x\n",
  945                             reg);
  946                         return (0);
  947                         break;
  948                 }
  949 
  950                 CSR_WRITE_4(sc, phy_reg, data);
  951                 return (0);
  952         }
  953 
  954         frame.mii_phyaddr = phy;
  955         frame.mii_regaddr = reg;
  956         frame.mii_data = data;
  957 
  958         if (sc->dc_type == DC_TYPE_98713) {
  959                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  960                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  961         }
  962         dc_mii_writereg(sc, &frame);
  963         if (sc->dc_type == DC_TYPE_98713)
  964                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  965 
  966         return (0);
  967 }
  968 
  969 static void
  970 dc_miibus_statchg(device_t dev)
  971 {
  972         struct dc_softc *sc;
  973         struct mii_data *mii;
  974         struct ifmedia *ifm;
  975 
  976         sc = device_get_softc(dev);
  977         if (DC_IS_ADMTEK(sc))
  978                 return;
  979 
  980         mii = device_get_softc(sc->dc_miibus);
  981         ifm = &mii->mii_media;
  982         if (DC_IS_DAVICOM(sc) &&
  983             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
  984                 dc_setcfg(sc, ifm->ifm_media);
  985                 sc->dc_if_media = ifm->ifm_media;
  986         } else {
  987                 dc_setcfg(sc, mii->mii_media_active);
  988                 sc->dc_if_media = mii->mii_media_active;
  989         }
  990 }
  991 
  992 /*
  993  * Special support for DM9102A cards with HomePNA PHYs. Note:
  994  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
  995  * to be impossible to talk to the management interface of the DM9801
  996  * PHY (its MDIO pin is not connected to anything). Consequently,
  997  * the driver has to just 'know' about the additional mode and deal
  998  * with it itself. *sigh*
  999  */
 1000 static void
 1001 dc_miibus_mediainit(device_t dev)
 1002 {
 1003         struct dc_softc *sc;
 1004         struct mii_data *mii;
 1005         struct ifmedia *ifm;
 1006         int rev;
 1007 
 1008         rev = pci_get_revid(dev);
 1009 
 1010         sc = device_get_softc(dev);
 1011         mii = device_get_softc(sc->dc_miibus);
 1012         ifm = &mii->mii_media;
 1013 
 1014         if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
 1015                 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
 1016 }
 1017 
 1018 #define DC_BITS_512     9
 1019 #define DC_BITS_128     7
 1020 #define DC_BITS_64      6
 1021 
 1022 static uint32_t
 1023 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
 1024 {
 1025         uint32_t crc;
 1026 
 1027         /* Compute CRC for the address value. */
 1028         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
 1029 
 1030         /*
 1031          * The hash table on the PNIC II and the MX98715AEC-C/D/E
 1032          * chips is only 128 bits wide.
 1033          */
 1034         if (sc->dc_flags & DC_128BIT_HASH)
 1035                 return (crc & ((1 << DC_BITS_128) - 1));
 1036 
 1037         /* The hash table on the MX98715BEC is only 64 bits wide. */
 1038         if (sc->dc_flags & DC_64BIT_HASH)
 1039                 return (crc & ((1 << DC_BITS_64) - 1));
 1040 
 1041         /* Xircom's hash filtering table is different (read: weird) */
 1042         /* Xircom uses the LEAST significant bits */
 1043         if (DC_IS_XIRCOM(sc)) {
 1044                 if ((crc & 0x180) == 0x180)
 1045                         return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
 1046                 else
 1047                         return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
 1048                             (12 << 4));
 1049         }
 1050 
 1051         return (crc & ((1 << DC_BITS_512) - 1));
 1052 }
 1053 
 1054 /*
 1055  * Calculate CRC of a multicast group address, return the lower 6 bits.
 1056  */
 1057 static uint32_t
 1058 dc_mchash_be(const uint8_t *addr)
 1059 {
 1060         uint32_t crc;
 1061 
 1062         /* Compute CRC for the address value. */
 1063         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
 1064 
 1065         /* Return the filter bit position. */
 1066         return ((crc >> 26) & 0x0000003F);
 1067 }
 1068 
 1069 /*
 1070  * 21143-style RX filter setup routine. Filter programming is done by
 1071  * downloading a special setup frame into the TX engine. 21143, Macronix,
 1072  * PNIC, PNIC II and Davicom chips are programmed this way.
 1073  *
 1074  * We always program the chip using 'hash perfect' mode, i.e. one perfect
 1075  * address (our node address) and a 512-bit hash filter for multicast
 1076  * frames. We also sneak the broadcast address into the hash filter since
 1077  * we need that too.
 1078  */
 1079 static void
 1080 dc_setfilt_21143(struct dc_softc *sc)
 1081 {
 1082         struct dc_desc *sframe;
 1083         u_int32_t h, *sp;
 1084         struct ifmultiaddr *ifma;
 1085         struct ifnet *ifp;
 1086         int i;
 1087 
 1088         ifp = sc->dc_ifp;
 1089 
 1090         i = sc->dc_cdata.dc_tx_prod;
 1091         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1092         sc->dc_cdata.dc_tx_cnt++;
 1093         sframe = &sc->dc_ldata->dc_tx_list[i];
 1094         sp = sc->dc_cdata.dc_sbuf;
 1095         bzero(sp, DC_SFRAME_LEN);
 1096 
 1097         sframe->dc_data = htole32(sc->dc_saddr);
 1098         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1099             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1100 
 1101         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1102 
 1103         /* If we want promiscuous mode, set the allframes bit. */
 1104         if (ifp->if_flags & IFF_PROMISC)
 1105                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1106         else
 1107                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1108 
 1109         if (ifp->if_flags & IFF_ALLMULTI)
 1110                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1111         else
 1112                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1113 
 1114         IF_ADDR_LOCK(ifp);
 1115         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1116                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1117                         continue;
 1118                 h = dc_mchash_le(sc,
 1119                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1120                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1121         }
 1122         IF_ADDR_UNLOCK(ifp);
 1123 
 1124         if (ifp->if_flags & IFF_BROADCAST) {
 1125                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1126                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1127         }
 1128 
 1129         /* Set our MAC address */
 1130         sp[39] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
 1131         sp[40] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
 1132         sp[41] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
 1133 
 1134         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1135         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1136 
 1137         /*
 1138          * The PNIC takes an exceedingly long time to process its
 1139          * setup frame; wait 10ms after posting the setup frame
 1140          * before proceeding, just so it has time to swallow its
 1141          * medicine.
 1142          */
 1143         DELAY(10000);
 1144 
 1145         sc->dc_wdog_timer = 5;
 1146 }
 1147 
 1148 static void
 1149 dc_setfilt_admtek(struct dc_softc *sc)
 1150 {
 1151         uint8_t eaddr[ETHER_ADDR_LEN];
 1152         struct ifnet *ifp;
 1153         struct ifmultiaddr *ifma;
 1154         int h = 0;
 1155         u_int32_t hashes[2] = { 0, 0 };
 1156 
 1157         ifp = sc->dc_ifp;
 1158 
 1159         /* Init our MAC address. */
 1160         bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
 1161         CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
 1162             eaddr[1] << 8 | eaddr[0]);
 1163         CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
 1164 
 1165         /* If we want promiscuous mode, set the allframes bit. */
 1166         if (ifp->if_flags & IFF_PROMISC)
 1167                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1168         else
 1169                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1170 
 1171         if (ifp->if_flags & IFF_ALLMULTI)
 1172                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1173         else
 1174                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1175 
 1176         /* First, zot all the existing hash bits. */
 1177         CSR_WRITE_4(sc, DC_AL_MAR0, 0);
 1178         CSR_WRITE_4(sc, DC_AL_MAR1, 0);
 1179 
 1180         /*
 1181          * If we're already in promisc or allmulti mode, we
 1182          * don't have to bother programming the multicast filter.
 1183          */
 1184         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1185                 return;
 1186 
 1187         /* Now program new ones. */
 1188         IF_ADDR_LOCK(ifp);
 1189         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1190                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1191                         continue;
 1192                 if (DC_IS_CENTAUR(sc))
 1193                         h = dc_mchash_le(sc,
 1194                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1195                 else
 1196                         h = dc_mchash_be(
 1197                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1198                 if (h < 32)
 1199                         hashes[0] |= (1 << h);
 1200                 else
 1201                         hashes[1] |= (1 << (h - 32));
 1202         }
 1203         IF_ADDR_UNLOCK(ifp);
 1204 
 1205         CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
 1206         CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
 1207 }
 1208 
 1209 static void
 1210 dc_setfilt_asix(struct dc_softc *sc)
 1211 {
 1212         struct ifnet *ifp;
 1213         struct ifmultiaddr *ifma;
 1214         int h = 0;
 1215         u_int32_t hashes[2] = { 0, 0 };
 1216 
 1217         ifp = sc->dc_ifp;
 1218 
 1219         /* Init our MAC address */
 1220         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
 1221         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1222             *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
 1223         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
 1224         CSR_WRITE_4(sc, DC_AX_FILTDATA,
 1225             *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
 1226 
 1227         /* If we want promiscuous mode, set the allframes bit. */
 1228         if (ifp->if_flags & IFF_PROMISC)
 1229                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1230         else
 1231                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1232 
 1233         if (ifp->if_flags & IFF_ALLMULTI)
 1234                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1235         else
 1236                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1237 
 1238         /*
 1239          * The ASIX chip has a special bit to enable reception
 1240          * of broadcast frames.
 1241          */
 1242         if (ifp->if_flags & IFF_BROADCAST)
 1243                 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1244         else
 1245                 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1246 
 1247         /* first, zot all the existing hash bits */
 1248         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1249         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1250         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1251         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1252 
 1253         /*
 1254          * If we're already in promisc or allmulti mode, we
 1255          * don't have to bother programming the multicast filter.
 1256          */
 1257         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1258                 return;
 1259 
 1260         /* now program new ones */
 1261         IF_ADDR_LOCK(ifp);
 1262         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1263                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1264                         continue;
 1265                 h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1266                 if (h < 32)
 1267                         hashes[0] |= (1 << h);
 1268                 else
 1269                         hashes[1] |= (1 << (h - 32));
 1270         }
 1271         IF_ADDR_UNLOCK(ifp);
 1272 
 1273         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1274         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
 1275         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1276         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
 1277 }
 1278 
 1279 static void
 1280 dc_setfilt_xircom(struct dc_softc *sc)
 1281 {
 1282         struct ifnet *ifp;
 1283         struct ifmultiaddr *ifma;
 1284         struct dc_desc *sframe;
 1285         u_int32_t h, *sp;
 1286         int i;
 1287 
 1288         ifp = sc->dc_ifp;
 1289         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1290 
 1291         i = sc->dc_cdata.dc_tx_prod;
 1292         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1293         sc->dc_cdata.dc_tx_cnt++;
 1294         sframe = &sc->dc_ldata->dc_tx_list[i];
 1295         sp = sc->dc_cdata.dc_sbuf;
 1296         bzero(sp, DC_SFRAME_LEN);
 1297 
 1298         sframe->dc_data = htole32(sc->dc_saddr);
 1299         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1300             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1301 
 1302         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1303 
 1304         /* If we want promiscuous mode, set the allframes bit. */
 1305         if (ifp->if_flags & IFF_PROMISC)
 1306                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1307         else
 1308                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1309 
 1310         if (ifp->if_flags & IFF_ALLMULTI)
 1311                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1312         else
 1313                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1314 
 1315         IF_ADDR_LOCK(ifp);
 1316         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1317                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1318                         continue;
 1319                 h = dc_mchash_le(sc,
 1320                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
 1321                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1322         }
 1323         IF_ADDR_UNLOCK(ifp);
 1324 
 1325         if (ifp->if_flags & IFF_BROADCAST) {
 1326                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1327                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1328         }
 1329 
 1330         /* Set our MAC address */
 1331         sp[0] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
 1332         sp[1] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
 1333         sp[2] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
 1334 
 1335         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 1336         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 1337         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1338         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1339         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1340 
 1341         /*
 1342          * Wait some time...
