The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_rl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.1/sys/pci/if_rl.c 233489 2012-03-26 03:54:19Z yongari $");
   35 
   36 /*
   37  * RealTek 8129/8139 PCI NIC driver
   38  *
   39  * Supports several extremely cheap PCI 10/100 adapters based on
   40  * the RealTek chipset. Datasheets can be obtained from
   41  * www.realtek.com.tw.
   42  *
   43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   44  * Electrical Engineering Department
   45  * Columbia University, New York City
   46  */
   47 /*
   48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
   49  * probably the worst PCI ethernet controller ever made, with the possible
   50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
   51  * DMA, but it has a terrible interface that nullifies any performance
   52  * gains that bus-master DMA usually offers.
   53  *
   54  * For transmission, the chip offers a series of four TX descriptor
   55  * registers. Each transmit frame must be in a contiguous buffer, aligned
   56  * on a longword (32-bit) boundary. This means we almost always have to
   57  * do mbuf copies in order to transmit a frame, except in the unlikely
   58  * case where a) the packet fits into a single mbuf, and b) the packet
   59  * is 32-bit aligned within the mbuf's data area. The presence of only
   60  * four descriptor registers means that we can never have more than four
   61  * packets queued for transmission at any one time.
   62  *
   63  * Reception is not much better. The driver has to allocate a single large
   64  * buffer area (up to 64K in size) into which the chip will DMA received
   65  * frames. Because we don't know where within this region received packets
   66  * will begin or end, we have no choice but to copy data from the buffer
   67  * area into mbufs in order to pass the packets up to the higher protocol
   68  * levels.
   69  *
   70  * It's impossible given this rotten design to really achieve decent
   71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
   72  * some equally overmuscled CPU to drive it.
   73  *
   74  * On the bright side, the 8139 does have a built-in PHY, although
   75  * rather than using an MDIO serial interface like most other NICs, the
   76  * PHY registers are directly accessible through the 8139's register
   77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
   78  * filter.
   79  *
   80  * The 8129 chip is an older version of the 8139 that uses an external PHY
   81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
   82  * the 8139 lets you directly access the on-board PHY registers. We need
   83  * to select which interface to use depending on the chip type.
   84  */
   85 
   86 #ifdef HAVE_KERNEL_OPTION_HEADERS
   87 #include "opt_device_polling.h"
   88 #endif
   89 
   90 #include <sys/param.h>
   91 #include <sys/endian.h>
   92 #include <sys/systm.h>
   93 #include <sys/sockio.h>
   94 #include <sys/mbuf.h>
   95 #include <sys/malloc.h>
   96 #include <sys/kernel.h>
   97 #include <sys/module.h>
   98 #include <sys/socket.h>
   99 #include <sys/sysctl.h>
  100 
  101 #include <net/if.h>
  102 #include <net/if_arp.h>
  103 #include <net/ethernet.h>
  104 #include <net/if_dl.h>
  105 #include <net/if_media.h>
  106 #include <net/if_types.h>
  107 
  108 #include <net/bpf.h>
  109 
  110 #include <machine/bus.h>
  111 #include <machine/resource.h>
  112 #include <sys/bus.h>
  113 #include <sys/rman.h>
  114 
  115 #include <dev/mii/mii.h>
  116 #include <dev/mii/mii_bitbang.h>
  117 #include <dev/mii/miivar.h>
  118 
  119 #include <dev/pci/pcireg.h>
  120 #include <dev/pci/pcivar.h>
  121 
  122 MODULE_DEPEND(rl, pci, 1, 1, 1);
  123 MODULE_DEPEND(rl, ether, 1, 1, 1);
  124 MODULE_DEPEND(rl, miibus, 1, 1, 1);
  125 
  126 /* "device miibus" required.  See GENERIC if you get errors here. */
  127 #include "miibus_if.h"
  128 
  129 #include <pci/if_rlreg.h>
  130 
  131 /*
  132  * Various supported device vendors/types and their names.
  133  */
  134 static const struct rl_type const rl_devs[] = {
  135         { RT_VENDORID, RT_DEVICEID_8129, RL_8129,
  136                 "RealTek 8129 10/100BaseTX" },
  137         { RT_VENDORID, RT_DEVICEID_8139, RL_8139,
  138                 "RealTek 8139 10/100BaseTX" },
  139         { RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
  140                 "RealTek 8139 10/100BaseTX" },
  141         { RT_VENDORID, RT_DEVICEID_8138, RL_8139,
  142                 "RealTek 8139 10/100BaseTX CardBus" },
  143         { RT_VENDORID, RT_DEVICEID_8100, RL_8139,
  144                 "RealTek 8100 10/100BaseTX" },
  145         { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
  146                 "Accton MPX 5030/5038 10/100BaseTX" },
  147         { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
  148                 "Delta Electronics 8139 10/100BaseTX" },
  149         { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
  150                 "Addtron Technology 8139 10/100BaseTX" },
  151         { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
  152                 "D-Link DFE-530TX+ 10/100BaseTX" },
  153         { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
  154                 "D-Link DFE-690TXD 10/100BaseTX" },
  155         { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
  156                 "Nortel Networks 10/100BaseTX" },
  157         { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
  158                 "Corega FEther CB-TXD" },
  159         { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
  160                 "Corega FEtherII CB-TXD" },
  161         { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
  162                 "Peppercon AG ROL-F" },
  163         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
  164                 "Planex FNW-3603-TX" },
  165         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
  166                 "Planex FNW-3800-TX" },
  167         { CP_VENDORID, RT_DEVICEID_8139, RL_8139,
  168                 "Compaq HNE-300" },
  169         { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
  170                 "LevelOne FPC-0106TX" },
  171         { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
  172                 "Edimax EP-4103DL CardBus" }
  173 };
  174 
  175 static int rl_attach(device_t);
  176 static int rl_detach(device_t);
  177 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  178 static int rl_dma_alloc(struct rl_softc *);
  179 static void rl_dma_free(struct rl_softc *);
  180 static void rl_eeprom_putbyte(struct rl_softc *, int);
  181 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
  182 static int rl_encap(struct rl_softc *, struct mbuf **);
  183 static int rl_list_tx_init(struct rl_softc *);
  184 static int rl_list_rx_init(struct rl_softc *);
  185 static int rl_ifmedia_upd(struct ifnet *);
  186 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  187 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
  188 static void rl_intr(void *);
  189 static void rl_init(void *);
  190 static void rl_init_locked(struct rl_softc *sc);
  191 static int rl_miibus_readreg(device_t, int, int);
  192 static void rl_miibus_statchg(device_t);
  193 static int rl_miibus_writereg(device_t, int, int, int);
  194 #ifdef DEVICE_POLLING
  195 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  196 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
  197 #endif
  198 static int rl_probe(device_t);
  199 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
