FreeBSD/Linux Kernel Cross Reference
sys/pci/if_rl.c
1 /*-
2 * Copyright (c) 1997, 1998
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD: releng/8.3/sys/pci/if_rl.c 230714 2012-01-29 01:22:48Z marius $");
35
36 /*
37 * RealTek 8129/8139 PCI NIC driver
38 *
39 * Supports several extremely cheap PCI 10/100 adapters based on
40 * the RealTek chipset. Datasheets can be obtained from
41 * www.realtek.com.tw.
42 *
43 * Written by Bill Paul <wpaul@ctr.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47 /*
48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86 #ifdef HAVE_KERNEL_OPTION_HEADERS
87 #include "opt_device_polling.h"
88 #endif
89
90 #include <sys/param.h>
91 #include <sys/endian.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107
108 #include <net/bpf.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/mii_bitbang.h>
117 #include <dev/mii/miivar.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121
122 MODULE_DEPEND(rl, pci, 1, 1, 1);
123 MODULE_DEPEND(rl, ether, 1, 1, 1);
124 MODULE_DEPEND(rl, miibus, 1, 1, 1);
125
126 /* "device miibus" required. See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128
129 #include <pci/if_rlreg.h>
130
131 /*
132 * Various supported device vendors/types and their names.
133 */
134 static const struct rl_type const rl_devs[] = {
135 { RT_VENDORID, RT_DEVICEID_8129, RL_8129,
136 "RealTek 8129 10/100BaseTX" },
137 { RT_VENDORID, RT_DEVICEID_8139, RL_8139,
138 "RealTek 8139 10/100BaseTX" },
139 { RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
140 "RealTek 8139 10/100BaseTX" },
141 { RT_VENDORID, RT_DEVICEID_8138, RL_8139,
142 "RealTek 8139 10/100BaseTX CardBus" },
143 { RT_VENDORID, RT_DEVICEID_8100, RL_8139,
144 "RealTek 8100 10/100BaseTX" },
145 { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
146 "Accton MPX 5030/5038 10/100BaseTX" },
147 { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
148 "Delta Electronics 8139 10/100BaseTX" },
149 { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
150 "Addtron Technology 8139 10/100BaseTX" },
151 { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
152 "D-Link DFE-530TX+ 10/100BaseTX" },
153 { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
154 "D-Link DFE-690TXD 10/100BaseTX" },
155 { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
156 "Nortel Networks 10/100BaseTX" },
157 { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
158 "Corega FEther CB-TXD" },
159 { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
160 "Corega FEtherII CB-TXD" },
161 { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
162 "Peppercon AG ROL-F" },
163 { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
164 "Planex FNW-3603-TX" },
165 { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
166 "Planex FNW-3800-TX" },
167 { CP_VENDORID, RT_DEVICEID_8139, RL_8139,
168 "Compaq HNE-300" },
169 { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
170 "LevelOne FPC-0106TX" },
171 { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
172 "Edimax EP-4103DL CardBus" }
173 };
174
175 static int rl_attach(device_t);
176 static int rl_detach(device_t);
177 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
178 static int rl_dma_alloc(struct rl_softc *);
179 static void rl_dma_free(struct rl_softc *);
180 static void rl_eeprom_putbyte(struct rl_softc *, int);
181 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
182 static int rl_encap(struct rl_softc *, struct mbuf **);
183 static int rl_list_tx_init(struct rl_softc *);
184 static int rl_list_rx_init(struct rl_softc *);
185 static int rl_ifmedia_upd(struct ifnet *);
186 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
187 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
188 static void rl_intr(void *);
189 static void rl_init(void *);
190 static void rl_init_locked(struct rl_softc *sc);
191 static int rl_miibus_readreg(device_t, int, int);
192 static void rl_miibus_statchg(device_t);
193 static int rl_miibus_writereg(device_t, int, int, int);
194 #ifdef DEVICE_POLLING
195 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
196 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
197 #endif
198 static int rl_probe(device_t);
199 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
200 static void rl_reset(struct rl_softc *);
201 static int rl_resume(device_t);
202 static int rl_rxeof(struct rl_softc *);
203 static void rl_rxfilter(struct rl_softc *);
204 static int rl_shutdown(device_t);
205 static void rl_start(struct ifnet *);
206 static void rl_start_locked(struct ifnet *);
207 static void rl_stop(struct rl_softc *);
208 static int rl_suspend(device_t);
209 static void rl_tick(void *);
210 static void rl_txeof(struct rl_softc *);
211 static void rl_watchdog(struct rl_softc *);
212 static void rl_setwol(struct rl_softc *);
213 static void rl_clrwol(struct rl_softc *);
214
215 /*
216 * MII bit-bang glue
217 */
218 static uint32_t rl_mii_bitbang_read(device_t);
219 static void rl_mii_bitbang_write(device_t, uint32_t);
220
221 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
222 rl_mii_bitbang_read,
223 rl_mii_bitbang_write,
224 {
225 RL_MII_DATAOUT, /* MII_BIT_MDO */
226 RL_MII_DATAIN, /* MII_BIT_MDI */
227 RL_MII_CLK, /* MII_BIT_MDC */
228 RL_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
229 0, /* MII_BIT_DIR_PHY_HOST */
230 }
231 };
232
233 static device_method_t rl_methods[] = {
234 /* Device interface */
235 DEVMETHOD(device_probe, rl_probe),
236 DEVMETHOD(device_attach, rl_attach),
237 DEVMETHOD(device_detach, rl_detach),
238 DEVMETHOD(device_suspend, rl_suspend),
239 DEVMETHOD(device_resume, rl_resume),
240 DEVMETHOD(device_shutdown, rl_shutdown),
241
242 /* MII interface */
243 DEVMETHOD(miibus_readreg, rl_miibus_readreg),
244 DEVMETHOD(miibus_writereg, rl_miibus_writereg),
245 DEVMETHOD(miibus_statchg, rl_miibus_statchg),
246
247 DEVMETHOD_END
248 };
249
250 static driver_t rl_driver = {
251 "rl",
252 rl_methods,
253 sizeof(struct rl_softc)
254 };
255
256 static devclass_t rl_devclass;
257
258 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
259 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
260 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
261
262 #define EE_SET(x) \
263 CSR_WRITE_1(sc, RL_EECMD, \
264 CSR_READ_1(sc, RL_EECMD) | x)
265
266 #define EE_CLR(x) \
267 CSR_WRITE_1(sc, RL_EECMD, \
268 CSR_READ_1(sc, RL_EECMD) & ~x)
269
270 /*
271 * Send a read command and address to the EEPROM, check for ACK.
272 */
273 static void
274 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
275 {
276 register int d, i;
277
278 d = addr | sc->rl_eecmd_read;
279
280 /*
281 * Feed in each bit and strobe the clock.
282 */
283 for (i = 0x400; i; i >>= 1) {
284 if (d & i) {
285 EE_SET(RL_EE_DATAIN);
286 } else {
287 EE_CLR(RL_EE_DATAIN);
288 }
289 DELAY(100);
290 EE_SET(RL_EE_CLK);
291 DELAY(150);
292 EE_CLR(RL_EE_CLK);
293 DELAY(100);
294 }
295 }
296
297 /*
298 * Read a word of data stored in the EEPROM at address 'addr.'
299 */
300 static void
301 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
302 {
303 register int i;
304 uint16_t word = 0;
305
306 /* Enter EEPROM access mode. */
307 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
308
309 /*
310 * Send address of word we want to read.
311 */
312 rl_eeprom_putbyte(sc, addr);
313
314 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
315
316 /*
317 * Start reading bits from EEPROM.
