The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_rl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.3/sys/pci/if_rl.c 133403 2004-08-09 20:22:17Z green $");
   35 
   36 /*
   37  * RealTek 8129/8139 PCI NIC driver
   38  *
   39  * Supports several extremely cheap PCI 10/100 adapters based on
   40  * the RealTek chipset. Datasheets can be obtained from
   41  * www.realtek.com.tw.
   42  *
   43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   44  * Electrical Engineering Department
   45  * Columbia University, New York City
   46  */
   47 /*
   48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
   49  * probably the worst PCI ethernet controller ever made, with the possible
   50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
   51  * DMA, but it has a terrible interface that nullifies any performance
   52  * gains that bus-master DMA usually offers.
   53  *
   54  * For transmission, the chip offers a series of four TX descriptor
   55  * registers. Each transmit frame must be in a contiguous buffer, aligned
   56  * on a longword (32-bit) boundary. This means we almost always have to
   57  * do mbuf copies in order to transmit a frame, except in the unlikely
   58  * case where a) the packet fits into a single mbuf, and b) the packet
   59  * is 32-bit aligned within the mbuf's data area. The presence of only
   60  * four descriptor registers means that we can never have more than four
   61  * packets queued for transmission at any one time.
   62  *
   63  * Reception is not much better. The driver has to allocate a single large
   64  * buffer area (up to 64K in size) into which the chip will DMA received
   65  * frames. Because we don't know where within this region received packets
   66  * will begin or end, we have no choice but to copy data from the buffer
   67  * area into mbufs in order to pass the packets up to the higher protocol
   68  * levels.
   69  *
   70  * It's impossible given this rotten design to really achieve decent
   71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
   72  * some equally overmuscled CPU to drive it.
   73  *
   74  * On the bright side, the 8139 does have a built-in PHY, although
   75  * rather than using an MDIO serial interface like most other NICs, the
   76  * PHY registers are directly accessible through the 8139's register
   77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
   78  * filter.
   79  *
   80  * The 8129 chip is an older version of the 8139 that uses an external PHY
   81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
   82  * the 8139 lets you directly access the on-board PHY registers. We need
   83  * to select which interface to use depending on the chip type.
   84  */
   85 
   86 #include <sys/param.h>
   87 #include <sys/endian.h>
   88 #include <sys/systm.h>
   89 #include <sys/sockio.h>
   90 #include <sys/mbuf.h>
   91 #include <sys/malloc.h>
   92 #include <sys/kernel.h>
   93 #include <sys/module.h>
   94 #include <sys/socket.h>
   95 
   96 #include <net/if.h>
   97 #include <net/if_arp.h>
   98 #include <net/ethernet.h>
   99 #include <net/if_dl.h>
  100 #include <net/if_media.h>
  101 
  102 #include <net/bpf.h>
  103 
  104 #include <machine/bus_pio.h>
  105 #include <machine/bus_memio.h>
  106 #include <machine/bus.h>
  107 #include <machine/resource.h>
  108 #include <sys/bus.h>
  109 #include <sys/rman.h>
  110 
  111 #include <dev/mii/mii.h>
  112 #include <dev/mii/miivar.h>
  113 
  114 #include <dev/pci/pcireg.h>
  115 #include <dev/pci/pcivar.h>
  116 
  117 MODULE_DEPEND(rl, pci, 1, 1, 1);
  118 MODULE_DEPEND(rl, ether, 1, 1, 1);
  119 MODULE_DEPEND(rl, miibus, 1, 1, 1);
  120 
  121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  122 #include "miibus_if.h"
  123 
  124 /*
  125  * Default to using PIO access for this driver. On SMP systems,
  126  * there appear to be problems with memory mapped mode: it looks like
  127  * doing too many memory mapped access back to back in rapid succession
  128  * can hang the bus. I'm inclined to blame this on crummy design/construction
  129  * on the part of RealTek. Memory mapped mode does appear to work on
  130  * uniprocessor systems though.
  131  */
  132 #define RL_USEIOSPACE
  133 
  134 #include <pci/if_rlreg.h>
  135 
  136 /*
  137  * Various supported device vendors/types and their names.
  138  */
  139 static struct rl_type rl_devs[] = {
  140         { RT_VENDORID, RT_DEVICEID_8129, RL_8129,
  141                 "RealTek 8129 10/100BaseTX" },
  142         { RT_VENDORID, RT_DEVICEID_8139, RL_8139,
  143                 "RealTek 8139 10/100BaseTX" },
  144         { RT_VENDORID, RT_DEVICEID_8138, RL_8139,
  145                 "RealTek 8139 10/100BaseTX CardBus" },
  146         { RT_VENDORID, RT_DEVICEID_8100, RL_8139,
  147                 "RealTek 8100 10/100BaseTX" },
  148         { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
  149                 "Accton MPX 5030/5038 10/100BaseTX" },
  150         { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
  151                 "Delta Electronics 8139 10/100BaseTX" },
  152         { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
  153                 "Addtron Technolgy 8139 10/100BaseTX" },
  154         { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
  155                 "D-Link DFE-530TX+ 10/100BaseTX" },
  156         { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
  157                 "D-Link DFE-690TXD 10/100BaseTX" },
  158         { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
  159                 "Nortel Networks 10/100BaseTX" },
  160         { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
  161                 "Corega FEther CB-TXD" },
  162         { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
  163                 "Corega FEtherII CB-TXD" },
  164         { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
  165                 "Peppercon AG ROL-F" },
  166         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
  167                 "Planex FNW-3800-TX" },
  168         { CP_VENDORID, RT_DEVICEID_8139, RL_8139,
  169                 "Compaq HNE-300" },
  170         { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
  171                 "LevelOne FPC-0106TX" },
  172         { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
  173                 "Edimax EP-4103DL CardBus" },
  174         { 0, 0, 0, NULL }
  175 };
  176 
  177 static int rl_attach            (device_t);
  178 static int rl_detach            (device_t);
  179 static void rl_dma_map_rxbuf    (void *, bus_dma_segment_t *, int, int);
  180 static void rl_dma_map_txbuf    (void *, bus_dma_segment_t *, int, int);
  181 static void rl_eeprom_putbyte   (struct rl_softc *, int);
  182 static void rl_eeprom_getword   (struct rl_softc *, int, uint16_t *);
  183 static int rl_encap             (struct rl_softc *, struct mbuf * );
  184 static int rl_list_tx_init      (struct rl_softc *);
  185 static int rl_ifmedia_upd       (struct ifnet *);
  186 static void rl_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  187 static int rl_ioctl             (struct ifnet *, u_long, caddr_t);
  188 static void rl_intr             (void *);
  189 static void rl_init             (void *);
  190 static void rl_init_locked      (struct rl_softc *sc);
  191 static void rl_mii_send         (struct rl_softc *, uint32_t, int);
  192 static void rl_mii_sync         (struct rl_softc *);
  193 static int rl_mii_readreg       (struct rl_softc *, struct rl_mii_frame *);
  194 static int rl_mii_writereg      (struct rl_softc *, struct rl_mii_frame *);
  195 static int rl_miibus_readreg    (device_t, int, int);
  196 static void rl_miibus_statchg   (device_t);
  197 static int rl_miibus_writereg   (device_t, int, int, int);
  198 #ifdef DEVICE_POLLING
  199 static void rl_poll             (struct ifnet *ifp, enum poll_cmd cmd,
  200                                  int count);
  201 static void rl_poll_locked      (struct ifnet *ifp, enum poll_cmd cmd,
  202                                  int count);
  203 #endif
  204 static int rl_probe             (device_t);
  205 static void rl_read_eeprom      (struct rl_softc *, uint8_t *, int, int, int);
  206 static void rl_reset            (struct rl_softc *);
  207 static int rl_resume            (device_t);
  208 static void rl_rxeof            (struct rl_softc *);
  209 static void rl_setmulti         (struct rl_softc *);
  210 static void rl_shutdown         (device_t);
  211 static void rl_start            (struct ifnet *);