  200 static void rl_reset(struct rl_softc *);
  201 static int rl_resume(device_t);
  202 static int rl_rxeof(struct rl_softc *);
  203 static void rl_rxfilter(struct rl_softc *);
  204 static int rl_shutdown(device_t);
  205 static void rl_start(struct ifnet *);
  206 static void rl_start_locked(struct ifnet *);
  207 static void rl_stop(struct rl_softc *);
  208 static int rl_suspend(device_t);
  209 static void rl_tick(void *);
  210 static void rl_txeof(struct rl_softc *);
  211 static void rl_watchdog(struct rl_softc *);
  212 static void rl_setwol(struct rl_softc *);
  213 static void rl_clrwol(struct rl_softc *);
  214 
  215 /*
  216  * MII bit-bang glue
  217  */
  218 static uint32_t rl_mii_bitbang_read(device_t);
  219 static void rl_mii_bitbang_write(device_t, uint32_t);
  220 
  221 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
  222         rl_mii_bitbang_read,
  223         rl_mii_bitbang_write,
  224         {
  225                 RL_MII_DATAOUT, /* MII_BIT_MDO */
  226                 RL_MII_DATAIN,  /* MII_BIT_MDI */
  227                 RL_MII_CLK,     /* MII_BIT_MDC */
  228                 RL_MII_DIR,     /* MII_BIT_DIR_HOST_PHY */
  229                 0,              /* MII_BIT_DIR_PHY_HOST */
  230         }
  231 };
  232 
  233 static device_method_t rl_methods[] = {
  234         /* Device interface */
  235         DEVMETHOD(device_probe,         rl_probe),
  236         DEVMETHOD(device_attach,        rl_attach),
  237         DEVMETHOD(device_detach,        rl_detach),
  238         DEVMETHOD(device_suspend,       rl_suspend),
  239         DEVMETHOD(device_resume,        rl_resume),
  240         DEVMETHOD(device_shutdown,      rl_shutdown),
  241 
  242         /* MII interface */
  243         DEVMETHOD(miibus_readreg,       rl_miibus_readreg),
  244         DEVMETHOD(miibus_writereg,      rl_miibus_writereg),
  245         DEVMETHOD(miibus_statchg,       rl_miibus_statchg),
  246 
  247         DEVMETHOD_END
  248 };
  249 
  250 static driver_t rl_driver = {
  251         "rl",
  252         rl_methods,
  253         sizeof(struct rl_softc)
  254 };
  255 
  256 static devclass_t rl_devclass;
  257 
  258 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
  259 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
  260 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
  261 
  262 #define EE_SET(x)                                       \
  263         CSR_WRITE_1(sc, RL_EECMD,                       \
  264                 CSR_READ_1(sc, RL_EECMD) | x)
  265 
  266 #define EE_CLR(x)                                       \
  267         CSR_WRITE_1(sc, RL_EECMD,                       \
  268                 CSR_READ_1(sc, RL_EECMD) & ~x)
  269 
  270 /*
  271  * Send a read command and address to the EEPROM, check for ACK.
  272  */
  273 static void
  274 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
  275 {
  276         register int            d, i;
  277 
  278         d = addr | sc->rl_eecmd_read;
  279 
  280         /*
  281          * Feed in each bit and strobe the clock.
  282          */
  283         for (i = 0x400; i; i >>= 1) {
  284                 if (d & i) {
  285                         EE_SET(RL_EE_DATAIN);
  286                 } else {
  287                         EE_CLR(RL_EE_DATAIN);
  288                 }
  289                 DELAY(100);
  290                 EE_SET(RL_EE_CLK);
  291                 DELAY(150);
  292                 EE_CLR(RL_EE_CLK);
  293                 DELAY(100);
  294         }
  295 }
  296 
  297 /*
  298  * Read a word of data stored in the EEPROM at address 'addr.'
  299  */
  300 static void
  301 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
  302 {
  303         register int            i;
  304         uint16_t                word = 0;
  305 
  306         /* Enter EEPROM access mode. */
  307         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
  308 
  309         /*
  310          * Send address of word we want to read.
  311          */
  312         rl_eeprom_putbyte(sc, addr);
  313 
  314         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
  315 
  316         /*
  317          * Start reading bits from EEPROM.
  318          */
  319         for (i = 0x8000; i; i >>= 1) {
  320                 EE_SET(RL_EE_CLK);
  321                 DELAY(100);
  322                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
  323                         word |= i;
  324                 EE_CLR(RL_EE_CLK);
  325                 DELAY(100);
  326         }
  327 
  328         /* Turn off EEPROM access mode. */
  329         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
  330 
  331         *dest = word;
  332 }
  333 
  334 /*
  335  * Read a sequence of words from the EEPROM.
  336  */
  337 static void
  338 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
  339 {
  340         int                     i;
  341         uint16_t                word = 0, *ptr;
  342 
  343         for (i = 0; i < cnt; i++) {
  344                 rl_eeprom_getword(sc, off + i, &word);
  345                 ptr = (uint16_t *)(dest + (i * 2));
  346                 if (swap)
  347                         *ptr = ntohs(word);
  348                 else
  349                         *ptr = word;
  350         }
  351 }
  352 
  353 /*
  354  * Read the MII serial port for the MII bit-bang module.
  355  */
  356 static uint32_t
  357 rl_mii_bitbang_read(device_t dev)
  358 {
  359         struct rl_softc *sc;
  360         uint32_t val;
  361 
  362         sc = device_get_softc(dev);
  363 
  364         val = CSR_READ_1(sc, RL_MII);
  365         CSR_BARRIER(sc, RL_MII, 1,
  366             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  367 
  368         return (val);
  369 }
  370 
  371 /*
  372  * Write the MII serial port for the MII bit-bang module.
  373  */
  374 static void
  375 rl_mii_bitbang_write(device_t dev, uint32_t val)
  376 {
  377         struct rl_softc *sc;
  378 
  379         sc = device_get_softc(dev);
  380 
  381         CSR_WRITE_1(sc, RL_MII, val);
  382         CSR_BARRIER(sc, RL_MII, 1,
  383             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  384 }
  385 
  386 static int
  387 rl_miibus_readreg(device_t dev, int phy, int reg)
  388 {
  389         struct rl_softc         *sc;
  390         uint16_t                rl8139_reg;
  391 
  392         sc = device_get_softc(dev);
  393 
  394         if (sc->rl_type == RL_8139) {
  395                 switch (reg) {
  396                 case MII_BMCR:
  397                         rl8139_reg = RL_BMCR;
  398                         break;
  399                 case MII_BMSR:
  400                         rl8139_reg = RL_BMSR;
  401                         break;
  402                 case MII_ANAR:
  403                         rl8139_reg = RL_ANAR;
  404                         break;
  405                 case MII_ANER:
  406                         rl8139_reg = RL_ANER;
  407                         break;
  408                 case MII_ANLPAR:
  409                         rl8139_reg = RL_LPAR;
  410                         break;
  411                 case MII_PHYIDR1:
  412                 case MII_PHYIDR2:
  413                         return (0);
  414                 /*
  415                  * Allow the rlphy driver to read the media status
  416                  * register. If we have a link partner which does not
  417                  * support NWAY, this is the register which will tell
  418                  * us the results of parallel detection.