318 */
319 for (i = 0x8000; i; i >>= 1) {
320 EE_SET(RL_EE_CLK);
321 DELAY(100);
322 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
323 word |= i;
324 EE_CLR(RL_EE_CLK);
325 DELAY(100);
326 }
327
328 /* Turn off EEPROM access mode. */
329 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
330
331 *dest = word;
332 }
333
334 /*
335 * Read a sequence of words from the EEPROM.
336 */
337 static void
338 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
339 {
340 int i;
341 uint16_t word = 0, *ptr;
342
343 for (i = 0; i < cnt; i++) {
344 rl_eeprom_getword(sc, off + i, &word);
345 ptr = (uint16_t *)(dest + (i * 2));
346 if (swap)
347 *ptr = ntohs(word);
348 else
349 *ptr = word;
350 }
351 }
352
353 /*
354 * Read the MII serial port for the MII bit-bang module.
355 */
356 static uint32_t
357 rl_mii_bitbang_read(device_t dev)
358 {
359 struct rl_softc *sc;
360 uint32_t val;
361
362 sc = device_get_softc(dev);
363
364 val = CSR_READ_1(sc, RL_MII);
365 CSR_BARRIER(sc, RL_MII, 1,
366 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
367
368 return (val);
369 }
370
371 /*
372 * Write the MII serial port for the MII bit-bang module.
373 */
374 static void
375 rl_mii_bitbang_write(device_t dev, uint32_t val)
376 {
377 struct rl_softc *sc;
378
379 sc = device_get_softc(dev);
380
381 CSR_WRITE_1(sc, RL_MII, val);
382 CSR_BARRIER(sc, RL_MII, 1,
383 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
384 }
385
386 static int
387 rl_miibus_readreg(device_t dev, int phy, int reg)
388 {
389 struct rl_softc *sc;
390 uint16_t rl8139_reg;
391
392 sc = device_get_softc(dev);
393
394 if (sc->rl_type == RL_8139) {
395 switch (reg) {
396 case MII_BMCR:
397 rl8139_reg = RL_BMCR;
398 break;
399 case MII_BMSR:
400 rl8139_reg = RL_BMSR;
401 break;
402 case MII_ANAR:
403 rl8139_reg = RL_ANAR;
404 break;
405 case MII_ANER:
406 rl8139_reg = RL_ANER;
407 break;
408 case MII_ANLPAR:
409 rl8139_reg = RL_LPAR;
410 break;
411 case MII_PHYIDR1:
412 case MII_PHYIDR2:
413 return (0);
414 /*
415 * Allow the rlphy driver to read the media status
416 * register. If we have a link partner which does not
417 * support NWAY, this is the register which will tell
418 * us the results of parallel detection.
419 */
420 case RL_MEDIASTAT:
421 return (CSR_READ_1(sc, RL_MEDIASTAT));
422 default:
423 device_printf(sc->rl_dev, "bad phy register\n");
424 return (0);
425 }
426 return (CSR_READ_2(sc, rl8139_reg));
427 }
428
429 return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
430 }
431
432 static int
433 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
434 {
435 struct rl_softc *sc;
436 uint16_t rl8139_reg;
437
438 sc = device_get_softc(dev);
439
440 if (sc->rl_type == RL_8139) {
441 switch (reg) {
442 case MII_BMCR:
443 rl8139_reg = RL_BMCR;
444 break;
445 case MII_BMSR:
446 rl8139_reg = RL_BMSR;
447 break;
448 case MII_ANAR:
449 rl8139_reg = RL_ANAR;
450 break;
451 case MII_ANER:
452 rl8139_reg = RL_ANER;
453 break;
454 case MII_ANLPAR:
455 rl8139_reg = RL_LPAR;
456 break;
457 case MII_PHYIDR1:
458 case MII_PHYIDR2:
459 return (0);
460 break;
461 default:
462 device_printf(sc->rl_dev, "bad phy register\n");
463 return (0);
464 }
465 CSR_WRITE_2(sc, rl8139_reg, data);
466 return (0);
467 }
468
469 mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
470
471 return (0);
472 }
473
474 static void
475 rl_miibus_statchg(device_t dev)
476 {
477 struct rl_softc *sc;
478 struct ifnet *ifp;
479 struct mii_data *mii;
480
481 sc = device_get_softc(dev);
482 mii = device_get_softc(sc->rl_miibus);
483 ifp = sc->rl_ifp;
484 if (mii == NULL || ifp == NULL ||
485 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
486 return;
487
488 sc->rl_flags &= ~RL_FLAG_LINK;
489 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
490 (IFM_ACTIVE | IFM_AVALID)) {
491 switch (IFM_SUBTYPE(mii->mii_media_active)) {
492 case IFM_10_T:
493 case IFM_100_TX:
494 sc->rl_flags |= RL_FLAG_LINK;
495 break;
496 default:
497 break;
498 }
499 }
500 /*
501 * RealTek controllers do not provide any interface to
502 * Tx/Rx MACs for resolved speed, duplex and flow-control
503 * parameters.
504 */
505 }
506
507 /*
508 * Program the 64-bit multicast hash filter.
509 */
510 static void
511 rl_rxfilter(struct rl_softc *sc)
512 {
513 struct ifnet *ifp = sc->rl_ifp;
514 int h = 0;
515 uint32_t hashes[2] = { 0, 0 };
516 struct ifmultiaddr *ifma;
517 uint32_t rxfilt;
518
519 RL_LOCK_ASSERT(sc);
520
521 rxfilt = CSR_READ_4(sc, RL_RXCFG);
522 rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
523 RL_RXCFG_RX_MULTI);
524 /* Always accept frames destined for this host. */
525 rxfilt |= RL_RXCFG_RX_INDIV;
526 /* Set capture broadcast bit to capture broadcast frames. */
527 if (ifp->if_flags & IFF_BROADCAST)
528 rxfilt |= RL_RXCFG_RX_BROAD;
529 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
530 rxfilt |= RL_RXCFG_RX_MULTI;
531 if (ifp->if_flags & IFF_PROMISC)
532 rxfilt |= RL_RXCFG_RX_ALLPHYS;
533 hashes[0] = 0xFFFFFFFF;
534 hashes[1] = 0xFFFFFFFF;
535 } else {
536 /* Now program new ones. */
537 if_maddr_rlock(ifp);
538 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
539 if (ifma->ifma_addr->sa_family != AF_LINK)
540 continue;
541 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
542 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
543 if (h < 32)
544 hashes[0] |= (1 << h);
545 else
546 hashes[1] |= (1 << (h - 32));
547 }
548 if_maddr_runlock(ifp);
549 if (hashes[0] != 0 || hashes[1] != 0)
550 rxfilt |= RL_RXCFG_RX_MULTI;
551 }
552
553 CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
554 CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
555 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
556 }
557
558 static void
559 rl_reset(struct rl_softc *sc)
560 {
561 register int i;
562
563 RL_LOCK_ASSERT(sc);
564
565 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
566
567 for (i = 0; i < RL_TIMEOUT; i++) {
568 DELAY(10);
569 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
570 break;
571 }
572 if (i == RL_TIMEOUT)
573 device_printf(sc->rl_dev, "reset never completed!\n");
574 }
575
576 /*
577 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
578 * IDs against our list and return a device name if we find a match.