  212 static void rl_start_locked     (struct ifnet *);
  213 static void rl_stop             (struct rl_softc *);
  214 static int rl_suspend           (device_t);
  215 static void rl_tick             (void *);
  216 static void rl_txeof            (struct rl_softc *);
  217 static void rl_watchdog         (struct ifnet *);
  218 
  219 #ifdef RL_USEIOSPACE
  220 #define RL_RES                  SYS_RES_IOPORT
  221 #define RL_RID                  RL_PCI_LOIO
  222 #else
  223 #define RL_RES                  SYS_RES_MEMORY
  224 #define RL_RID                  RL_PCI_LOMEM
  225 #endif
  226 
  227 static device_method_t rl_methods[] = {
  228         /* Device interface */
  229         DEVMETHOD(device_probe,         rl_probe),
  230         DEVMETHOD(device_attach,        rl_attach),
  231         DEVMETHOD(device_detach,        rl_detach),
  232         DEVMETHOD(device_suspend,       rl_suspend),
  233         DEVMETHOD(device_resume,        rl_resume),
  234         DEVMETHOD(device_shutdown,      rl_shutdown),
  235 
  236         /* bus interface */
  237         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  238         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  239 
  240         /* MII interface */
  241         DEVMETHOD(miibus_readreg,       rl_miibus_readreg),
  242         DEVMETHOD(miibus_writereg,      rl_miibus_writereg),
  243         DEVMETHOD(miibus_statchg,       rl_miibus_statchg),
  244 
  245         { 0, 0 }
  246 };
  247 
  248 static driver_t rl_driver = {
  249         "rl",
  250         rl_methods,
  251         sizeof(struct rl_softc)
  252 };
  253 
  254 static devclass_t rl_devclass;
  255 
  256 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
  257 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
  258 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
  259 
  260 #define EE_SET(x)                                       \
  261         CSR_WRITE_1(sc, RL_EECMD,                       \
  262                 CSR_READ_1(sc, RL_EECMD) | x)
  263 
  264 #define EE_CLR(x)                                       \
  265         CSR_WRITE_1(sc, RL_EECMD,                       \
  266                 CSR_READ_1(sc, RL_EECMD) & ~x)
  267 
  268 static void
  269 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  270 {
  271         struct rl_softc *sc = arg;
  272 
  273         CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
  274 }
  275 
  276 static void
  277 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  278 {
  279         struct rl_softc *sc = arg;
  280 
  281         CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
  282 }
  283 
  284 /*
  285  * Send a read command and address to the EEPROM, check for ACK.
  286  */
  287 static void
  288 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
  289 {
  290         register int            d, i;
  291 
  292         d = addr | sc->rl_eecmd_read;
  293 
  294         /*
  295          * Feed in each bit and strobe the clock.
  296          */
  297         for (i = 0x400; i; i >>= 1) {
  298                 if (d & i) {
  299                         EE_SET(RL_EE_DATAIN);
  300                 } else {
  301                         EE_CLR(RL_EE_DATAIN);
  302                 }
  303                 DELAY(100);
  304                 EE_SET(RL_EE_CLK);
  305                 DELAY(150);
  306                 EE_CLR(RL_EE_CLK);
  307                 DELAY(100);
  308         }
  309 }
  310 
  311 /*
  312  * Read a word of data stored in the EEPROM at address 'addr.'
  313  */
  314 static void
  315 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
  316 {
  317         register int            i;
  318         uint16_t                word = 0;
  319 
  320         /* Enter EEPROM access mode. */
  321         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
  322 
  323         /*
  324          * Send address of word we want to read.
  325          */
  326         rl_eeprom_putbyte(sc, addr);
  327 
  328         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
  329 
  330         /*
  331          * Start reading bits from EEPROM.
  332          */
  333         for (i = 0x8000; i; i >>= 1) {
  334                 EE_SET(RL_EE_CLK);
  335                 DELAY(100);
  336                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
  337                         word |= i;
  338                 EE_CLR(RL_EE_CLK);
  339                 DELAY(100);
  340         }
  341 
  342         /* Turn off EEPROM access mode. */
  343         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
  344 
  345         *dest = word;
  346 }
  347 
  348 /*
  349  * Read a sequence of words from the EEPROM.
  350  */
  351 static void
  352 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
  353 {
  354         int                     i;
  355         uint16_t                word = 0, *ptr;
  356 
  357         for (i = 0; i < cnt; i++) {
  358                 rl_eeprom_getword(sc, off + i, &word);
  359                 ptr = (uint16_t *)(dest + (i * 2));
  360                 if (swap)
  361                         *ptr = ntohs(word);
  362                 else
  363                         *ptr = word;
  364         }
  365 }
  366 
  367 /*
  368  * MII access routines are provided for the 8129, which
  369  * doesn't have a built-in PHY. For the 8139, we fake things
  370  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
  371  * direct access PHY registers.
  372  */
  373 #define MII_SET(x)                                      \
  374         CSR_WRITE_1(sc, RL_MII,                         \
  375                 CSR_READ_1(sc, RL_MII) | (x))
  376 
  377 #define MII_CLR(x)                                      \
  378         CSR_WRITE_1(sc, RL_MII,                         \
  379                 CSR_READ_1(sc, RL_MII) & ~(x))
  380 
  381 /*
  382  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  383  */
  384 static void
  385 rl_mii_sync(struct rl_softc *sc)
  386 {
  387         register int            i;
  388 
  389         MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
  390 
  391         for (i = 0; i < 32; i++) {
  392                 MII_SET(RL_MII_CLK);
  393                 DELAY(1);
  394                 MII_CLR(RL_MII_CLK);
  395                 DELAY(1);
  396         }
  397 }
  398 
  399 /*
  400  * Clock a series of bits through the MII.
  401  */
  402 static void
  403 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
  404 {
  405         int                     i;
  406 
  407         MII_CLR(RL_MII_CLK);
  408 
  409         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  410                 if (bits & i) {
  411                         MII_SET(RL_MII_DATAOUT);
  412                 } else {
  413                         MII_CLR(RL_MII_DATAOUT);
  414                 }
  415                 DELAY(1);
  416                 MII_CLR(RL_MII_CLK);
  417                 DELAY(1);
  418                 MII_SET(RL_MII_CLK);
  419         }
  420 }
  421 
  422 /*
  423  * Read an PHY register through the MII.
  424  */
  425 static int
  426 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
  427 {
  428         int                     i, ack;
  429 
  430         RL_LOCK(sc);
  431 
  432         /* Set up frame for RX. */
  433         frame->mii_stdelim = RL_MII_STARTDELIM;
  434         frame->mii_opcode = RL_MII_READOP;
  435         frame->mii_turnaround = 0;
  436         frame->mii_data = 0;
  437 
  438         CSR_WRITE_2(sc, RL_MII, 0);
  439 
  440         /* Turn on data xmit. */
  441         MII_SET(RL_MII_DIR);
  442 
  443         rl_mii_sync(sc);
  444 
  445         /* Send command/address info. */
  446         rl_mii_send(sc, frame->mii_stdelim, 2);
  447         rl_mii_send(sc, frame->mii_opcode, 2);
  448         rl_mii_send(sc, frame->mii_phyaddr, 5);
  449         rl_mii_send(sc, frame->mii_regaddr, 5);
  450 
  451         /* Idle bit */
  452         MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
  453         DELAY(1);
  454         MII_SET(RL_MII_CLK);
  455         DELAY(1);
  456 
  457         /* Turn off xmit. */
  458         MII_CLR(RL_MII_DIR);
  459 
  460         /* Check for ack */
  461         MII_CLR(RL_MII_CLK);
  462         DELAY(1);
  463         ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
  464         MII_SET(RL_MII_CLK);
  465         DELAY(1);
  466 
  467         /*
  468          * Now try reading data bits. If the ack failed, we still
  469          * need to clock through 16 cycles to keep the PHY(s) in sync.