 1343          */
 1344         DELAY(1000);
 1345 
 1346         sc->dc_wdog_timer = 5;
 1347 }
 1348 
 1349 static void
 1350 dc_setfilt(struct dc_softc *sc)
 1351 {
 1352 
 1353         if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
 1354             DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
 1355                 dc_setfilt_21143(sc);
 1356 
 1357         if (DC_IS_ASIX(sc))
 1358                 dc_setfilt_asix(sc);
 1359 
 1360         if (DC_IS_ADMTEK(sc))
 1361                 dc_setfilt_admtek(sc);
 1362 
 1363         if (DC_IS_XIRCOM(sc))
 1364                 dc_setfilt_xircom(sc);
 1365 }
 1366 
 1367 /*
 1368  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
 1369  * the netconfig register, we first have to put the transmit and/or
 1370  * receive logic in the idle state.
 1371  */
 1372 static void
 1373 dc_setcfg(struct dc_softc *sc, int media)
 1374 {
 1375         int i, restart = 0, watchdogreg;
 1376         u_int32_t isr;
 1377 
 1378         if (IFM_SUBTYPE(media) == IFM_NONE)
 1379                 return;
 1380 
 1381         if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
 1382                 restart = 1;
 1383                 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1384 
 1385                 for (i = 0; i < DC_TIMEOUT; i++) {
 1386                         isr = CSR_READ_4(sc, DC_ISR);
 1387                         if (isr & DC_ISR_TX_IDLE &&
 1388                             ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1389                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
 1390                                 break;
 1391                         DELAY(10);
 1392                 }
 1393 
 1394                 if (i == DC_TIMEOUT) {
 1395                         if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
 1396                                 device_printf(sc->dc_dev,
 1397                                     "%s: failed to force tx to idle state\n",
 1398                                     __func__);
 1399                         if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1400                             (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
 1401                             !DC_HAS_BROKEN_RXSTATE(sc))
 1402                                 device_printf(sc->dc_dev,
 1403                                     "%s: failed to force rx to idle state\n",
 1404                                     __func__);
 1405                 }
 1406         }
 1407 
 1408         if (IFM_SUBTYPE(media) == IFM_100_TX) {
 1409                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1410                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1411                 if (sc->dc_pmode == DC_PMODE_MII) {
 1412                         if (DC_IS_INTEL(sc)) {
 1413                         /* There's a write enable bit here that reads as 1. */
 1414                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1415                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1416                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1417                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1418                         } else {
 1419                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1420                         }
 1421                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1422                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1423                         if (sc->dc_type == DC_TYPE_98713)
 1424                                 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1425                                     DC_NETCFG_SCRAMBLER));
 1426                         if (!DC_IS_DAVICOM(sc))
 1427                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1428                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1429                         if (DC_IS_INTEL(sc))
 1430                                 dc_apply_fixup(sc, IFM_AUTO);
 1431                 } else {
 1432                         if (DC_IS_PNIC(sc)) {
 1433                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1434                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1435                                 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1436                         }
 1437                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1438                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1439                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1440                         if (DC_IS_INTEL(sc))
 1441                                 dc_apply_fixup(sc,
 1442                                     (media & IFM_GMASK) == IFM_FDX ?
 1443                                     IFM_100_TX | IFM_FDX : IFM_100_TX);
 1444                 }
 1445         }
 1446 
 1447         if (IFM_SUBTYPE(media) == IFM_10_T) {
 1448                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1449                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1450                 if (sc->dc_pmode == DC_PMODE_MII) {
 1451                         /* There's a write enable bit here that reads as 1. */
 1452                         if (DC_IS_INTEL(sc)) {
 1453                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1454                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1455                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1456                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1457                         } else {
 1458                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1459                         }
 1460                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1461                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1462                         if (sc->dc_type == DC_TYPE_98713)
 1463                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1464                         if (!DC_IS_DAVICOM(sc))
 1465                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1466                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1467                         if (DC_IS_INTEL(sc))
 1468                                 dc_apply_fixup(sc, IFM_AUTO);
 1469                 } else {
 1470                         if (DC_IS_PNIC(sc)) {
 1471                                 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1472                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1473                                 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1474                         }
 1475                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1476                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1477                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1478                         if (DC_IS_INTEL(sc)) {
 1479                                 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1480                                 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1481                                 if ((media & IFM_GMASK) == IFM_FDX)
 1482                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
 1483                                 else
 1484                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
 1485                                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1486                                 DC_CLRBIT(sc, DC_10BTCTRL,
 1487                                     DC_TCTL_AUTONEGENBL);
 1488                                 dc_apply_fixup(sc,
 1489                                     (media & IFM_GMASK) == IFM_FDX ?
 1490                                     IFM_10_T | IFM_FDX : IFM_10_T);
 1491                                 DELAY(20000);
 1492                         }
 1493                 }
 1494         }
 1495 
 1496         /*
 1497          * If this is a Davicom DM9102A card with a DM9801 HomePNA
 1498          * PHY and we want HomePNA mode, set the portsel bit to turn
 1499          * on the external MII port.
 1500          */
 1501         if (DC_IS_DAVICOM(sc)) {
 1502                 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
 1503                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1504                         sc->dc_link = 1;
 1505                 } else {
 1506                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1507                 }
 1508         }
 1509 
 1510         if ((media & IFM_GMASK) == IFM_FDX) {
 1511                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1512                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1513                         DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1514         } else {
 1515                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1516                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1517                         DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1518         }
 1519 
 1520         if (restart)
 1521                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
 1522 }
 1523 
 1524 static void
 1525 dc_reset(struct dc_softc *sc)
 1526 {
 1527         int i;
 1528 
 1529         DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1530 
 1531         for (i = 0; i < DC_TIMEOUT; i++) {
 1532                 DELAY(10);
 1533                 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
 1534                         break;
 1535         }
 1536 
 1537         if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
 1538             DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
 1539                 DELAY(10000);
 1540                 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1541                 i = 0;
 1542         }
 1543 
 1544         if (i == DC_TIMEOUT)
 1545                 device_printf(sc->dc_dev, "reset never completed!\n");
 1546 
 1547         /* Wait a little while for the chip to get its brains in order. */
 1548         DELAY(1000);
 1549 
 1550         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 1551         CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
 1552         CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
 1553 
 1554         /*
 1555          * Bring the SIA out of reset. In some cases, it looks
 1556          * like failing to unreset the SIA soon enough gets it
 1557          * into a state where it will never come out of reset
 1558          * until we reset the whole chip again.
 1559          */
 1560         if (DC_IS_INTEL(sc)) {
 1561                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1562                 CSR_WRITE_4(sc, DC_10BTCTRL, 0);
 1563                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 1564         }
 1565 }
 1566 
 1567 static const struct dc_type *
 1568 dc_devtype(device_t dev)
 1569 {
 1570         const struct dc_type *t;
 1571         u_int32_t devid;
 1572         u_int8_t rev;
 1573 
 1574         t = dc_devs;
 1575         devid = pci_get_devid(dev);
 1576         rev = pci_get_revid(dev);
 1577 
 1578         while (t->dc_name != NULL) {
 1579                 if (devid == t->dc_devid && rev >= t->dc_minrev)
 1580                         return (t);
 1581                 t++;
 1582         }
 1583 
 1584         return (NULL);
 1585 }
 1586 
 1587 /*
 1588  * Probe for a 21143 or clone chip. Check the PCI vendor and device
 1589  * IDs against our list and return a device name if we find a match.
 1590  * We do a little bit of extra work to identify the exact type of
 1591  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
 1592  * but different revision IDs. The same is true for 98715/98715A
 1593  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
 1594  * cases, the exact chip revision affects driver behavior.
 1595  */
 1596 static int
 1597 dc_probe(device_t dev)
 1598 {
 1599         const struct dc_type *t;
 1600 
 1601         t = dc_devtype(dev);
 1602 
 1603         if (t != NULL) {
 1604                 device_set_desc(dev, t->dc_name);
 1605                 return (BUS_PROBE_DEFAULT);
 1606         }
 1607 
 1608         return (ENXIO);
 1609 }
 1610 
 1611 static void
 1612 dc_apply_fixup(struct dc_softc *sc, int media)
 1613 {
 1614         struct dc_mediainfo *m;
 1615         u_int8_t *p;
 1616         int i;
 1617         u_int32_t reg;
 1618 
 1619         m = sc->dc_mi;
 1620 
 1621         while (m != NULL) {
 1622                 if (m->dc_media == media)
 1623                         break;
 1624                 m = m->dc_next;
 1625         }
 1626 
 1627         if (m == NULL)
 1628                 return;
 1629 
 1630         for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
 1631                 reg = (p[0] | (p[1] << 8)) << 16;
 1632                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1633         }
 1634 
 1635         for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
 1636                 reg = (p[0] | (p[1] << 8)) << 16;
 1637                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1638         }
 1639 }
 1640 
 1641 static void
 1642 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
 1643 {
 1644         struct dc_mediainfo *m;
 1645 
 1646         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1647         switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
 1648         case DC_SIA_CODE_10BT:
 1649                 m->dc_media = IFM_10_T;
 1650                 break;
 1651         case DC_SIA_CODE_10BT_FDX:
 1652                 m->dc_media = IFM_10_T | IFM_FDX;
 1653                 break;
 1654         case DC_SIA_CODE_10B2:
 1655                 m->dc_media = IFM_10_2;
 1656                 break;
 1657         case DC_SIA_CODE_10B5:
 1658                 m->dc_media = IFM_10_5;
 1659                 break;
 1660         default:
 1661                 break;
 1662         }
 1663 
 1664         /*
 1665          * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
 1666          * Things apparently already work for cards that do
 1667          * supply Media Specific Data.
 1668          */
 1669         if (l->dc_sia_code & DC_SIA_CODE_EXT) {
 1670                 m->dc_gp_len = 2;
 1671                 m->dc_gp_ptr =
 1672                 (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
 1673         } else {
 1674                 m->dc_gp_len = 2;
 1675                 m->dc_gp_ptr =
 1676                 (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
 1677         }
 1678 
 1679         m->dc_next = sc->dc_mi;
 1680         sc->dc_mi = m;
 1681 
 1682         sc->dc_pmode = DC_PMODE_SIA;
 1683 }
 1684 
 1685 static void
 1686 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
 1687 {
 1688         struct dc_mediainfo *m;
 1689 
 1690         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1691         if (l->dc_sym_code == DC_SYM_CODE_100BT)
 1692                 m->dc_media = IFM_100_TX;
 1693 
 1694         if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
 1695                 m->dc_media = IFM_100_TX | IFM_FDX;
 1696 
 1697         m->dc_gp_len = 2;
 1698         m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
 1699 
 1700         m->dc_next = sc->dc_mi;
 1701         sc->dc_mi = m;
 1702 
 1703         sc->dc_pmode = DC_PMODE_SYM;
 1704 }
 1705 
 1706 static void
 1707 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
 1708 {
 1709         struct dc_mediainfo *m;
 1710         u_int8_t *p;
 1711 
 1712         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1713         /* We abuse IFM_AUTO to represent MII. */
 1714         m->dc_media = IFM_AUTO;
 1715         m->dc_gp_len = l->dc_gpr_len;
 1716 
 1717         p = (u_int8_t *)l;
 1718         p += sizeof(struct dc_eblock_mii);
 1719         m->dc_gp_ptr = p;
 1720         p += 2 * l->dc_gpr_len;
 1721         m->dc_reset_len = *p;
 1722         p++;
 1723         m->dc_reset_ptr = p;
 1724 
 1725         m->dc_next = sc->dc_mi;
 1726         sc->dc_mi = m;
 1727 }
 1728 
 1729 static void
 1730 dc_read_srom(struct dc_softc *sc, int bits)
 1731 {
 1732         int size;
 1733 
 1734         size = 2 << bits;
 1735         sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
 1736         dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
 1737 }
 1738 
 1739 static void
 1740 dc_parse_21143_srom(struct dc_softc *sc)
 1741 {
 1742         struct dc_leaf_hdr *lhdr;
 1743         struct dc_eblock_hdr *hdr;
 1744         int have_mii, i, loff;
 1745         char *ptr;
 1746 
 1747         have_mii = 0;
 1748         loff = sc->dc_srom[27];
 1749         lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
 1750 
 1751         ptr = (char *)lhdr;
 1752         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1753         /*
 1754          * Look if we got a MII media block.
