The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_rl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/8.3/sys/pci/if_rl.c 230714 2012-01-29 01:22:48Z marius $");
   35 
   36 /*
   37  * RealTek 8129/8139 PCI NIC driver
   38  *
   39  * Supports several extremely cheap PCI 10/100 adapters based on
   40  * the RealTek chipset. Datasheets can be obtained from
   41  * www.realtek.com.tw.
   42  *
   43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   44  * Electrical Engineering Department
   45  * Columbia University, New York City
   46  */
   47 /*
   48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
   49  * probably the worst PCI ethernet controller ever made, with the possible
   50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
   51  * DMA, but it has a terrible interface that nullifies any performance
   52  * gains that bus-master DMA usually offers.
   53  *
   54  * For transmission, the chip offers a series of four TX descriptor
   55  * registers. Each transmit frame must be in a contiguous buffer, aligned
   56  * on a longword (32-bit) boundary. This means we almost always have to
   57  * do mbuf copies in order to transmit a frame, except in the unlikely
   58  * case where a) the packet fits into a single mbuf, and b) the packet
   59  * is 32-bit aligned within the mbuf's data area. The presence of only
   60  * four descriptor registers means that we can never have more than four
   61  * packets queued for transmission at any one time.
   62  *
   63  * Reception is not much better. The driver has to allocate a single large
   64  * buffer area (up to 64K in size) into which the chip will DMA received
   65  * frames. Because we don't know where within this region received packets
   66  * will begin or end, we have no choice but to copy data from the buffer
   67  * area into mbufs in order to pass the packets up to the higher protocol
   68  * levels.
   69  *
   70  * It's impossible given this rotten design to really achieve decent
   71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
   72  * some equally overmuscled CPU to drive it.
   73  *
   74  * On the bright side, the 8139 does have a built-in PHY, although
   75  * rather than using an MDIO serial interface like most other NICs, the
   76  * PHY registers are directly accessible through the 8139's register
   77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
   78  * filter.
   79  *
   80  * The 8129 chip is an older version of the 8139 that uses an external PHY
   81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
   82  * the 8139 lets you directly access the on-board PHY registers. We need
   83  * to select which interface to use depending on the chip type.
   84  */
   85 
   86 #ifdef HAVE_KERNEL_OPTION_HEADERS
   87 #include "opt_device_polling.h"
   88 #endif
   89 
   90 #include <sys/param.h>
   91 #include <sys/endian.h>
   92 #include <sys/systm.h>
   93 #include <sys/sockio.h>
   94 #include <sys/mbuf.h>
   95 #include <sys/malloc.h>
   96 #include <sys/kernel.h>
   97 #include <sys/module.h>
   98 #include <sys/socket.h>
   99 #include <sys/sysctl.h>
  100 
  101 #include <net/if.h>
  102 #include <net/if_arp.h>
  103 #include <net/ethernet.h>
  104 #include <net/if_dl.h>
  105 #include <net/if_media.h>
  106 #include <net/if_types.h>
  107 
  108 #include <net/bpf.h>
  109 
  110 #include <machine/bus.h>
  111 #include <machine/resource.h>
  112 #include <sys/bus.h>
  113 #include <sys/rman.h>
  114 
  115 #include <dev/mii/mii.h>
  116 #include <dev/mii/mii_bitbang.h>
  117 #include <dev/mii/miivar.h>
  118 
  119 #include <dev/pci/pcireg.h>
  120 #include <dev/pci/pcivar.h>
  121 
  122 MODULE_DEPEND(rl, pci, 1, 1, 1);
  123 MODULE_DEPEND(rl, ether, 1, 1, 1);
  124 MODULE_DEPEND(rl, miibus, 1, 1, 1);
  125 
  126 /* "device miibus" required.  See GENERIC if you get errors here. */
  127 #include "miibus_if.h"
  128 
  129 #include <pci/if_rlreg.h>
  130 
  131 /*
  132  * Various supported device vendors/types and their names.
  133  */
  134 static const struct rl_type const rl_devs[] = {
  135         { RT_VENDORID, RT_DEVICEID_8129, RL_8129,
  136                 "RealTek 8129 10/100BaseTX" },
  137         { RT_VENDORID, RT_DEVICEID_8139, RL_8139,
  138                 "RealTek 8139 10/100BaseTX" },
  139         { RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
  140                 "RealTek 8139 10/100BaseTX" },
  141         { RT_VENDORID, RT_DEVICEID_8138, RL_8139,
  142                 "RealTek 8139 10/100BaseTX CardBus" },
  143         { RT_VENDORID, RT_DEVICEID_8100, RL_8139,
  144                 "RealTek 8100 10/100BaseTX" },
  145         { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
  146                 "Accton MPX 5030/5038 10/100BaseTX" },
  147         { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
  148                 "Delta Electronics 8139 10/100BaseTX" },
  149         { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
  150                 "Addtron Technology 8139 10/100BaseTX" },
  151         { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
  152                 "D-Link DFE-530TX+ 10/100BaseTX" },
  153         { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
  154                 "D-Link DFE-690TXD 10/100BaseTX" },
  155         { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
  156                 "Nortel Networks 10/100BaseTX" },
  157         { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
  158                 "Corega FEther CB-TXD" },
  159         { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
  160                 "Corega FEtherII CB-TXD" },
  161         { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
  162                 "Peppercon AG ROL-F" },
  163         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
  164                 "Planex FNW-3603-TX" },
  165         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
  166                 "Planex FNW-3800-TX" },
  167         { CP_VENDORID, RT_DEVICEID_8139, RL_8139,
  168                 "Compaq HNE-300" },
  169         { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
  170                 "LevelOne FPC-0106TX" },
  171         { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
  172                 "Edimax EP-4103DL CardBus" }
  173 };
  174 
  175 static int rl_attach(device_t);
  176 static int rl_detach(device_t);
  177 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  178 static int rl_dma_alloc(struct rl_softc *);
  179 static void rl_dma_free(struct rl_softc *);
  180 static void rl_eeprom_putbyte(struct rl_softc *, int);
  181 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
  182 static int rl_encap(struct rl_softc *, struct mbuf **);
  183 static int rl_list_tx_init(struct rl_softc *);
  184 static int rl_list_rx_init(struct rl_softc *);
  185 static int rl_ifmedia_upd(struct ifnet *);
  186 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  187 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
  188 static void rl_intr(void *);
  189 static void rl_init(void *);
  190 static void rl_init_locked(struct rl_softc *sc);
  191 static int rl_miibus_readreg(device_t, int, int);
  192 static void rl_miibus_statchg(device_t);
  193 static int rl_miibus_writereg(device_t, int, int, int);
  194 #ifdef DEVICE_POLLING
  195 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  196 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
  197 #endif
  198 static int rl_probe(device_t);
  199 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
  200 static void rl_reset(struct rl_softc *);
  201 static int rl_resume(device_t);
  202 static int rl_rxeof(struct rl_softc *);
  203 static void rl_rxfilter(struct rl_softc *);
  204 static int rl_shutdown(device_t);
  205 static void rl_start(struct ifnet *);
  206 static void rl_start_locked(struct ifnet *);
  207 static void rl_stop(struct rl_softc *);
  208 static int rl_suspend(device_t);
  209 static void rl_tick(void *);
  210 static void rl_txeof(struct rl_softc *);
  211 static void rl_watchdog(struct rl_softc *);
  212 static void rl_setwol(struct rl_softc *);
  213 static void rl_clrwol(struct rl_softc *);
  214 
  215 /*
  216  * MII bit-bang glue
  217  */
  218 static uint32_t rl_mii_bitbang_read(device_t);
  219 static void rl_mii_bitbang_write(device_t, uint32_t);
  220 
  221 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
  222         rl_mii_bitbang_read,
  223         rl_mii_bitbang_write,
  224         {
  225                 RL_MII_DATAOUT, /* MII_BIT_MDO */
  226                 RL_MII_DATAIN,  /* MII_BIT_MDI */
  227                 RL_MII_CLK,     /* MII_BIT_MDC */
  228                 RL_MII_DIR,     /* MII_BIT_DIR_HOST_PHY */
  229                 0,              /* MII_BIT_DIR_PHY_HOST */
  230         }
  231 };
  232 
  233 static device_method_t rl_methods[] = {
  234         /* Device interface */
  235         DEVMETHOD(device_probe,         rl_probe),
  236         DEVMETHOD(device_attach,        rl_attach),
  237         DEVMETHOD(device_detach,        rl_detach),
  238         DEVMETHOD(device_suspend,       rl_suspend),
  239         DEVMETHOD(device_resume,        rl_resume),
  240         DEVMETHOD(device_shutdown,      rl_shutdown),
  241 
  242         /* MII interface */
  243         DEVMETHOD(miibus_readreg,       rl_miibus_readreg),
  244         DEVMETHOD(miibus_writereg,      rl_miibus_writereg),
  245         DEVMETHOD(miibus_statchg,       rl_miibus_statchg),
  246 
  247         DEVMETHOD_END
  248 };
  249 
  250 static driver_t rl_driver = {
  251         "rl",
  252         rl_methods,
  253         sizeof(struct rl_softc)
  254 };
  255 
  256 static devclass_t rl_devclass;
  257 
  258 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
  259 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
  260 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
  261 
  262 #define EE_SET(x)                                       \
  263         CSR_WRITE_1(sc, RL_EECMD,                       \
  264                 CSR_READ_1(sc, RL_EECMD) | x)
  265 
  266 #define EE_CLR(x)                                       \
  267         CSR_WRITE_1(sc, RL_EECMD,                       \
  268                 CSR_READ_1(sc, RL_EECMD) & ~x)
  269 
  270 /*
  271  * Send a read command and address to the EEPROM, check for ACK.