  470          */
  471         if (ack) {
  472                 for(i = 0; i < 16; i++) {
  473                         MII_CLR(RL_MII_CLK);
  474                         DELAY(1);
  475                         MII_SET(RL_MII_CLK);
  476                         DELAY(1);
  477                 }
  478                 goto fail;
  479         }
  480 
  481         for (i = 0x8000; i; i >>= 1) {
  482                 MII_CLR(RL_MII_CLK);
  483                 DELAY(1);
  484                 if (!ack) {
  485                         if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
  486                                 frame->mii_data |= i;
  487                         DELAY(1);
  488                 }
  489                 MII_SET(RL_MII_CLK);
  490                 DELAY(1);
  491         }
  492 
  493 fail:
  494         MII_CLR(RL_MII_CLK);
  495         DELAY(1);
  496         MII_SET(RL_MII_CLK);
  497         DELAY(1);
  498 
  499         RL_UNLOCK(sc);
  500 
  501         return (ack ? 1 : 0);
  502 }
  503 
  504 /*
  505  * Write to a PHY register through the MII.
  506  */
  507 static int
  508 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
  509 {
  510 
  511         RL_LOCK(sc);
  512 
  513         /* Set up frame for TX. */
  514         frame->mii_stdelim = RL_MII_STARTDELIM;
  515         frame->mii_opcode = RL_MII_WRITEOP;
  516         frame->mii_turnaround = RL_MII_TURNAROUND;
  517 
  518         /* Turn on data output. */
  519         MII_SET(RL_MII_DIR);
  520 
  521         rl_mii_sync(sc);
  522 
  523         rl_mii_send(sc, frame->mii_stdelim, 2);
  524         rl_mii_send(sc, frame->mii_opcode, 2);
  525         rl_mii_send(sc, frame->mii_phyaddr, 5);
  526         rl_mii_send(sc, frame->mii_regaddr, 5);
  527         rl_mii_send(sc, frame->mii_turnaround, 2);
  528         rl_mii_send(sc, frame->mii_data, 16);
  529 
  530         /* Idle bit. */
  531         MII_SET(RL_MII_CLK);
  532         DELAY(1);
  533         MII_CLR(RL_MII_CLK);
  534         DELAY(1);
  535 
  536         /* Turn off xmit. */
  537         MII_CLR(RL_MII_DIR);
  538 
  539         RL_UNLOCK(sc);
  540 
  541         return (0);
  542 }
  543 
  544 static int
  545 rl_miibus_readreg(device_t dev, int phy, int reg)
  546 {
  547         struct rl_softc         *sc;
  548         struct rl_mii_frame     frame;
  549         uint16_t                rval = 0;
  550         uint16_t                rl8139_reg = 0;
  551 
  552         sc = device_get_softc(dev);
  553 
  554         if (sc->rl_type == RL_8139) {
  555                 /* Pretend the internal PHY is only at address 0 */
  556                 if (phy) {
  557                         return (0);
  558                 }
  559                 switch (reg) {
  560                 case MII_BMCR:
  561                         rl8139_reg = RL_BMCR;
  562                         break;
  563                 case MII_BMSR:
  564                         rl8139_reg = RL_BMSR;
  565                         break;
  566                 case MII_ANAR:
  567                         rl8139_reg = RL_ANAR;
  568                         break;
  569                 case MII_ANER:
  570                         rl8139_reg = RL_ANER;
  571                         break;
  572                 case MII_ANLPAR:
  573                         rl8139_reg = RL_LPAR;
  574                         break;
  575                 case MII_PHYIDR1:
  576                 case MII_PHYIDR2:
  577                         return (0);
  578                 /*
  579                  * Allow the rlphy driver to read the media status
  580                  * register. If we have a link partner which does not
  581                  * support NWAY, this is the register which will tell
  582                  * us the results of parallel detection.
  583                  */
  584                 case RL_MEDIASTAT:
  585                         rval = CSR_READ_1(sc, RL_MEDIASTAT);
  586                         return (rval);
  587                 default:
  588                         if_printf(&sc->arpcom.ac_if, "bad phy register\n");
  589                         return (0);
  590                 }
  591                 rval = CSR_READ_2(sc, rl8139_reg);
  592                 return (rval);
  593         }
  594 
  595         bzero((char *)&frame, sizeof(frame));
  596         frame.mii_phyaddr = phy;
  597         frame.mii_regaddr = reg;
  598         rl_mii_readreg(sc, &frame);
  599 
  600         return (frame.mii_data);
  601 }
  602 
  603 static int
  604 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
  605 {
  606         struct rl_softc         *sc;
  607         struct rl_mii_frame     frame;
  608         uint16_t                rl8139_reg = 0;
  609 
  610         sc = device_get_softc(dev);
  611 
  612         if (sc->rl_type == RL_8139) {
  613                 /* Pretend the internal PHY is only at address 0 */
  614                 if (phy) {
  615                         return (0);
  616                 }
  617                 switch (reg) {
  618                 case MII_BMCR:
  619                         rl8139_reg = RL_BMCR;
  620                         break;
  621                 case MII_BMSR:
  622                         rl8139_reg = RL_BMSR;
  623                         break;
  624                 case MII_ANAR:
  625                         rl8139_reg = RL_ANAR;
  626                         break;
  627                 case MII_ANER:
  628                         rl8139_reg = RL_ANER;
  629                         break;
  630                 case MII_ANLPAR:
  631                         rl8139_reg = RL_LPAR;
  632                         break;
  633                 case MII_PHYIDR1:
  634                 case MII_PHYIDR2:
  635                         return (0);
  636                         break;
  637                 default:
  638                         if_printf(&sc->arpcom.ac_if, "bad phy register\n");
  639                         return (0);
  640                 }
  641                 CSR_WRITE_2(sc, rl8139_reg, data);
  642                 return (0);
  643         }
  644 
  645         bzero((char *)&frame, sizeof(frame));
  646         frame.mii_phyaddr = phy;
  647         frame.mii_regaddr = reg;
  648         frame.mii_data = data;
  649         rl_mii_writereg(sc, &frame);
  650 
  651         return (0);
  652 }
  653 
  654 static void
  655 rl_miibus_statchg(device_t dev)
  656 {
  657 }
  658 
  659 /*
  660  * Program the 64-bit multicast hash filter.