579 */
580 static int
581 rl_probe(device_t dev)
582 {
583 const struct rl_type *t;
584 uint16_t devid, revid, vendor;
585 int i;
586
587 vendor = pci_get_vendor(dev);
588 devid = pci_get_device(dev);
589 revid = pci_get_revid(dev);
590
591 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
592 if (revid == 0x20) {
593 /* 8139C+, let re(4) take care of this device. */
594 return (ENXIO);
595 }
596 }
597 t = rl_devs;
598 for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
599 if (vendor == t->rl_vid && devid == t->rl_did) {
600 device_set_desc(dev, t->rl_name);
601 return (BUS_PROBE_DEFAULT);
602 }
603 }
604
605 return (ENXIO);
606 }
607
608 struct rl_dmamap_arg {
609 bus_addr_t rl_busaddr;
610 };
611
612 static void
613 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
614 {
615 struct rl_dmamap_arg *ctx;
616
617 if (error != 0)
618 return;
619
620 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
621
622 ctx = (struct rl_dmamap_arg *)arg;
623 ctx->rl_busaddr = segs[0].ds_addr;
624 }
625
626 /*
627 * Attach the interface. Allocate softc structures, do ifmedia
628 * setup and ethernet/BPF attach.
629 */
630 static int
631 rl_attach(device_t dev)
632 {
633 uint8_t eaddr[ETHER_ADDR_LEN];
634 uint16_t as[3];
635 struct ifnet *ifp;
636 struct rl_softc *sc;
637 const struct rl_type *t;
638 struct sysctl_ctx_list *ctx;
639 struct sysctl_oid_list *children;
640 int error = 0, hwrev, i, phy, pmc, rid;
641 int prefer_iomap, unit;
642 uint16_t rl_did = 0;
643 char tn[32];
644
645 sc = device_get_softc(dev);
646 unit = device_get_unit(dev);
647 sc->rl_dev = dev;
648
649 sc->rl_twister_enable = 0;
650 snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
651 TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
652 ctx = device_get_sysctl_ctx(sc->rl_dev);
653 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
654 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
655 &sc->rl_twister_enable, 0, "");
656
657 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
658 MTX_DEF);
659 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
660
661 pci_enable_busmaster(dev);
662
663
664 /*
665 * Map control/status registers.
666 * Default to using PIO access for this driver. On SMP systems,
667 * there appear to be problems with memory mapped mode: it looks
668 * like doing too many memory mapped access back to back in rapid
669 * succession can hang the bus. I'm inclined to blame this on
670 * crummy design/construction on the part of RealTek. Memory
671 * mapped mode does appear to work on uniprocessor systems though.
672 */
673 prefer_iomap = 1;
674 snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
675 TUNABLE_INT_FETCH(tn, &prefer_iomap);
676 if (prefer_iomap) {
677 sc->rl_res_id = PCIR_BAR(0);
678 sc->rl_res_type = SYS_RES_IOPORT;
679 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
680 &sc->rl_res_id, RF_ACTIVE);
681 }
682 if (prefer_iomap == 0 || sc->rl_res == NULL) {
683 sc->rl_res_id = PCIR_BAR(1);
684 sc->rl_res_type = SYS_RES_MEMORY;
685 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
686 &sc->rl_res_id, RF_ACTIVE);
687 }
688 if (sc->rl_res == NULL) {
689 device_printf(dev, "couldn't map ports/memory\n");
690 error = ENXIO;
691 goto fail;
692 }
693
694 #ifdef notdef
695 /*
696 * Detect the Realtek 8139B. For some reason, this chip is very
697 * unstable when left to autoselect the media
698 * The best workaround is to set the device to the required
699 * media type or to set it to the 10 Meg speed.
700 */
701 if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
702 device_printf(dev,
703 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
704 #endif
705
706 sc->rl_btag = rman_get_bustag(sc->rl_res);
707 sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
708
709 /* Allocate interrupt */
710 rid = 0;
711 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
712 RF_SHAREABLE | RF_ACTIVE);
713
714 if (sc->rl_irq[0] == NULL) {
715 device_printf(dev, "couldn't map interrupt\n");
716 error = ENXIO;
717 goto fail;
718 }
719
720 /*
721 * Reset the adapter. Only take the lock here as it's needed in
722 * order to call rl_reset().
723 */
724 RL_LOCK(sc);
725 rl_reset(sc);
726 RL_UNLOCK(sc);
727
728 sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
729 rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
730 if (rl_did != 0x8129)
731 sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
732
733 /*
734 * Get station address from the EEPROM.
735 */
736 rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
737 for (i = 0; i < 3; i++) {
738 eaddr[(i * 2) + 0] = as[i] & 0xff;
739 eaddr[(i * 2) + 1] = as[i] >> 8;
740 }
741
742 /*
743 * Now read the exact device type from the EEPROM to find
744 * out if it's an 8129 or 8139.
745 */
746 rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
747
748 t = rl_devs;
749 sc->rl_type = 0;
750 while(t->rl_name != NULL) {
751 if (rl_did == t->rl_did) {
752 sc->rl_type = t->rl_basetype;
753 break;
754 }
755 t++;
756 }
757
758 if (sc->rl_type == 0) {
759 device_printf(dev, "unknown device ID: %x assuming 8139\n",
760 rl_did);
761 sc->rl_type = RL_8139;
762 /*
763 * Read RL_IDR register to get ethernet address as accessing
764 * EEPROM may not extract correct address.
765 */
766 for (i = 0; i < ETHER_ADDR_LEN; i++)
767 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
768 }
769
770 if ((error = rl_dma_alloc(sc)) != 0)
771 goto fail;
772
773 ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
774 if (ifp == NULL) {
775 device_printf(dev, "can not if_alloc()\n");
776 error = ENOSPC;
777 goto fail;
778 }
779
780 #define RL_PHYAD_INTERNAL 0
781
782 /* Do MII setup */
783 phy = MII_PHY_ANY;
784 if (sc->rl_type == RL_8139)
785 phy = RL_PHYAD_INTERNAL;
786 error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
787 rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
788 if (error != 0) {
789 device_printf(dev, "attaching PHYs failed\n");
790 goto fail;
791 }
792
793 ifp->if_softc = sc;
794 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
795 ifp->if_mtu = ETHERMTU;
796 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
797 ifp->if_ioctl = rl_ioctl;
798 ifp->if_start = rl_start;
799 ifp->if_init = rl_init;
800 ifp->if_capabilities = IFCAP_VLAN_MTU;
801 /* Check WOL for RTL8139B or newer controllers. */
802 if (sc->rl_type == RL_8139 &&
803 pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
804 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
805 switch (hwrev) {
806 case RL_HWREV_8139B:
807 case RL_HWREV_8130:
808 case RL_HWREV_8139C:
809 case RL_HWREV_8139D:
810 case RL_HWREV_8101:
811 case RL_HWREV_8100:
812 ifp->if_capabilities |= IFCAP_WOL;
813 /* Disable WOL. */
814 rl_clrwol(sc);
815 break;
816 default:
817 break;
818 }
819 }
820 ifp->if_capenable = ifp->if_capabilities;
821 #ifdef DEVICE_POLLING
822 ifp->if_capabilities |= IFCAP_POLLING;
823 #endif
824 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
825 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
826 IFQ_SET_READY(&ifp->if_snd);
827
828 /*
829 * Call MI attach routine.
830 */
831 ether_ifattach(ifp, eaddr);
832
833 /* Hook interrupt last to avoid having to lock softc */
834 error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
835 NULL, rl_intr, sc, &sc->rl_intrhand[0]);
836 if (error) {
837 device_printf(sc->rl_dev, "couldn't set up irq\n");
838 ether_ifdetach(ifp);
839 }
840
841 fail:
842 if (error)
843 rl_detach(dev);
844
845 return (error);
846 }
847
848 /*
849 * Shutdown hardware and free up resources. This can be called any
850 * time after the mutex has been initialized. It is called in both
851 * the error case in attach and the normal detach case so it needs
852 * to be careful about only freeing resources that have actually been
853 * allocated.