 1755          */
 1756         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1757                 hdr = (struct dc_eblock_hdr *)ptr;
 1758                 if (hdr->dc_type == DC_EBLOCK_MII)
 1759                     have_mii++;
 1760 
 1761                 ptr += (hdr->dc_len & 0x7F);
 1762                 ptr++;
 1763         }
 1764 
 1765         /*
 1766          * Do the same thing again. Only use SIA and SYM media
 1767          * blocks if no MII media block is available.
 1768          */
 1769         ptr = (char *)lhdr;
 1770         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1771         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1772                 hdr = (struct dc_eblock_hdr *)ptr;
 1773                 switch (hdr->dc_type) {
 1774                 case DC_EBLOCK_MII:
 1775                         dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
 1776                         break;
 1777                 case DC_EBLOCK_SIA:
 1778                         if (! have_mii)
 1779                                 dc_decode_leaf_sia(sc,
 1780                                     (struct dc_eblock_sia *)hdr);
 1781                         break;
 1782                 case DC_EBLOCK_SYM:
 1783                         if (! have_mii)
 1784                                 dc_decode_leaf_sym(sc,
 1785                                     (struct dc_eblock_sym *)hdr);
 1786                         break;
 1787                 default:
 1788                         /* Don't care. Yet. */
 1789                         break;
 1790                 }
 1791                 ptr += (hdr->dc_len & 0x7F);
 1792                 ptr++;
 1793         }
 1794 }
 1795 
 1796 static void
 1797 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1798 {
 1799         u_int32_t *paddr;
 1800 
 1801         KASSERT(nseg == 1,
 1802             ("%s: wrong number of segments (%d)", __func__, nseg));
 1803         paddr = arg;
 1804         *paddr = segs->ds_addr;
 1805 }
 1806 
 1807 /*
 1808  * Attach the interface. Allocate softc structures, do ifmedia
 1809  * setup and ethernet/BPF attach.
 1810  */
 1811 static int
 1812 dc_attach(device_t dev)
 1813 {
 1814         int tmp = 0;
 1815         u_char eaddr[ETHER_ADDR_LEN];
 1816         u_int32_t command;
 1817         struct dc_softc *sc;
 1818         struct ifnet *ifp;
 1819         u_int32_t reg, revision;
 1820         int error = 0, rid, mac_offset;
 1821         int i;
 1822         u_int8_t *mac;
 1823 
 1824         sc = device_get_softc(dev);
 1825         sc->dc_dev = dev;
 1826 
 1827         mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1828             MTX_DEF);
 1829 
 1830         /*
 1831          * Map control/status registers.
 1832          */
 1833         pci_enable_busmaster(dev);
 1834 
 1835         rid = DC_RID;
 1836         sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
 1837 
 1838         if (sc->dc_res == NULL) {
 1839                 device_printf(dev, "couldn't map ports/memory\n");
 1840                 error = ENXIO;
 1841                 goto fail;
 1842         }
 1843 
 1844         sc->dc_btag = rman_get_bustag(sc->dc_res);
 1845         sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
 1846 
 1847         /* Allocate interrupt. */
 1848         rid = 0;
 1849         sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1850             RF_SHAREABLE | RF_ACTIVE);
 1851 
 1852         if (sc->dc_irq == NULL) {
 1853                 device_printf(dev, "couldn't map interrupt\n");
 1854                 error = ENXIO;
 1855                 goto fail;
 1856         }
 1857 
 1858         /* Need this info to decide on a chip type. */
 1859         sc->dc_info = dc_devtype(dev);
 1860         revision = pci_get_revid(dev);
 1861 
 1862         /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
 1863         if (sc->dc_info->dc_devid !=
 1864             DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
 1865             sc->dc_info->dc_devid !=
 1866             DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
 1867                 dc_eeprom_width(sc);
 1868 
 1869         switch (sc->dc_info->dc_devid) {
 1870         case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
 1871                 sc->dc_type = DC_TYPE_21143;
 1872                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1873                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1874                 /* Save EEPROM contents so we can parse them later. */
 1875                 dc_read_srom(sc, sc->dc_romwidth);
 1876                 break;
 1877         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
 1878         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
 1879         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
 1880                 sc->dc_type = DC_TYPE_DM9102;
 1881                 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
 1882                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
 1883                 sc->dc_flags |= DC_TX_ALIGN;
 1884                 sc->dc_pmode = DC_PMODE_MII;
 1885 
 1886                 /* Increase the latency timer value. */
 1887                 pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
 1888                 break;
 1889         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
 1890                 sc->dc_type = DC_TYPE_AL981;
 1891                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1892                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1893                 sc->dc_pmode = DC_PMODE_MII;
 1894                 dc_read_srom(sc, sc->dc_romwidth);
 1895                 break;
 1896         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
 1897         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
 1898         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
 1899         case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
 1900         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
 1901         case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
 1902         case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
 1903         case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
 1904         case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
 1905         case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
 1906         case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
 1907         case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
 1908         case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
 1909         case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
 1910         case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
 1911                 sc->dc_type = DC_TYPE_AN985;
 1912                 sc->dc_flags |= DC_64BIT_HASH;
 1913                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 1914                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 1915                 sc->dc_pmode = DC_PMODE_MII;
 1916                 /* Don't read SROM for - auto-loaded on reset */
 1917                 break;
 1918         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
 1919         case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
 1920                 if (revision < DC_REVISION_98713A) {
 1921                         sc->dc_type = DC_TYPE_98713;
 1922                 }
 1923                 if (revision >= DC_REVISION_98713A) {
 1924                         sc->dc_type = DC_TYPE_98713A;
 1925                         sc->dc_flags |= DC_21143_NWAY;
 1926                 }
 1927                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1928                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1929                 break;
 1930         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
 1931         case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
 1932                 /*
 1933                  * Macronix MX98715AEC-C/D/E parts have only a
 1934                  * 128-bit hash table. We need to deal with these
 1935                  * in the same manner as the PNIC II so that we
 1936                  * get the right number of bits out of the
 1937                  * CRC routine.
 1938                  */
 1939                 if (revision >= DC_REVISION_98715AEC_C &&
 1940                     revision < DC_REVISION_98725)
 1941                         sc->dc_flags |= DC_128BIT_HASH;
 1942                 sc->dc_type = DC_TYPE_987x5;
 1943                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1944                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1945                 break;
 1946         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
 1947                 sc->dc_type = DC_TYPE_987x5;
 1948                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 1949                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1950                 break;
 1951         case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
 1952                 sc->dc_type = DC_TYPE_PNICII;
 1953                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
 1954                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 1955                 break;
 1956         case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
 1957                 sc->dc_type = DC_TYPE_PNIC;
 1958                 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
 1959                 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
 1960                 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
 1961                 if (revision < DC_REVISION_82C169)
 1962                         sc->dc_pmode = DC_PMODE_SYM;
 1963                 break;
 1964         case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
 1965                 sc->dc_type = DC_TYPE_ASIX;
 1966                 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
 1967                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1968                 sc->dc_pmode = DC_PMODE_MII;
 1969                 break;
 1970         case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
 1971                 sc->dc_type = DC_TYPE_XIRCOM;
 1972                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 1973                                 DC_TX_ALIGN;
 1974                 /*
 1975                  * We don't actually need to coalesce, but we're doing
 1976                  * it to obtain a double word aligned buffer.
 1977                  * The DC_TX_COALESCE flag is required.
 1978                  */
 1979                 sc->dc_pmode = DC_PMODE_MII;
 1980                 break;
 1981         case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
 1982                 sc->dc_type = DC_TYPE_CONEXANT;
 1983                 sc->dc_flags |= DC_TX_INTR_ALWAYS;
 1984                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 1985                 sc->dc_pmode = DC_PMODE_MII;
 1986                 dc_read_srom(sc, sc->dc_romwidth);
 1987                 break;
 1988         default:
 1989                 device_printf(dev, "unknown device: %x\n",
 1990                     sc->dc_info->dc_devid);
 1991                 break;
 1992         }
 1993 
 1994         /* Save the cache line size. */
 1995         if (DC_IS_DAVICOM(sc))
 1996                 sc->dc_cachesize = 0;
 1997         else
 1998                 sc->dc_cachesize = pci_get_cachelnsz(dev);
 1999 
 2000         /* Reset the adapter. */
 2001         dc_reset(sc);
 2002 
 2003         /* Take 21143 out of snooze mode */
 2004         if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
 2005                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2006                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2007                 pci_write_config(dev, DC_PCI_CFDD, command, 4);
 2008         }
 2009 
 2010         /*
 2011          * Try to learn something about the supported media.
 2012          * We know that ASIX and ADMtek and Davicom devices
 2013          * will *always* be using MII media, so that's a no-brainer.
 2014          * The tricky ones are the Macronix/PNIC II and the
 2015          * Intel 21143.
 2016          */
 2017         if (DC_IS_INTEL(sc))
 2018                 dc_parse_21143_srom(sc);
 2019         else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 2020                 if (sc->dc_type == DC_TYPE_98713)
 2021                         sc->dc_pmode = DC_PMODE_MII;
 2022                 else
 2023                         sc->dc_pmode = DC_PMODE_SYM;
 2024         } else if (!sc->dc_pmode)
 2025                 sc->dc_pmode = DC_PMODE_MII;
 2026 
 2027         /*
 2028          * Get station address from the EEPROM.
 2029          */
 2030         switch(sc->dc_type) {
 2031         case DC_TYPE_98713:
 2032         case DC_TYPE_98713A:
 2033         case DC_TYPE_987x5:
 2034         case DC_TYPE_PNICII:
 2035                 dc_read_eeprom(sc, (caddr_t)&mac_offset,
 2036                     (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
 2037                 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
 2038                 break;
 2039         case DC_TYPE_PNIC:
 2040                 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
 2041                 break;
 2042         case DC_TYPE_DM9102:
 2043                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2044 #ifdef __sparc64__
 2045                 /*
 2046                  * If this is an onboard dc(4) the station address read from
 2047                  * the EEPROM is all zero and we have to get it from the fcode.
 2048                  */
 2049                 for (i = 0; i < ETHER_ADDR_LEN; i++)
 2050                         if (eaddr[i] != 0x00)
 2051                                 break;
 2052                 if (i >= ETHER_ADDR_LEN)
 2053                         OF_getetheraddr(dev, eaddr);
 2054 #endif
 2055                 break;
 2056         case DC_TYPE_21143:
 2057         case DC_TYPE_ASIX:
 2058                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2059                 break;
 2060         case DC_TYPE_AL981:
 2061         case DC_TYPE_AN985:
 2062                 reg = CSR_READ_4(sc, DC_AL_PAR0);
 2063                 mac = (uint8_t *)&eaddr[0];
 2064                 mac[0] = (reg >> 0) & 0xff;
 2065                 mac[1] = (reg >> 8) & 0xff;
 2066                 mac[2] = (reg >> 16) & 0xff;
 2067                 mac[3] = (reg >> 24) & 0xff;
 2068                 reg = CSR_READ_4(sc, DC_AL_PAR1);
 2069                 mac[4] = (reg >> 0) & 0xff;
 2070                 mac[5] = (reg >> 8) & 0xff;
 2071                 break;
 2072         case DC_TYPE_CONEXANT:
 2073                 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
 2074                     ETHER_ADDR_LEN);
 2075                 break;
 2076         case DC_TYPE_XIRCOM:
 2077                 /* The MAC comes from the CIS. */
 2078                 mac = pci_get_ether(dev);
 2079                 if (!mac) {
 2080                         device_printf(dev, "No station address in CIS!\n");
 2081                         error = ENXIO;
 2082                         goto fail;
 2083                 }
 2084                 bcopy(mac, eaddr, ETHER_ADDR_LEN);
 2085                 break;
 2086         default:
 2087                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2088                 break;
 2089         }
 2090 
 2091         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 2092         error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
 2093             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
 2094             sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
 2095             0, NULL, NULL, &sc->dc_ltag);
 2096         if (error) {
 2097                 device_printf(dev, "failed to allocate busdma tag\n");
 2098                 error = ENXIO;
 2099                 goto fail;
 2100         }
 2101         error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
 2102             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
 2103         if (error) {
 2104                 device_printf(dev, "failed to allocate DMA safe memory\n");
 2105                 error = ENXIO;
 2106                 goto fail;
 2107         }
 2108         error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
 2109             sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
 2110             BUS_DMA_NOWAIT);
 2111         if (error) {
 2112                 device_printf(dev, "cannot get address of the descriptors\n");
 2113                 error = ENXIO;
 2114                 goto fail;
 2115         }
 2116 
 2117         /*
 2118          * Allocate a busdma tag and DMA safe memory for the multicast
 2119          * setup frame.