  661  */
  662 static void
  663 rl_setmulti(struct rl_softc *sc)
  664 {
  665         struct ifnet            *ifp = &sc->arpcom.ac_if;
  666         int                     h = 0;
  667         uint32_t                hashes[2] = { 0, 0 };
  668         struct ifmultiaddr      *ifma;
  669         uint32_t                rxfilt;
  670         int                     mcnt = 0;
  671 
  672         RL_LOCK_ASSERT(sc);
  673 
  674         rxfilt = CSR_READ_4(sc, RL_RXCFG);
  675 
  676         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  677                 rxfilt |= RL_RXCFG_RX_MULTI;
  678                 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
  679                 CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
  680                 CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
  681                 return;
  682         }
  683 
  684         /* first, zot all the existing hash bits */
  685         CSR_WRITE_4(sc, RL_MAR0, 0);
  686         CSR_WRITE_4(sc, RL_MAR4, 0);
  687 
  688         /* now program new ones */
  689         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  690                 if (ifma->ifma_addr->sa_family != AF_LINK)
  691                         continue;
  692                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  693                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  694                 if (h < 32)
  695                         hashes[0] |= (1 << h);
  696                 else
  697                         hashes[1] |= (1 << (h - 32));
  698                 mcnt++;
  699         }
  700 
  701         if (mcnt)
  702                 rxfilt |= RL_RXCFG_RX_MULTI;
  703         else
  704                 rxfilt &= ~RL_RXCFG_RX_MULTI;
  705 
  706         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
  707         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
  708         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
  709 }
  710 
  711 static void
  712 rl_reset(struct rl_softc *sc)
  713 {
  714         register int            i;
  715 
  716         RL_LOCK_ASSERT(sc);
  717 
  718         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
  719 
  720         for (i = 0; i < RL_TIMEOUT; i++) {
  721                 DELAY(10);
  722                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
  723                         break;
  724         }
  725         if (i == RL_TIMEOUT)
  726                 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
  727 }
  728 
  729 /*
  730  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
  731  * IDs against our list and return a device name if we find a match.
  732  */
  733 static int
  734 rl_probe(device_t dev)
  735 {
  736         struct rl_softc         *sc;
  737         struct rl_type          *t = rl_devs;
  738         int                     rid;
  739         uint32_t                hwrev;
  740 
  741         sc = device_get_softc(dev);
  742 
  743         while (t->rl_name != NULL) {
  744                 if ((pci_get_vendor(dev) == t->rl_vid) &&
  745                     (pci_get_device(dev) == t->rl_did)) {
  746                         /*
  747                          * Temporarily map the I/O space
  748                          * so we can read the chip ID register.
  749                          */
  750                         rid = RL_RID;
  751                         sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
  752                             RF_ACTIVE);
  753                         if (sc->rl_res == NULL) {
  754                                 device_printf(dev,
  755                                     "couldn't map ports/memory\n");
  756                                 return (ENXIO);
  757                         }
  758                         sc->rl_btag = rman_get_bustag(sc->rl_res);
  759                         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
  760 
  761                         hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
  762                         bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
  763 
  764                         /* Don't attach to 8139C+ or 8169/8110 chips. */
  765                         if (hwrev == RL_HWREV_8139CPLUS ||
  766                             (hwrev == RL_HWREV_8169 &&
  767                             t->rl_did == RT_DEVICEID_8169) ||
  768                             hwrev == RL_HWREV_8169S ||
  769                             hwrev == RL_HWREV_8110S) {
  770                                 t++;
  771                                 continue;
  772                         }
  773 
  774                         device_set_desc(dev, t->rl_name);
  775                         return (0);
  776                 }
  777                 t++;
  778         }
  779 
  780         return (ENXIO);
  781 }
  782 
  783 /*
  784  * Attach the interface. Allocate softc structures, do ifmedia
  785  * setup and ethernet/BPF attach.
  786  */
  787 static int
  788 rl_attach(device_t dev)
  789 {
  790         uint8_t                 eaddr[ETHER_ADDR_LEN];
  791         uint16_t                as[3];
  792         struct ifnet            *ifp;
  793         struct rl_softc         *sc;
  794         struct rl_type          *t;
  795         int                     error = 0, i, rid;
  796         int                     unit;
  797         uint16_t                rl_did = 0;
  798 
  799         sc = device_get_softc(dev);
  800         unit = device_get_unit(dev);
  801 
  802         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  803             MTX_DEF);
  804 
  805         pci_enable_busmaster(dev);
  806 
  807         /* Map control/status registers. */
  808         rid = RL_RID;
  809         sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
  810 
  811         if (sc->rl_res == NULL) {
  812                 device_printf(dev, "couldn't map ports/memory\n");
  813                 error = ENXIO;
  814                 goto fail;
  815         }
  816 
  817 #ifdef notdef
  818         /*
  819          * Detect the Realtek 8139B. For some reason, this chip is very
  820          * unstable when left to autoselect the media
  821          * The best workaround is to set the device to the required
  822          * media type or to set it to the 10 Meg speed.
  823          */
  824         if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
  825                 device_printf(dev,
  826 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
  827 #endif
  828 
  829         sc->rl_btag = rman_get_bustag(sc->rl_res);
  830         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
  831 
  832         /* Allocate interrupt */
  833         rid = 0;
  834         sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  835             RF_SHAREABLE | RF_ACTIVE);
  836 
  837         if (sc->rl_irq == NULL) {
  838                 device_printf(dev, "couldn't map interrupt\n");
  839                 error = ENXIO;
  840                 goto fail;
  841         }
  842 
  843         /*
  844          * Reset the adapter. Only take the lock here as it's needed in
  845          * order to call rl_reset().
  846          */
  847         RL_LOCK(sc);
  848         rl_reset(sc);
  849         RL_UNLOCK(sc);
  850 
  851         sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
  852         rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
  853         if (rl_did != 0x8129)
  854                 sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
  855 
  856         /*
  857          * Get station address from the EEPROM.
  858          */
  859         rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
  860         for (i = 0; i < 3; i++) {
  861                 eaddr[(i * 2) + 0] = as[i] & 0xff;
  862                 eaddr[(i * 2) + 1] = as[i] >> 8;
  863         }
  864 
  865         sc->rl_unit = unit;
  866         bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
  867 
  868         /*
  869          * Now read the exact device type from the EEPROM to find
  870          * out if it's an 8129 or 8139.
  871          */
  872         rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
  873 
  874         t = rl_devs;
  875         sc->rl_type = 0;
  876         while(t->rl_name != NULL) {
  877                 if (rl_did == t->rl_did) {
  878                         sc->rl_type = t->rl_basetype;
  879                         break;
  880                 }
  881                 t++;
  882         }
  883 
  884         if (sc->rl_type == 0) {
  885                 device_printf(dev, "unknown device ID: %x\n", rl_did);
  886                 error = ENXIO;
  887                 goto fail;
  888         }
  889 
  890         /*
  891          * Allocate the parent bus DMA tag appropriate for PCI.
  892          */
  893 #define RL_NSEG_NEW 32
  894         error = bus_dma_tag_create(NULL,        /* parent */
  895                         1, 0,                   /* alignment, boundary */
  896                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
  897                         BUS_SPACE_MAXADDR,      /* highaddr */
  898                         NULL, NULL,             /* filter, filterarg */
  899                         MAXBSIZE, RL_NSEG_NEW,  /* maxsize, nsegments */
  900                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
  901                         BUS_DMA_ALLOCNOW,       /* flags */
  902                         NULL, NULL,             /* lockfunc, lockarg */
  903                         &sc->rl_parent_tag);
  904         if (error)
  905                 goto fail;
  906 
  907         /*
  908          * Now allocate a tag for the DMA descriptor lists.
  909          * All of our lists are allocated as a contiguous block
  910          * of memory.
  911          */
  912         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
  913                         1, 0,                   /* alignment, boundary */
  914                         BUS_SPACE_MAXADDR,      /* lowaddr */
  915                         BUS_SPACE_MAXADDR,      /* highaddr */
  916                         NULL, NULL,             /* filter, filterarg */
  917                         RL_RXBUFLEN + 1518, 1,  /* maxsize,nsegments */
  918                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
  919                         BUS_DMA_ALLOCNOW,               /* flags */
  920                         NULL, NULL,             /* lockfunc, lockarg */
  921                         &sc->rl_tag);
  922         if (error)
  923                 goto fail;
  924 
  925         /*
  926          * Now allocate a chunk of DMA-able memory based on the
  927          * tag we just created.