  272  */
  273 static void
  274 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
  275 {
  276         register int            d, i;
  277 
  278         d = addr | sc->rl_eecmd_read;
  279 
  280         /*
  281          * Feed in each bit and strobe the clock.
  282          */
  283         for (i = 0x400; i; i >>= 1) {
  284                 if (d & i) {
  285                         EE_SET(RL_EE_DATAIN);
  286                 } else {
  287                         EE_CLR(RL_EE_DATAIN);
  288                 }
  289                 DELAY(100);
  290                 EE_SET(RL_EE_CLK);
  291                 DELAY(150);
  292                 EE_CLR(RL_EE_CLK);
  293                 DELAY(100);
  294         }
  295 }
  296 
  297 /*
  298  * Read a word of data stored in the EEPROM at address 'addr.'
  299  */
  300 static void
  301 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
  302 {
  303         register int            i;
  304         uint16_t                word = 0;
  305 
  306         /* Enter EEPROM access mode. */
  307         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
  308 
  309         /*
  310          * Send address of word we want to read.
  311          */
  312         rl_eeprom_putbyte(sc, addr);
  313 
  314         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
  315 
  316         /*
  317          * Start reading bits from EEPROM.
  318          */
  319         for (i = 0x8000; i; i >>= 1) {
  320                 EE_SET(RL_EE_CLK);
  321                 DELAY(100);
  322                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
  323                         word |= i;
  324                 EE_CLR(RL_EE_CLK);
  325                 DELAY(100);
  326         }
  327 
  328         /* Turn off EEPROM access mode. */
  329         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
  330 
  331         *dest = word;
  332 }
  333 
  334 /*
  335  * Read a sequence of words from the EEPROM.
  336  */
  337 static void
  338 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
  339 {
  340         int                     i;
  341         uint16_t                word = 0, *ptr;
  342 
  343         for (i = 0; i < cnt; i++) {
  344                 rl_eeprom_getword(sc, off + i, &word);
  345                 ptr = (uint16_t *)(dest + (i * 2));
  346                 if (swap)
  347                         *ptr = ntohs(word);
  348                 else
  349                         *ptr = word;
  350         }
  351 }
  352 
  353 /*
  354  * Read the MII serial port for the MII bit-bang module.
  355  */
  356 static uint32_t
  357 rl_mii_bitbang_read(device_t dev)
  358 {
  359         struct rl_softc *sc;
  360         uint32_t val;
  361 
  362         sc = device_get_softc(dev);
  363 
  364         val = CSR_READ_1(sc, RL_MII);
  365         CSR_BARRIER(sc, RL_MII, 1,
  366             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  367 
  368         return (val);
  369 }
  370 
  371 /*
  372  * Write the MII serial port for the MII bit-bang module.
  373  */
  374 static void
  375 rl_mii_bitbang_write(device_t dev, uint32_t val)
  376 {
  377         struct rl_softc *sc;
  378 
  379         sc = device_get_softc(dev);
  380 
  381         CSR_WRITE_1(sc, RL_MII, val);
  382         CSR_BARRIER(sc, RL_MII, 1,
  383             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  384 }
  385 
  386 static int
  387 rl_miibus_readreg(device_t dev, int phy, int reg)
  388 {
  389         struct rl_softc         *sc;
  390         uint16_t                rl8139_reg;
  391 
  392         sc = device_get_softc(dev);
  393 
  394         if (sc->rl_type == RL_8139) {
  395                 switch (reg) {
  396                 case MII_BMCR:
  397                         rl8139_reg = RL_BMCR;
  398                         break;
  399                 case MII_BMSR:
  400                         rl8139_reg = RL_BMSR;
  401                         break;
  402                 case MII_ANAR:
  403                         rl8139_reg = RL_ANAR;
  404                         break;
  405                 case MII_ANER:
  406                         rl8139_reg = RL_ANER;
  407                         break;
  408                 case MII_ANLPAR:
  409                         rl8139_reg = RL_LPAR;
  410                         break;
  411                 case MII_PHYIDR1:
  412                 case MII_PHYIDR2:
  413                         return (0);
  414                 /*
  415                  * Allow the rlphy driver to read the media status
  416                  * register. If we have a link partner which does not
  417                  * support NWAY, this is the register which will tell
  418                  * us the results of parallel detection.
  419                  */
  420                 case RL_MEDIASTAT:
  421                         return (CSR_READ_1(sc, RL_MEDIASTAT));
  422                 default:
  423                         device_printf(sc->rl_dev, "bad phy register\n");
  424                         return (0);
  425                 }
  426                 return (CSR_READ_2(sc, rl8139_reg));
  427         }
  428 
  429         return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
  430 }
  431 
  432 static int
  433 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
  434 {
  435         struct rl_softc         *sc;
  436         uint16_t                rl8139_reg;
  437 
  438         sc = device_get_softc(dev);
  439 
  440         if (sc->rl_type == RL_8139) {
  441                 switch (reg) {
  442                 case MII_BMCR:
  443                         rl8139_reg = RL_BMCR;
  444                         break;
  445                 case MII_BMSR:
  446                         rl8139_reg = RL_BMSR;
  447                         break;
  448                 case MII_ANAR:
  449                         rl8139_reg = RL_ANAR;
  450                         break;
  451                 case MII_ANER:
  452                         rl8139_reg = RL_ANER;
  453                         break;
  454                 case MII_ANLPAR:
  455                         rl8139_reg = RL_LPAR;
  456                         break;
  457                 case MII_PHYIDR1:
  458                 case MII_PHYIDR2:
  459                         return (0);
  460                         break;
  461                 default:
  462                         device_printf(sc->rl_dev, "bad phy register\n");
  463                         return (0);
  464                 }
  465                 CSR_WRITE_2(sc, rl8139_reg, data);
  466                 return (0);
  467         }
  468 
  469         mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
  470 
  471         return (0);
  472 }
  473 
  474 static void
  475 rl_miibus_statchg(device_t dev)
  476 {
  477         struct rl_softc         *sc;
  478         struct ifnet            *ifp;
  479         struct mii_data         *mii;
  480 
  481         sc = device_get_softc(dev);
  482         mii = device_get_softc(sc->rl_miibus);
  483         ifp = sc->rl_ifp;
  484         if (mii == NULL || ifp == NULL ||
  485             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  486                 return;
  487 
  488         sc->rl_flags &= ~RL_FLAG_LINK;
  489         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  490             (IFM_ACTIVE | IFM_AVALID)) {
  491                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  492                 case IFM_10_T:
  493                 case IFM_100_TX:
  494                         sc->rl_flags |= RL_FLAG_LINK;
  495                         break;
  496                 default:
  497                         break;
  498                 }
  499         }
  500         /*
  501          * RealTek controllers do not provide any interface to
  502          * Tx/Rx MACs for resolved speed, duplex and flow-control
  503          * parameters.
  504          */
  505 }
  506 
  507 /*
  508  * Program the 64-bit multicast hash filter.