 2120          */
 2121         error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
 2122             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
 2123             DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
 2124             0, NULL, NULL, &sc->dc_stag);
 2125         if (error) {
 2126                 device_printf(dev, "failed to allocate busdma tag\n");
 2127                 error = ENXIO;
 2128                 goto fail;
 2129         }
 2130         error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
 2131             BUS_DMA_NOWAIT, &sc->dc_smap);
 2132         if (error) {
 2133                 device_printf(dev, "failed to allocate DMA safe memory\n");
 2134                 error = ENXIO;
 2135                 goto fail;
 2136         }
 2137         error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
 2138             DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
 2139         if (error) {
 2140                 device_printf(dev, "cannot get address of the descriptors\n");
 2141                 error = ENXIO;
 2142                 goto fail;
 2143         }
 2144 
 2145         /* Allocate a busdma tag for mbufs. */
 2146         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
 2147             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
 2148             MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
 2149             0, NULL, NULL, &sc->dc_mtag);
 2150         if (error) {
 2151                 device_printf(dev, "failed to allocate busdma tag\n");
 2152                 error = ENXIO;
 2153                 goto fail;
 2154         }
 2155 
 2156         /* Create the TX/RX busdma maps. */
 2157         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2158                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2159                     &sc->dc_cdata.dc_tx_map[i]);
 2160                 if (error) {
 2161                         device_printf(dev, "failed to init TX ring\n");
 2162                         error = ENXIO;
 2163                         goto fail;
 2164                 }
 2165         }
 2166         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2167                 error = bus_dmamap_create(sc->dc_mtag, 0,
 2168                     &sc->dc_cdata.dc_rx_map[i]);
 2169                 if (error) {
 2170                         device_printf(dev, "failed to init RX ring\n");
 2171                         error = ENXIO;
 2172                         goto fail;
 2173                 }
 2174         }
 2175         error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
 2176         if (error) {
 2177                 device_printf(dev, "failed to init RX ring\n");
 2178                 error = ENXIO;
 2179                 goto fail;
 2180         }
 2181 
 2182         ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
 2183         if (ifp == NULL) {
 2184                 device_printf(dev, "can not if_alloc()\n");
 2185                 error = ENOSPC;
 2186                 goto fail;
 2187         }
 2188         ifp->if_softc = sc;
 2189         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2190         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2191         ifp->if_ioctl = dc_ioctl;
 2192         ifp->if_start = dc_start;
 2193         ifp->if_init = dc_init;
 2194         IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
 2195         ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
 2196         IFQ_SET_READY(&ifp->if_snd);
 2197 
 2198         /*
 2199          * Do MII setup. If this is a 21143, check for a PHY on the
 2200          * MII bus after applying any necessary fixups to twiddle the
 2201          * GPIO bits. If we don't end up finding a PHY, restore the
 2202          * old selection (SIA only or SIA/SYM) and attach the dcphy
 2203          * driver instead.
 2204          */
 2205         if (DC_IS_INTEL(sc)) {
 2206                 dc_apply_fixup(sc, IFM_AUTO);
 2207                 tmp = sc->dc_pmode;
 2208                 sc->dc_pmode = DC_PMODE_MII;
 2209         }
 2210 
 2211         /*
 2212          * Setup General Purpose port mode and data so the tulip can talk
 2213          * to the MII.  This needs to be done before mii_phy_probe so that
 2214          * we can actually see them.
 2215          */
 2216         if (DC_IS_XIRCOM(sc)) {
 2217                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 2218                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2219                 DELAY(10);
 2220                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 2221                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2222                 DELAY(10);
 2223         }
 2224 
 2225         error = mii_phy_probe(dev, &sc->dc_miibus,
 2226             dc_ifmedia_upd, dc_ifmedia_sts);
 2227 
 2228         if (error && DC_IS_INTEL(sc)) {
 2229                 sc->dc_pmode = tmp;
 2230                 if (sc->dc_pmode != DC_PMODE_SIA)
 2231                         sc->dc_pmode = DC_PMODE_SYM;
 2232                 sc->dc_flags |= DC_21143_NWAY;
 2233                 mii_phy_probe(dev, &sc->dc_miibus,
 2234                     dc_ifmedia_upd, dc_ifmedia_sts);
 2235                 /*
 2236                  * For non-MII cards, we need to have the 21143
 2237                  * drive the LEDs. Except there are some systems
 2238                  * like the NEC VersaPro NoteBook PC which have no
 2239                  * LEDs, and twiddling these bits has adverse effects
 2240                  * on them. (I.e. you suddenly can't get a link.)
 2241                  */
 2242                 if (!(pci_get_subvendor(dev) == 0x1033 &&
 2243                     pci_get_subdevice(dev) == 0x8028))
 2244                         sc->dc_flags |= DC_TULIP_LEDS;
 2245                 error = 0;
 2246         }
 2247 
 2248         if (error) {
 2249                 device_printf(dev, "MII without any PHY!\n");
 2250                 goto fail;
 2251         }
 2252 
 2253         if (DC_IS_ADMTEK(sc)) {
 2254                 /*
 2255                  * Set automatic TX underrun recovery for the ADMtek chips
 2256                  */
 2257                 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
 2258         }
 2259 
 2260         /*
 2261          * Tell the upper layer(s) we support long frames.
 2262          */
 2263         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 2264         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 2265         ifp->if_capenable = ifp->if_capabilities;
 2266 #ifdef DEVICE_POLLING
 2267         ifp->if_capabilities |= IFCAP_POLLING;
 2268 #endif
 2269 
 2270         callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
 2271         callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
 2272 
 2273 #ifdef SRM_MEDIA
 2274         sc->dc_srm_media = 0;
 2275 
 2276         /* Remember the SRM console media setting */
 2277         if (DC_IS_INTEL(sc)) {
 2278                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2279                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2280                 switch ((command >> 8) & 0xff) {
 2281                 case 3:
 2282                         sc->dc_srm_media = IFM_10_T;
 2283                         break;
 2284                 case 4:
 2285                         sc->dc_srm_media = IFM_10_T | IFM_FDX;
 2286                         break;
 2287                 case 5:
 2288                         sc->dc_srm_media = IFM_100_TX;
 2289                         break;
 2290                 case 6:
 2291                         sc->dc_srm_media = IFM_100_TX | IFM_FDX;
 2292                         break;
 2293                 }
 2294                 if (sc->dc_srm_media)
 2295                         sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
 2296         }
 2297 #endif
 2298 
 2299         /*
 2300          * Call MI attach routine.
 2301          */
 2302         ether_ifattach(ifp, eaddr);
 2303 
 2304         /* Hook interrupt last to avoid having to lock softc */
 2305         error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2306             dc_intr, sc, &sc->dc_intrhand);
 2307 
 2308         if (error) {
 2309                 device_printf(dev, "couldn't set up irq\n");
 2310                 ether_ifdetach(ifp);
 2311                 goto fail;
 2312         }
 2313 
 2314 fail:
 2315         if (error)
 2316                 dc_detach(dev);
 2317         return (error);
 2318 }
 2319 
 2320 /*
 2321  * Shutdown hardware and free up resources. This can be called any
 2322  * time after the mutex has been initialized. It is called in both
 2323  * the error case in attach and the normal detach case so it needs
 2324  * to be careful about only freeing resources that have actually been
 2325  * allocated.
 2326  */
 2327 static int
 2328 dc_detach(device_t dev)
 2329 {
 2330         struct dc_softc *sc;
 2331         struct ifnet *ifp;
 2332         struct dc_mediainfo *m;
 2333         int i;
 2334 
 2335         sc = device_get_softc(dev);
 2336         KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
 2337 
 2338         ifp = sc->dc_ifp;
 2339 
 2340 #ifdef DEVICE_POLLING
 2341         if (ifp->if_capenable & IFCAP_POLLING)
 2342                 ether_poll_deregister(ifp);
 2343 #endif
 2344 
 2345         /* These should only be active if attach succeeded */
 2346         if (device_is_attached(dev)) {
 2347                 DC_LOCK(sc);
 2348                 dc_stop(sc);
 2349                 DC_UNLOCK(sc);
 2350                 callout_drain(&sc->dc_stat_ch);
 2351                 callout_drain(&sc->dc_wdog_ch);
 2352                 ether_ifdetach(ifp);
 2353         }
 2354         if (sc->dc_miibus)
 2355                 device_delete_child(dev, sc->dc_miibus);
 2356         bus_generic_detach(dev);
 2357 
 2358         if (sc->dc_intrhand)
 2359                 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
 2360         if (sc->dc_irq)
 2361                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
 2362         if (sc->dc_res)
 2363                 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
 2364 
 2365         if (ifp)
 2366                 if_free(ifp);
 2367 
 2368         if (sc->dc_cdata.dc_sbuf != NULL)
 2369                 bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
 2370         if (sc->dc_ldata != NULL)
 2371                 bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
 2372         if (sc->dc_mtag) {
 2373                 for (i = 0; i < DC_TX_LIST_CNT; i++)
 2374                         if (sc->dc_cdata.dc_tx_map[i] != NULL)
 2375                                 bus_dmamap_destroy(sc->dc_mtag,
 2376                                     sc->dc_cdata.dc_tx_map[i]);
 2377                 for (i = 0; i < DC_RX_LIST_CNT; i++)
 2378                         if (sc->dc_cdata.dc_rx_map[i] != NULL)
 2379                                 bus_dmamap_destroy(sc->dc_mtag,
 2380                                     sc->dc_cdata.dc_rx_map[i]);
 2381                 bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
 2382         }
 2383         if (sc->dc_stag)
 2384                 bus_dma_tag_destroy(sc->dc_stag);
 2385         if (sc->dc_mtag)
 2386                 bus_dma_tag_destroy(sc->dc_mtag);
 2387         if (sc->dc_ltag)
 2388                 bus_dma_tag_destroy(sc->dc_ltag);
 2389 
 2390         free(sc->dc_pnic_rx_buf, M_DEVBUF);
 2391 
 2392         while (sc->dc_mi != NULL) {
 2393                 m = sc->dc_mi->dc_next;
 2394                 free(sc->dc_mi, M_DEVBUF);
 2395                 sc->dc_mi = m;
 2396         }
 2397         free(sc->dc_srom, M_DEVBUF);
 2398 
 2399         mtx_destroy(&sc->dc_mtx);
 2400 
 2401         return (0);
 2402 }
 2403 
 2404 /*
 2405  * Initialize the transmit descriptors.
 2406  */
 2407 static int
 2408 dc_list_tx_init(struct dc_softc *sc)
 2409 {
 2410         struct dc_chain_data *cd;
 2411         struct dc_list_data *ld;
 2412         int i, nexti;
 2413 
 2414         cd = &sc->dc_cdata;
 2415         ld = sc->dc_ldata;
 2416         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2417                 if (i == DC_TX_LIST_CNT - 1)
 2418                         nexti = 0;
 2419                 else
 2420                         nexti = i + 1;
 2421                 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
 2422                 cd->dc_tx_chain[i] = NULL;
 2423                 ld->dc_tx_list[i].dc_data = 0;
 2424                 ld->dc_tx_list[i].dc_ctl = 0;
 2425         }
 2426 
 2427         cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
 2428         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2429             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2430         return (0);
 2431 }
 2432 
 2433 
 2434 /*
 2435  * Initialize the RX descriptors and allocate mbufs for them. Note that
 2436  * we arrange the descriptors in a closed ring, so that the last descriptor
 2437  * points back to the first.