  928          */
  929         error = bus_dmamem_alloc(sc->rl_tag,
  930             (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
  931             &sc->rl_cdata.rl_rx_dmamap);
  932         if (error) {
  933                 device_printf(dev, "no memory for list buffers!\n");
  934                 bus_dma_tag_destroy(sc->rl_tag);
  935                 sc->rl_tag = NULL;
  936                 goto fail;
  937         }
  938 
  939         /* Leave a few bytes before the start of the RX ring buffer. */
  940         sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
  941         sc->rl_cdata.rl_rx_buf += sizeof(uint64_t);
  942 
  943         /* Do MII setup */
  944         if (mii_phy_probe(dev, &sc->rl_miibus,
  945             rl_ifmedia_upd, rl_ifmedia_sts)) {
  946                 device_printf(dev, "MII without any phy!\n");
  947                 error = ENXIO;
  948                 goto fail;
  949         }
  950 
  951         ifp = &sc->arpcom.ac_if;
  952         ifp->if_softc = sc;
  953         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  954         ifp->if_mtu = ETHERMTU;
  955         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  956         ifp->if_ioctl = rl_ioctl;
  957         ifp->if_start = rl_start;
  958         ifp->if_watchdog = rl_watchdog;
  959         ifp->if_init = rl_init;
  960         ifp->if_baudrate = 10000000;
  961         ifp->if_capabilities = IFCAP_VLAN_MTU;
  962 #ifdef DEVICE_POLLING
  963         ifp->if_capabilities |= IFCAP_POLLING;
  964 #endif
  965         ifp->if_capenable = ifp->if_capabilities;
  966         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
  967         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
  968         IFQ_SET_READY(&ifp->if_snd);
  969 
  970         callout_handle_init(&sc->rl_stat_ch);
  971 
  972         /*
  973          * Call MI attach routine.
  974          */
  975         ether_ifattach(ifp, eaddr);
  976 
  977         /* Hook interrupt last to avoid having to lock softc */
  978         error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
  979             rl_intr, sc, &sc->rl_intrhand);
  980         if (error) {
  981                 if_printf(ifp, "couldn't set up irq\n");
  982                 ether_ifdetach(ifp);
  983         }
  984 
  985 fail:
  986         if (error)
  987                 rl_detach(dev);
  988 
  989         return (error);
  990 }
  991 
  992 /*
  993  * Shutdown hardware and free up resources. This can be called any
  994  * time after the mutex has been initialized. It is called in both
  995  * the error case in attach and the normal detach case so it needs
  996  * to be careful about only freeing resources that have actually been
  997  * allocated.
  998  */
  999 static int
 1000 rl_detach(device_t dev)
 1001 {
 1002         struct rl_softc         *sc;
 1003         struct ifnet            *ifp;
 1004         int                     attached;
 1005 
 1006         sc = device_get_softc(dev);
 1007         ifp = &sc->arpcom.ac_if;
 1008 
 1009         KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
 1010         attached = device_is_attached(dev);
 1011         /* These should only be active if attach succeeded */
 1012         if (attached)
 1013                 ether_ifdetach(ifp);
 1014         RL_LOCK(sc);
 1015 #if 0
 1016         sc->suspended = 1;
 1017 #endif
 1018         if (attached)
 1019                 rl_stop(sc);
 1020         if (sc->rl_miibus)
 1021                 device_delete_child(dev, sc->rl_miibus);
 1022         bus_generic_detach(dev);
 1023 
 1024         if (sc->rl_intrhand)
 1025                 bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
 1026         if (sc->rl_irq)
 1027                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
 1028         if (sc->rl_res)
 1029                 bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
 1030 
 1031         if (sc->rl_tag) {
 1032                 bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
 1033                 bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
 1034                     sc->rl_cdata.rl_rx_dmamap);
 1035                 bus_dma_tag_destroy(sc->rl_tag);
 1036         }
 1037         if (sc->rl_parent_tag)
 1038                 bus_dma_tag_destroy(sc->rl_parent_tag);
 1039 
 1040         RL_UNLOCK(sc);
 1041         mtx_destroy(&sc->rl_mtx);
 1042 
 1043         return (0);
 1044 }
 1045 
 1046 /*
 1047  * Initialize the transmit descriptors.
 1048  */
 1049 static int
 1050 rl_list_tx_init(struct rl_softc *sc)
 1051 {
 1052         struct rl_chain_data    *cd;
 1053         int                     i;
 1054 
 1055         RL_LOCK_ASSERT(sc);
 1056 
 1057         cd = &sc->rl_cdata;
 1058         for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1059                 cd->rl_tx_chain[i] = NULL;
 1060                 CSR_WRITE_4(sc,
 1061                     RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
 1062         }
 1063 
 1064         sc->rl_cdata.cur_tx = 0;
 1065         sc->rl_cdata.last_tx = 0;
 1066 
 1067         return (0);
 1068 }
 1069 
 1070 /*
 1071  * A frame has been uploaded: pass the resulting mbuf chain up to
 1072  * the higher level protocols.
 1073  *
 1074  * You know there's something wrong with a PCI bus-master chip design
 1075  * when you have to use m_devget().
 1076  *
 1077  * The receive operation is badly documented in the datasheet, so I'll
 1078  * attempt to document it here. The driver provides a buffer area and
 1079  * places its base address in the RX buffer start address register.
 1080  * The chip then begins copying frames into the RX buffer. Each frame
 1081  * is preceded by a 32-bit RX status word which specifies the length
 1082  * of the frame and certain other status bits. Each frame (starting with
 1083  * the status word) is also 32-bit aligned. The frame length is in the
 1084  * first 16 bits of the status word; the lower 15 bits correspond with
 1085  * the 'rx status register' mentioned in the datasheet.
 1086  *
 1087  * Note: to make the Alpha happy, the frame payload needs to be aligned
 1088  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
 1089  * as the offset argument to m_devget().
 1090  */
 1091 static void
 1092 rl_rxeof(struct rl_softc *sc)
 1093 {
 1094         struct mbuf             *m;
 1095         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1096         uint8_t                 *rxbufpos;
 1097         int                     total_len = 0;
 1098         int                     wrap = 0;
 1099         uint32_t                rxstat;
 1100         uint16_t                cur_rx;
 1101         uint16_t                limit;
 1102         uint16_t                max_bytes, rx_bytes = 0;
 1103 
 1104         RL_LOCK_ASSERT(sc);
 1105 
 1106         bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
 1107             BUS_DMASYNC_POSTREAD);
 1108 
 1109         cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
 1110 
 1111         /* Do not try to read past this point. */
 1112         limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
 1113 
 1114         if (limit < cur_rx)
 1115                 max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
 1116         else
 1117                 max_bytes = limit - cur_rx;
 1118 
 1119         while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
 1120 #ifdef DEVICE_POLLING
 1121                 if (ifp->if_flags & IFF_POLLING) {
 1122                         if (sc->rxcycles <= 0)
 1123                                 break;
 1124                         sc->rxcycles--;
 1125                 }
 1126 #endif /* DEVICE_POLLING */
 1127                 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
 1128                 rxstat = le32toh(*(uint32_t *)rxbufpos);
 1129 
 1130                 /*
 1131                  * Here's a totally undocumented fact for you. When the
 1132                  * RealTek chip is in the process of copying a packet into
 1133                  * RAM for you, the length will be 0xfff0. If you spot a
 1134                  * packet header with this value, you need to stop. The
 1135                  * datasheet makes absolutely no mention of this and
 1136                  * RealTek should be shot for this.