  509  */
  510 static void
  511 rl_rxfilter(struct rl_softc *sc)
  512 {
  513         struct ifnet            *ifp = sc->rl_ifp;
  514         int                     h = 0;
  515         uint32_t                hashes[2] = { 0, 0 };
  516         struct ifmultiaddr      *ifma;
  517         uint32_t                rxfilt;
  518 
  519         RL_LOCK_ASSERT(sc);
  520 
  521         rxfilt = CSR_READ_4(sc, RL_RXCFG);
  522         rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
  523             RL_RXCFG_RX_MULTI);
  524         /* Always accept frames destined for this host. */
  525         rxfilt |= RL_RXCFG_RX_INDIV;
  526         /* Set capture broadcast bit to capture broadcast frames. */
  527         if (ifp->if_flags & IFF_BROADCAST)
  528                 rxfilt |= RL_RXCFG_RX_BROAD;
  529         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  530                 rxfilt |= RL_RXCFG_RX_MULTI;
  531                 if (ifp->if_flags & IFF_PROMISC)
  532                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
  533                 hashes[0] = 0xFFFFFFFF;
  534                 hashes[1] = 0xFFFFFFFF;
  535         } else {
  536                 /* Now program new ones. */
  537                 if_maddr_rlock(ifp);
  538                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  539                         if (ifma->ifma_addr->sa_family != AF_LINK)
  540                                 continue;
  541                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  542                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  543                         if (h < 32)
  544                                 hashes[0] |= (1 << h);
  545                         else
  546                                 hashes[1] |= (1 << (h - 32));
  547                 }
  548                 if_maddr_runlock(ifp);
  549                 if (hashes[0] != 0 || hashes[1] != 0)
  550                         rxfilt |= RL_RXCFG_RX_MULTI;
  551         }
  552 
  553         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
  554         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
  555         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
  556 }
  557 
  558 static void
  559 rl_reset(struct rl_softc *sc)
  560 {
  561         register int            i;
  562 
  563         RL_LOCK_ASSERT(sc);
  564 
  565         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
  566 
  567         for (i = 0; i < RL_TIMEOUT; i++) {
  568                 DELAY(10);
  569                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
  570                         break;
  571         }
  572         if (i == RL_TIMEOUT)
  573                 device_printf(sc->rl_dev, "reset never completed!\n");
  574 }
  575 
  576 /*
  577  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
  578  * IDs against our list and return a device name if we find a match.
  579  */
  580 static int
  581 rl_probe(device_t dev)
  582 {
  583         const struct rl_type    *t;
  584         uint16_t                devid, revid, vendor;
  585         int                     i;
  586         
  587         vendor = pci_get_vendor(dev);
  588         devid = pci_get_device(dev);
  589         revid = pci_get_revid(dev);
  590 
  591         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
  592                 if (revid == 0x20) {
  593                         /* 8139C+, let re(4) take care of this device. */
  594                         return (ENXIO);
  595                 }
  596         }
  597         t = rl_devs;
  598         for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
  599                 if (vendor == t->rl_vid && devid == t->rl_did) {
  600                         device_set_desc(dev, t->rl_name);
  601                         return (BUS_PROBE_DEFAULT);
  602                 }
  603         }
  604 
  605         return (ENXIO);
  606 }
  607 
  608 struct rl_dmamap_arg {
  609         bus_addr_t      rl_busaddr;
  610 };
  611 
  612 static void
  613 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  614 {
  615         struct rl_dmamap_arg    *ctx;
  616 
  617         if (error != 0)
  618                 return;
  619 
  620         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  621 
  622         ctx = (struct rl_dmamap_arg *)arg;
  623         ctx->rl_busaddr = segs[0].ds_addr;
  624 }
  625 
  626 /*
  627  * Attach the interface. Allocate softc structures, do ifmedia
  628  * setup and ethernet/BPF attach.
  629  */
  630 static int
  631 rl_attach(device_t dev)
  632 {
  633         uint8_t                 eaddr[ETHER_ADDR_LEN];
  634         uint16_t                as[3];
  635         struct ifnet            *ifp;
  636         struct rl_softc         *sc;
  637         const struct rl_type    *t;
  638         struct sysctl_ctx_list  *ctx;
  639         struct sysctl_oid_list  *children;
  640         int                     error = 0, hwrev, i, phy, pmc, rid;
  641         int                     prefer_iomap, unit;
  642         uint16_t                rl_did = 0;
  643         char                    tn[32];
  644 
  645         sc = device_get_softc(dev);
  646         unit = device_get_unit(dev);
  647         sc->rl_dev = dev;
  648 
  649         sc->rl_twister_enable = 0;
  650         snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
  651         TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
  652         ctx = device_get_sysctl_ctx(sc->rl_dev);
  653         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
  654         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
  655            &sc->rl_twister_enable, 0, "");
  656 
  657         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  658             MTX_DEF);
  659         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
  660 
  661         pci_enable_busmaster(dev);
  662 
  663 
  664         /*
  665          * Map control/status registers.
  666          * Default to using PIO access for this driver. On SMP systems,
  667          * there appear to be problems with memory mapped mode: it looks
  668          * like doing too many memory mapped access back to back in rapid
  669          * succession can hang the bus. I'm inclined to blame this on
  670          * crummy design/construction on the part of RealTek. Memory
  671          * mapped mode does appear to work on uniprocessor systems though.
  672          */
  673         prefer_iomap = 1;
  674         snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
  675         TUNABLE_INT_FETCH(tn, &prefer_iomap);
  676         if (prefer_iomap) {
  677                 sc->rl_res_id = PCIR_BAR(0);
  678                 sc->rl_res_type = SYS_RES_IOPORT;
  679                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
  680                     &sc->rl_res_id, RF_ACTIVE);
  681         }
  682         if (prefer_iomap == 0 || sc->rl_res == NULL) {
  683                 sc->rl_res_id = PCIR_BAR(1);
  684                 sc->rl_res_type = SYS_RES_MEMORY;
  685                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
  686                     &sc->rl_res_id, RF_ACTIVE);
  687         }
  688         if (sc->rl_res == NULL) {
  689                 device_printf(dev, "couldn't map ports/memory\n");
  690                 error = ENXIO;
  691                 goto fail;
  692         }
  693 
  694 #ifdef notdef
  695         /*
  696          * Detect the Realtek 8139B. For some reason, this chip is very
  697          * unstable when left to autoselect the media
  698          * The best workaround is to set the device to the required
  699          * media type or to set it to the 10 Meg speed.
  700          */
  701         if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
  702                 device_printf(dev,
  703 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
  704 #endif
  705 
  706         sc->rl_btag = rman_get_bustag(sc->rl_res);
  707         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
  708 
  709         /* Allocate interrupt */
  710         rid = 0;
  711         sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  712             RF_SHAREABLE | RF_ACTIVE);
  713 
  714         if (sc->rl_irq[0] == NULL) {
  715                 device_printf(dev, "couldn't map interrupt\n");
  716                 error = ENXIO;
  717                 goto fail;
  718         }
  719 
  720         /*
  721          * Reset the adapter. Only take the lock here as it's needed in
  722          * order to call rl_reset().
  723          */
  724         RL_LOCK(sc);
  725         rl_reset(sc);
  726         RL_UNLOCK(sc);
  727 
  728         sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
  729         rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
  730         if (rl_did != 0x8129)
  731                 sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
  732 
  733         /*
  734          * Get station address from the EEPROM.
  735          */
  736         rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
  737         for (i = 0; i < 3; i++) {
  738                 eaddr[(i * 2) + 0] = as[i] & 0xff;
  739                 eaddr[(i * 2) + 1] = as[i] >> 8;
  740         }
  741 
  742         /*
  743          * Now read the exact device type from the EEPROM to find
  744          * out if it's an 8129 or 8139.
  745          */
  746         rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
  747 
  748         t = rl_devs;
  749         sc->rl_type = 0;
  750         while(t->rl_name != NULL) {
  751                 if (rl_did == t->rl_did) {
  752                         sc->rl_type = t->rl_basetype;
  753                         break;
  754                 }
  755                 t++;
  756         }
  757 
  758         if (sc->rl_type == 0) {
  759                 device_printf(dev, "unknown device ID: %x assuming 8139\n",
  760                     rl_did);
  761                 sc->rl_type = RL_8139;
  762                 /*
  763                  * Read RL_IDR register to get ethernet address as accessing
  764                  * EEPROM may not extract correct address.
  765                  */
  766                 for (i = 0; i < ETHER_ADDR_LEN; i++)
  767                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
  768         }
  769 
  770         if ((error = rl_dma_alloc(sc)) != 0)
  771                 goto fail;
  772 
  773         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
  774         if (ifp == NULL) {
  775                 device_printf(dev, "can not if_alloc()\n");
  776                 error = ENOSPC;
  777                 goto fail;
  778         }
  779 
  780 #define RL_PHYAD_INTERNAL       0
  781 
  782         /* Do MII setup */
  783         phy = MII_PHY_ANY;
  784         if (sc->rl_type == RL_8139)
  785                 phy = RL_PHYAD_INTERNAL;
  786         error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
  787             rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
  788         if (error != 0) {
  789                 device_printf(dev, "attaching PHYs failed\n");
  790                 goto fail;
  791         }
  792 
  793         ifp->if_softc = sc;
  794         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  795         ifp->if_mtu = ETHERMTU;
  796         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  797         ifp->if_ioctl = rl_ioctl;
  798         ifp->if_start = rl_start;
  799         ifp->if_init = rl_init;
  800         ifp->if_capabilities = IFCAP_VLAN_MTU;
  801         /* Check WOL for RTL8139B or newer controllers. */
  802         if (sc->rl_type == RL_8139 &&
  803             pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
  804                 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
  805                 switch (hwrev) {
  806                 case RL_HWREV_8139B:
  807                 case RL_HWREV_8130:
  808                 case RL_HWREV_8139C:
  809                 case RL_HWREV_8139D:
  810                 case RL_HWREV_8101:
  811                 case RL_HWREV_8100:
  812                         ifp->if_capabilities |= IFCAP_WOL;
  813                         /* Disable WOL. */
  814                         rl_clrwol(sc);
  815                         break;
  816                 default:
  817                         break;
  818                 }
  819         }
  820         ifp->if_capenable = ifp->if_capabilities;
  821 #ifdef DEVICE_POLLING
  822         ifp->if_capabilities |= IFCAP_POLLING;
  823 #endif
  824         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  825         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  826         IFQ_SET_READY(&ifp->if_snd);
  827 
  828         /*
  829          * Call MI attach routine.