  419                  */
  420                 case RL_MEDIASTAT:
  421                         return (CSR_READ_1(sc, RL_MEDIASTAT));
  422                 default:
  423                         device_printf(sc->rl_dev, "bad phy register\n");
  424                         return (0);
  425                 }
  426                 return (CSR_READ_2(sc, rl8139_reg));
  427         }
  428 
  429         return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
  430 }
  431 
  432 static int
  433 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
  434 {
  435         struct rl_softc         *sc;
  436         uint16_t                rl8139_reg;
  437 
  438         sc = device_get_softc(dev);
  439 
  440         if (sc->rl_type == RL_8139) {
  441                 switch (reg) {
  442                 case MII_BMCR:
  443                         rl8139_reg = RL_BMCR;
  444                         break;
  445                 case MII_BMSR:
  446                         rl8139_reg = RL_BMSR;
  447                         break;
  448                 case MII_ANAR:
  449                         rl8139_reg = RL_ANAR;
  450                         break;
  451                 case MII_ANER:
  452                         rl8139_reg = RL_ANER;
  453                         break;
  454                 case MII_ANLPAR:
  455                         rl8139_reg = RL_LPAR;
  456                         break;
  457                 case MII_PHYIDR1:
  458                 case MII_PHYIDR2:
  459                         return (0);
  460                         break;
  461                 default:
  462                         device_printf(sc->rl_dev, "bad phy register\n");
  463                         return (0);
  464                 }
  465                 CSR_WRITE_2(sc, rl8139_reg, data);
  466                 return (0);
  467         }
  468 
  469         mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
  470 
  471         return (0);
  472 }
  473 
  474 static void
  475 rl_miibus_statchg(device_t dev)
  476 {
  477         struct rl_softc         *sc;
  478         struct ifnet            *ifp;
  479         struct mii_data         *mii;
  480 
  481         sc = device_get_softc(dev);
  482         mii = device_get_softc(sc->rl_miibus);
  483         ifp = sc->rl_ifp;
  484         if (mii == NULL || ifp == NULL ||
  485             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  486                 return;
  487 
  488         sc->rl_flags &= ~RL_FLAG_LINK;
  489         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  490             (IFM_ACTIVE | IFM_AVALID)) {
  491                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  492                 case IFM_10_T:
  493                 case IFM_100_TX:
  494                         sc->rl_flags |= RL_FLAG_LINK;
  495                         break;
  496                 default:
  497                         break;
  498                 }
  499         }
  500         /*
  501          * RealTek controllers do not provide any interface to
  502          * Tx/Rx MACs for resolved speed, duplex and flow-control
  503          * parameters.
  504          */
  505 }
  506 
  507 /*
  508  * Program the 64-bit multicast hash filter.
  509  */
  510 static void
  511 rl_rxfilter(struct rl_softc *sc)
  512 {
  513         struct ifnet            *ifp = sc->rl_ifp;
  514         int                     h = 0;
  515         uint32_t                hashes[2] = { 0, 0 };
  516         struct ifmultiaddr      *ifma;
  517         uint32_t                rxfilt;
  518 
  519         RL_LOCK_ASSERT(sc);
  520 
  521         rxfilt = CSR_READ_4(sc, RL_RXCFG);
  522         rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
  523             RL_RXCFG_RX_MULTI);
  524         /* Always accept frames destined for this host. */
  525         rxfilt |= RL_RXCFG_RX_INDIV;
  526         /* Set capture broadcast bit to capture broadcast frames. */
  527         if (ifp->if_flags & IFF_BROADCAST)
  528                 rxfilt |= RL_RXCFG_RX_BROAD;
  529         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  530                 rxfilt |= RL_RXCFG_RX_MULTI;
  531                 if (ifp->if_flags & IFF_PROMISC)
  532                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
  533                 hashes[0] = 0xFFFFFFFF;
  534                 hashes[1] = 0xFFFFFFFF;
  535         } else {
  536                 /* Now program new ones. */
  537                 if_maddr_rlock(ifp);
  538                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  539                         if (ifma->ifma_addr->sa_family != AF_LINK)
  540                                 continue;
  541                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  542                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  543                         if (h < 32)
  544                                 hashes[0] |= (1 << h);
  545                         else
  546                                 hashes[1] |= (1 << (h - 32));
  547                 }
  548                 if_maddr_runlock(ifp);
  549                 if (hashes[0] != 0 || hashes[1] != 0)
  550                         rxfilt |= RL_RXCFG_RX_MULTI;
  551         }
  552 
  553         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
  554         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
  555         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
  556 }
  557 
  558 static void
  559 rl_reset(struct rl_softc *sc)
  560 {
  561         register int            i;
  562 
  563         RL_LOCK_ASSERT(sc);
  564 
  565         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
  566 
  567         for (i = 0; i < RL_TIMEOUT; i++) {
  568                 DELAY(10);
  569                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
  570                         break;
  571         }
  572         if (i == RL_TIMEOUT)
  573                 device_printf(sc->rl_dev, "reset never completed!\n");
  574 }
  575 
  576 /*
  577  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
  578  * IDs against our list and return a device name if we find a match.
  579  */
  580 static int
  581 rl_probe(device_t dev)
  582 {
  583         const struct rl_type    *t;
  584         uint16_t                devid, revid, vendor;
  585         int                     i;
  586         
  587         vendor = pci_get_vendor(dev);
  588         devid = pci_get_device(dev);
  589         revid = pci_get_revid(dev);
  590 
  591         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
  592                 if (revid == 0x20) {
  593                         /* 8139C+, let re(4) take care of this device. */
  594                         return (ENXIO);
  595                 }
  596         }
  597         t = rl_devs;
  598         for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
  599                 if (vendor == t->rl_vid && devid == t->rl_did) {
  600                         device_set_desc(dev, t->rl_name);
  601                         return (BUS_PROBE_DEFAULT);
  602                 }
  603         }
  604 
  605         return (ENXIO);
  606 }
  607 
  608 struct rl_dmamap_arg {
  609         bus_addr_t      rl_busaddr;
  610 };
  611 
  612 static void
  613 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  614 {
  615         struct rl_dmamap_arg    *ctx;
  616 
  617         if (error != 0)
  618                 return;
  619 
  620         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  621 
  622         ctx = (struct rl_dmamap_arg *)arg;
  623         ctx->rl_busaddr = segs[0].ds_addr;
  624 }
  625 
  626 /*
  627  * Attach the interface. Allocate softc structures, do ifmedia
  628  * setup and ethernet/BPF attach.
  629  */
  630 static int
  631 rl_attach(device_t dev)
  632 {
  633         uint8_t                 eaddr[ETHER_ADDR_LEN];
  634         uint16_t                as[3];
  635         struct ifnet            *ifp;
  636         struct rl_softc         *sc;
  637         const struct rl_type    *t;
  638         struct sysctl_ctx_list  *ctx;
  639         struct sysctl_oid_list  *children;
  640         int                     error = 0, hwrev, i, phy, pmc, rid;
  641         int                     prefer_iomap, unit;
  642         uint16_t                rl_did = 0;
  643         char                    tn[32];
  644 
  645         sc = device_get_softc(dev);
  646         unit = device_get_unit(dev);
  647         sc->rl_dev = dev;
  648 
  649         sc->rl_twister_enable = 0;
  650         snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
  651         TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
  652         ctx = device_get_sysctl_ctx(sc->rl_dev);
  653         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
  654         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
  655            &sc->rl_twister_enable, 0, "");
  656 
  657         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  658             MTX_DEF);
  659         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
  660 
  661         pci_enable_busmaster(dev);
  662 
  663 
  664         /*
  665          * Map control/status registers.
  666          * Default to using PIO access for this driver. On SMP systems,
  667          * there appear to be problems with memory mapped mode: it looks
  668          * like doing too many memory mapped access back to back in rapid
  669          * succession can hang the bus. I'm inclined to blame this on
  670          * crummy design/construction on the part of RealTek. Memory
  671          * mapped mode does appear to work on uniprocessor systems though.