 1137                  */
 1138                 if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
 1139                         break;
 1140 
 1141                 if (!(rxstat & RL_RXSTAT_RXOK)) {
 1142                         ifp->if_ierrors++;
 1143                         rl_init_locked(sc);
 1144                         return;
 1145                 }
 1146 
 1147                 /* No errors; receive the packet. */
 1148                 total_len = rxstat >> 16;
 1149                 rx_bytes += total_len + 4;
 1150 
 1151                 /*
 1152                  * XXX The RealTek chip includes the CRC with every
 1153                  * received frame, and there's no way to turn this
 1154                  * behavior off (at least, I can't find anything in
 1155                  * the manual that explains how to do it) so we have
 1156                  * to trim off the CRC manually.
 1157                  */
 1158                 total_len -= ETHER_CRC_LEN;
 1159 
 1160                 /*
 1161                  * Avoid trying to read more bytes than we know
 1162                  * the chip has prepared for us.
 1163                  */
 1164                 if (rx_bytes > max_bytes)
 1165                         break;
 1166 
 1167                 rxbufpos = sc->rl_cdata.rl_rx_buf +
 1168                         ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
 1169                 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
 1170                         rxbufpos = sc->rl_cdata.rl_rx_buf;
 1171 
 1172                 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
 1173                 if (total_len > wrap) {
 1174                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
 1175                             NULL);
 1176                         if (m == NULL) {
 1177                                 ifp->if_ierrors++;
 1178                         } else {
 1179                                 m_copyback(m, wrap, total_len - wrap,
 1180                                         sc->rl_cdata.rl_rx_buf);
 1181                         }
 1182                         cur_rx = (total_len - wrap + ETHER_CRC_LEN);
 1183                 } else {
 1184                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
 1185                             NULL);
 1186                         if (m == NULL)
 1187                                 ifp->if_ierrors++;
 1188                         cur_rx += total_len + 4 + ETHER_CRC_LEN;
 1189                 }
 1190 
 1191                 /* Round up to 32-bit boundary. */
 1192                 cur_rx = (cur_rx + 3) & ~3;
 1193                 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
 1194 
 1195                 if (m == NULL)
 1196                         continue;
 1197 
 1198                 ifp->if_ipackets++;
 1199                 RL_UNLOCK(sc);
 1200                 (*ifp->if_input)(ifp, m);
 1201                 RL_LOCK(sc);
 1202         }
 1203 }
 1204 
 1205 /*
 1206  * A frame was downloaded to the chip. It's safe for us to clean up
 1207  * the list buffers.
 1208  */
 1209 static void
 1210 rl_txeof(struct rl_softc *sc)
 1211 {
 1212         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1213         uint32_t                txstat;
 1214 
 1215         RL_LOCK_ASSERT(sc);
 1216 
 1217         /*
 1218          * Go through our tx list and free mbufs for those
 1219          * frames that have been uploaded.
 1220          */
 1221         do {
 1222                 if (RL_LAST_TXMBUF(sc) == NULL)
 1223                         break;
 1224                 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
 1225                 if (!(txstat & (RL_TXSTAT_TX_OK|
 1226                     RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
 1227                         break;
 1228 
 1229                 ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
 1230 
 1231                 bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
 1232                 bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
 1233                 m_freem(RL_LAST_TXMBUF(sc));
 1234                 RL_LAST_TXMBUF(sc) = NULL;
 1235                 if (txstat & RL_TXSTAT_TX_OK)
 1236                         ifp->if_opackets++;
 1237                 else {
 1238                         int                     oldthresh;
 1239                         ifp->if_oerrors++;
 1240                         if ((txstat & RL_TXSTAT_TXABRT) ||
 1241                             (txstat & RL_TXSTAT_OUTOFWIN))
 1242                                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 1243                         oldthresh = sc->rl_txthresh;
 1244                         /* error recovery */
 1245                         rl_reset(sc);
 1246                         rl_init_locked(sc);
 1247                         /*
 1248                          * If there was a transmit underrun,
 1249                          * bump the TX threshold.
 1250                          */
 1251                         if (txstat & RL_TXSTAT_TX_UNDERRUN)
 1252                                 sc->rl_txthresh = oldthresh + 32;
 1253                         return;
 1254                 }
 1255                 RL_INC(sc->rl_cdata.last_tx);
 1256                 ifp->if_flags &= ~IFF_OACTIVE;
 1257         } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
 1258 
 1259         if (RL_LAST_TXMBUF(sc) == NULL)
 1260                 ifp->if_timer = 0;
 1261         else if (ifp->if_timer == 0)
 1262                 ifp->if_timer = 5;
 1263 }
 1264 
 1265 static void
 1266 rl_tick(void *xsc)
 1267 {
 1268         struct rl_softc         *sc = xsc;
 1269         struct mii_data         *mii;
 1270 
 1271         RL_LOCK(sc);
 1272         mii = device_get_softc(sc->rl_miibus);
 1273         mii_tick(mii);
 1274 
 1275         sc->rl_stat_ch = timeout(rl_tick, sc, hz);
 1276         RL_UNLOCK(sc);
 1277 }
 1278 
 1279 #ifdef DEVICE_POLLING
 1280 static void
 1281 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1282 {
 1283         struct rl_softc *sc = ifp->if_softc;
 1284 
 1285         RL_LOCK(sc);
 1286         rl_poll_locked(ifp, cmd, count);
 1287         RL_UNLOCK(sc);
 1288 }
 1289 
 1290 static void
 1291 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1292 {
 1293         struct rl_softc *sc = ifp->if_softc;
 1294 
 1295         RL_LOCK_ASSERT(sc);
 1296 
 1297         if (!(ifp->if_capenable & IFCAP_POLLING)) {
 1298                 ether_poll_deregister(ifp);
 1299                 cmd = POLL_DEREGISTER;
 1300         }
 1301 
 1302         if (cmd == POLL_DEREGISTER) {
 1303                 /* Final call; enable interrupts. */
 1304                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1305                 return;
 1306         }
 1307 
 1308         sc->rxcycles = count;
 1309         rl_rxeof(sc);
 1310         rl_txeof(sc);
 1311 
 1312         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1313                 rl_start_locked(ifp);
 1314 
 1315         if (cmd == POLL_AND_CHECK_STATUS) {
 1316                 uint16_t        status;
 1317 
 1318                 /* We should also check the status register. */
 1319                 status = CSR_READ_2(sc, RL_ISR);
 1320                 if (status == 0xffff)
 1321                         return;
 1322                 if (status != 0)
 1323                         CSR_WRITE_2(sc, RL_ISR, status);
 1324 
 1325                 /* XXX We should check behaviour on receiver stalls. */
 1326 
 1327                 if (status & RL_ISR_SYSTEM_ERR) {
 1328                         rl_reset(sc);
 1329                         rl_init_locked(sc);
 1330                 }
 1331         }
 1332 }
 1333 #endif /* DEVICE_POLLING */
 1334 
 1335 static void
 1336 rl_intr(void *arg)
 1337 {
 1338         struct rl_softc         *sc = arg;
 1339         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1340         uint16_t                status;
 1341 
 1342         RL_LOCK(sc);
 1343 
 1344         if (sc->suspended)
 1345                 goto done_locked;
 1346 
 1347 #ifdef DEVICE_POLLING
 1348         if  (ifp->if_flags & IFF_POLLING)
 1349                 goto done_locked;
 1350 
 1351         if ((ifp->if_capenable & IFCAP_POLLING) &&
 1352             ether_poll_register(rl_poll, ifp)) {
 1353                 /* Disable interrupts. */
 1354                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
 1355                 rl_poll_locked(ifp, 0, 1);
 1356                 goto done_locked;
 1357         }
 1358 #endif /* DEVICE_POLLING */
 1359 
 1360         for (;;) {
 1361                 status = CSR_READ_2(sc, RL_ISR);
 1362                 /* If the card has gone away, the read returns 0xffff. */
 1363                 if (status == 0xffff)
 1364                         break;
 1365                 if (status != 0)
 1366                         CSR_WRITE_2(sc, RL_ISR, status);
 1367                 if ((status & RL_INTRS) == 0)
 1368                         break;
 1369                 if (status & RL_ISR_RX_OK)
 1370                         rl_rxeof(sc);
 1371                 if (status & RL_ISR_RX_ERR)
 1372                         rl_rxeof(sc);
 1373                 if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
 1374                         rl_txeof(sc);
 1375                 if (status & RL_ISR_SYSTEM_ERR) {
 1376                         rl_reset(sc);
 1377                         rl_init_locked(sc);
 1378                 }
 1379         }
 1380 
 1381         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1382                 rl_start_locked(ifp);
 1383 
 1384 done_locked:
 1385         RL_UNLOCK(sc);
 1386 }
 1387 
 1388 /*
 1389  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1390  * pointers to the fragment pointers.