  830          */
  831         ether_ifattach(ifp, eaddr);
  832 
  833         /* Hook interrupt last to avoid having to lock softc */
  834         error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
  835             NULL, rl_intr, sc, &sc->rl_intrhand[0]);
  836         if (error) {
  837                 device_printf(sc->rl_dev, "couldn't set up irq\n");
  838                 ether_ifdetach(ifp);
  839         }
  840 
  841 fail:
  842         if (error)
  843                 rl_detach(dev);
  844 
  845         return (error);
  846 }
  847 
  848 /*
  849  * Shutdown hardware and free up resources. This can be called any
  850  * time after the mutex has been initialized. It is called in both
  851  * the error case in attach and the normal detach case so it needs
  852  * to be careful about only freeing resources that have actually been
  853  * allocated.
  854  */
  855 static int
  856 rl_detach(device_t dev)
  857 {
  858         struct rl_softc         *sc;
  859         struct ifnet            *ifp;
  860 
  861         sc = device_get_softc(dev);
  862         ifp = sc->rl_ifp;
  863 
  864         KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
  865 
  866 #ifdef DEVICE_POLLING
  867         if (ifp->if_capenable & IFCAP_POLLING)
  868                 ether_poll_deregister(ifp);
  869 #endif
  870         /* These should only be active if attach succeeded */
  871         if (device_is_attached(dev)) {
  872                 RL_LOCK(sc);
  873                 rl_stop(sc);
  874                 RL_UNLOCK(sc);
  875                 callout_drain(&sc->rl_stat_callout);
  876                 ether_ifdetach(ifp);
  877         }
  878 #if 0
  879         sc->suspended = 1;
  880 #endif
  881         if (sc->rl_miibus)
  882                 device_delete_child(dev, sc->rl_miibus);
  883         bus_generic_detach(dev);
  884 
  885         if (sc->rl_intrhand[0])
  886                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
  887         if (sc->rl_irq[0])
  888                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
  889         if (sc->rl_res)
  890                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
  891                     sc->rl_res);
  892 
  893         if (ifp)
  894                 if_free(ifp);
  895 
  896         rl_dma_free(sc);
  897 
  898         mtx_destroy(&sc->rl_mtx);
  899 
  900         return (0);
  901 }
  902 
  903 static int
  904 rl_dma_alloc(struct rl_softc *sc)
  905 {
  906         struct rl_dmamap_arg    ctx;
  907         int                     error, i;
  908 
  909         /*
  910          * Allocate the parent bus DMA tag appropriate for PCI.
  911          */
  912         error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */
  913             1, 0,                       /* alignment, boundary */
  914             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  915             BUS_SPACE_MAXADDR,          /* highaddr */
  916             NULL, NULL,                 /* filter, filterarg */
  917             BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
  918             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  919             0,                          /* flags */
  920             NULL, NULL,                 /* lockfunc, lockarg */
  921             &sc->rl_parent_tag);
  922         if (error) {
  923                 device_printf(sc->rl_dev,
  924                     "failed to create parent DMA tag.\n");
  925                 goto fail;
  926         }
  927         /* Create DMA tag for Rx memory block. */
  928         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
  929             RL_RX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
  930             BUS_SPACE_MAXADDR,          /* lowaddr */
  931             BUS_SPACE_MAXADDR,          /* highaddr */
  932             NULL, NULL,                 /* filter, filterarg */
  933             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,   /* maxsize,nsegments */
  934             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,      /* maxsegsize */
  935             0,                          /* flags */
  936             NULL, NULL,                 /* lockfunc, lockarg */
  937             &sc->rl_cdata.rl_rx_tag);
  938         if (error) {
  939                 device_printf(sc->rl_dev,
  940                     "failed to create Rx memory block DMA tag.\n");
  941                 goto fail;
  942         }
  943         /* Create DMA tag for Tx buffer. */
  944         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
  945             RL_TX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
  946             BUS_SPACE_MAXADDR,          /* lowaddr */
  947             BUS_SPACE_MAXADDR,          /* highaddr */
  948             NULL, NULL,                 /* filter, filterarg */
  949             MCLBYTES, 1,                /* maxsize, nsegments */
  950             MCLBYTES,                   /* maxsegsize */
  951             0,                          /* flags */
  952             NULL, NULL,                 /* lockfunc, lockarg */
  953             &sc->rl_cdata.rl_tx_tag);
  954         if (error) {
  955                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
  956                 goto fail;
  957         }
  958 
  959         /*
  960          * Allocate DMA'able memory and load DMA map for Rx memory block.
  961          */
  962         error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
  963             (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
  964             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
  965         if (error != 0) {
  966                 device_printf(sc->rl_dev,
  967                     "failed to allocate Rx DMA memory block.\n");
  968                 goto fail;
  969         }
  970         ctx.rl_busaddr = 0;
  971         error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
  972             sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
  973             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
  974             BUS_DMA_NOWAIT);
  975         if (error != 0 || ctx.rl_busaddr == 0) {
  976                 device_printf(sc->rl_dev,
  977                     "could not load Rx DMA memory block.\n");
  978                 goto fail;
  979         }
  980         sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
  981 
  982         /* Create DMA maps for Tx buffers. */
  983         for (i = 0; i < RL_TX_LIST_CNT; i++) {
  984                 sc->rl_cdata.rl_tx_chain[i] = NULL;
  985                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
  986                 error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
  987                     &sc->rl_cdata.rl_tx_dmamap[i]);
  988                 if (error != 0) {
  989                         device_printf(sc->rl_dev,
  990                             "could not create Tx dmamap.\n");
  991                         goto fail;
  992                 }
  993         }
  994 
  995         /* Leave a few bytes before the start of the RX ring buffer. */
  996         sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
  997         sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
  998 
  999 fail:
 1000         return (error);
 1001 }
 1002 
 1003 static void
 1004 rl_dma_free(struct rl_softc *sc)
 1005 {
 1006         int                     i;
 1007 
 1008         /* Rx memory block. */
 1009         if (sc->rl_cdata.rl_rx_tag != NULL) {
 1010                 if (sc->rl_cdata.rl_rx_dmamap != NULL)
 1011                         bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
 1012                             sc->rl_cdata.rl_rx_dmamap);
 1013                 if (sc->rl_cdata.rl_rx_dmamap != NULL &&
 1014                     sc->rl_cdata.rl_rx_buf_ptr != NULL)
 1015                         bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
 1016                             sc->rl_cdata.rl_rx_buf_ptr,
 1017                             sc->rl_cdata.rl_rx_dmamap);
 1018                 sc->rl_cdata.rl_rx_buf_ptr = NULL;
 1019                 sc->rl_cdata.rl_rx_buf = NULL;
 1020                 sc->rl_cdata.rl_rx_dmamap = NULL;
 1021                 bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
 1022                 sc->rl_cdata.rl_tx_tag = NULL;
 1023         }
 1024 
 1025         /* Tx buffers. */
 1026         if (sc->rl_cdata.rl_tx_tag != NULL) {
 1027                 for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1028                         if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
 1029                                 bus_dmamap_destroy(
 1030                                     sc->rl_cdata.rl_tx_tag,
 1031                                     sc->rl_cdata.rl_tx_dmamap[i]);
 1032                                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
 1033                         }
 1034                 }
 1035                 bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
 1036                 sc->rl_cdata.rl_tx_tag = NULL;
 1037         }
 1038 
 1039         if (sc->rl_parent_tag != NULL) {
 1040                 bus_dma_tag_destroy(sc->rl_parent_tag);
 1041                 sc->rl_parent_tag = NULL;
 1042         }
 1043 }
 1044 
 1045 /*
 1046  * Initialize the transmit descriptors.