854 */
855 static int
856 rl_detach(device_t dev)
857 {
858 struct rl_softc *sc;
859 struct ifnet *ifp;
860
861 sc = device_get_softc(dev);
862 ifp = sc->rl_ifp;
863
864 KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
865
866 #ifdef DEVICE_POLLING
867 if (ifp->if_capenable & IFCAP_POLLING)
868 ether_poll_deregister(ifp);
869 #endif
870 /* These should only be active if attach succeeded */
871 if (device_is_attached(dev)) {
872 RL_LOCK(sc);
873 rl_stop(sc);
874 RL_UNLOCK(sc);
875 callout_drain(&sc->rl_stat_callout);
876 ether_ifdetach(ifp);
877 }
878 #if 0
879 sc->suspended = 1;
880 #endif
881 if (sc->rl_miibus)
882 device_delete_child(dev, sc->rl_miibus);
883 bus_generic_detach(dev);
884
885 if (sc->rl_intrhand[0])
886 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
887 if (sc->rl_irq[0])
888 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
889 if (sc->rl_res)
890 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
891 sc->rl_res);
892
893 if (ifp)
894 if_free(ifp);
895
896 rl_dma_free(sc);
897
898 mtx_destroy(&sc->rl_mtx);
899
900 return (0);
901 }
902
903 static int
904 rl_dma_alloc(struct rl_softc *sc)
905 {
906 struct rl_dmamap_arg ctx;
907 int error, i;
908
909 /*
910 * Allocate the parent bus DMA tag appropriate for PCI.
911 */
912 error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */
913 1, 0, /* alignment, boundary */
914 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
915 BUS_SPACE_MAXADDR, /* highaddr */
916 NULL, NULL, /* filter, filterarg */
917 BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
918 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
919 0, /* flags */
920 NULL, NULL, /* lockfunc, lockarg */
921 &sc->rl_parent_tag);
922 if (error) {
923 device_printf(sc->rl_dev,
924 "failed to create parent DMA tag.\n");
925 goto fail;
926 }
927 /* Create DMA tag for Rx memory block. */
928 error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */
929 RL_RX_8139_BUF_ALIGN, 0, /* alignment, boundary */
930 BUS_SPACE_MAXADDR, /* lowaddr */
931 BUS_SPACE_MAXADDR, /* highaddr */
932 NULL, NULL, /* filter, filterarg */
933 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1, /* maxsize,nsegments */
934 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, /* maxsegsize */
935 0, /* flags */
936 NULL, NULL, /* lockfunc, lockarg */
937 &sc->rl_cdata.rl_rx_tag);
938 if (error) {
939 device_printf(sc->rl_dev,
940 "failed to create Rx memory block DMA tag.\n");
941 goto fail;
942 }
943 /* Create DMA tag for Tx buffer. */
944 error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */
945 RL_TX_8139_BUF_ALIGN, 0, /* alignment, boundary */
946 BUS_SPACE_MAXADDR, /* lowaddr */
947 BUS_SPACE_MAXADDR, /* highaddr */
948 NULL, NULL, /* filter, filterarg */
949 MCLBYTES, 1, /* maxsize, nsegments */
950 MCLBYTES, /* maxsegsize */
951 0, /* flags */
952 NULL, NULL, /* lockfunc, lockarg */
953 &sc->rl_cdata.rl_tx_tag);
954 if (error) {
955 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
956 goto fail;
957 }
958
959 /*
960 * Allocate DMA'able memory and load DMA map for Rx memory block.
961 */
962 error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
963 (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
964 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
965 if (error != 0) {
966 device_printf(sc->rl_dev,
967 "failed to allocate Rx DMA memory block.\n");
968 goto fail;
969 }
970 ctx.rl_busaddr = 0;
971 error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
972 sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
973 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
974 BUS_DMA_NOWAIT);
975 if (error != 0 || ctx.rl_busaddr == 0) {
976 device_printf(sc->rl_dev,
977 "could not load Rx DMA memory block.\n");
978 goto fail;
979 }
980 sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
981
982 /* Create DMA maps for Tx buffers. */
983 for (i = 0; i < RL_TX_LIST_CNT; i++) {
984 sc->rl_cdata.rl_tx_chain[i] = NULL;
985 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
986 error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
987 &sc->rl_cdata.rl_tx_dmamap[i]);
988 if (error != 0) {
989 device_printf(sc->rl_dev,
990 "could not create Tx dmamap.\n");
991 goto fail;
992 }
993 }
994
995 /* Leave a few bytes before the start of the RX ring buffer. */
996 sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
997 sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
998
999 fail:
1000 return (error);
1001 }
1002
1003 static void
1004 rl_dma_free(struct rl_softc *sc)
1005 {
1006 int i;
1007
1008 /* Rx memory block. */
1009 if (sc->rl_cdata.rl_rx_tag != NULL) {
1010 if (sc->rl_cdata.rl_rx_dmamap != NULL)
1011 bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1012 sc->rl_cdata.rl_rx_dmamap);
1013 if (sc->rl_cdata.rl_rx_dmamap != NULL &&
1014 sc->rl_cdata.rl_rx_buf_ptr != NULL)
1015 bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1016 sc->rl_cdata.rl_rx_buf_ptr,
1017 sc->rl_cdata.rl_rx_dmamap);
1018 sc->rl_cdata.rl_rx_buf_ptr = NULL;
1019 sc->rl_cdata.rl_rx_buf = NULL;
1020 sc->rl_cdata.rl_rx_dmamap = NULL;
1021 bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1022 sc->rl_cdata.rl_tx_tag = NULL;
1023 }
1024
1025 /* Tx buffers. */
1026 if (sc->rl_cdata.rl_tx_tag != NULL) {
1027 for (i = 0; i < RL_TX_LIST_CNT; i++) {
1028 if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1029 bus_dmamap_destroy(
1030 sc->rl_cdata.rl_tx_tag,
1031 sc->rl_cdata.rl_tx_dmamap[i]);
1032 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1033 }
1034 }
1035 bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1036 sc->rl_cdata.rl_tx_tag = NULL;
1037 }
1038
1039 if (sc->rl_parent_tag != NULL) {
1040 bus_dma_tag_destroy(sc->rl_parent_tag);
1041 sc->rl_parent_tag = NULL;
1042 }
1043 }
1044
1045 /*
1046 * Initialize the transmit descriptors.
1047 */
1048 static int
1049 rl_list_tx_init(struct rl_softc *sc)
1050 {
1051 struct rl_chain_data *cd;
1052 int i;
1053
1054 RL_LOCK_ASSERT(sc);
1055
1056 cd = &sc->rl_cdata;
1057 for (i = 0; i < RL_TX_LIST_CNT; i++) {
1058 cd->rl_tx_chain[i] = NULL;
1059 CSR_WRITE_4(sc,
1060 RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1061 }
1062
1063 sc->rl_cdata.cur_tx = 0;
1064 sc->rl_cdata.last_tx = 0;
1065
1066 return (0);
1067 }
1068
1069 static int
1070 rl_list_rx_init(struct rl_softc *sc)
1071 {
1072
1073 RL_LOCK_ASSERT(sc);
1074
1075 bzero(sc->rl_cdata.rl_rx_buf_ptr,
1076 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1077 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1078 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1079
1080 return (0);
1081 }
1082
1083 /*
1084 * A frame has been uploaded: pass the resulting mbuf chain up to
1085 * the higher level protocols.
1086 *
1087 * You know there's something wrong with a PCI bus-master chip design
1088 * when you have to use m_devget().
1089 *
1090 * The receive operation is badly documented in the datasheet, so I'll
1091 * attempt to document it here. The driver provides a buffer area and
1092 * places its base address in the RX buffer start address register.