  672          */
  673         prefer_iomap = 1;
  674         snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
  675         TUNABLE_INT_FETCH(tn, &prefer_iomap);
  676         if (prefer_iomap) {
  677                 sc->rl_res_id = PCIR_BAR(0);
  678                 sc->rl_res_type = SYS_RES_IOPORT;
  679                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
  680                     &sc->rl_res_id, RF_ACTIVE);
  681         }
  682         if (prefer_iomap == 0 || sc->rl_res == NULL) {
  683                 sc->rl_res_id = PCIR_BAR(1);
  684                 sc->rl_res_type = SYS_RES_MEMORY;
  685                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
  686                     &sc->rl_res_id, RF_ACTIVE);
  687         }
  688         if (sc->rl_res == NULL) {
  689                 device_printf(dev, "couldn't map ports/memory\n");
  690                 error = ENXIO;
  691                 goto fail;
  692         }
  693 
  694 #ifdef notdef
  695         /*
  696          * Detect the Realtek 8139B. For some reason, this chip is very
  697          * unstable when left to autoselect the media
  698          * The best workaround is to set the device to the required
  699          * media type or to set it to the 10 Meg speed.
  700          */
  701         if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
  702                 device_printf(dev,
  703 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
  704 #endif
  705 
  706         sc->rl_btag = rman_get_bustag(sc->rl_res);
  707         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
  708 
  709         /* Allocate interrupt */
  710         rid = 0;
  711         sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  712             RF_SHAREABLE | RF_ACTIVE);
  713 
  714         if (sc->rl_irq[0] == NULL) {
  715                 device_printf(dev, "couldn't map interrupt\n");
  716                 error = ENXIO;
  717                 goto fail;
  718         }
  719 
  720         sc->rl_cfg0 = RL_8139_CFG0;
  721         sc->rl_cfg1 = RL_8139_CFG1;
  722         sc->rl_cfg2 = 0;
  723         sc->rl_cfg3 = RL_8139_CFG3;
  724         sc->rl_cfg4 = RL_8139_CFG4;
  725         sc->rl_cfg5 = RL_8139_CFG5;
  726 
  727         /*
  728          * Reset the adapter. Only take the lock here as it's needed in
  729          * order to call rl_reset().
  730          */
  731         RL_LOCK(sc);
  732         rl_reset(sc);
  733         RL_UNLOCK(sc);
  734 
  735         sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
  736         rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
  737         if (rl_did != 0x8129)
  738                 sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
  739 
  740         /*
  741          * Get station address from the EEPROM.
  742          */
  743         rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
  744         for (i = 0; i < 3; i++) {
  745                 eaddr[(i * 2) + 0] = as[i] & 0xff;
  746                 eaddr[(i * 2) + 1] = as[i] >> 8;
  747         }
  748 
  749         /*
  750          * Now read the exact device type from the EEPROM to find
  751          * out if it's an 8129 or 8139.
  752          */
  753         rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
  754 
  755         t = rl_devs;
  756         sc->rl_type = 0;
  757         while(t->rl_name != NULL) {
  758                 if (rl_did == t->rl_did) {
  759                         sc->rl_type = t->rl_basetype;
  760                         break;
  761                 }
  762                 t++;
  763         }
  764 
  765         if (sc->rl_type == 0) {
  766                 device_printf(dev, "unknown device ID: %x assuming 8139\n",
  767                     rl_did);
  768                 sc->rl_type = RL_8139;
  769                 /*
  770                  * Read RL_IDR register to get ethernet address as accessing
  771                  * EEPROM may not extract correct address.
  772                  */
  773                 for (i = 0; i < ETHER_ADDR_LEN; i++)
  774                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
  775         }
  776 
  777         if ((error = rl_dma_alloc(sc)) != 0)
  778                 goto fail;
  779 
  780         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
  781         if (ifp == NULL) {
  782                 device_printf(dev, "can not if_alloc()\n");
  783                 error = ENOSPC;
  784                 goto fail;
  785         }
  786 
  787 #define RL_PHYAD_INTERNAL       0
  788 
  789         /* Do MII setup */
  790         phy = MII_PHY_ANY;
  791         if (sc->rl_type == RL_8139)
  792                 phy = RL_PHYAD_INTERNAL;
  793         error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
  794             rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
  795         if (error != 0) {
  796                 device_printf(dev, "attaching PHYs failed\n");
  797                 goto fail;
  798         }
  799 
  800         ifp->if_softc = sc;
  801         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  802         ifp->if_mtu = ETHERMTU;
  803         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  804         ifp->if_ioctl = rl_ioctl;
  805         ifp->if_start = rl_start;
  806         ifp->if_init = rl_init;
  807         ifp->if_capabilities = IFCAP_VLAN_MTU;
  808         /* Check WOL for RTL8139B or newer controllers. */
  809         if (sc->rl_type == RL_8139 &&
  810             pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
  811                 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
  812                 switch (hwrev) {
  813                 case RL_HWREV_8139B:
  814                 case RL_HWREV_8130:
  815                 case RL_HWREV_8139C:
  816                 case RL_HWREV_8139D:
  817                 case RL_HWREV_8101:
  818                 case RL_HWREV_8100:
  819                         ifp->if_capabilities |= IFCAP_WOL;
  820                         /* Disable WOL. */
  821                         rl_clrwol(sc);
  822                         break;
  823                 default:
  824                         break;
  825                 }
  826         }
  827         ifp->if_capenable = ifp->if_capabilities;
  828         ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
  829 #ifdef DEVICE_POLLING
  830         ifp->if_capabilities |= IFCAP_POLLING;
  831 #endif
  832         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  833         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  834         IFQ_SET_READY(&ifp->if_snd);
  835 
  836         /*
  837          * Call MI attach routine.
  838          */
  839         ether_ifattach(ifp, eaddr);
  840 
  841         /* Hook interrupt last to avoid having to lock softc */
  842         error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
  843             NULL, rl_intr, sc, &sc->rl_intrhand[0]);
  844         if (error) {
  845                 device_printf(sc->rl_dev, "couldn't set up irq\n");
  846                 ether_ifdetach(ifp);
  847         }
  848 
  849 fail:
  850         if (error)
  851                 rl_detach(dev);
  852 
  853         return (error);
  854 }
  855 
  856 /*
  857  * Shutdown hardware and free up resources. This can be called any
  858  * time after the mutex has been initialized. It is called in both
  859  * the error case in attach and the normal detach case so it needs
  860  * to be careful about only freeing resources that have actually been
  861  * allocated.
  862  */
  863 static int
  864 rl_detach(device_t dev)
  865 {
  866         struct rl_softc         *sc;
  867         struct ifnet            *ifp;
  868 
  869         sc = device_get_softc(dev);
  870         ifp = sc->rl_ifp;
  871 
  872         KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
  873 
  874 #ifdef DEVICE_POLLING
  875         if (ifp->if_capenable & IFCAP_POLLING)
  876                 ether_poll_deregister(ifp);
  877 #endif
  878         /* These should only be active if attach succeeded */
  879         if (device_is_attached(dev)) {
  880                 RL_LOCK(sc);
  881                 rl_stop(sc);
  882                 RL_UNLOCK(sc);
  883                 callout_drain(&sc->rl_stat_callout);
  884                 ether_ifdetach(ifp);
  885         }
  886 #if 0
  887         sc->suspended = 1;
  888 #endif
  889         if (sc->rl_miibus)
  890                 device_delete_child(dev, sc->rl_miibus);
  891         bus_generic_detach(dev);
  892 
  893         if (sc->rl_intrhand[0])
  894                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
  895         if (sc->rl_irq[0])
  896                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
  897         if (sc->rl_res)
  898                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
  899                     sc->rl_res);
  900 
  901         if (ifp)
  902                 if_free(ifp);
  903 
  904         rl_dma_free(sc);
  905 
  906         mtx_destroy(&sc->rl_mtx);
  907 
  908         return (0);
  909 }
  910 
  911 static int
  912 rl_dma_alloc(struct rl_softc *sc)
  913 {
  914         struct rl_dmamap_arg    ctx;
  915         int                     error, i;
  916 
  917         /*
  918          * Allocate the parent bus DMA tag appropriate for PCI.