 2438  */
 2439 static int
 2440 dc_list_rx_init(struct dc_softc *sc)
 2441 {
 2442         struct dc_chain_data *cd;
 2443         struct dc_list_data *ld;
 2444         int i, nexti;
 2445 
 2446         cd = &sc->dc_cdata;
 2447         ld = sc->dc_ldata;
 2448 
 2449         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2450                 if (dc_newbuf(sc, i, 1) != 0)
 2451                         return (ENOBUFS);
 2452                 if (i == DC_RX_LIST_CNT - 1)
 2453                         nexti = 0;
 2454                 else
 2455                         nexti = i + 1;
 2456                 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
 2457         }
 2458 
 2459         cd->dc_rx_prod = 0;
 2460         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2461             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2462         return (0);
 2463 }
 2464 
 2465 /*
 2466  * Initialize an RX descriptor and attach an MBUF cluster.
 2467  */
 2468 static int
 2469 dc_newbuf(struct dc_softc *sc, int i, int alloc)
 2470 {
 2471         struct mbuf *m_new;
 2472         bus_dmamap_t tmp;
 2473         bus_dma_segment_t segs[1];
 2474         int error, nseg;
 2475 
 2476         if (alloc) {
 2477                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2478                 if (m_new == NULL)
 2479                         return (ENOBUFS);
 2480         } else {
 2481                 m_new = sc->dc_cdata.dc_rx_chain[i];
 2482                 m_new->m_data = m_new->m_ext.ext_buf;
 2483         }
 2484         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 2485         m_adj(m_new, sizeof(u_int64_t));
 2486 
 2487         /*
 2488          * If this is a PNIC chip, zero the buffer. This is part
 2489          * of the workaround for the receive bug in the 82c168 and
 2490          * 82c169 chips.
 2491          */
 2492         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
 2493                 bzero(mtod(m_new, char *), m_new->m_len);
 2494 
 2495         /* No need to remap the mbuf if we're reusing it. */
 2496         if (alloc) {
 2497                 error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
 2498                     m_new, segs, &nseg, 0);
 2499                 if (error) {
 2500                         m_freem(m_new);
 2501                         return (error);
 2502                 }
 2503                 KASSERT(nseg == 1,
 2504                     ("%s: wrong number of segments (%d)", __func__, nseg));
 2505                 sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
 2506                 bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
 2507                 tmp = sc->dc_cdata.dc_rx_map[i];
 2508                 sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
 2509                 sc->dc_sparemap = tmp;
 2510                 sc->dc_cdata.dc_rx_chain[i] = m_new;
 2511         }
 2512 
 2513         sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2514         sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2515         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2516             BUS_DMASYNC_PREREAD);
 2517         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 2518             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2519         return (0);
 2520 }
 2521 
 2522 /*
 2523  * Grrrrr.
 2524  * The PNIC chip has a terrible bug in it that manifests itself during
 2525  * periods of heavy activity. The exact mode of failure if difficult to
 2526  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
 2527  * will happen on slow machines. The bug is that sometimes instead of
 2528  * uploading one complete frame during reception, it uploads what looks
 2529  * like the entire contents of its FIFO memory. The frame we want is at
 2530  * the end of the whole mess, but we never know exactly how much data has
 2531  * been uploaded, so salvaging the frame is hard.
 2532  *
 2533  * There is only one way to do it reliably, and it's disgusting.
 2534  * Here's what we know:
 2535  *
 2536  * - We know there will always be somewhere between one and three extra
 2537  *   descriptors uploaded.
 2538  *
 2539  * - We know the desired received frame will always be at the end of the
 2540  *   total data upload.
 2541  *
 2542  * - We know the size of the desired received frame because it will be
 2543  *   provided in the length field of the status word in the last descriptor.
 2544  *
 2545  * Here's what we do:
 2546  *
 2547  * - When we allocate buffers for the receive ring, we bzero() them.
 2548  *   This means that we know that the buffer contents should be all
 2549  *   zeros, except for data uploaded by the chip.
 2550  *
 2551  * - We also force the PNIC chip to upload frames that include the
 2552  *   ethernet CRC at the end.
 2553  *
 2554  * - We gather all of the bogus frame data into a single buffer.
 2555  *
 2556  * - We then position a pointer at the end of this buffer and scan
 2557  *   backwards until we encounter the first non-zero byte of data.
 2558  *   This is the end of the received frame. We know we will encounter
 2559  *   some data at the end of the frame because the CRC will always be
 2560  *   there, so even if the sender transmits a packet of all zeros,
 2561  *   we won't be fooled.
 2562  *
 2563  * - We know the size of the actual received frame, so we subtract
 2564  *   that value from the current pointer location. This brings us
 2565  *   to the start of the actual received packet.
 2566  *
 2567  * - We copy this into an mbuf and pass it on, along with the actual
 2568  *   frame length.
 2569  *
 2570  * The performance hit is tremendous, but it beats dropping frames all
 2571  * the time.
 2572  */
 2573 
 2574 #define DC_WHOLEFRAME   (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
 2575 static void
 2576 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
 2577 {
 2578         struct dc_desc *cur_rx;
 2579         struct dc_desc *c = NULL;
 2580         struct mbuf *m = NULL;
 2581         unsigned char *ptr;
 2582         int i, total_len;
 2583         u_int32_t rxstat = 0;
 2584 
 2585         i = sc->dc_pnic_rx_bug_save;
 2586         cur_rx = &sc->dc_ldata->dc_rx_list[idx];
 2587         ptr = sc->dc_pnic_rx_buf;
 2588         bzero(ptr, DC_RXLEN * 5);
 2589 
 2590         /* Copy all the bytes from the bogus buffers. */
 2591         while (1) {
 2592                 c = &sc->dc_ldata->dc_rx_list[i];
 2593                 rxstat = le32toh(c->dc_status);
 2594                 m = sc->dc_cdata.dc_rx_chain[i];
 2595                 bcopy(mtod(m, char *), ptr, DC_RXLEN);
 2596                 ptr += DC_RXLEN;
 2597                 /* If this is the last buffer, break out. */
 2598                 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
 2599                         break;
 2600                 dc_newbuf(sc, i, 0);
 2601                 DC_INC(i, DC_RX_LIST_CNT);
 2602         }
 2603 
 2604         /* Find the length of the actual receive frame. */
 2605         total_len = DC_RXBYTES(rxstat);
 2606 
 2607         /* Scan backwards until we hit a non-zero byte. */
 2608         while (*ptr == 0x00)
 2609                 ptr--;
 2610 
 2611         /* Round off. */
 2612         if ((uintptr_t)(ptr) & 0x3)
 2613                 ptr -= 1;
 2614 
 2615         /* Now find the start of the frame. */
 2616         ptr -= total_len;
 2617         if (ptr < sc->dc_pnic_rx_buf)
 2618                 ptr = sc->dc_pnic_rx_buf;
 2619 
 2620         /*
 2621          * Now copy the salvaged frame to the last mbuf and fake up
 2622          * the status word to make it look like a successful
 2623          * frame reception.
 2624          */
 2625         dc_newbuf(sc, i, 0);
 2626         bcopy(ptr, mtod(m, char *), total_len);
 2627         cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
 2628 }
 2629 
 2630 /*
 2631  * This routine searches the RX ring for dirty descriptors in the
 2632  * event that the rxeof routine falls out of sync with the chip's
 2633  * current descriptor pointer. This may happen sometimes as a result
 2634  * of a "no RX buffer available" condition that happens when the chip
 2635  * consumes all of the RX buffers before the driver has a chance to
 2636  * process the RX ring. This routine may need to be called more than
 2637  * once to bring the driver back in sync with the chip, however we
 2638  * should still be getting RX DONE interrupts to drive the search
 2639  * for new packets in the RX ring, so we should catch up eventually.
 2640  */
 2641 static int
 2642 dc_rx_resync(struct dc_softc *sc)
 2643 {
 2644         struct dc_desc *cur_rx;
 2645         int i, pos;
 2646 
 2647         pos = sc->dc_cdata.dc_rx_prod;
 2648 
 2649         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2650                 cur_rx = &sc->dc_ldata->dc_rx_list[pos];
 2651                 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
 2652                         break;
 2653                 DC_INC(pos, DC_RX_LIST_CNT);
 2654         }
 2655 
 2656         /* If the ring really is empty, then just return. */
 2657         if (i == DC_RX_LIST_CNT)
 2658                 return (0);
 2659 
 2660         /* We've fallen behing the chip: catch it. */
 2661         sc->dc_cdata.dc_rx_prod = pos;
 2662 
 2663         return (EAGAIN);
 2664 }
 2665 
 2666 /*
 2667  * A frame has been uploaded: pass the resulting mbuf chain up to
 2668  * the higher level protocols.
 2669  */
 2670 static void
 2671 dc_rxeof(struct dc_softc *sc)
 2672 {
 2673         struct mbuf *m, *m0;
 2674         struct ifnet *ifp;
 2675         struct dc_desc *cur_rx;
 2676         int i, total_len = 0;
 2677         u_int32_t rxstat;
 2678 
 2679         DC_LOCK_ASSERT(sc);
 2680 
 2681         ifp = sc->dc_ifp;
 2682         i = sc->dc_cdata.dc_rx_prod;
 2683 
 2684         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2685         while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
 2686             DC_RXSTAT_OWN)) {
 2687 #ifdef DEVICE_POLLING
 2688                 if (ifp->if_capenable & IFCAP_POLLING) {
 2689                         if (sc->rxcycles <= 0)
 2690                                 break;
 2691                         sc->rxcycles--;
 2692                 }
 2693 #endif
 2694                 cur_rx = &sc->dc_ldata->dc_rx_list[i];
 2695                 rxstat = le32toh(cur_rx->dc_status);
 2696                 m = sc->dc_cdata.dc_rx_chain[i];
 2697                 bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
 2698                     BUS_DMASYNC_POSTREAD);
 2699                 total_len = DC_RXBYTES(rxstat);
 2700 
 2701                 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2702                         if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
 2703                                 if (rxstat & DC_RXSTAT_FIRSTFRAG)
 2704                                         sc->dc_pnic_rx_bug_save = i;
 2705                                 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
 2706                                         DC_INC(i, DC_RX_LIST_CNT);
 2707                                         continue;
 2708                                 }
 2709                                 dc_pnic_rx_bug_war(sc, i);
 2710                                 rxstat = le32toh(cur_rx->dc_status);
 2711                                 total_len = DC_RXBYTES(rxstat);
 2712                         }
 2713                 }
 2714 
 2715                 /*
 2716                  * If an error occurs, update stats, clear the
 2717                  * status word and leave the mbuf cluster in place:
 2718                  * it should simply get re-used next time this descriptor
 2719                  * comes up in the ring.  However, don't report long
 2720                  * frames as errors since they could be vlans.
 2721                  */
 2722                 if ((rxstat & DC_RXSTAT_RXERR)) {
 2723                         if (!(rxstat & DC_RXSTAT_GIANT) ||
 2724                             (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
 2725                                        DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
 2726                                        DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
 2727                                 ifp->if_ierrors++;
 2728                                 if (rxstat & DC_RXSTAT_COLLSEEN)
 2729                                         ifp->if_collisions++;
 2730                                 dc_newbuf(sc, i, 0);
 2731                                 if (rxstat & DC_RXSTAT_CRCERR) {
 2732                                         DC_INC(i, DC_RX_LIST_CNT);
 2733                                         continue;
 2734                                 } else {
 2735                                         dc_init_locked(sc);
 2736                                         return;
 2737                                 }
 2738                         }
 2739                 }
 2740 
 2741                 /* No errors; receive the packet. */
 2742                 total_len -= ETHER_CRC_LEN;
 2743 #ifdef __NO_STRICT_ALIGNMENT
 2744                 /*
 2745                  * On architectures without alignment problems we try to
 2746                  * allocate a new buffer for the receive ring, and pass up
 2747                  * the one where the packet is already, saving the expensive
 2748                  * copy done in m_devget().