1093 * The chip then begins copying frames into the RX buffer. Each frame
1094 * is preceded by a 32-bit RX status word which specifies the length
1095 * of the frame and certain other status bits. Each frame (starting with
1096 * the status word) is also 32-bit aligned. The frame length is in the
1097 * first 16 bits of the status word; the lower 15 bits correspond with
1098 * the 'rx status register' mentioned in the datasheet.
1099 *
1100 * Note: to make the Alpha happy, the frame payload needs to be aligned
1101 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1102 * as the offset argument to m_devget().
1103 */
1104 static int
1105 rl_rxeof(struct rl_softc *sc)
1106 {
1107 struct mbuf *m;
1108 struct ifnet *ifp = sc->rl_ifp;
1109 uint8_t *rxbufpos;
1110 int total_len = 0;
1111 int wrap = 0;
1112 int rx_npkts = 0;
1113 uint32_t rxstat;
1114 uint16_t cur_rx;
1115 uint16_t limit;
1116 uint16_t max_bytes, rx_bytes = 0;
1117
1118 RL_LOCK_ASSERT(sc);
1119
1120 bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1121 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1122
1123 cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1124
1125 /* Do not try to read past this point. */
1126 limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1127
1128 if (limit < cur_rx)
1129 max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1130 else
1131 max_bytes = limit - cur_rx;
1132
1133 while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1134 #ifdef DEVICE_POLLING
1135 if (ifp->if_capenable & IFCAP_POLLING) {
1136 if (sc->rxcycles <= 0)
1137 break;
1138 sc->rxcycles--;
1139 }
1140 #endif
1141 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1142 rxstat = le32toh(*(uint32_t *)rxbufpos);
1143
1144 /*
1145 * Here's a totally undocumented fact for you. When the
1146 * RealTek chip is in the process of copying a packet into
1147 * RAM for you, the length will be 0xfff0. If you spot a
1148 * packet header with this value, you need to stop. The
1149 * datasheet makes absolutely no mention of this and
1150 * RealTek should be shot for this.
1151 */
1152 total_len = rxstat >> 16;
1153 if (total_len == RL_RXSTAT_UNFINISHED)
1154 break;
1155
1156 if (!(rxstat & RL_RXSTAT_RXOK) ||
1157 total_len < ETHER_MIN_LEN ||
1158 total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1159 ifp->if_ierrors++;
1160 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1161 rl_init_locked(sc);
1162 return (rx_npkts);
1163 }
1164
1165 /* No errors; receive the packet. */
1166 rx_bytes += total_len + 4;
1167
1168 /*
1169 * XXX The RealTek chip includes the CRC with every
1170 * received frame, and there's no way to turn this
1171 * behavior off (at least, I can't find anything in
1172 * the manual that explains how to do it) so we have
1173 * to trim off the CRC manually.
1174 */
1175 total_len -= ETHER_CRC_LEN;
1176
1177 /*
1178 * Avoid trying to read more bytes than we know
1179 * the chip has prepared for us.
1180 */
1181 if (rx_bytes > max_bytes)
1182 break;
1183
1184 rxbufpos = sc->rl_cdata.rl_rx_buf +
1185 ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1186 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1187 rxbufpos = sc->rl_cdata.rl_rx_buf;
1188
1189 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1190 if (total_len > wrap) {
1191 m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1192 NULL);
1193 if (m != NULL)
1194 m_copyback(m, wrap, total_len - wrap,
1195 sc->rl_cdata.rl_rx_buf);
1196 cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1197 } else {
1198 m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1199 NULL);
1200 cur_rx += total_len + 4 + ETHER_CRC_LEN;
1201 }
1202
1203 /* Round up to 32-bit boundary. */
1204 cur_rx = (cur_rx + 3) & ~3;
1205 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1206
1207 if (m == NULL) {
1208 ifp->if_iqdrops++;
1209 continue;
1210 }
1211
1212 ifp->if_ipackets++;
1213 RL_UNLOCK(sc);
1214 (*ifp->if_input)(ifp, m);
1215 RL_LOCK(sc);
1216 rx_npkts++;
1217 }
1218
1219 /* No need to sync Rx memory block as we didn't modify it. */
1220 return (rx_npkts);
1221 }
1222
1223 /*
1224 * A frame was downloaded to the chip. It's safe for us to clean up
1225 * the list buffers.
1226 */
1227 static void
1228 rl_txeof(struct rl_softc *sc)
1229 {
1230 struct ifnet *ifp = sc->rl_ifp;
1231 uint32_t txstat;
1232
1233 RL_LOCK_ASSERT(sc);
1234
1235 /*
1236 * Go through our tx list and free mbufs for those
1237 * frames that have been uploaded.
1238 */
1239 do {
1240 if (RL_LAST_TXMBUF(sc) == NULL)
1241 break;
1242 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1243 if (!(txstat & (RL_TXSTAT_TX_OK|
1244 RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1245 break;
1246
1247 ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1248
1249 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1250 BUS_DMASYNC_POSTWRITE);
1251 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1252 m_freem(RL_LAST_TXMBUF(sc));
1253 RL_LAST_TXMBUF(sc) = NULL;
1254 /*
1255 * If there was a transmit underrun, bump the TX threshold.
1256 * Make sure not to overflow the 63 * 32byte we can address
1257 * with the 6 available bit.
1258 */
1259 if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1260 (sc->rl_txthresh < 2016))
1261 sc->rl_txthresh += 32;
1262 if (txstat & RL_TXSTAT_TX_OK)
1263 ifp->if_opackets++;
1264 else {
1265 int oldthresh;
1266 ifp->if_oerrors++;
1267 if ((txstat & RL_TXSTAT_TXABRT) ||
1268 (txstat & RL_TXSTAT_OUTOFWIN))
1269 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1270 oldthresh = sc->rl_txthresh;
1271 /* error recovery */
1272 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1273 rl_init_locked(sc);
1274 /* restore original threshold */
1275 sc->rl_txthresh = oldthresh;
1276 return;
1277 }
1278 RL_INC(sc->rl_cdata.last_tx);
1279 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1280 } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1281
1282 if (RL_LAST_TXMBUF(sc) == NULL)
1283 sc->rl_watchdog_timer = 0;
1284 }
1285
1286 static void
1287 rl_twister_update(struct rl_softc *sc)
1288 {
1289 uint16_t linktest;
1290 /*
1291 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1292 * Linux driver. Values undocumented otherwise.
1293 */
1294 static const uint32_t param[4][4] = {
1295 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1296 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1297 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1298 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1299 };
1300
1301 /*
1302 * Tune the so-called twister registers of the RTL8139. These
1303 * are used to compensate for impedance mismatches. The
1304 * method for tuning these registers is undocumented and the
1305 * following procedure is collected from public sources.
1306 */
1307 switch (sc->rl_twister)
1308 {
1309 case CHK_LINK:
1310 /*
1311 * If we have a sufficient link, then we can proceed in
1312 * the state machine to the next stage. If not, then
1313 * disable further tuning after writing sane defaults.
1314 */
1315 if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1316 CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1317 sc->rl_twister = FIND_ROW;
1318 } else {
1319 CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1320 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1321 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1322 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1323 sc->rl_twister = DONE;
1324 }
1325 break;
1326 case FIND_ROW:
1327 /*
1328 * Read how long it took to see the echo to find the tuning
1329 * row to use.