 1047  */
 1048 static int
 1049 rl_list_tx_init(struct rl_softc *sc)
 1050 {
 1051         struct rl_chain_data    *cd;
 1052         int                     i;
 1053 
 1054         RL_LOCK_ASSERT(sc);
 1055 
 1056         cd = &sc->rl_cdata;
 1057         for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1058                 cd->rl_tx_chain[i] = NULL;
 1059                 CSR_WRITE_4(sc,
 1060                     RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
 1061         }
 1062 
 1063         sc->rl_cdata.cur_tx = 0;
 1064         sc->rl_cdata.last_tx = 0;
 1065 
 1066         return (0);
 1067 }
 1068 
 1069 static int
 1070 rl_list_rx_init(struct rl_softc *sc)
 1071 {
 1072 
 1073         RL_LOCK_ASSERT(sc);
 1074 
 1075         bzero(sc->rl_cdata.rl_rx_buf_ptr,
 1076             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
 1077         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
 1078             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1079 
 1080         return (0);
 1081 }
 1082 
 1083 /*
 1084  * A frame has been uploaded: pass the resulting mbuf chain up to
 1085  * the higher level protocols.
 1086  *
 1087  * You know there's something wrong with a PCI bus-master chip design
 1088  * when you have to use m_devget().
 1089  *
 1090  * The receive operation is badly documented in the datasheet, so I'll
 1091  * attempt to document it here. The driver provides a buffer area and
 1092  * places its base address in the RX buffer start address register.
 1093  * The chip then begins copying frames into the RX buffer. Each frame
 1094  * is preceded by a 32-bit RX status word which specifies the length
 1095  * of the frame and certain other status bits. Each frame (starting with
 1096  * the status word) is also 32-bit aligned. The frame length is in the
 1097  * first 16 bits of the status word; the lower 15 bits correspond with
 1098  * the 'rx status register' mentioned in the datasheet.
 1099  *
 1100  * Note: to make the Alpha happy, the frame payload needs to be aligned
 1101  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
 1102  * as the offset argument to m_devget().
 1103  */
 1104 static int
 1105 rl_rxeof(struct rl_softc *sc)
 1106 {
 1107         struct mbuf             *m;
 1108         struct ifnet            *ifp = sc->rl_ifp;
 1109         uint8_t                 *rxbufpos;
 1110         int                     total_len = 0;
 1111         int                     wrap = 0;
 1112         int                     rx_npkts = 0;
 1113         uint32_t                rxstat;
 1114         uint16_t                cur_rx;
 1115         uint16_t                limit;
 1116         uint16_t                max_bytes, rx_bytes = 0;
 1117 
 1118         RL_LOCK_ASSERT(sc);
 1119 
 1120         bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
 1121             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1122 
 1123         cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
 1124 
 1125         /* Do not try to read past this point. */
 1126         limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
 1127 
 1128         if (limit < cur_rx)
 1129                 max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
 1130         else
 1131                 max_bytes = limit - cur_rx;
 1132 
 1133         while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
 1134 #ifdef DEVICE_POLLING
 1135                 if (ifp->if_capenable & IFCAP_POLLING) {
 1136                         if (sc->rxcycles <= 0)
 1137                                 break;
 1138                         sc->rxcycles--;
 1139                 }
 1140 #endif
 1141                 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
 1142                 rxstat = le32toh(*(uint32_t *)rxbufpos);
 1143 
 1144                 /*
 1145                  * Here's a totally undocumented fact for you. When the
 1146                  * RealTek chip is in the process of copying a packet into
 1147                  * RAM for you, the length will be 0xfff0. If you spot a
 1148                  * packet header with this value, you need to stop. The
 1149                  * datasheet makes absolutely no mention of this and
 1150                  * RealTek should be shot for this.
 1151                  */
 1152                 total_len = rxstat >> 16;
 1153                 if (total_len == RL_RXSTAT_UNFINISHED)
 1154                         break;
 1155 
 1156                 if (!(rxstat & RL_RXSTAT_RXOK) ||
 1157                     total_len < ETHER_MIN_LEN ||
 1158                     total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
 1159                         ifp->if_ierrors++;
 1160                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1161                         rl_init_locked(sc);
 1162                         return (rx_npkts);
 1163                 }
 1164 
 1165                 /* No errors; receive the packet. */
 1166                 rx_bytes += total_len + 4;
 1167 
 1168                 /*
 1169                  * XXX The RealTek chip includes the CRC with every
 1170                  * received frame, and there's no way to turn this
 1171                  * behavior off (at least, I can't find anything in
 1172                  * the manual that explains how to do it) so we have
 1173                  * to trim off the CRC manually.
 1174                  */
 1175                 total_len -= ETHER_CRC_LEN;
 1176 
 1177                 /*
 1178                  * Avoid trying to read more bytes than we know
 1179                  * the chip has prepared for us.
 1180                  */
 1181                 if (rx_bytes > max_bytes)
 1182                         break;
 1183 
 1184                 rxbufpos = sc->rl_cdata.rl_rx_buf +
 1185                         ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
 1186                 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
 1187                         rxbufpos = sc->rl_cdata.rl_rx_buf;
 1188 
 1189                 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
 1190                 if (total_len > wrap) {
 1191                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
 1192                             NULL);
 1193                         if (m != NULL)
 1194                                 m_copyback(m, wrap, total_len - wrap,
 1195                                         sc->rl_cdata.rl_rx_buf);
 1196                         cur_rx = (total_len - wrap + ETHER_CRC_LEN);
 1197                 } else {
 1198                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
 1199                             NULL);
 1200                         cur_rx += total_len + 4 + ETHER_CRC_LEN;
 1201                 }
 1202 
 1203                 /* Round up to 32-bit boundary. */
 1204                 cur_rx = (cur_rx + 3) & ~3;
 1205                 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
 1206 
 1207                 if (m == NULL) {
 1208                         ifp->if_iqdrops++;
 1209                         continue;
 1210                 }
 1211 
 1212                 ifp->if_ipackets++;
 1213                 RL_UNLOCK(sc);
 1214                 (*ifp->if_input)(ifp, m);
 1215                 RL_LOCK(sc);
 1216                 rx_npkts++;
 1217         }
 1218 
 1219         /* No need to sync Rx memory block as we didn't modify it. */
 1220         return (rx_npkts);
 1221 }
 1222 
 1223 /*
 1224  * A frame was downloaded to the chip. It's safe for us to clean up
 1225  * the list buffers.
 1226  */
 1227 static void
 1228 rl_txeof(struct rl_softc *sc)
 1229 {
 1230         struct ifnet            *ifp = sc->rl_ifp;
 1231         uint32_t                txstat;
 1232 
 1233         RL_LOCK_ASSERT(sc);
 1234 
 1235         /*
 1236          * Go through our tx list and free mbufs for those
 1237          * frames that have been uploaded.
 1238          */
 1239         do {
 1240                 if (RL_LAST_TXMBUF(sc) == NULL)
 1241                         break;
 1242                 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
 1243                 if (!(txstat & (RL_TXSTAT_TX_OK|
 1244                     RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
 1245                         break;
 1246 
 1247                 ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
 1248 
 1249                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
 1250                     BUS_DMASYNC_POSTWRITE);
 1251                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
 1252                 m_freem(RL_LAST_TXMBUF(sc));
 1253                 RL_LAST_TXMBUF(sc) = NULL;
 1254                 /*
 1255                  * If there was a transmit underrun, bump the TX threshold.
 1256                  * Make sure not to overflow the 63 * 32byte we can address
 1257                  * with the 6 available bit.
 1258                  */
 1259                 if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
 1260                     (sc->rl_txthresh < 2016))
 1261                         sc->rl_txthresh += 32;
 1262                 if (txstat & RL_TXSTAT_TX_OK)
 1263                         ifp->if_opackets++;
 1264                 else {
 1265                         int                     oldthresh;
 1266                         ifp->if_oerrors++;
 1267                         if ((txstat & RL_TXSTAT_TXABRT) ||
 1268                             (txstat & RL_TXSTAT_OUTOFWIN))
 1269                                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 1270                         oldthresh = sc->rl_txthresh;
 1271                         /* error recovery */
 1272                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1273                         rl_init_locked(sc);
 1274                         /* restore original threshold */
 1275                         sc->rl_txthresh = oldthresh;
 1276                         return;
 1277                 }
 1278                 RL_INC(sc->rl_cdata.last_tx);
 1279                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1280         } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
 1281 
 1282         if (RL_LAST_TXMBUF(sc) == NULL)
 1283                 sc->rl_watchdog_timer = 0;
 1284 }
 1285 
 1286 static void
 1287 rl_twister_update(struct rl_softc *sc)
 1288 {
 1289         uint16_t linktest;
 1290         /*
 1291          * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
 1292          * Linux driver.  Values undocumented otherwise.
 1293          */
 1294         static const uint32_t param[4][4] = {
 1295                 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
 1296                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
 1297                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
 1298                 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
 1299         };
 1300 
 1301         /*
 1302          * Tune the so-called twister registers of the RTL8139.  These
 1303          * are used to compensate for impedance mismatches.  The
 1304          * method for tuning these registers is undocumented and the
 1305          * following procedure is collected from public sources.
 1306          */
 1307         switch (sc->rl_twister)
 1308         {
 1309         case CHK_LINK:
 1310                 /*
 1311                  * If we have a sufficient link, then we can proceed in
 1312                  * the state machine to the next stage.  If not, then
 1313                  * disable further tuning after writing sane defaults.