  919          */
  920         error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */
  921             1, 0,                       /* alignment, boundary */
  922             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  923             BUS_SPACE_MAXADDR,          /* highaddr */
  924             NULL, NULL,                 /* filter, filterarg */
  925             BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
  926             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  927             0,                          /* flags */
  928             NULL, NULL,                 /* lockfunc, lockarg */
  929             &sc->rl_parent_tag);
  930         if (error) {
  931                 device_printf(sc->rl_dev,
  932                     "failed to create parent DMA tag.\n");
  933                 goto fail;
  934         }
  935         /* Create DMA tag for Rx memory block. */
  936         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
  937             RL_RX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
  938             BUS_SPACE_MAXADDR,          /* lowaddr */
  939             BUS_SPACE_MAXADDR,          /* highaddr */
  940             NULL, NULL,                 /* filter, filterarg */
  941             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,   /* maxsize,nsegments */
  942             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,      /* maxsegsize */
  943             0,                          /* flags */
  944             NULL, NULL,                 /* lockfunc, lockarg */
  945             &sc->rl_cdata.rl_rx_tag);
  946         if (error) {
  947                 device_printf(sc->rl_dev,
  948                     "failed to create Rx memory block DMA tag.\n");
  949                 goto fail;
  950         }
  951         /* Create DMA tag for Tx buffer. */
  952         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
  953             RL_TX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
  954             BUS_SPACE_MAXADDR,          /* lowaddr */
  955             BUS_SPACE_MAXADDR,          /* highaddr */
  956             NULL, NULL,                 /* filter, filterarg */
  957             MCLBYTES, 1,                /* maxsize, nsegments */
  958             MCLBYTES,                   /* maxsegsize */
  959             0,                          /* flags */
  960             NULL, NULL,                 /* lockfunc, lockarg */
  961             &sc->rl_cdata.rl_tx_tag);
  962         if (error) {
  963                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
  964                 goto fail;
  965         }
  966 
  967         /*
  968          * Allocate DMA'able memory and load DMA map for Rx memory block.
  969          */
  970         error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
  971             (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
  972             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
  973         if (error != 0) {
  974                 device_printf(sc->rl_dev,
  975                     "failed to allocate Rx DMA memory block.\n");
  976                 goto fail;
  977         }
  978         ctx.rl_busaddr = 0;
  979         error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
  980             sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
  981             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
  982             BUS_DMA_NOWAIT);
  983         if (error != 0 || ctx.rl_busaddr == 0) {
  984                 device_printf(sc->rl_dev,
  985                     "could not load Rx DMA memory block.\n");
  986                 goto fail;
  987         }
  988         sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
  989 
  990         /* Create DMA maps for Tx buffers. */
  991         for (i = 0; i < RL_TX_LIST_CNT; i++) {
  992                 sc->rl_cdata.rl_tx_chain[i] = NULL;
  993                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
  994                 error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
  995                     &sc->rl_cdata.rl_tx_dmamap[i]);
  996                 if (error != 0) {
  997                         device_printf(sc->rl_dev,
  998                             "could not create Tx dmamap.\n");
  999                         goto fail;
 1000                 }
 1001         }
 1002 
 1003         /* Leave a few bytes before the start of the RX ring buffer. */
 1004         sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
 1005         sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
 1006 
 1007 fail:
 1008         return (error);
 1009 }
 1010 
 1011 static void
 1012 rl_dma_free(struct rl_softc *sc)
 1013 {
 1014         int                     i;
 1015 
 1016         /* Rx memory block. */
 1017         if (sc->rl_cdata.rl_rx_tag != NULL) {
 1018                 if (sc->rl_cdata.rl_rx_dmamap != NULL)
 1019                         bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
 1020                             sc->rl_cdata.rl_rx_dmamap);
 1021                 if (sc->rl_cdata.rl_rx_dmamap != NULL &&
 1022                     sc->rl_cdata.rl_rx_buf_ptr != NULL)
 1023                         bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
 1024                             sc->rl_cdata.rl_rx_buf_ptr,
 1025                             sc->rl_cdata.rl_rx_dmamap);
 1026                 sc->rl_cdata.rl_rx_buf_ptr = NULL;
 1027                 sc->rl_cdata.rl_rx_buf = NULL;
 1028                 sc->rl_cdata.rl_rx_dmamap = NULL;
 1029                 bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
 1030                 sc->rl_cdata.rl_tx_tag = NULL;
 1031         }
 1032 
 1033         /* Tx buffers. */
 1034         if (sc->rl_cdata.rl_tx_tag != NULL) {
 1035                 for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1036                         if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
 1037                                 bus_dmamap_destroy(
 1038                                     sc->rl_cdata.rl_tx_tag,
 1039                                     sc->rl_cdata.rl_tx_dmamap[i]);
 1040                                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
 1041                         }
 1042                 }
 1043                 bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
 1044                 sc->rl_cdata.rl_tx_tag = NULL;
 1045         }
 1046 
 1047         if (sc->rl_parent_tag != NULL) {
 1048                 bus_dma_tag_destroy(sc->rl_parent_tag);
 1049                 sc->rl_parent_tag = NULL;
 1050         }
 1051 }
 1052 
 1053 /*
 1054  * Initialize the transmit descriptors.
 1055  */
 1056 static int
 1057 rl_list_tx_init(struct rl_softc *sc)
 1058 {
 1059         struct rl_chain_data    *cd;
 1060         int                     i;
 1061 
 1062         RL_LOCK_ASSERT(sc);
 1063 
 1064         cd = &sc->rl_cdata;
 1065         for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1066                 cd->rl_tx_chain[i] = NULL;
 1067                 CSR_WRITE_4(sc,
 1068                     RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
 1069         }
 1070 
 1071         sc->rl_cdata.cur_tx = 0;
 1072         sc->rl_cdata.last_tx = 0;
 1073 
 1074         return (0);
 1075 }
 1076 
 1077 static int
 1078 rl_list_rx_init(struct rl_softc *sc)
 1079 {
 1080 
 1081         RL_LOCK_ASSERT(sc);
 1082 
 1083         bzero(sc->rl_cdata.rl_rx_buf_ptr,
 1084             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
 1085         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
 1086             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1087 
 1088         return (0);
 1089 }
 1090 
 1091 /*
 1092  * A frame has been uploaded: pass the resulting mbuf chain up to
 1093  * the higher level protocols.
 1094  *
 1095  * You know there's something wrong with a PCI bus-master chip design
 1096  * when you have to use m_devget().
 1097  *
 1098  * The receive operation is badly documented in the datasheet, so I'll
 1099  * attempt to document it here. The driver provides a buffer area and
 1100  * places its base address in the RX buffer start address register.
 1101  * The chip then begins copying frames into the RX buffer. Each frame
 1102  * is preceded by a 32-bit RX status word which specifies the length
 1103  * of the frame and certain other status bits. Each frame (starting with
 1104  * the status word) is also 32-bit aligned. The frame length is in the
 1105  * first 16 bits of the status word; the lower 15 bits correspond with
 1106  * the 'rx status register' mentioned in the datasheet.