1330 */
1331 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1332 if (linktest == RL_CSCFG_ROW3)
1333 sc->rl_twist_row = 3;
1334 else if (linktest == RL_CSCFG_ROW2)
1335 sc->rl_twist_row = 2;
1336 else if (linktest == RL_CSCFG_ROW1)
1337 sc->rl_twist_row = 1;
1338 else
1339 sc->rl_twist_row = 0;
1340 sc->rl_twist_col = 0;
1341 sc->rl_twister = SET_PARAM;
1342 break;
1343 case SET_PARAM:
1344 if (sc->rl_twist_col == 0)
1345 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1346 CSR_WRITE_4(sc, RL_PARA7C,
1347 param[sc->rl_twist_row][sc->rl_twist_col]);
1348 if (++sc->rl_twist_col == 4) {
1349 if (sc->rl_twist_row == 3)
1350 sc->rl_twister = RECHK_LONG;
1351 else
1352 sc->rl_twister = DONE;
1353 }
1354 break;
1355 case RECHK_LONG:
1356 /*
1357 * For long cables, we have to double check to make sure we
1358 * don't mistune.
1359 */
1360 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1361 if (linktest == RL_CSCFG_ROW3)
1362 sc->rl_twister = DONE;
1363 else {
1364 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1365 sc->rl_twister = RETUNE;
1366 }
1367 break;
1368 case RETUNE:
1369 /* Retune for a shorter cable (try column 2) */
1370 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1371 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1372 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1373 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1374 sc->rl_twist_row--;
1375 sc->rl_twist_col = 0;
1376 sc->rl_twister = SET_PARAM;
1377 break;
1378
1379 case DONE:
1380 break;
1381 }
1382
1383 }
1384
1385 static void
1386 rl_tick(void *xsc)
1387 {
1388 struct rl_softc *sc = xsc;
1389 struct mii_data *mii;
1390 int ticks;
1391
1392 RL_LOCK_ASSERT(sc);
1393 /*
1394 * If we're doing the twister cable calibration, then we need to defer
1395 * watchdog timeouts. This is a no-op in normal operations, but
1396 * can falsely trigger when the cable calibration takes a while and
1397 * there was traffic ready to go when rl was started.
1398 *
1399 * We don't defer mii_tick since that updates the mii status, which
1400 * helps the twister process, at least according to similar patches
1401 * for the Linux driver I found online while doing the fixes. Worst
1402 * case is a few extra mii reads during calibration.
1403 */
1404 mii = device_get_softc(sc->rl_miibus);
1405 mii_tick(mii);
1406 if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1407 rl_miibus_statchg(sc->rl_dev);
1408 if (sc->rl_twister_enable) {
1409 if (sc->rl_twister == DONE)
1410 rl_watchdog(sc);
1411 else
1412 rl_twister_update(sc);
1413 if (sc->rl_twister == DONE)
1414 ticks = hz;
1415 else
1416 ticks = hz / 10;
1417 } else {
1418 rl_watchdog(sc);
1419 ticks = hz;
1420 }
1421
1422 callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1423 }
1424
1425 #ifdef DEVICE_POLLING
1426 static int
1427 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1428 {
1429 struct rl_softc *sc = ifp->if_softc;
1430 int rx_npkts = 0;
1431
1432 RL_LOCK(sc);
1433 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1434 rx_npkts = rl_poll_locked(ifp, cmd, count);
1435 RL_UNLOCK(sc);
1436 return (rx_npkts);
1437 }
1438
1439 static int
1440 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1441 {
1442 struct rl_softc *sc = ifp->if_softc;
1443 int rx_npkts;
1444
1445 RL_LOCK_ASSERT(sc);
1446
1447 sc->rxcycles = count;
1448 rx_npkts = rl_rxeof(sc);
1449 rl_txeof(sc);
1450
1451 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1452 rl_start_locked(ifp);
1453
1454 if (cmd == POLL_AND_CHECK_STATUS) {
1455 uint16_t status;
1456
1457 /* We should also check the status register. */
1458 status = CSR_READ_2(sc, RL_ISR);
1459 if (status == 0xffff)
1460 return (rx_npkts);
1461 if (status != 0)
1462 CSR_WRITE_2(sc, RL_ISR, status);
1463
1464 /* XXX We should check behaviour on receiver stalls. */
1465
1466 if (status & RL_ISR_SYSTEM_ERR) {
1467 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1468 rl_init_locked(sc);
1469 }
1470 }
1471 return (rx_npkts);
1472 }
1473 #endif /* DEVICE_POLLING */
1474
1475 static void
1476 rl_intr(void *arg)
1477 {
1478 struct rl_softc *sc = arg;
1479 struct ifnet *ifp = sc->rl_ifp;
1480 uint16_t status;
1481 int count;
1482
1483 RL_LOCK(sc);
1484
1485 if (sc->suspended)
1486 goto done_locked;
1487
1488 #ifdef DEVICE_POLLING
1489 if (ifp->if_capenable & IFCAP_POLLING)
1490 goto done_locked;
1491 #endif
1492
1493 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1494 goto done_locked2;
1495 status = CSR_READ_2(sc, RL_ISR);
1496 if (status == 0xffff || (status & RL_INTRS) == 0)
1497 goto done_locked;
1498 /*
1499 * Ours, disable further interrupts.
1500 */
1501 CSR_WRITE_2(sc, RL_IMR, 0);
1502 for (count = 16; count > 0; count--) {
1503 CSR_WRITE_2(sc, RL_ISR, status);
1504 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1505 if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1506 rl_rxeof(sc);
1507 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1508 rl_txeof(sc);
1509 if (status & RL_ISR_SYSTEM_ERR) {
1510 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1511 rl_init_locked(sc);
1512 RL_UNLOCK(sc);
1513 return;
1514 }
1515 }
1516 status = CSR_READ_2(sc, RL_ISR);
1517 /* If the card has gone away, the read returns 0xffff. */
1518 if (status == 0xffff || (status & RL_INTRS) == 0)
1519 break;
1520 }
1521
1522 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1523 rl_start_locked(ifp);
1524
1525 done_locked2:
1526 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1527 CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1528 done_locked:
1529 RL_UNLOCK(sc);
1530 }
1531
1532 /*
1533 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1534 * pointers to the fragment pointers.
1535 */
1536 static int
1537 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1538 {
1539 struct mbuf *m;
1540 bus_dma_segment_t txsegs[1];
1541 int error, nsegs, padlen;
1542
1543 RL_LOCK_ASSERT(sc);
1544
1545 m = *m_head;
1546 padlen = 0;
1547 /*
1548 * Hardware doesn't auto-pad, so we have to make sure
1549 * pad short frames out to the minimum frame length.
1550 */
1551 if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1552 padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1553 /*
1554 * The RealTek is brain damaged and wants longword-aligned
1555 * TX buffers, plus we can only have one fragment buffer
1556 * per packet. We have to copy pretty much all the time.
1557 */
1558 if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1559 (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1560 m = m_defrag(*m_head, M_DONTWAIT);
1561 if (m == NULL) {
1562 m_freem(*m_head);
1563 *m_head = NULL;
1564 return (ENOMEM);
1565 }
1566 }
1567 *m_head = m;
1568
1569 if (padlen > 0) {
1570 /*
1571 * Make security-conscious people happy: zero out the
1572 * bytes in the pad area, since we don't know what
1573 * this mbuf cluster buffer's previous user might
1574 * have left in it.
1575 */
1576 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1577 m->m_pkthdr.len += padlen;
1578 m->m_len = m->m_pkthdr.len;
1579 }
1580
1581 error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1582 RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1583 if (error != 0)
1584 return (error);
1585 if (nsegs == 0) {
1586 m_freem(*m_head);
1587 *m_head = NULL;
1588 return (EIO);
1589 }
1590
1591 RL_CUR_TXMBUF(sc) = m;
1592 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1593 BUS_DMASYNC_PREWRITE);
1594 CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1595
1596 return (0);
1597 }
1598
1599 /*
1600 * Main transmit routine.