 1314                  */
 1315                 if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
 1316                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
 1317                         sc->rl_twister = FIND_ROW;
 1318                 } else {
 1319                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
 1320                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
 1321                         CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
 1322                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
 1323                         sc->rl_twister = DONE;
 1324                 }
 1325                 break;
 1326         case FIND_ROW:
 1327                 /*
 1328                  * Read how long it took to see the echo to find the tuning
 1329                  * row to use.
 1330                  */
 1331                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
 1332                 if (linktest == RL_CSCFG_ROW3)
 1333                         sc->rl_twist_row = 3;
 1334                 else if (linktest == RL_CSCFG_ROW2)
 1335                         sc->rl_twist_row = 2;
 1336                 else if (linktest == RL_CSCFG_ROW1)
 1337                         sc->rl_twist_row = 1;
 1338                 else
 1339                         sc->rl_twist_row = 0;
 1340                 sc->rl_twist_col = 0;
 1341                 sc->rl_twister = SET_PARAM;
 1342                 break;
 1343         case SET_PARAM:
 1344                 if (sc->rl_twist_col == 0)
 1345                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
 1346                 CSR_WRITE_4(sc, RL_PARA7C,
 1347                     param[sc->rl_twist_row][sc->rl_twist_col]);
 1348                 if (++sc->rl_twist_col == 4) {
 1349                         if (sc->rl_twist_row == 3)
 1350                                 sc->rl_twister = RECHK_LONG;
 1351                         else
 1352                                 sc->rl_twister = DONE;
 1353                 }
 1354                 break;
 1355         case RECHK_LONG:
 1356                 /*
 1357                  * For long cables, we have to double check to make sure we
 1358                  * don't mistune.
 1359                  */
 1360                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
 1361                 if (linktest == RL_CSCFG_ROW3)
 1362                         sc->rl_twister = DONE;
 1363                 else {
 1364                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
 1365                         sc->rl_twister = RETUNE;
 1366                 }
 1367                 break;
 1368         case RETUNE:
 1369                 /* Retune for a shorter cable (try column 2) */
 1370                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
 1371                 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
 1372                 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
 1373                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
 1374                 sc->rl_twist_row--;
 1375                 sc->rl_twist_col = 0;
 1376                 sc->rl_twister = SET_PARAM;
 1377                 break;
 1378 
 1379         case DONE:
 1380                 break;
 1381         }
 1382         
 1383 }
 1384 
 1385 static void
 1386 rl_tick(void *xsc)
 1387 {
 1388         struct rl_softc         *sc = xsc;
 1389         struct mii_data         *mii;
 1390         int ticks;
 1391 
 1392         RL_LOCK_ASSERT(sc);
 1393         /*
 1394          * If we're doing the twister cable calibration, then we need to defer
 1395          * watchdog timeouts.  This is a no-op in normal operations, but
 1396          * can falsely trigger when the cable calibration takes a while and
 1397          * there was traffic ready to go when rl was started.
 1398          *
 1399          * We don't defer mii_tick since that updates the mii status, which
 1400          * helps the twister process, at least according to similar patches
 1401          * for the Linux driver I found online while doing the fixes.  Worst
 1402          * case is a few extra mii reads during calibration.
 1403          */
 1404         mii = device_get_softc(sc->rl_miibus);
 1405         mii_tick(mii);
 1406         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
 1407                 rl_miibus_statchg(sc->rl_dev);
 1408         if (sc->rl_twister_enable) {
 1409                 if (sc->rl_twister == DONE)
 1410                         rl_watchdog(sc);
 1411                 else
 1412                         rl_twister_update(sc);
 1413                 if (sc->rl_twister == DONE)
 1414                         ticks = hz;
 1415                 else
 1416                         ticks = hz / 10;
 1417         } else {
 1418                 rl_watchdog(sc);
 1419                 ticks = hz;
 1420         }
 1421 
 1422         callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
 1423 }
 1424 
 1425 #ifdef DEVICE_POLLING
 1426 static int
 1427 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1428 {
 1429         struct rl_softc *sc = ifp->if_softc;
 1430         int rx_npkts = 0;
 1431 
 1432         RL_LOCK(sc);
 1433         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1434                 rx_npkts = rl_poll_locked(ifp, cmd, count);
 1435         RL_UNLOCK(sc);
 1436         return (rx_npkts);
 1437 }
 1438 
 1439 static int
 1440 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1441 {
 1442         struct rl_softc *sc = ifp->if_softc;
 1443         int rx_npkts;
 1444 
 1445         RL_LOCK_ASSERT(sc);
 1446 
 1447         sc->rxcycles = count;
 1448         rx_npkts = rl_rxeof(sc);
 1449         rl_txeof(sc);
 1450 
 1451         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1452                 rl_start_locked(ifp);
 1453 
 1454         if (cmd == POLL_AND_CHECK_STATUS) {
 1455                 uint16_t        status;
 1456 
 1457                 /* We should also check the status register. */
 1458                 status = CSR_READ_2(sc, RL_ISR);
 1459                 if (status == 0xffff)
 1460                         return (rx_npkts);
 1461                 if (status != 0)
 1462                         CSR_WRITE_2(sc, RL_ISR, status);
 1463 
 1464                 /* XXX We should check behaviour on receiver stalls. */
 1465 
 1466                 if (status & RL_ISR_SYSTEM_ERR) {
 1467                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1468                         rl_init_locked(sc);
 1469                 }
 1470         }
 1471         return (rx_npkts);
 1472 }
 1473 #endif /* DEVICE_POLLING */
 1474 
 1475 static void
 1476 rl_intr(void *arg)
 1477 {
 1478         struct rl_softc         *sc = arg;
 1479         struct ifnet            *ifp = sc->rl_ifp;
 1480         uint16_t                status;
 1481         int                     count;
 1482 
 1483         RL_LOCK(sc);
 1484 
 1485         if (sc->suspended)
 1486                 goto done_locked;
 1487 
 1488 #ifdef DEVICE_POLLING
 1489         if  (ifp->if_capenable & IFCAP_POLLING)
 1490                 goto done_locked;
 1491 #endif
 1492 
 1493         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1494                 goto done_locked2;
 1495         status = CSR_READ_2(sc, RL_ISR);
 1496         if (status == 0xffff || (status & RL_INTRS) == 0)
 1497                 goto done_locked;
 1498         /*
 1499          * Ours, disable further interrupts.
 1500          */
 1501         CSR_WRITE_2(sc, RL_IMR, 0);
 1502         for (count = 16; count > 0; count--) {
 1503                 CSR_WRITE_2(sc, RL_ISR, status);
 1504                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1505                         if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
 1506                                 rl_rxeof(sc);
 1507                         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
 1508                                 rl_txeof(sc);
 1509                         if (status & RL_ISR_SYSTEM_ERR) {
 1510                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1511                                 rl_init_locked(sc);
 1512                                 RL_UNLOCK(sc);
 1513                                 return;
 1514                         }
 1515                 }
 1516                 status = CSR_READ_2(sc, RL_ISR);
 1517                 /* If the card has gone away, the read returns 0xffff. */
 1518                 if (status == 0xffff || (status & RL_INTRS) == 0)
 1519                         break;
 1520         }
 1521 
 1522         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1523                 rl_start_locked(ifp);
 1524 
 1525 done_locked2:
 1526         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1527                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1528 done_locked:
 1529         RL_UNLOCK(sc);
 1530 }
 1531 
 1532 /*
 1533  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1534  * pointers to the fragment pointers.
 1535  */
 1536 static int
 1537 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
 1538 {
 1539         struct mbuf             *m;
 1540         bus_dma_segment_t       txsegs[1];
 1541         int                     error, nsegs, padlen;
 1542 
 1543         RL_LOCK_ASSERT(sc);
 1544 
 1545         m = *m_head;
 1546         padlen = 0;
 1547         /*
 1548          * Hardware doesn't auto-pad, so we have to make sure
 1549          * pad short frames out to the minimum frame length.
 1550          */
 1551         if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
 1552                 padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
 1553         /*
 1554          * The RealTek is brain damaged and wants longword-aligned
 1555          * TX buffers, plus we can only have one fragment buffer
 1556          * per packet. We have to copy pretty much all the time.
 1557          */
 1558         if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
 1559             (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
 1560                 m = m_defrag(*m_head, M_DONTWAIT);
 1561                 if (m == NULL) {
 1562                         m_freem(*m_head);
 1563                         *m_head = NULL;
 1564                         return (ENOMEM);
 1565                 }
 1566         }
 1567         *m_head = m;
 1568 
 1569         if (padlen > 0) {
 1570                 /*
 1571                  * Make security-conscious people happy: zero out the
 1572                  * bytes in the pad area, since we don't know what
 1573                  * this mbuf cluster buffer's previous user might
 1574                  * have left in it.