 1107  *
 1108  * Note: to make the Alpha happy, the frame payload needs to be aligned
 1109  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
 1110  * as the offset argument to m_devget().
 1111  */
 1112 static int
 1113 rl_rxeof(struct rl_softc *sc)
 1114 {
 1115         struct mbuf             *m;
 1116         struct ifnet            *ifp = sc->rl_ifp;
 1117         uint8_t                 *rxbufpos;
 1118         int                     total_len = 0;
 1119         int                     wrap = 0;
 1120         int                     rx_npkts = 0;
 1121         uint32_t                rxstat;
 1122         uint16_t                cur_rx;
 1123         uint16_t                limit;
 1124         uint16_t                max_bytes, rx_bytes = 0;
 1125 
 1126         RL_LOCK_ASSERT(sc);
 1127 
 1128         bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
 1129             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1130 
 1131         cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
 1132 
 1133         /* Do not try to read past this point. */
 1134         limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
 1135 
 1136         if (limit < cur_rx)
 1137                 max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
 1138         else
 1139                 max_bytes = limit - cur_rx;
 1140 
 1141         while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
 1142 #ifdef DEVICE_POLLING
 1143                 if (ifp->if_capenable & IFCAP_POLLING) {
 1144                         if (sc->rxcycles <= 0)
 1145                                 break;
 1146                         sc->rxcycles--;
 1147                 }
 1148 #endif
 1149                 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
 1150                 rxstat = le32toh(*(uint32_t *)rxbufpos);
 1151 
 1152                 /*
 1153                  * Here's a totally undocumented fact for you. When the
 1154                  * RealTek chip is in the process of copying a packet into
 1155                  * RAM for you, the length will be 0xfff0. If you spot a
 1156                  * packet header with this value, you need to stop. The
 1157                  * datasheet makes absolutely no mention of this and
 1158                  * RealTek should be shot for this.
 1159                  */
 1160                 total_len = rxstat >> 16;
 1161                 if (total_len == RL_RXSTAT_UNFINISHED)
 1162                         break;
 1163 
 1164                 if (!(rxstat & RL_RXSTAT_RXOK) ||
 1165                     total_len < ETHER_MIN_LEN ||
 1166                     total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
 1167                         ifp->if_ierrors++;
 1168                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1169                         rl_init_locked(sc);
 1170                         return (rx_npkts);
 1171                 }
 1172 
 1173                 /* No errors; receive the packet. */
 1174                 rx_bytes += total_len + 4;
 1175 
 1176                 /*
 1177                  * XXX The RealTek chip includes the CRC with every
 1178                  * received frame, and there's no way to turn this
 1179                  * behavior off (at least, I can't find anything in
 1180                  * the manual that explains how to do it) so we have
 1181                  * to trim off the CRC manually.
 1182                  */
 1183                 total_len -= ETHER_CRC_LEN;
 1184 
 1185                 /*
 1186                  * Avoid trying to read more bytes than we know
 1187                  * the chip has prepared for us.
 1188                  */
 1189                 if (rx_bytes > max_bytes)
 1190                         break;
 1191 
 1192                 rxbufpos = sc->rl_cdata.rl_rx_buf +
 1193                         ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
 1194                 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
 1195                         rxbufpos = sc->rl_cdata.rl_rx_buf;
 1196 
 1197                 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
 1198                 if (total_len > wrap) {
 1199                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
 1200                             NULL);
 1201                         if (m != NULL)
 1202                                 m_copyback(m, wrap, total_len - wrap,
 1203                                         sc->rl_cdata.rl_rx_buf);
 1204                         cur_rx = (total_len - wrap + ETHER_CRC_LEN);
 1205                 } else {
 1206                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
 1207                             NULL);
 1208                         cur_rx += total_len + 4 + ETHER_CRC_LEN;
 1209                 }
 1210 
 1211                 /* Round up to 32-bit boundary. */
 1212                 cur_rx = (cur_rx + 3) & ~3;
 1213                 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
 1214 
 1215                 if (m == NULL) {
 1216                         ifp->if_iqdrops++;
 1217                         continue;
 1218                 }
 1219 
 1220                 ifp->if_ipackets++;
 1221                 RL_UNLOCK(sc);
 1222                 (*ifp->if_input)(ifp, m);
 1223                 RL_LOCK(sc);
 1224                 rx_npkts++;
 1225         }
 1226 
 1227         /* No need to sync Rx memory block as we didn't modify it. */
 1228         return (rx_npkts);
 1229 }
 1230 
 1231 /*
 1232  * A frame was downloaded to the chip. It's safe for us to clean up
 1233  * the list buffers.
 1234  */
 1235 static void
 1236 rl_txeof(struct rl_softc *sc)
 1237 {
 1238         struct ifnet            *ifp = sc->rl_ifp;
 1239         uint32_t                txstat;
 1240 
 1241         RL_LOCK_ASSERT(sc);
 1242 
 1243         /*
 1244          * Go through our tx list and free mbufs for those
 1245          * frames that have been uploaded.
 1246          */
 1247         do {
 1248                 if (RL_LAST_TXMBUF(sc) == NULL)
 1249                         break;
 1250                 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
 1251                 if (!(txstat & (RL_TXSTAT_TX_OK|
 1252                     RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
 1253                         break;
 1254 
 1255                 ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
 1256 
 1257                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
 1258                     BUS_DMASYNC_POSTWRITE);
 1259                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
 1260                 m_freem(RL_LAST_TXMBUF(sc));
 1261                 RL_LAST_TXMBUF(sc) = NULL;
 1262                 /*
 1263                  * If there was a transmit underrun, bump the TX threshold.
 1264                  * Make sure not to overflow the 63 * 32byte we can address
 1265                  * with the 6 available bit.
 1266                  */
 1267                 if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
 1268                     (sc->rl_txthresh < 2016))
 1269                         sc->rl_txthresh += 32;
 1270                 if (txstat & RL_TXSTAT_TX_OK)
 1271                         ifp->if_opackets++;
 1272                 else {
 1273                         int                     oldthresh;
 1274                         ifp->if_oerrors++;
 1275                         if ((txstat & RL_TXSTAT_TXABRT) ||
 1276                             (txstat & RL_TXSTAT_OUTOFWIN))
 1277                                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 1278                         oldthresh = sc->rl_txthresh;
 1279                         /* error recovery */
 1280                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1281                         rl_init_locked(sc);
 1282                         /* restore original threshold */
 1283                         sc->rl_txthresh = oldthresh;
 1284                         return;
 1285                 }
 1286                 RL_INC(sc->rl_cdata.last_tx);
 1287                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1288         } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
 1289 
 1290         if (RL_LAST_TXMBUF(sc) == NULL)
 1291                 sc->rl_watchdog_timer = 0;
 1292 }
 1293 
 1294 static void
 1295 rl_twister_update(struct rl_softc *sc)
 1296 {
 1297         uint16_t linktest;
 1298         /*
 1299          * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
 1300          * Linux driver.  Values undocumented otherwise.
 1301          */
 1302         static const uint32_t param[4][4] = {
 1303                 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
 1304                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
 1305                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
 1306                 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
 1307         };
 1308 
 1309         /*
 1310          * Tune the so-called twister registers of the RTL8139.  These
 1311          * are used to compensate for impedance mismatches.  The
 1312          * method for tuning these registers is undocumented and the
 1313          * following procedure is collected from public sources.