1601 */
1602 static void
1603 rl_start(struct ifnet *ifp)
1604 {
1605 struct rl_softc *sc = ifp->if_softc;
1606
1607 RL_LOCK(sc);
1608 rl_start_locked(ifp);
1609 RL_UNLOCK(sc);
1610 }
1611
1612 static void
1613 rl_start_locked(struct ifnet *ifp)
1614 {
1615 struct rl_softc *sc = ifp->if_softc;
1616 struct mbuf *m_head = NULL;
1617
1618 RL_LOCK_ASSERT(sc);
1619
1620 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1621 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1622 return;
1623
1624 while (RL_CUR_TXMBUF(sc) == NULL) {
1625
1626 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1627
1628 if (m_head == NULL)
1629 break;
1630
1631 if (rl_encap(sc, &m_head)) {
1632 if (m_head == NULL)
1633 break;
1634 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1635 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1636 break;
1637 }
1638
1639 /* Pass a copy of this mbuf chain to the bpf subsystem. */
1640 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1641
1642 /* Transmit the frame. */
1643 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1644 RL_TXTHRESH(sc->rl_txthresh) |
1645 RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1646
1647 RL_INC(sc->rl_cdata.cur_tx);
1648
1649 /* Set a timeout in case the chip goes out to lunch. */
1650 sc->rl_watchdog_timer = 5;
1651 }
1652
1653 /*
1654 * We broke out of the loop because all our TX slots are
1655 * full. Mark the NIC as busy until it drains some of the
1656 * packets from the queue.
1657 */
1658 if (RL_CUR_TXMBUF(sc) != NULL)
1659 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1660 }
1661
1662 static void
1663 rl_init(void *xsc)
1664 {
1665 struct rl_softc *sc = xsc;
1666
1667 RL_LOCK(sc);
1668 rl_init_locked(sc);
1669 RL_UNLOCK(sc);
1670 }
1671
1672 static void
1673 rl_init_locked(struct rl_softc *sc)
1674 {
1675 struct ifnet *ifp = sc->rl_ifp;
1676 struct mii_data *mii;
1677 uint32_t eaddr[2];
1678
1679 RL_LOCK_ASSERT(sc);
1680
1681 mii = device_get_softc(sc->rl_miibus);
1682
1683 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1684 return;
1685
1686 /*
1687 * Cancel pending I/O and free all RX/TX buffers.
1688 */
1689 rl_stop(sc);
1690
1691 rl_reset(sc);
1692 if (sc->rl_twister_enable) {
1693 /*
1694 * Reset twister register tuning state. The twister
1695 * registers and their tuning are undocumented, but
1696 * are necessary to cope with bad links. rl_twister =
1697 * DONE here will disable this entirely.
1698 */
1699 sc->rl_twister = CHK_LINK;
1700 }
1701
1702 /*
1703 * Init our MAC address. Even though the chipset
1704 * documentation doesn't mention it, we need to enter "Config
1705 * register write enable" mode to modify the ID registers.
1706 */
1707 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1708 bzero(eaddr, sizeof(eaddr));
1709 bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1710 CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1711 CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1712 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1713
1714 /* Init the RX memory block pointer register. */
1715 CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1716 RL_RX_8139_BUF_RESERVE);
1717 /* Init TX descriptors. */
1718 rl_list_tx_init(sc);
1719 /* Init Rx memory block. */
1720 rl_list_rx_init(sc);
1721
1722 /*
1723 * Enable transmit and receive.
1724 */
1725 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1726
1727 /*
1728 * Set the initial TX and RX configuration.
1729 */
1730 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1731 CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1732
1733 /* Set RX filter. */
1734 rl_rxfilter(sc);
1735
1736 #ifdef DEVICE_POLLING
1737 /* Disable interrupts if we are polling. */
1738 if (ifp->if_capenable & IFCAP_POLLING)
1739 CSR_WRITE_2(sc, RL_IMR, 0);
1740 else
1741 #endif
1742 /* Enable interrupts. */
1743 CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1744
1745 /* Set initial TX threshold */
1746 sc->rl_txthresh = RL_TX_THRESH_INIT;
1747
1748 /* Start RX/TX process. */
1749 CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1750
1751 /* Enable receiver and transmitter. */
1752 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1753
1754 sc->rl_flags &= ~RL_FLAG_LINK;
1755 mii_mediachg(mii);
1756
1757 CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1758
1759 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1760 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1761
1762 callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1763 }
1764
1765 /*
1766 * Set media options.
1767 */
1768 static int
1769 rl_ifmedia_upd(struct ifnet *ifp)
1770 {
1771 struct rl_softc *sc = ifp->if_softc;
1772 struct mii_data *mii;
1773
1774 mii = device_get_softc(sc->rl_miibus);
1775
1776 RL_LOCK(sc);
1777 mii_mediachg(mii);
1778 RL_UNLOCK(sc);
1779
1780 return (0);
1781 }
1782
1783 /*
1784 * Report current media status.
1785 */
1786 static void
1787 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1788 {
1789 struct rl_softc *sc = ifp->if_softc;
1790 struct mii_data *mii;
1791
1792 mii = device_get_softc(sc->rl_miibus);
1793
1794 RL_LOCK(sc);
1795 mii_pollstat(mii);
1796 ifmr->ifm_active = mii->mii_media_active;
1797 ifmr->ifm_status = mii->mii_media_status;
1798 RL_UNLOCK(sc);
1799 }
1800
1801 static int
1802 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1803 {
1804 struct ifreq *ifr = (struct ifreq *)data;
1805 struct mii_data *mii;
1806 struct rl_softc *sc = ifp->if_softc;
1807 int error = 0, mask;
1808
1809 switch (command) {
1810 case SIOCSIFFLAGS:
1811 RL_LOCK(sc);
1812 if (ifp->if_flags & IFF_UP) {
1813 if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1814 ((ifp->if_flags ^ sc->rl_if_flags) &
1815 (IFF_PROMISC | IFF_ALLMULTI)))
1816 rl_rxfilter(sc);
1817 else
1818 rl_init_locked(sc);
1819 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1820 rl_stop(sc);
1821 sc->rl_if_flags = ifp->if_flags;
1822 RL_UNLOCK(sc);
1823 break;
1824 case SIOCADDMULTI:
1825 case SIOCDELMULTI:
1826 RL_LOCK(sc);
1827 rl_rxfilter(sc);
1828 RL_UNLOCK(sc);
1829 break;
1830 case SIOCGIFMEDIA:
1831 case SIOCSIFMEDIA:
1832 mii = device_get_softc(sc->rl_miibus);
1833 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1834 break;
1835 case SIOCSIFCAP:
1836 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1837 #ifdef DEVICE_POLLING
1838 if (ifr->ifr_reqcap & IFCAP_POLLING &&
1839 !(ifp->if_capenable & IFCAP_POLLING)) {
1840 error = ether_poll_register(rl_poll, ifp);
1841 if (error)
1842 return(error);
1843 RL_LOCK(sc);
1844 /* Disable interrupts */
1845 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1846 ifp->if_capenable |= IFCAP_POLLING;
1847 RL_UNLOCK(sc);
1848 return (error);
1849
1850 }
1851 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1852 ifp->if_capenable & IFCAP_POLLING) {
1853 error = ether_poll_deregister(ifp);
1854 /* Enable interrupts. */
1855 RL_LOCK(sc);
1856 CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1857 ifp->if_capenable &= ~IFCAP_POLLING;
1858 RL_UNLOCK(sc);
1859 return (error);
1860 }
1861 #endif /* DEVICE_POLLING */
1862 if ((mask & IFCAP_WOL) != 0 &&
1863 (ifp->if_capabilities & IFCAP_WOL) != 0) {
1864 if ((mask & IFCAP_WOL_UCAST) != 0)
1865 ifp->if_capenable ^= IFCAP_WOL_UCAST;
1866 if ((mask & IFCAP_WOL_MCAST) != 0)
1867 ifp->if_capenable ^= IFCAP_WOL_MCAST;
1868 if ((mask & IFCAP_WOL_MAGIC) != 0)
1869 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1870 }
1871 break;
1872 default:
1873 error = ether_ioctl(ifp, command, data);
1874 break;
1875 }
1876
1877 return (error);
1878 }
1879
1880 static void
1881 rl_watchdog(struct rl_softc *sc)
1882 {
1883
1884 RL_LOCK_ASSERT(sc);
1885
1886 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1887 return;
1888
1889 device_printf(sc->rl_dev, "watchdog timeout\n");
1890 sc->rl_ifp->if_oerrors++;
1891
1892 rl_txeof(sc);
1893 rl_rxeof(sc);
1894 sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1895 rl_init_locked(sc);
1896 }
1897
1898 /*
1899 * Stop the adapter and free any mbufs allocated to the
1900 * RX and TX lists.