 1575                  */
 1576                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
 1577                 m->m_pkthdr.len += padlen;
 1578                 m->m_len = m->m_pkthdr.len;
 1579         }
 1580 
 1581         error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
 1582             RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
 1583         if (error != 0)
 1584                 return (error);
 1585         if (nsegs == 0) {
 1586                 m_freem(*m_head);
 1587                 *m_head = NULL;
 1588                 return (EIO);
 1589         }
 1590 
 1591         RL_CUR_TXMBUF(sc) = m;
 1592         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
 1593             BUS_DMASYNC_PREWRITE);
 1594         CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
 1595 
 1596         return (0);
 1597 }
 1598 
 1599 /*
 1600  * Main transmit routine.
 1601  */
 1602 static void
 1603 rl_start(struct ifnet *ifp)
 1604 {
 1605         struct rl_softc         *sc = ifp->if_softc;
 1606 
 1607         RL_LOCK(sc);
 1608         rl_start_locked(ifp);
 1609         RL_UNLOCK(sc);
 1610 }
 1611 
 1612 static void
 1613 rl_start_locked(struct ifnet *ifp)
 1614 {
 1615         struct rl_softc         *sc = ifp->if_softc;
 1616         struct mbuf             *m_head = NULL;
 1617 
 1618         RL_LOCK_ASSERT(sc);
 1619 
 1620         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1621             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
 1622                 return;
 1623 
 1624         while (RL_CUR_TXMBUF(sc) == NULL) {
 1625 
 1626                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1627 
 1628                 if (m_head == NULL)
 1629                         break;
 1630 
 1631                 if (rl_encap(sc, &m_head)) {
 1632                         if (m_head == NULL)
 1633                                 break;
 1634                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1635                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1636                         break;
 1637                 }
 1638 
 1639                 /* Pass a copy of this mbuf chain to the bpf subsystem. */
 1640                 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
 1641 
 1642                 /* Transmit the frame. */
 1643                 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
 1644                     RL_TXTHRESH(sc->rl_txthresh) |
 1645                     RL_CUR_TXMBUF(sc)->m_pkthdr.len);
 1646 
 1647                 RL_INC(sc->rl_cdata.cur_tx);
 1648 
 1649                 /* Set a timeout in case the chip goes out to lunch. */
 1650                 sc->rl_watchdog_timer = 5;
 1651         }
 1652 
 1653         /*
 1654          * We broke out of the loop because all our TX slots are
 1655          * full. Mark the NIC as busy until it drains some of the
 1656          * packets from the queue.
 1657          */
 1658         if (RL_CUR_TXMBUF(sc) != NULL)
 1659                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1660 }
 1661 
 1662 static void
 1663 rl_init(void *xsc)
 1664 {
 1665         struct rl_softc         *sc = xsc;
 1666 
 1667         RL_LOCK(sc);
 1668         rl_init_locked(sc);
 1669         RL_UNLOCK(sc);
 1670 }
 1671 
 1672 static void
 1673 rl_init_locked(struct rl_softc *sc)
 1674 {
 1675         struct ifnet            *ifp = sc->rl_ifp;
 1676         struct mii_data         *mii;
 1677         uint32_t                eaddr[2];
 1678 
 1679         RL_LOCK_ASSERT(sc);
 1680 
 1681         mii = device_get_softc(sc->rl_miibus);
 1682 
 1683         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1684                 return;
 1685 
 1686         /*
 1687          * Cancel pending I/O and free all RX/TX buffers.
 1688          */
 1689         rl_stop(sc);
 1690 
 1691         rl_reset(sc);
 1692         if (sc->rl_twister_enable) {
 1693                 /*
 1694                  * Reset twister register tuning state.  The twister
 1695                  * registers and their tuning are undocumented, but
 1696                  * are necessary to cope with bad links.  rl_twister =
 1697                  * DONE here will disable this entirely.
 1698                  */
 1699                 sc->rl_twister = CHK_LINK;
 1700         }
 1701 
 1702         /*
 1703          * Init our MAC address.  Even though the chipset
 1704          * documentation doesn't mention it, we need to enter "Config
 1705          * register write enable" mode to modify the ID registers.
 1706          */
 1707         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
 1708         bzero(eaddr, sizeof(eaddr));
 1709         bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
 1710         CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
 1711         CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
 1712         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 1713 
 1714         /* Init the RX memory block pointer register. */
 1715         CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
 1716             RL_RX_8139_BUF_RESERVE);
 1717         /* Init TX descriptors. */
 1718         rl_list_tx_init(sc);
 1719         /* Init Rx memory block. */
 1720         rl_list_rx_init(sc);
 1721 
 1722         /*
 1723          * Enable transmit and receive.
 1724          */
 1725         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 1726 
 1727         /*
 1728          * Set the initial TX and RX configuration.
 1729          */
 1730         CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 1731         CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
 1732 
 1733         /* Set RX filter. */
 1734         rl_rxfilter(sc);
 1735 
 1736 #ifdef DEVICE_POLLING
 1737         /* Disable interrupts if we are polling. */
 1738         if (ifp->if_capenable & IFCAP_POLLING)
 1739                 CSR_WRITE_2(sc, RL_IMR, 0);
 1740         else
 1741 #endif
 1742         /* Enable interrupts. */
 1743         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1744 
 1745         /* Set initial TX threshold */
 1746         sc->rl_txthresh = RL_TX_THRESH_INIT;
 1747 
 1748         /* Start RX/TX process. */
 1749         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
 1750 
 1751         /* Enable receiver and transmitter. */
 1752         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 1753 
 1754         sc->rl_flags &= ~RL_FLAG_LINK;
 1755         mii_mediachg(mii);
 1756 
 1757         CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
 1758 
 1759         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1760         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1761 
 1762         callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
 1763 }
 1764 
 1765 /*
 1766  * Set media options.
 1767  */
 1768 static int
 1769 rl_ifmedia_upd(struct ifnet *ifp)
 1770 {
 1771         struct rl_softc         *sc = ifp->if_softc;
 1772         struct mii_data         *mii;
 1773 
 1774         mii = device_get_softc(sc->rl_miibus);
 1775 
 1776         RL_LOCK(sc);
 1777         mii_mediachg(mii);
 1778         RL_UNLOCK(sc);
 1779 
 1780         return (0);
 1781 }
 1782 
 1783 /*
 1784  * Report current media status.
 1785  */
 1786 static void
 1787 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1788 {
 1789         struct rl_softc         *sc = ifp->if_softc;
 1790         struct mii_data         *mii;
 1791 
 1792         mii = device_get_softc(sc->rl_miibus);
 1793 
 1794         RL_LOCK(sc);
 1795         mii_pollstat(mii);
 1796         ifmr->ifm_active = mii->mii_media_active;
 1797         ifmr->ifm_status = mii->mii_media_status;
 1798         RL_UNLOCK(sc);
 1799 }
 1800 
 1801 static int
 1802 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1803 {
 1804         struct ifreq            *ifr = (struct ifreq *)data;
 1805         struct mii_data         *mii;
 1806         struct rl_softc         *sc = ifp->if_softc;
 1807         int                     error = 0, mask;
 1808 
 1809         switch (command) {
 1810         case SIOCSIFFLAGS:
 1811                 RL_LOCK(sc);
 1812                 if (ifp->if_flags & IFF_UP) {
 1813                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 1814                             ((ifp->if_flags ^ sc->rl_if_flags) &
 1815                             (IFF_PROMISC | IFF_ALLMULTI)))
 1816                                 rl_rxfilter(sc);
 1817                         else
 1818                                 rl_init_locked(sc);
 1819                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1820                         rl_stop(sc);
 1821                 sc->rl_if_flags = ifp->if_flags;
 1822                 RL_UNLOCK(sc);
 1823                 break;
 1824         case SIOCADDMULTI:
 1825         case SIOCDELMULTI:
 1826                 RL_LOCK(sc);
 1827                 rl_rxfilter(sc);
 1828                 RL_UNLOCK(sc);
 1829                 break;
 1830         case SIOCGIFMEDIA:
 1831         case SIOCSIFMEDIA:
 1832                 mii = device_get_softc(sc->rl_miibus);
 1833                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1834                 break;
 1835         case SIOCSIFCAP:
 1836                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1837 #ifdef DEVICE_POLLING
 1838                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 1839                     !(ifp->if_capenable & IFCAP_POLLING)) {
 1840                         error = ether_poll_register(rl_poll, ifp);
 1841                         if (error)
 1842                                 return(error);
 1843                         RL_LOCK(sc);
 1844                         /* Disable interrupts */
 1845                         CSR_WRITE_2(sc, RL_IMR, 0x0000);
 1846                         ifp->if_capenable |= IFCAP_POLLING;
 1847                         RL_UNLOCK(sc);
 1848                         return (error);
 1849                         
 1850                 }
 1851                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 1852                     ifp->if_capenable & IFCAP_POLLING) {
 1853                         error = ether_poll_deregister(ifp);
 1854                         /* Enable interrupts. */
 1855                         RL_LOCK(sc);
 1856                         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1857                         ifp->if_capenable &= ~IFCAP_POLLING;
 1858                         RL_UNLOCK(sc);
 1859                         return (error);
 1860                 }
 1861 #endif /* DEVICE_POLLING */
 1862                 if ((mask & IFCAP_WOL) != 0 &&
 1863                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
 1864                         if ((mask & IFCAP_WOL_UCAST) != 0)
 1865                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
 1866                         if ((mask & IFCAP_WOL_MCAST) != 0)
 1867                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
 1868                         if ((mask & IFCAP_WOL_MAGIC) != 0)
 1869                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1870                 }
 1871                 break;
 1872         default:
 1873                 error = ether_ioctl(ifp, command, data);
 1874                 break;
 1875         }
 1876 
 1877         return (error);
 1878 }
 1879 
 1880 static void
 1881 rl_watchdog(struct rl_softc *sc)
 1882 {
 1883 
 1884         RL_LOCK_ASSERT(sc);
 1885 
 1886         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
 1887                 return;
 1888 
 1889         device_printf(sc->rl_dev, "watchdog timeout\n");
 1890         sc->rl_ifp->if_oerrors++;
 1891 
 1892         rl_txeof(sc);
 1893         rl_rxeof(sc);
 1894         sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1895         rl_init_locked(sc);
 1896 }
 1897 
 1898 /*
 1899  * Stop the adapter and free any mbufs allocated to the
 1900  * RX and TX lists.