 1391  */
 1392 static int
 1393 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
 1394 {
 1395         struct mbuf             *m_new = NULL;
 1396 
 1397         RL_LOCK_ASSERT(sc);
 1398 
 1399         /*
 1400          * The RealTek is brain damaged and wants longword-aligned
 1401          * TX buffers, plus we can only have one fragment buffer
 1402          * per packet. We have to copy pretty much all the time.
 1403          */
 1404         m_new = m_defrag(m_head, M_DONTWAIT);
 1405 
 1406         if (m_new == NULL) {
 1407                 m_freem(m_head);
 1408                 return (1);
 1409         }
 1410         m_head = m_new;
 1411 
 1412         /* Pad frames to at least 60 bytes. */
 1413         if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
 1414                 /*
 1415                  * Make security concious people happy: zero out the
 1416                  * bytes in the pad area, since we don't know what
 1417                  * this mbuf cluster buffer's previous user might
 1418                  * have left in it.
 1419                  */
 1420                 bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
 1421                      RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
 1422                 m_head->m_pkthdr.len +=
 1423                     (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
 1424                 m_head->m_len = m_head->m_pkthdr.len;
 1425         }
 1426 
 1427         RL_CUR_TXMBUF(sc) = m_head;
 1428 
 1429         return (0);
 1430 }
 1431 
 1432 /*
 1433  * Main transmit routine.
 1434  */
 1435 static void
 1436 rl_start(struct ifnet *ifp)
 1437 {
 1438         struct rl_softc         *sc = ifp->if_softc;
 1439 
 1440         RL_LOCK(sc);
 1441         rl_start_locked(ifp);
 1442         RL_UNLOCK(sc);
 1443 }
 1444 
 1445 static void
 1446 rl_start_locked(struct ifnet *ifp)
 1447 {
 1448         struct rl_softc         *sc = ifp->if_softc;
 1449         struct mbuf             *m_head = NULL;
 1450 
 1451         RL_LOCK_ASSERT(sc);
 1452 
 1453         while (RL_CUR_TXMBUF(sc) == NULL) {
 1454 
 1455                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1456 
 1457                 if (m_head == NULL)
 1458                         break;
 1459 
 1460                 if (rl_encap(sc, m_head))
 1461                         break;
 1462 
 1463                 /* Pass a copy of this mbuf chain to the bpf subsystem. */
 1464                 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
 1465 
 1466                 /* Transmit the frame. */
 1467                 bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
 1468                 bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
 1469                     mtod(RL_CUR_TXMBUF(sc), void *),
 1470                     RL_CUR_TXMBUF(sc)->m_pkthdr.len, rl_dma_map_txbuf, sc, 0);
 1471                 bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
 1472                     BUS_DMASYNC_PREREAD);
 1473                 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
 1474                     RL_TXTHRESH(sc->rl_txthresh) |
 1475                     RL_CUR_TXMBUF(sc)->m_pkthdr.len);
 1476 
 1477                 RL_INC(sc->rl_cdata.cur_tx);
 1478 
 1479                 /* Set a timeout in case the chip goes out to lunch. */
 1480                 ifp->if_timer = 5;
 1481         }
 1482 
 1483         /*
 1484          * We broke out of the loop because all our TX slots are
 1485          * full. Mark the NIC as busy until it drains some of the
 1486          * packets from the queue.
 1487          */
 1488         if (RL_CUR_TXMBUF(sc) != NULL)
 1489                 ifp->if_flags |= IFF_OACTIVE;
 1490 }
 1491 
 1492 static void
 1493 rl_init(void *xsc)
 1494 {
 1495         struct rl_softc         *sc = xsc;
 1496 
 1497         RL_LOCK(sc);
 1498         rl_init_locked(sc);
 1499         RL_UNLOCK(sc);
 1500 }
 1501 
 1502 static void
 1503 rl_init_locked(struct rl_softc *sc)
 1504 {
 1505         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1506         struct mii_data         *mii;
 1507         uint32_t                rxcfg = 0;
 1508 
 1509         RL_LOCK_ASSERT(sc);
 1510 
 1511         mii = device_get_softc(sc->rl_miibus);
 1512 
 1513         /*
 1514          * Cancel pending I/O and free all RX/TX buffers.
 1515          */
 1516         rl_stop(sc);
 1517 
 1518         /*
 1519          * Init our MAC address.  Even though the chipset
 1520          * documentation doesn't mention it, we need to enter "Config
 1521          * register write enable" mode to modify the ID registers.
 1522          */
 1523         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
 1524         CSR_WRITE_STREAM_4(sc, RL_IDR0,
 1525             *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
 1526         CSR_WRITE_STREAM_4(sc, RL_IDR4,
 1527             *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
 1528         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 1529 
 1530         /* Init the RX buffer pointer register. */
 1531         bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
 1532             sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf, sc, 0);
 1533         bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
 1534             BUS_DMASYNC_PREWRITE);
 1535 
 1536         /* Init TX descriptors. */
 1537         rl_list_tx_init(sc);
 1538 
 1539         /*
 1540          * Enable transmit and receive.
 1541          */
 1542         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 1543 
 1544         /*
 1545          * Set the initial TX and RX configuration.