 1314          */
 1315         switch (sc->rl_twister)
 1316         {
 1317         case CHK_LINK:
 1318                 /*
 1319                  * If we have a sufficient link, then we can proceed in
 1320                  * the state machine to the next stage.  If not, then
 1321                  * disable further tuning after writing sane defaults.
 1322                  */
 1323                 if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
 1324                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
 1325                         sc->rl_twister = FIND_ROW;
 1326                 } else {
 1327                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
 1328                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
 1329                         CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
 1330                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
 1331                         sc->rl_twister = DONE;
 1332                 }
 1333                 break;
 1334         case FIND_ROW:
 1335                 /*
 1336                  * Read how long it took to see the echo to find the tuning
 1337                  * row to use.
 1338                  */
 1339                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
 1340                 if (linktest == RL_CSCFG_ROW3)
 1341                         sc->rl_twist_row = 3;
 1342                 else if (linktest == RL_CSCFG_ROW2)
 1343                         sc->rl_twist_row = 2;
 1344                 else if (linktest == RL_CSCFG_ROW1)
 1345                         sc->rl_twist_row = 1;
 1346                 else
 1347                         sc->rl_twist_row = 0;
 1348                 sc->rl_twist_col = 0;
 1349                 sc->rl_twister = SET_PARAM;
 1350                 break;
 1351         case SET_PARAM:
 1352                 if (sc->rl_twist_col == 0)
 1353                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
 1354                 CSR_WRITE_4(sc, RL_PARA7C,
 1355                     param[sc->rl_twist_row][sc->rl_twist_col]);
 1356                 if (++sc->rl_twist_col == 4) {
 1357                         if (sc->rl_twist_row == 3)
 1358                                 sc->rl_twister = RECHK_LONG;
 1359                         else
 1360                                 sc->rl_twister = DONE;
 1361                 }
 1362                 break;
 1363         case RECHK_LONG:
 1364                 /*
 1365                  * For long cables, we have to double check to make sure we
 1366                  * don't mistune.
 1367                  */
 1368                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
 1369                 if (linktest == RL_CSCFG_ROW3)
 1370                         sc->rl_twister = DONE;
 1371                 else {
 1372                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
 1373                         sc->rl_twister = RETUNE;
 1374                 }
 1375                 break;
 1376         case RETUNE:
 1377                 /* Retune for a shorter cable (try column 2) */
 1378                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
 1379                 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
 1380                 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
 1381                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
 1382                 sc->rl_twist_row--;
 1383                 sc->rl_twist_col = 0;
 1384                 sc->rl_twister = SET_PARAM;
 1385                 break;
 1386 
 1387         case DONE:
 1388                 break;
 1389         }
 1390         
 1391 }
 1392 
 1393 static void
 1394 rl_tick(void *xsc)
 1395 {
 1396         struct rl_softc         *sc = xsc;
 1397         struct mii_data         *mii;
 1398         int ticks;
 1399 
 1400         RL_LOCK_ASSERT(sc);
 1401         /*
 1402          * If we're doing the twister cable calibration, then we need to defer
 1403          * watchdog timeouts.  This is a no-op in normal operations, but
 1404          * can falsely trigger when the cable calibration takes a while and
 1405          * there was traffic ready to go when rl was started.
 1406          *
 1407          * We don't defer mii_tick since that updates the mii status, which
 1408          * helps the twister process, at least according to similar patches
 1409          * for the Linux driver I found online while doing the fixes.  Worst
 1410          * case is a few extra mii reads during calibration.
 1411          */
 1412         mii = device_get_softc(sc->rl_miibus);
 1413         mii_tick(mii);
 1414         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
 1415                 rl_miibus_statchg(sc->rl_dev);
 1416         if (sc->rl_twister_enable) {
 1417                 if (sc->rl_twister == DONE)
 1418                         rl_watchdog(sc);
 1419                 else
 1420                         rl_twister_update(sc);
 1421                 if (sc->rl_twister == DONE)
 1422                         ticks = hz;
 1423                 else
 1424                         ticks = hz / 10;
 1425         } else {
 1426                 rl_watchdog(sc);
 1427                 ticks = hz;
 1428         }
 1429 
 1430         callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
 1431 }
 1432 
 1433 #ifdef DEVICE_POLLING
 1434 static int
 1435 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1436 {
 1437         struct rl_softc *sc = ifp->if_softc;
 1438         int rx_npkts = 0;
 1439 
 1440         RL_LOCK(sc);
 1441         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1442                 rx_npkts = rl_poll_locked(ifp, cmd, count);
 1443         RL_UNLOCK(sc);
 1444         return (rx_npkts);
 1445 }
 1446 
 1447 static int
 1448 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1449 {
 1450         struct rl_softc *sc = ifp->if_softc;
 1451         int rx_npkts;
 1452 
 1453         RL_LOCK_ASSERT(sc);
 1454 
 1455         sc->rxcycles = count;
 1456         rx_npkts = rl_rxeof(sc);
 1457         rl_txeof(sc);
 1458 
 1459         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1460                 rl_start_locked(ifp);
 1461 
 1462         if (cmd == POLL_AND_CHECK_STATUS) {
 1463                 uint16_t        status;
 1464 
 1465                 /* We should also check the status register. */
 1466                 status = CSR_READ_2(sc, RL_ISR);
 1467                 if (status == 0xffff)
 1468                         return (rx_npkts);
 1469                 if (status != 0)
 1470                         CSR_WRITE_2(sc, RL_ISR, status);
 1471 
 1472                 /* XXX We should check behaviour on receiver stalls. */
 1473 
 1474                 if (status & RL_ISR_SYSTEM_ERR) {
 1475                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1476                         rl_init_locked(sc);
 1477                 }
 1478         }
 1479         return (rx_npkts);
 1480 }
 1481 #endif /* DEVICE_POLLING */
 1482 
 1483 static void
 1484 rl_intr(void *arg)
 1485 {
 1486         struct rl_softc         *sc = arg;
 1487         struct ifnet            *ifp = sc->rl_ifp;
 1488         uint16_t                status;
 1489         int                     count;
 1490 
 1491         RL_LOCK(sc);
 1492 
 1493         if (sc->suspended)
 1494                 goto done_locked;
 1495 
 1496 #ifdef DEVICE_POLLING
 1497         if  (ifp->if_capenable & IFCAP_POLLING)
 1498                 goto done_locked;
 1499 #endif
 1500 
 1501         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1502                 goto done_locked2;
 1503         status = CSR_READ_2(sc, RL_ISR);
 1504         if (status == 0xffff || (status & RL_INTRS) == 0)
 1505                 goto done_locked;
 1506         /*
 1507          * Ours, disable further interrupts.
 1508          */
 1509         CSR_WRITE_2(sc, RL_IMR, 0);
 1510         for (count = 16; count > 0; count--) {
 1511                 CSR_WRITE_2(sc, RL_ISR, status);
 1512                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1513                         if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
 1514                                 rl_rxeof(sc);
 1515                         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
 1516                                 rl_txeof(sc);
 1517                         if (status & RL_ISR_SYSTEM_ERR) {
 1518                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1519                                 rl_init_locked(sc);
 1520                                 RL_UNLOCK(sc);
 1521                                 return;
 1522                         }
 1523                 }
 1524                 status = CSR_READ_2(sc, RL_ISR);
 1525                 /* If the card has gone away, the read returns 0xffff. */
 1526                 if (status == 0xffff || (status & RL_INTRS) == 0)
 1527                         break;
 1528         }
 1529 
 1530         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1531                 rl_start_locked(ifp);
 1532 
 1533 done_locked2:
 1534         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1535                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1536 done_locked:
 1537         RL_UNLOCK(sc);
 1538 }
 1539 
 1540 /*
 1541  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1542  * pointers to the fragment pointers.