 2749                  * If we are on an architecture with alignment problems, or
 2750                  * if the allocation fails, then use m_devget and leave the
 2751                  * existing buffer in the receive ring.
 2752                  */
 2753                 if (dc_newbuf(sc, i, 1) == 0) {
 2754                         m->m_pkthdr.rcvif = ifp;
 2755                         m->m_pkthdr.len = m->m_len = total_len;
 2756                         DC_INC(i, DC_RX_LIST_CNT);
 2757                 } else
 2758 #endif
 2759                 {
 2760                         m0 = m_devget(mtod(m, char *), total_len,
 2761                                 ETHER_ALIGN, ifp, NULL);
 2762                         dc_newbuf(sc, i, 0);
 2763                         DC_INC(i, DC_RX_LIST_CNT);
 2764                         if (m0 == NULL) {
 2765                                 ifp->if_ierrors++;
 2766                                 continue;
 2767                         }
 2768                         m = m0;
 2769                 }
 2770 
 2771                 ifp->if_ipackets++;
 2772                 DC_UNLOCK(sc);
 2773                 (*ifp->if_input)(ifp, m);
 2774                 DC_LOCK(sc);
 2775         }
 2776 
 2777         sc->dc_cdata.dc_rx_prod = i;
 2778 }
 2779 
 2780 /*
 2781  * A frame was downloaded to the chip. It's safe for us to clean up
 2782  * the list buffers.
 2783  */
 2784 static void
 2785 dc_txeof(struct dc_softc *sc)
 2786 {
 2787         struct dc_desc *cur_tx = NULL;
 2788         struct ifnet *ifp;
 2789         int idx;
 2790         u_int32_t ctl, txstat;
 2791 
 2792         ifp = sc->dc_ifp;
 2793 
 2794         /*
 2795          * Go through our tx list and free mbufs for those
 2796          * frames that have been transmitted.
 2797          */
 2798         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
 2799         idx = sc->dc_cdata.dc_tx_cons;
 2800         while (idx != sc->dc_cdata.dc_tx_prod) {
 2801 
 2802                 cur_tx = &sc->dc_ldata->dc_tx_list[idx];
 2803                 txstat = le32toh(cur_tx->dc_status);
 2804                 ctl = le32toh(cur_tx->dc_ctl);
 2805 
 2806                 if (txstat & DC_TXSTAT_OWN)
 2807                         break;
 2808 
 2809                 if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
 2810                         if (ctl & DC_TXCTL_SETUP) {
 2811                                 /*
 2812                                  * Yes, the PNIC is so brain damaged
 2813                                  * that it will sometimes generate a TX
 2814                                  * underrun error while DMAing the RX
 2815                                  * filter setup frame. If we detect this,
 2816                                  * we have to send the setup frame again,
 2817                                  * or else the filter won't be programmed
 2818                                  * correctly.
 2819                                  */
 2820                                 if (DC_IS_PNIC(sc)) {
 2821                                         if (txstat & DC_TXSTAT_ERRSUM)
 2822                                                 dc_setfilt(sc);
 2823                                 }
 2824                                 sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2825                         }
 2826                         sc->dc_cdata.dc_tx_cnt--;
 2827                         DC_INC(idx, DC_TX_LIST_CNT);
 2828                         continue;
 2829                 }
 2830 
 2831                 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
 2832                         /*
 2833                          * XXX: Why does my Xircom taunt me so?
 2834                          * For some reason it likes setting the CARRLOST flag
 2835                          * even when the carrier is there. wtf?!?
 2836                          * Who knows, but Conexant chips have the
 2837                          * same problem. Maybe they took lessons
 2838                          * from Xircom.
 2839                          */
 2840                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2841                             sc->dc_pmode == DC_PMODE_MII &&
 2842                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2843                             DC_TXSTAT_NOCARRIER)))
 2844                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2845                 } else {
 2846                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 2847                             sc->dc_pmode == DC_PMODE_MII &&
 2848                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 2849                             DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
 2850                                 txstat &= ~DC_TXSTAT_ERRSUM;
 2851                 }
 2852 
 2853                 if (txstat & DC_TXSTAT_ERRSUM) {
 2854                         ifp->if_oerrors++;
 2855                         if (txstat & DC_TXSTAT_EXCESSCOLL)
 2856                                 ifp->if_collisions++;
 2857                         if (txstat & DC_TXSTAT_LATECOLL)
 2858                                 ifp->if_collisions++;
 2859                         if (!(txstat & DC_TXSTAT_UNDERRUN)) {
 2860                                 dc_init_locked(sc);
 2861                                 return;
 2862                         }
 2863                 }
 2864 
 2865                 ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
 2866 
 2867                 ifp->if_opackets++;
 2868                 if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
 2869                         bus_dmamap_sync(sc->dc_mtag,
 2870                             sc->dc_cdata.dc_tx_map[idx],
 2871                             BUS_DMASYNC_POSTWRITE);
 2872                         bus_dmamap_unload(sc->dc_mtag,
 2873                             sc->dc_cdata.dc_tx_map[idx]);
 2874                         m_freem(sc->dc_cdata.dc_tx_chain[idx]);
 2875                         sc->dc_cdata.dc_tx_chain[idx] = NULL;
 2876                 }
 2877 
 2878                 sc->dc_cdata.dc_tx_cnt--;
 2879                 DC_INC(idx, DC_TX_LIST_CNT);
 2880         }
 2881         sc->dc_cdata.dc_tx_cons = idx;
 2882 
 2883         if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
 2884                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2885 
 2886         if (sc->dc_cdata.dc_tx_cnt == 0)
 2887                 sc->dc_wdog_timer = 0;
 2888 }
 2889 
 2890 static void
 2891 dc_tick(void *xsc)
 2892 {
 2893         struct dc_softc *sc;
 2894         struct mii_data *mii;
 2895         struct ifnet *ifp;
 2896         u_int32_t r;
 2897 
 2898         sc = xsc;
 2899         DC_LOCK_ASSERT(sc);
 2900         ifp = sc->dc_ifp;
 2901         mii = device_get_softc(sc->dc_miibus);
 2902 
 2903         if (sc->dc_flags & DC_REDUCED_MII_POLL) {
 2904                 if (sc->dc_flags & DC_21143_NWAY) {
 2905                         r = CSR_READ_4(sc, DC_10BTSTAT);
 2906                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2907                             IFM_100_TX && (r & DC_TSTAT_LS100)) {
 2908                                 sc->dc_link = 0;
 2909                                 mii_mediachg(mii);
 2910                         }
 2911                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 2912                             IFM_10_T && (r & DC_TSTAT_LS10)) {
 2913                                 sc->dc_link = 0;
 2914                                 mii_mediachg(mii);
 2915                         }
 2916                         if (sc->dc_link == 0)
 2917                                 mii_tick(mii);
 2918                 } else {
 2919                         r = CSR_READ_4(sc, DC_ISR);
 2920                         if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
 2921                             sc->dc_cdata.dc_tx_cnt == 0) {
 2922                                 mii_tick(mii);
 2923                                 if (!(mii->mii_media_status & IFM_ACTIVE))
 2924                                         sc->dc_link = 0;
 2925                         }
 2926                 }
 2927         } else
 2928                 mii_tick(mii);
 2929 
 2930         /*
 2931          * When the init routine completes, we expect to be able to send
 2932          * packets right away, and in fact the network code will send a
 2933          * gratuitous ARP the moment the init routine marks the interface
 2934          * as running. However, even though the MAC may have been initialized,
 2935          * there may be a delay of a few seconds before the PHY completes
 2936          * autonegotiation and the link is brought up. Any transmissions
 2937          * made during that delay will be lost. Dealing with this is tricky:
 2938          * we can't just pause in the init routine while waiting for the
 2939          * PHY to come ready since that would bring the whole system to
 2940          * a screeching halt for several seconds.
 2941          *
 2942          * What we do here is prevent the TX start routine from sending
 2943          * any packets until a link has been established. After the
 2944          * interface has been initialized, the tick routine will poll
 2945          * the state of the PHY until the IFM_ACTIVE flag is set. Until
 2946          * that time, packets will stay in the send queue, and once the
 2947          * link comes up, they will be flushed out to the wire.
 2948          */
 2949         if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
 2950             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 2951                 sc->dc_link++;
 2952                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2953                         dc_start_locked(ifp);
 2954         }
 2955 
 2956         if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
 2957                 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 2958         else
 2959                 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 2960 }
 2961 
 2962 /*
 2963  * A transmit underrun has occurred.  Back off the transmit threshold,
 2964  * or switch to store and forward mode if we have to.
 2965  */
 2966 static void
 2967 dc_tx_underrun(struct dc_softc *sc)
 2968 {
 2969         u_int32_t isr;
 2970         int i;
 2971 
 2972         if (DC_IS_DAVICOM(sc))
 2973                 dc_init_locked(sc);
 2974 
 2975         if (DC_IS_INTEL(sc)) {
 2976                 /*
 2977                  * The real 21143 requires that the transmitter be idle
 2978                  * in order to change the transmit threshold or store
 2979                  * and forward state.
 2980                  */
 2981                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 2982 
 2983                 for (i = 0; i < DC_TIMEOUT; i++) {
 2984                         isr = CSR_READ_4(sc, DC_ISR);
 2985                         if (isr & DC_ISR_TX_IDLE)
 2986                                 break;
 2987                         DELAY(10);
 2988                 }
 2989                 if (i == DC_TIMEOUT) {
 2990                         device_printf(sc->dc_dev,
 2991                             "%s: failed to force tx to idle state\n",
 2992                             __func__);
 2993                         dc_init_locked(sc);
 2994                 }
 2995         }
 2996 
 2997         device_printf(sc->dc_dev, "TX underrun -- ");
 2998         sc->dc_txthresh += DC_TXTHRESH_INC;
 2999         if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3000                 printf("using store and forward mode\n");
 3001                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3002         } else {
 3003                 printf("increasing TX threshold\n");
 3004                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3005                 DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3006         }
 3007 
 3008         if (DC_IS_INTEL(sc))
 3009                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3010 }
 3011 
 3012 #ifdef DEVICE_POLLING
 3013 static poll_handler_t dc_poll;
 3014 
 3015 static void
 3016 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3017 {
 3018         struct dc_softc *sc = ifp->if_softc;
 3019 
 3020         DC_LOCK(sc);
 3021 
 3022         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3023                 DC_UNLOCK(sc);
 3024                 return;
 3025         }
 3026 
 3027         sc->rxcycles = count;
 3028         dc_rxeof(sc);
 3029         dc_txeof(sc);
 3030         if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
 3031             !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
 3032                 dc_start_locked(ifp);
 3033 
 3034         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 3035                 u_int32_t       status;
 3036 
 3037                 status = CSR_READ_4(sc, DC_ISR);
 3038                 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
 3039                         DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
 3040                         DC_ISR_BUS_ERR);
 3041                 if (!status) {
 3042                         DC_UNLOCK(sc);
 3043                         return;
 3044                 }
 3045                 /* ack what we have */
 3046                 CSR_WRITE_4(sc, DC_ISR, status);
 3047 
 3048                 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
 3049                         u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3050                         ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
 3051 
 3052                         if (dc_rx_resync(sc))
 3053                                 dc_rxeof(sc);
 3054                 }
 3055                 /* restart transmit unit if necessary */
 3056                 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
 3057                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3058 
 3059                 if (status & DC_ISR_TX_UNDERRUN)
 3060                         dc_tx_underrun(sc);
 3061 
 3062                 if (status & DC_ISR_BUS_ERR) {
 3063                         if_printf(ifp, "%s: bus error\n", __func__);
 3064                         dc_reset(sc);
 3065                         dc_init_locked(sc);
 3066                 }
 3067         }
 3068         DC_UNLOCK(sc);
 3069 }
 3070 #endif /* DEVICE_POLLING */
 3071 
 3072 static void
 3073 dc_intr(void *arg)
 3074 {
 3075         struct dc_softc *sc;
 3076         struct ifnet *ifp;
 3077         u_int32_t status;
 3078 
 3079         sc = arg;
 3080 
 3081         if (sc->suspended)
 3082                 return;
 3083 
 3084         if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
 3085                 return;
 3086 
 3087         DC_LOCK(sc);
 3088         ifp = sc->dc_ifp;
 3089 #ifdef DEVICE_POLLING
 3090         if (ifp->if_capenable & IFCAP_POLLING) {
 3091                 DC_UNLOCK(sc);
 3092                 return;
 3093         }
 3094 #endif
 3095 
 3096         /* Suppress unwanted interrupts */
 3097         if (!(ifp->if_flags & IFF_UP)) {
 3098                 if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
 3099                         dc_stop(sc);
 3100                 DC_UNLOCK(sc);
 3101                 return;
 3102         }
 3103 
 3104         /* Disable interrupts. */
 3105         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3106 
 3107         while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
 3108             status != 0xFFFFFFFF &&
 3109             (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3110 
 3111                 CSR_WRITE_4(sc, DC_ISR, status);
 3112 
 3113                 if (status & DC_ISR_RX_OK) {
 3114                         int             curpkts;
 3115                         curpkts = ifp->if_ipackets;
 3116                         dc_rxeof(sc);
 3117                         if (curpkts == ifp->if_ipackets) {
 3118                                 while (dc_rx_resync(sc))
 3119                                         dc_rxeof(sc);
 3120                         }
 3121                 }
 3122 
 3123                 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
 3124                         dc_txeof(sc);
 3125 
 3126                 if (status & DC_ISR_TX_IDLE) {
 3127                         dc_txeof(sc);
 3128                         if (sc->dc_cdata.dc_tx_cnt) {
 3129                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3130                                 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3131                         }
 3132                 }
 3133 
 3134                 if (status & DC_ISR_TX_UNDERRUN)
 3135                         dc_tx_underrun(sc);
 3136 
 3137                 if ((status & DC_ISR_RX_WATDOGTIMEO)
 3138                     || (status & DC_ISR_RX_NOBUF)) {
 3139                         int             curpkts;
 3140                         curpkts = ifp->if_ipackets;
 3141                         dc_rxeof(sc);
 3142                         if (curpkts == ifp->if_ipackets) {
 3143                                 while (dc_rx_resync(sc))
 3144                                         dc_rxeof(sc);
 3145                         }
 3146                 }
 3147 
 3148                 if (status & DC_ISR_BUS_ERR) {
 3149                         dc_reset(sc);
 3150                         dc_init_locked(sc);
 3151                 }
 3152         }
 3153 
 3154         /* Re-enable interrupts. */
 3155         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3156 
 3157         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3158                 dc_start_locked(ifp);
 3159 
 3160         DC_UNLOCK(sc);
 3161 }
 3162 
 3163 /*
 3164  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 3165  * pointers to the fragment pointers.