1901 */
1902 static void
1903 rl_stop(struct rl_softc *sc)
1904 {
1905 register int i;
1906 struct ifnet *ifp = sc->rl_ifp;
1907
1908 RL_LOCK_ASSERT(sc);
1909
1910 sc->rl_watchdog_timer = 0;
1911 callout_stop(&sc->rl_stat_callout);
1912 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1913 sc->rl_flags &= ~RL_FLAG_LINK;
1914
1915 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1916 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1917 for (i = 0; i < RL_TIMEOUT; i++) {
1918 DELAY(10);
1919 if ((CSR_READ_1(sc, RL_COMMAND) &
1920 (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1921 break;
1922 }
1923 if (i == RL_TIMEOUT)
1924 device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1925
1926 /*
1927 * Free the TX list buffers.
1928 */
1929 for (i = 0; i < RL_TX_LIST_CNT; i++) {
1930 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1931 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1932 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1933 sc->rl_cdata.rl_tx_dmamap[i],
1934 BUS_DMASYNC_POSTWRITE);
1935 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1936 sc->rl_cdata.rl_tx_dmamap[i]);
1937 m_freem(sc->rl_cdata.rl_tx_chain[i]);
1938 sc->rl_cdata.rl_tx_chain[i] = NULL;
1939 }
1940 CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1941 0x0000000);
1942 }
1943 }
1944 }
1945
1946 /*
1947 * Device suspend routine. Stop the interface and save some PCI
1948 * settings in case the BIOS doesn't restore them properly on
1949 * resume.
1950 */
1951 static int
1952 rl_suspend(device_t dev)
1953 {
1954 struct rl_softc *sc;
1955
1956 sc = device_get_softc(dev);
1957
1958 RL_LOCK(sc);
1959 rl_stop(sc);
1960 rl_setwol(sc);
1961 sc->suspended = 1;
1962 RL_UNLOCK(sc);
1963
1964 return (0);
1965 }
1966
1967 /*
1968 * Device resume routine. Restore some PCI settings in case the BIOS
1969 * doesn't, re-enable busmastering, and restart the interface if
1970 * appropriate.
1971 */
1972 static int
1973 rl_resume(device_t dev)
1974 {
1975 struct rl_softc *sc;
1976 struct ifnet *ifp;
1977 int pmc;
1978 uint16_t pmstat;
1979
1980 sc = device_get_softc(dev);
1981 ifp = sc->rl_ifp;
1982
1983 RL_LOCK(sc);
1984
1985 if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
1986 pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1987 /* Disable PME and clear PME status. */
1988 pmstat = pci_read_config(sc->rl_dev,
1989 pmc + PCIR_POWER_STATUS, 2);
1990 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1991 pmstat &= ~PCIM_PSTAT_PMEENABLE;
1992 pci_write_config(sc->rl_dev,
1993 pmc + PCIR_POWER_STATUS, pmstat, 2);
1994 }
1995 /*
1996 * Clear WOL matching such that normal Rx filtering
1997 * wouldn't interfere with WOL patterns.
1998 */
1999 rl_clrwol(sc);
2000 }
2001
2002 /* reinitialize interface if necessary */
2003 if (ifp->if_flags & IFF_UP)
2004 rl_init_locked(sc);
2005
2006 sc->suspended = 0;
2007
2008 RL_UNLOCK(sc);
2009
2010 return (0);
2011 }
2012
2013 /*
2014 * Stop all chip I/O so that the kernel's probe routines don't
2015 * get confused by errant DMAs when rebooting.
2016 */
2017 static int
2018 rl_shutdown(device_t dev)
2019 {
2020 struct rl_softc *sc;
2021
2022 sc = device_get_softc(dev);
2023
2024 RL_LOCK(sc);
2025 rl_stop(sc);
2026 /*
2027 * Mark interface as down since otherwise we will panic if
2028 * interrupt comes in later on, which can happen in some
2029 * cases.
2030 */
2031 sc->rl_ifp->if_flags &= ~IFF_UP;
2032 rl_setwol(sc);
2033 RL_UNLOCK(sc);
2034
2035 return (0);
2036 }
2037
2038 static void
2039 rl_setwol(struct rl_softc *sc)
2040 {
2041 struct ifnet *ifp;
2042 int pmc;
2043 uint16_t pmstat;
2044 uint8_t v;
2045
2046 RL_LOCK_ASSERT(sc);
2047
2048 ifp = sc->rl_ifp;
2049 if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2050 return;
2051 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2052 return;
2053
2054 /* Enable config register write. */
2055 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2056
2057 /* Enable PME. */
2058 v = CSR_READ_1(sc, RL_CFG1);
2059 v &= ~RL_CFG1_PME;
2060 if ((ifp->if_capenable & IFCAP_WOL) != 0)
2061 v |= RL_CFG1_PME;
2062 CSR_WRITE_1(sc, RL_CFG1, v);
2063
2064 v = CSR_READ_1(sc, RL_CFG3);
2065 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2066 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2067 v |= RL_CFG3_WOL_MAGIC;
2068 CSR_WRITE_1(sc, RL_CFG3, v);
2069
2070 /* Config register write done. */
2071 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2072
2073 v = CSR_READ_1(sc, RL_CFG5);
2074 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2075 v &= ~RL_CFG5_WOL_LANWAKE;
2076 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2077 v |= RL_CFG5_WOL_UCAST;
2078 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2079 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2080 if ((ifp->if_capenable & IFCAP_WOL) != 0)
2081 v |= RL_CFG5_WOL_LANWAKE;
2082 CSR_WRITE_1(sc, RL_CFG5, v);
2083 /* Request PME if WOL is requested. */
2084 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2085 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2086 if ((ifp->if_capenable & IFCAP_WOL) != 0)
2087 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2088 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2089 }
2090
2091 static void
2092 rl_clrwol(struct rl_softc *sc)
2093 {
2094 struct ifnet *ifp;
2095 uint8_t v;
2096
2097 ifp = sc->rl_ifp;
2098 if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2099 return;
2100
2101 /* Enable config register write. */
2102 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2103
2104 v = CSR_READ_1(sc, RL_CFG3);
2105 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2106 CSR_WRITE_1(sc, RL_CFG3, v);
2107
2108 /* Config register write done. */
2109 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2110
2111 v = CSR_READ_1(sc, RL_CFG5);
2112 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2113 v &= ~RL_CFG5_WOL_LANWAKE;
2114 CSR_WRITE_1(sc, RL_CFG5, v);
2115 }
Cache object: 11c85726356e9f2e0e055acffd53c173
|