 1901  */
 1902 static void
 1903 rl_stop(struct rl_softc *sc)
 1904 {
 1905         register int            i;
 1906         struct ifnet            *ifp = sc->rl_ifp;
 1907 
 1908         RL_LOCK_ASSERT(sc);
 1909 
 1910         sc->rl_watchdog_timer = 0;
 1911         callout_stop(&sc->rl_stat_callout);
 1912         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1913         sc->rl_flags &= ~RL_FLAG_LINK;
 1914 
 1915         CSR_WRITE_1(sc, RL_COMMAND, 0x00);
 1916         CSR_WRITE_2(sc, RL_IMR, 0x0000);
 1917         for (i = 0; i < RL_TIMEOUT; i++) {
 1918                 DELAY(10);
 1919                 if ((CSR_READ_1(sc, RL_COMMAND) &
 1920                     (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
 1921                         break;
 1922         }
 1923         if (i == RL_TIMEOUT)
 1924                 device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
 1925 
 1926         /*
 1927          * Free the TX list buffers.
 1928          */
 1929         for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1930                 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
 1931                         if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
 1932                                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
 1933                                     sc->rl_cdata.rl_tx_dmamap[i],
 1934                                     BUS_DMASYNC_POSTWRITE);
 1935                                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
 1936                                     sc->rl_cdata.rl_tx_dmamap[i]);
 1937                                 m_freem(sc->rl_cdata.rl_tx_chain[i]);
 1938                                 sc->rl_cdata.rl_tx_chain[i] = NULL;
 1939                         }
 1940                         CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
 1941                             0x0000000);
 1942                 }
 1943         }
 1944 }
 1945 
 1946 /*
 1947  * Device suspend routine.  Stop the interface and save some PCI
 1948  * settings in case the BIOS doesn't restore them properly on
 1949  * resume.
 1950  */
 1951 static int
 1952 rl_suspend(device_t dev)
 1953 {
 1954         struct rl_softc         *sc;
 1955 
 1956         sc = device_get_softc(dev);
 1957 
 1958         RL_LOCK(sc);
 1959         rl_stop(sc);
 1960         rl_setwol(sc);
 1961         sc->suspended = 1;
 1962         RL_UNLOCK(sc);
 1963 
 1964         return (0);
 1965 }
 1966 
 1967 /*
 1968  * Device resume routine.  Restore some PCI settings in case the BIOS
 1969  * doesn't, re-enable busmastering, and restart the interface if
 1970  * appropriate.
 1971  */
 1972 static int
 1973 rl_resume(device_t dev)
 1974 {
 1975         struct rl_softc         *sc;
 1976         struct ifnet            *ifp;
 1977         int                     pmc;
 1978         uint16_t                pmstat;
 1979 
 1980         sc = device_get_softc(dev);
 1981         ifp = sc->rl_ifp;
 1982 
 1983         RL_LOCK(sc);
 1984 
 1985         if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
 1986             pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
 1987                 /* Disable PME and clear PME status. */
 1988                 pmstat = pci_read_config(sc->rl_dev,
 1989                     pmc + PCIR_POWER_STATUS, 2);
 1990                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1991                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1992                         pci_write_config(sc->rl_dev,
 1993                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 1994                 }
 1995                 /*
 1996                  * Clear WOL matching such that normal Rx filtering
 1997                  * wouldn't interfere with WOL patterns.
 1998                  */
 1999                 rl_clrwol(sc);
 2000         }
 2001 
 2002         /* reinitialize interface if necessary */
 2003         if (ifp->if_flags & IFF_UP)
 2004                 rl_init_locked(sc);
 2005 
 2006         sc->suspended = 0;
 2007 
 2008         RL_UNLOCK(sc);
 2009 
 2010         return (0);
 2011 }
 2012 
 2013 /*
 2014  * Stop all chip I/O so that the kernel's probe routines don't
 2015  * get confused by errant DMAs when rebooting.
 2016  */
 2017 static int
 2018 rl_shutdown(device_t dev)
 2019 {
 2020         struct rl_softc         *sc;
 2021 
 2022         sc = device_get_softc(dev);
 2023 
 2024         RL_LOCK(sc);
 2025         rl_stop(sc);
 2026         /*
 2027          * Mark interface as down since otherwise we will panic if
 2028          * interrupt comes in later on, which can happen in some
 2029          * cases.
 2030          */
 2031         sc->rl_ifp->if_flags &= ~IFF_UP;
 2032         rl_setwol(sc);
 2033         RL_UNLOCK(sc);
 2034 
 2035         return (0);
 2036 }
 2037 
 2038 static void
 2039 rl_setwol(struct rl_softc *sc)
 2040 {
 2041         struct ifnet            *ifp;
 2042         int                     pmc;
 2043         uint16_t                pmstat;
 2044         uint8_t                 v;
 2045 
 2046         RL_LOCK_ASSERT(sc);
 2047 
 2048         ifp = sc->rl_ifp;
 2049         if ((ifp->if_capabilities & IFCAP_WOL) == 0)
 2050                 return;
 2051         if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
 2052                 return;
 2053 
 2054         /* Enable config register write. */
 2055         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 2056 
 2057         /* Enable PME. */
 2058         v = CSR_READ_1(sc, RL_CFG1);
 2059         v &= ~RL_CFG1_PME;
 2060         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2061                 v |= RL_CFG1_PME;
 2062         CSR_WRITE_1(sc, RL_CFG1, v);
 2063 
 2064         v = CSR_READ_1(sc, RL_CFG3);
 2065         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
 2066         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2067                 v |= RL_CFG3_WOL_MAGIC;
 2068         CSR_WRITE_1(sc, RL_CFG3, v);
 2069 
 2070         /* Config register write done. */
 2071         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 2072 
 2073         v = CSR_READ_1(sc, RL_CFG5);
 2074         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
 2075         v &= ~RL_CFG5_WOL_LANWAKE;
 2076         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
 2077                 v |= RL_CFG5_WOL_UCAST;
 2078         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 2079                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
 2080         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2081                 v |= RL_CFG5_WOL_LANWAKE;
 2082         CSR_WRITE_1(sc, RL_CFG5, v);
 2083         /* Request PME if WOL is requested. */
 2084         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
 2085         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2086         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2087                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2088         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 2089 }
 2090 
 2091 static void
 2092 rl_clrwol(struct rl_softc *sc)
 2093 {
 2094         struct ifnet            *ifp;
 2095         uint8_t                 v;
 2096 
 2097         ifp = sc->rl_ifp;
 2098         if ((ifp->if_capabilities & IFCAP_WOL) == 0)
 2099                 return;
 2100 
 2101         /* Enable config register write. */
 2102         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 2103 
 2104         v = CSR_READ_1(sc, RL_CFG3);
 2105         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
 2106         CSR_WRITE_1(sc, RL_CFG3, v);
 2107 
 2108         /* Config register write done. */
 2109         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 2110 
 2111         v = CSR_READ_1(sc, RL_CFG5);
 2112         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
 2113         v &= ~RL_CFG5_WOL_LANWAKE;
 2114         CSR_WRITE_1(sc, RL_CFG5, v);
 2115 }

Cache object: 11c85726356e9f2e0e055acffd53c173


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.