 3166  */
 3167 static int
 3168 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
 3169 {
 3170         bus_dma_segment_t segs[DC_MAXFRAGS];
 3171         struct dc_desc *f;
 3172         struct mbuf *m;
 3173         int chainlen, cur, error, first, frag, i, idx, nseg;
 3174 
 3175         /*
 3176          * If there's no way we can send any packets, return now.
 3177          */
 3178         if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
 3179                 return (ENOBUFS);
 3180 
 3181         /*
 3182          * Count the number of frags in this chain to see if
 3183          * we need to m_defrag.  Since the descriptor list is shared
 3184          * by all packets, we'll m_defrag long chains so that they
 3185          * do not use up the entire list, even if they would fit.
 3186          */
 3187         chainlen = 0;
 3188         for (m = *m_head; m != NULL; m = m->m_next)
 3189                 chainlen++;
 3190 
 3191         m = NULL;
 3192         if ((sc->dc_flags & DC_TX_COALESCE && ((*m_head)->m_next != NULL ||
 3193             sc->dc_flags & DC_TX_ALIGN)) || (chainlen > DC_TX_LIST_CNT / 4) ||
 3194             (DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt) <=
 3195             DC_TX_LIST_RSVD)) {
 3196                 m = m_defrag(*m_head, M_DONTWAIT);
 3197                 if (m == NULL) {
 3198                         m_freem(*m_head);
 3199                         *m_head = NULL;
 3200                         return (ENOBUFS);
 3201                 }
 3202                 *m_head = m;
 3203         }
 3204         idx = sc->dc_cdata.dc_tx_prod;
 3205         error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
 3206             sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
 3207         if (error == EFBIG) {
 3208                 m = m_defrag(*m_head, M_DONTWAIT);
 3209                 if (m == NULL) {
 3210                         m_freem(*m_head);
 3211                         *m_head = NULL;
 3212                         return (ENOBUFS);
 3213                 }
 3214                 *m_head = m;
 3215                 error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
 3216                     sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
 3217                 if (error != 0) {
 3218                         m_freem(*m_head);
 3219                         *m_head = NULL;
 3220                         return (error);
 3221                 }
 3222         } else if (error != 0)
 3223                 return (error);
 3224         KASSERT(nseg <= DC_MAXFRAGS,
 3225             ("%s: wrong number of segments (%d)", __func__, nseg));
 3226         if (nseg == 0) {
 3227                 m_freem(*m_head);
 3228                 *m_head = NULL;
 3229                 return (EIO);
 3230         }
 3231 
 3232         first = cur = frag = sc->dc_cdata.dc_tx_prod;
 3233         for (i = 0; i < nseg; i++) {
 3234                 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
 3235                     (frag == (DC_TX_LIST_CNT - 1)) &&
 3236                     (first != sc->dc_cdata.dc_tx_first)) {
 3237                         bus_dmamap_unload(sc->dc_mtag,
 3238                             sc->dc_cdata.dc_tx_map[first]);
 3239                         m_freem(*m_head);
 3240                         *m_head = NULL;
 3241                         return (ENOBUFS);
 3242                 }
 3243 
 3244                 f = &sc->dc_ldata->dc_tx_list[frag];
 3245                 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
 3246                 if (i == 0) {
 3247                         f->dc_status = 0;
 3248                         f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
 3249                 } else
 3250                         f->dc_status = htole32(DC_TXSTAT_OWN);
 3251                 f->dc_data = htole32(segs[i].ds_addr);
 3252                 cur = frag;
 3253                 DC_INC(frag, DC_TX_LIST_CNT);
 3254         }
 3255 
 3256         sc->dc_cdata.dc_tx_prod = frag;
 3257         sc->dc_cdata.dc_tx_cnt += nseg;
 3258         sc->dc_cdata.dc_tx_chain[cur] = *m_head;
 3259         sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
 3260         if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
 3261                 sc->dc_ldata->dc_tx_list[first].dc_ctl |=
 3262                     htole32(DC_TXCTL_FINT);
 3263         if (sc->dc_flags & DC_TX_INTR_ALWAYS)
 3264                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3265         if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
 3266                 sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3267         sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
 3268 
 3269         bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
 3270             BUS_DMASYNC_PREWRITE);
 3271         bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
 3272             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 3273         return (0);
 3274 }
 3275 
 3276 static void
 3277 dc_start(struct ifnet *ifp)
 3278 {
 3279         struct dc_softc *sc;
 3280 
 3281         sc = ifp->if_softc;
 3282         DC_LOCK(sc);
 3283         dc_start_locked(ifp);
 3284         DC_UNLOCK(sc);
 3285 }
 3286 
 3287 /*
 3288  * Main transmit routine
 3289  * To avoid having to do mbuf copies, we put pointers to the mbuf data
 3290  * regions directly in the transmit lists.  We also save a copy of the
 3291  * pointers since the transmit list fragment pointers are physical
 3292  * addresses.
 3293  */
 3294 static void
 3295 dc_start_locked(struct ifnet *ifp)
 3296 {
 3297         struct dc_softc *sc;
 3298         struct mbuf *m_head = NULL;
 3299         unsigned int queued = 0;
 3300         int idx;
 3301 
 3302         sc = ifp->if_softc;
 3303 
 3304         DC_LOCK_ASSERT(sc);
 3305 
 3306         if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
 3307                 return;
 3308 
 3309         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
 3310                 return;
 3311 
 3312         idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
 3313 
 3314         while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
 3315                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3316                 if (m_head == NULL)
 3317                         break;
 3318 
 3319                 if (dc_encap(sc, &m_head)) {
 3320                         if (m_head == NULL)
 3321                                 break;
 3322                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3323                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3324                         break;
 3325                 }
 3326                 idx = sc->dc_cdata.dc_tx_prod;
 3327 
 3328                 queued++;
 3329                 /*
 3330                  * If there's a BPF listener, bounce a copy of this frame
 3331                  * to him.
 3332                  */
 3333                 BPF_MTAP(ifp, m_head);
 3334 
 3335                 if (sc->dc_flags & DC_TX_ONE) {
 3336                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3337                         break;
 3338                 }
 3339         }
 3340 
 3341         if (queued > 0) {
 3342                 /* Transmit */
 3343                 if (!(sc->dc_flags & DC_TX_POLL))
 3344                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3345 
 3346                 /*
 3347                  * Set a timeout in case the chip goes out to lunch.
 3348                  */
 3349                 sc->dc_wdog_timer = 5;
 3350         }
 3351 }
 3352 
 3353 static void
 3354 dc_init(void *xsc)
 3355 {
 3356         struct dc_softc *sc = xsc;
 3357 
 3358         DC_LOCK(sc);
 3359         dc_init_locked(sc);
 3360 #ifdef SRM_MEDIA
 3361         if(sc->dc_srm_media) {
 3362                 struct ifreq ifr;
 3363                 struct mii_data *mii;
 3364 
 3365                 ifr.ifr_media = sc->dc_srm_media;
 3366                 sc->dc_srm_media = 0;
 3367                 DC_UNLOCK(sc);
 3368                 mii = device_get_softc(sc->dc_miibus);
 3369                 ifmedia_ioctl(sc->dc_ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
 3370         } else
 3371 #endif
 3372                 DC_UNLOCK(sc);
 3373 }
 3374 
 3375 static void
 3376 dc_init_locked(struct dc_softc *sc)
 3377 {
 3378         struct ifnet *ifp = sc->dc_ifp;
 3379         struct mii_data *mii;
 3380 
 3381         DC_LOCK_ASSERT(sc);
 3382 
 3383         mii = device_get_softc(sc->dc_miibus);
 3384 
 3385         /*
 3386          * Cancel pending I/O and free all RX/TX buffers.
 3387          */
 3388         dc_stop(sc);
 3389         dc_reset(sc);
 3390 
 3391         /*
 3392          * Set cache alignment and burst length.
 3393          */
 3394         if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
 3395                 CSR_WRITE_4(sc, DC_BUSCTL, 0);
 3396         else
 3397                 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
 3398         /*
 3399          * Evenly share the bus between receive and transmit process.
 3400          */
 3401         if (DC_IS_INTEL(sc))
 3402                 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
 3403         if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
 3404                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
 3405         } else {
 3406                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
 3407         }
 3408         if (sc->dc_flags & DC_TX_POLL)
 3409                 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
 3410         switch(sc->dc_cachesize) {
 3411         case 32:
 3412                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
 3413                 break;
 3414         case 16:
 3415                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
 3416                 break;
 3417         case 8:
 3418                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
 3419                 break;
 3420         case 0:
 3421         default:
 3422                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
 3423                 break;
 3424         }
 3425 
 3426         if (sc->dc_flags & DC_TX_STORENFWD)
 3427                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3428         else {
 3429                 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3430                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3431                 } else {
 3432                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3433                         DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3434                 }
 3435         }
 3436 
 3437         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
 3438         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
 3439 
 3440         if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 3441                 /*
 3442                  * The app notes for the 98713 and 98715A say that
 3443                  * in order to have the chips operate properly, a magic
 3444                  * number must be written to CSR16. Macronix does not
 3445                  * document the meaning of these bits so there's no way
 3446                  * to know exactly what they do. The 98713 has a magic
 3447                  * number all its own; the rest all use a different one.