 1546          */
 1547         CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 1548         CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
 1549 
 1550         /* Set the individual bit to receive frames for this host only. */
 1551         rxcfg = CSR_READ_4(sc, RL_RXCFG);
 1552         rxcfg |= RL_RXCFG_RX_INDIV;
 1553 
 1554         /* If we want promiscuous mode, set the allframes bit. */
 1555         if (ifp->if_flags & IFF_PROMISC) {
 1556                 rxcfg |= RL_RXCFG_RX_ALLPHYS;
 1557                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
 1558         } else {
 1559                 rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
 1560                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
 1561         }
 1562 
 1563         /* Set capture broadcast bit to capture broadcast frames. */
 1564         if (ifp->if_flags & IFF_BROADCAST) {
 1565                 rxcfg |= RL_RXCFG_RX_BROAD;
 1566                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
 1567         } else {
 1568                 rxcfg &= ~RL_RXCFG_RX_BROAD;
 1569                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
 1570         }
 1571 
 1572         /* Program the multicast filter, if necessary. */
 1573         rl_setmulti(sc);
 1574 
 1575 #ifdef DEVICE_POLLING
 1576         /* Disable interrupts if we are polling. */
 1577         if (ifp->if_flags & IFF_POLLING)
 1578                 CSR_WRITE_2(sc, RL_IMR, 0);
 1579         else
 1580 #endif /* DEVICE_POLLING */
 1581         /* Enable interrupts. */
 1582         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1583 
 1584         /* Set initial TX threshold */
 1585         sc->rl_txthresh = RL_TX_THRESH_INIT;
 1586 
 1587         /* Start RX/TX process. */
 1588         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
 1589 
 1590         /* Enable receiver and transmitter. */
 1591         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 1592 
 1593         mii_mediachg(mii);
 1594 
 1595         CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
 1596 
 1597         ifp->if_flags |= IFF_RUNNING;
 1598         ifp->if_flags &= ~IFF_OACTIVE;
 1599 
 1600         sc->rl_stat_ch = timeout(rl_tick, sc, hz);
 1601 }
 1602 
 1603 /*
 1604  * Set media options.
 1605  */
 1606 static int
 1607 rl_ifmedia_upd(struct ifnet *ifp)
 1608 {
 1609         struct rl_softc         *sc = ifp->if_softc;
 1610         struct mii_data         *mii;
 1611 
 1612         mii = device_get_softc(sc->rl_miibus);
 1613 
 1614         mii_mediachg(mii);
 1615 
 1616         return (0);
 1617 }
 1618 
 1619 /*
 1620  * Report current media status.
 1621  */
 1622 static void
 1623 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1624 {
 1625         struct rl_softc         *sc = ifp->if_softc;
 1626         struct mii_data         *mii;
 1627 
 1628         mii = device_get_softc(sc->rl_miibus);
 1629 
 1630         mii_pollstat(mii);
 1631         ifmr->ifm_active = mii->mii_media_active;
 1632         ifmr->ifm_status = mii->mii_media_status;
 1633 }
 1634 
 1635 static int
 1636 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1637 {
 1638         struct ifreq            *ifr = (struct ifreq *)data;
 1639         struct mii_data         *mii;
 1640         struct rl_softc         *sc = ifp->if_softc;
 1641         int                     error = 0;
 1642 
 1643         switch (command) {
 1644         case SIOCSIFFLAGS:
 1645                 RL_LOCK(sc);
 1646                 if (ifp->if_flags & IFF_UP) {
 1647                         rl_init_locked(sc);
 1648                 } else {
 1649                         if (ifp->if_flags & IFF_RUNNING)
 1650                                 rl_stop(sc);
 1651                 }
 1652                 RL_UNLOCK(sc);
 1653                 error = 0;
 1654                 break;
 1655         case SIOCADDMULTI:
 1656         case SIOCDELMULTI:
 1657                 RL_LOCK(sc);
 1658                 rl_setmulti(sc);
 1659                 RL_UNLOCK(sc);
 1660                 error = 0;
 1661                 break;
 1662         case SIOCGIFMEDIA:
 1663         case SIOCSIFMEDIA:
 1664                 mii = device_get_softc(sc->rl_miibus);
 1665                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1666                 break;
 1667         case SIOCSIFCAP:
 1668                 ifp->if_capenable &= ~IFCAP_POLLING;
 1669                 ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
 1670                 break;
 1671         default:
 1672                 error = ether_ioctl(ifp, command, data);
 1673                 break;
 1674         }
 1675 
 1676         return (error);
 1677 }
 1678 
 1679 static void
 1680 rl_watchdog(struct ifnet *ifp)
 1681 {
 1682         struct rl_softc         *sc = ifp->if_softc;
 1683 
 1684         RL_LOCK(sc);
 1685 
 1686         if_printf(ifp, "watchdog timeout\n");
 1687         ifp->if_oerrors++;
 1688 
 1689         rl_txeof(sc);
 1690         rl_rxeof(sc);
 1691         rl_init_locked(sc);
 1692 
 1693         RL_UNLOCK(sc);
 1694 }
 1695 
 1696 /*
 1697  * Stop the adapter and free any mbufs allocated to the
 1698  * RX and TX lists.
 1699  */
 1700 static void
 1701 rl_stop(struct rl_softc *sc)
 1702 {
 1703         register int            i;
 1704         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1705 
 1706         RL_LOCK_ASSERT(sc);
 1707 
 1708         ifp->if_timer = 0;
 1709         untimeout(rl_tick, sc, sc->rl_stat_ch);
 1710         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1711 #ifdef DEVICE_POLLING
 1712         ether_poll_deregister(ifp);
 1713 #endif /* DEVICE_POLLING */
 1714 
 1715         CSR_WRITE_1(sc, RL_COMMAND, 0x00);
 1716         CSR_WRITE_2(sc, RL_IMR, 0x0000);
 1717         bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
 1718 
 1719         /*
 1720          * Free the TX list buffers.
 1721          */
 1722         for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1723                 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
 1724                         bus_dmamap_unload(sc->rl_tag,
 1725                             sc->rl_cdata.rl_tx_dmamap[i]);
 1726                         bus_dmamap_destroy(sc->rl_tag,
 1727                             sc->rl_cdata.rl_tx_dmamap[i]);
 1728                         m_freem(sc->rl_cdata.rl_tx_chain[i]);
 1729                         sc->rl_cdata.rl_tx_chain[i] = NULL;
 1730                         CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
 1731                             0x0000000);
 1732                 }
 1733         }
 1734 }
 1735 
 1736 /*
 1737  * Device suspend routine.  Stop the interface and save some PCI
 1738  * settings in case the BIOS doesn't restore them properly on
 1739  * resume.
 1740  */
 1741 static int
 1742 rl_suspend(device_t dev)
 1743 {
 1744         struct rl_softc         *sc;
 1745 
 1746         sc = device_get_softc(dev);
 1747 
 1748         RL_LOCK(sc);
 1749         rl_stop(sc);
 1750         sc->suspended = 1;
 1751         RL_UNLOCK(sc);
 1752 
 1753         return (0);
 1754 }
 1755 
 1756 /*
 1757  * Device resume routine.  Restore some PCI settings in case the BIOS
 1758  * doesn't, re-enable busmastering, and restart the interface if
 1759  * appropriate.
 1760  */
 1761 static int
 1762 rl_resume(device_t dev)
 1763 {
 1764         struct rl_softc         *sc;
 1765         struct ifnet            *ifp;
 1766 
 1767         sc = device_get_softc(dev);
 1768         ifp = &sc->arpcom.ac_if;
 1769 
 1770         RL_LOCK(sc);
 1771 
 1772         /* reinitialize interface if necessary */
 1773         if (ifp->if_flags & IFF_UP)
 1774                 rl_init_locked(sc);
 1775 
 1776         sc->suspended = 0;
 1777 
 1778         RL_UNLOCK(sc);
 1779 
 1780         return (0);
 1781 }
 1782 
 1783 /*
 1784  * Stop all chip I/O so that the kernel's probe routines don't
 1785  * get confused by errant DMAs when rebooting.
 1786  */
 1787 static void
 1788 rl_shutdown(device_t dev)
 1789 {
 1790         struct rl_softc         *sc;
 1791 
 1792         sc = device_get_softc(dev);
 1793 
 1794         RL_LOCK(sc);
 1795         rl_stop(sc);
 1796         RL_UNLOCK(sc);
 1797 }

Cache object: 3d7bdbdaed5bc1108a142e3221929e62


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.