 3448                  */
 3449                 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
 3450                 if (sc->dc_type == DC_TYPE_98713)
 3451                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
 3452                 else
 3453                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
 3454         }
 3455 
 3456         if (DC_IS_XIRCOM(sc)) {
 3457                 /*
 3458                  * setup General Purpose Port mode and data so the tulip
 3459                  * can talk to the MII.
 3460                  */
 3461                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 3462                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3463                 DELAY(10);
 3464                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 3465                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3466                 DELAY(10);
 3467         }
 3468 
 3469         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3470         DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
 3471 
 3472         /* Init circular RX list. */
 3473         if (dc_list_rx_init(sc) == ENOBUFS) {
 3474                 device_printf(sc->dc_dev,
 3475                     "initialization failed: no memory for rx buffers\n");
 3476                 dc_stop(sc);
 3477                 return;
 3478         }
 3479 
 3480         /*
 3481          * Init TX descriptors.
 3482          */
 3483         dc_list_tx_init(sc);
 3484 
 3485         /*
 3486          * Load the address of the RX list.
 3487          */
 3488         CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
 3489         CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
 3490 
 3491         /*
 3492          * Enable interrupts.
 3493          */
 3494 #ifdef DEVICE_POLLING
 3495         /*
 3496          * ... but only if we are not polling, and make sure they are off in
 3497          * the case of polling. Some cards (e.g. fxp) turn interrupts on
 3498          * after a reset.
 3499          */
 3500         if (ifp->if_capenable & IFCAP_POLLING)
 3501                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3502         else
 3503 #endif
 3504         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3505         CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
 3506 
 3507         /* Enable transmitter. */
 3508         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3509 
 3510         /*
 3511          * If this is an Intel 21143 and we're not using the
 3512          * MII port, program the LED control pins so we get
 3513          * link and activity indications.
 3514          */
 3515         if (sc->dc_flags & DC_TULIP_LEDS) {
 3516                 CSR_WRITE_4(sc, DC_WATCHDOG,
 3517                     DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
 3518                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 3519         }
 3520 
 3521         /*
 3522          * Load the RX/multicast filter. We do this sort of late
 3523          * because the filter programming scheme on the 21143 and
 3524          * some clones requires DMAing a setup frame via the TX
 3525          * engine, and we need the transmitter enabled for that.
 3526          */
 3527         dc_setfilt(sc);
 3528 
 3529         /* Enable receiver. */
 3530         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 3531         CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
 3532 
 3533         mii_mediachg(mii);
 3534         dc_setcfg(sc, sc->dc_if_media);
 3535 
 3536         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3537         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3538 
 3539         /* Don't start the ticker if this is a homePNA link. */
 3540         if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
 3541                 sc->dc_link = 1;
 3542         else {
 3543                 if (sc->dc_flags & DC_21143_NWAY)
 3544                         callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3545                 else
 3546                         callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3547         }
 3548 
 3549         sc->dc_wdog_timer = 0;
 3550         callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
 3551 }
 3552 
 3553 /*
 3554  * Set media options.
 3555  */
 3556 static int
 3557 dc_ifmedia_upd(struct ifnet *ifp)
 3558 {
 3559         struct dc_softc *sc;
 3560         struct mii_data *mii;
 3561         struct ifmedia *ifm;
 3562 
 3563         sc = ifp->if_softc;
 3564         mii = device_get_softc(sc->dc_miibus);
 3565         DC_LOCK(sc);
 3566         mii_mediachg(mii);
 3567         ifm = &mii->mii_media;
 3568 
 3569         if (DC_IS_DAVICOM(sc) &&
 3570             IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
 3571                 dc_setcfg(sc, ifm->ifm_media);
 3572         else
 3573                 sc->dc_link = 0;
 3574         DC_UNLOCK(sc);
 3575 
 3576         return (0);
 3577 }
 3578 
 3579 /*
 3580  * Report current media status.
 3581  */
 3582 static void
 3583 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3584 {
 3585         struct dc_softc *sc;
 3586         struct mii_data *mii;
 3587         struct ifmedia *ifm;
 3588 
 3589         sc = ifp->if_softc;
 3590         mii = device_get_softc(sc->dc_miibus);
 3591         DC_LOCK(sc);
 3592         mii_pollstat(mii);
 3593         ifm = &mii->mii_media;
 3594         if (DC_IS_DAVICOM(sc)) {
 3595                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
 3596                         ifmr->ifm_active = ifm->ifm_media;
 3597                         ifmr->ifm_status = 0;
 3598                         DC_UNLOCK(sc);
 3599                         return;
 3600                 }
 3601         }
 3602         ifmr->ifm_active = mii->mii_media_active;
 3603         ifmr->ifm_status = mii->mii_media_status;
 3604         DC_UNLOCK(sc);
 3605 }
 3606 
 3607 static int
 3608 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3609 {
 3610         struct dc_softc *sc = ifp->if_softc;
 3611         struct ifreq *ifr = (struct ifreq *)data;
 3612         struct mii_data *mii;
 3613         int error = 0;
 3614 
 3615         switch (command) {
 3616         case SIOCSIFFLAGS:
 3617                 DC_LOCK(sc);
 3618                 if (ifp->if_flags & IFF_UP) {
 3619                         int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
 3620                                 (IFF_PROMISC | IFF_ALLMULTI);
 3621 
 3622                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3623                                 if (need_setfilt)
 3624                                         dc_setfilt(sc);
 3625                         } else {
 3626                                 sc->dc_txthresh = 0;
 3627                                 dc_init_locked(sc);
 3628                         }
 3629                 } else {
 3630                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3631                                 dc_stop(sc);
 3632                 }
 3633                 sc->dc_if_flags = ifp->if_flags;
 3634                 DC_UNLOCK(sc);
 3635                 error = 0;
 3636                 break;
 3637         case SIOCADDMULTI:
 3638         case SIOCDELMULTI:
 3639                 DC_LOCK(sc);
 3640                 dc_setfilt(sc);
 3641                 DC_UNLOCK(sc);
 3642                 error = 0;
 3643                 break;
 3644         case SIOCGIFMEDIA:
 3645         case SIOCSIFMEDIA:
 3646                 mii = device_get_softc(sc->dc_miibus);
 3647                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3648 #ifdef SRM_MEDIA
 3649                 DC_LOCK(sc);
 3650                 if (sc->dc_srm_media)
 3651                         sc->dc_srm_media = 0;
 3652                 DC_UNLOCK(sc);
 3653 #endif
 3654                 break;
 3655         case SIOCSIFCAP:
 3656 #ifdef DEVICE_POLLING
 3657                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 3658                     !(ifp->if_capenable & IFCAP_POLLING)) {
 3659                         error = ether_poll_register(dc_poll, ifp);
 3660                         if (error)
 3661                                 return(error);
 3662                         DC_LOCK(sc);
 3663                         /* Disable interrupts */
 3664                         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3665                         ifp->if_capenable |= IFCAP_POLLING;
 3666                         DC_UNLOCK(sc);
 3667                         return (error);
 3668                 }
 3669                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 3670                     ifp->if_capenable & IFCAP_POLLING) {
 3671                         error = ether_poll_deregister(ifp);
 3672                         /* Enable interrupts. */
 3673                         DC_LOCK(sc);
 3674                         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3675                         ifp->if_capenable &= ~IFCAP_POLLING;
 3676                         DC_UNLOCK(sc);
 3677                         return (error);
 3678                 }
 3679 #endif /* DEVICE_POLLING */
 3680                 break;
 3681         default:
 3682                 error = ether_ioctl(ifp, command, data);
 3683                 break;
 3684         }
 3685 
 3686         return (error);
 3687 }
 3688 
 3689 static void
 3690 dc_watchdog(void *xsc)
 3691 {
 3692         struct dc_softc *sc = xsc;
 3693         struct ifnet *ifp;
 3694 
 3695         DC_LOCK_ASSERT(sc);
 3696 
 3697         if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
 3698                 callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
 3699                 return;
 3700         }
 3701 
 3702         ifp = sc->dc_ifp;
 3703         ifp->if_oerrors++;
 3704         device_printf(sc->dc_dev, "watchdog timeout\n");
 3705 
 3706         dc_stop(sc);
 3707         dc_reset(sc);
 3708         dc_init_locked(sc);
 3709 
 3710         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3711                 dc_start_locked(ifp);
 3712 }
 3713 
 3714 /*
 3715  * Stop the adapter and free any mbufs allocated to the
 3716  * RX and TX lists.
 3717  */
 3718 static void
 3719 dc_stop(struct dc_softc *sc)
 3720 {
 3721         struct ifnet *ifp;
 3722         struct dc_list_data *ld;
 3723         struct dc_chain_data *cd;
 3724         int i;
 3725         u_int32_t ctl;
 3726 
 3727         DC_LOCK_ASSERT(sc);
 3728 
 3729         ifp = sc->dc_ifp;
 3730         ld = sc->dc_ldata;
 3731         cd = &sc->dc_cdata;
 3732 
 3733         callout_stop(&sc->dc_stat_ch);
 3734         callout_stop(&sc->dc_wdog_ch);
 3735         sc->dc_wdog_timer = 0;
 3736 
 3737         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3738 
 3739         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
 3740         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3741         CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
 3742         CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
 3743         sc->dc_link = 0;
 3744 
 3745         /*
 3746          * Free data in the RX lists.
 3747          */
 3748         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 3749                 if (cd->dc_rx_chain[i] != NULL) {
 3750                         m_freem(cd->dc_rx_chain[i]);
 3751                         cd->dc_rx_chain[i] = NULL;
 3752                 }
 3753         }
 3754         bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
 3755 
 3756         /*
 3757          * Free the TX list buffers.
 3758          */
 3759         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 3760                 if (cd->dc_tx_chain[i] != NULL) {
 3761                         ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
 3762                         if ((ctl & DC_TXCTL_SETUP) ||
 3763                             !(ctl & DC_TXCTL_LASTFRAG)) {
 3764                                 cd->dc_tx_chain[i] = NULL;
 3765                                 continue;
 3766                         }
 3767                         bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
 3768                         m_freem(cd->dc_tx_chain[i]);
 3769                         cd->dc_tx_chain[i] = NULL;
 3770                 }
 3771         }
 3772         bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
 3773 }
 3774 
 3775 /*
 3776  * Device suspend routine.  Stop the interface and save some PCI
 3777  * settings in case the BIOS doesn't restore them properly on
 3778  * resume.
 3779  */
 3780 static int
 3781 dc_suspend(device_t dev)
 3782 {
 3783         struct dc_softc *sc;
 3784 
 3785         sc = device_get_softc(dev);
 3786         DC_LOCK(sc);
 3787         dc_stop(sc);
 3788         sc->suspended = 1;
 3789         DC_UNLOCK(sc);
 3790 
 3791         return (0);
 3792 }
 3793 
 3794 /*
 3795  * Device resume routine.  Restore some PCI settings in case the BIOS
 3796  * doesn't, re-enable busmastering, and restart the interface if
 3797  * appropriate.
 3798  */
 3799 static int
 3800 dc_resume(device_t dev)
 3801 {
 3802         struct dc_softc *sc;
 3803         struct ifnet *ifp;
 3804 
 3805         sc = device_get_softc(dev);
 3806         ifp = sc->dc_ifp;
 3807 
 3808         /* reinitialize interface if necessary */
 3809         DC_LOCK(sc);
 3810         if (ifp->if_flags & IFF_UP)
 3811                 dc_init_locked(sc);
 3812 
 3813         sc->suspended = 0;
 3814         DC_UNLOCK(sc);
 3815 
 3816         return (0);
 3817 }
 3818 
 3819 /*
 3820  * Stop all chip I/O so that the kernel's probe routines don't
 3821  * get confused by errant DMAs when rebooting.
 3822  */
 3823 static int
 3824 dc_shutdown(device_t dev)
 3825 {
 3826         struct dc_softc *sc;
 3827 
 3828         sc = device_get_softc(dev);
 3829 
 3830         DC_LOCK(sc);
 3831         dc_stop(sc);
 3832         DC_UNLOCK(sc);
 3833 
 3834         return (0);
 3835 }

Cache object: 0878c15e5d1aeed272cc608c35bf19fa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.