 1543  */
 1544 static int
 1545 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
 1546 {
 1547         struct mbuf             *m;
 1548         bus_dma_segment_t       txsegs[1];
 1549         int                     error, nsegs, padlen;
 1550 
 1551         RL_LOCK_ASSERT(sc);
 1552 
 1553         m = *m_head;
 1554         padlen = 0;
 1555         /*
 1556          * Hardware doesn't auto-pad, so we have to make sure
 1557          * pad short frames out to the minimum frame length.
 1558          */
 1559         if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
 1560                 padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
 1561         /*
 1562          * The RealTek is brain damaged and wants longword-aligned
 1563          * TX buffers, plus we can only have one fragment buffer
 1564          * per packet. We have to copy pretty much all the time.
 1565          */
 1566         if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
 1567             (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
 1568                 m = m_defrag(*m_head, M_DONTWAIT);
 1569                 if (m == NULL) {
 1570                         m_freem(*m_head);
 1571                         *m_head = NULL;
 1572                         return (ENOMEM);
 1573                 }
 1574         }
 1575         *m_head = m;
 1576 
 1577         if (padlen > 0) {
 1578                 /*
 1579                  * Make security-conscious people happy: zero out the
 1580                  * bytes in the pad area, since we don't know what
 1581                  * this mbuf cluster buffer's previous user might
 1582                  * have left in it.
 1583                  */
 1584                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
 1585                 m->m_pkthdr.len += padlen;
 1586                 m->m_len = m->m_pkthdr.len;
 1587         }
 1588 
 1589         error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
 1590             RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
 1591         if (error != 0)
 1592                 return (error);
 1593         if (nsegs == 0) {
 1594                 m_freem(*m_head);
 1595                 *m_head = NULL;
 1596                 return (EIO);
 1597         }
 1598 
 1599         RL_CUR_TXMBUF(sc) = m;
 1600         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
 1601             BUS_DMASYNC_PREWRITE);
 1602         CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
 1603 
 1604         return (0);
 1605 }
 1606 
 1607 /*
 1608  * Main transmit routine.
 1609  */
 1610 static void
 1611 rl_start(struct ifnet *ifp)
 1612 {
 1613         struct rl_softc         *sc = ifp->if_softc;
 1614 
 1615         RL_LOCK(sc);
 1616         rl_start_locked(ifp);
 1617         RL_UNLOCK(sc);
 1618 }
 1619 
 1620 static void
 1621 rl_start_locked(struct ifnet *ifp)
 1622 {
 1623         struct rl_softc         *sc = ifp->if_softc;
 1624         struct mbuf             *m_head = NULL;
 1625 
 1626         RL_LOCK_ASSERT(sc);
 1627 
 1628         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1629             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
 1630                 return;
 1631 
 1632         while (RL_CUR_TXMBUF(sc) == NULL) {
 1633 
 1634                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1635 
 1636                 if (m_head == NULL)
 1637                         break;
 1638 
 1639                 if (rl_encap(sc, &m_head)) {
 1640                         if (m_head == NULL)
 1641                                 break;
 1642                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1643                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1644                         break;
 1645                 }
 1646 
 1647                 /* Pass a copy of this mbuf chain to the bpf subsystem. */
 1648                 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
 1649 
 1650                 /* Transmit the frame. */
 1651                 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
 1652                     RL_TXTHRESH(sc->rl_txthresh) |
 1653                     RL_CUR_TXMBUF(sc)->m_pkthdr.len);
 1654 
 1655                 RL_INC(sc->rl_cdata.cur_tx);
 1656 
 1657                 /* Set a timeout in case the chip goes out to lunch. */
 1658                 sc->rl_watchdog_timer = 5;
 1659         }
 1660 
 1661         /*
 1662          * We broke out of the loop because all our TX slots are
 1663          * full. Mark the NIC as busy until it drains some of the
 1664          * packets from the queue.
 1665          */
 1666         if (RL_CUR_TXMBUF(sc) != NULL)
 1667                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1668 }
 1669 
 1670 static void
 1671 rl_init(void *xsc)
 1672 {
 1673         struct rl_softc         *sc = xsc;
 1674 
 1675         RL_LOCK(sc);
 1676         rl_init_locked(sc);
 1677         RL_UNLOCK(sc);
 1678 }
 1679 
 1680 static void
 1681 rl_init_locked(struct rl_softc *sc)
 1682 {
 1683         struct ifnet            *ifp = sc->rl_ifp;
 1684         struct mii_data         *mii;
 1685         uint32_t                eaddr[2];
 1686 
 1687         RL_LOCK_ASSERT(sc);
 1688 
 1689         mii = device_get_softc(sc->rl_miibus);
 1690 
 1691         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1692                 return;
 1693 
 1694         /*
 1695          * Cancel pending I/O and free all RX/TX buffers.
 1696          */
 1697         rl_stop(sc);
 1698 
 1699         rl_reset(sc);
 1700         if (sc->rl_twister_enable) {
 1701                 /*
 1702                  * Reset twister register tuning state.  The twister
 1703                  * registers and their tuning are undocumented, but
 1704                  * are necessary to cope with bad links.  rl_twister =
 1705                  * DONE here will disable this entirely.
 1706                  */
 1707                 sc->rl_twister = CHK_LINK;
 1708         }
 1709 
 1710         /*
 1711          * Init our MAC address.  Even though the chipset
 1712          * documentation doesn't mention it, we need to enter "Config
 1713          * register write enable" mode to modify the ID registers.
 1714          */
 1715         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
 1716         bzero(eaddr, sizeof(eaddr));
 1717         bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
 1718         CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
 1719         CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
 1720         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 1721 
 1722         /* Init the RX memory block pointer register. */
 1723         CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
 1724             RL_RX_8139_BUF_RESERVE);
 1725         /* Init TX descriptors. */
 1726         rl_list_tx_init(sc);
 1727         /* Init Rx memory block. */
 1728         rl_list_rx_init(sc);
 1729 
 1730         /*
 1731          * Enable transmit and receive.
 1732          */
 1733         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 1734 
 1735         /*
 1736          * Set the initial TX and RX configuration.
 1737          */
 1738         CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
 1739         CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
 1740 
 1741         /* Set RX filter. */
 1742         rl_rxfilter(sc);
 1743 
 1744 #ifdef DEVICE_POLLING
 1745         /* Disable interrupts if we are polling. */
 1746         if (ifp->if_capenable & IFCAP_POLLING)
 1747                 CSR_WRITE_2(sc, RL_IMR, 0);
 1748         else
 1749 #endif
 1750         /* Enable interrupts. */
 1751         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1752 
 1753         /* Set initial TX threshold */
 1754         sc->rl_txthresh = RL_TX_THRESH_INIT;
 1755 
 1756         /* Start RX/TX process. */
 1757         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
 1758 
 1759         /* Enable receiver and transmitter. */
 1760         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
 1761 
 1762         sc->rl_flags &= ~RL_FLAG_LINK;
 1763         mii_mediachg(mii);
 1764 
 1765         CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
 1766 
 1767         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1768         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1769 
 1770         callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
 1771 }
 1772 
 1773 /*
 1774  * Set media options.
 1775  */
 1776 static int
 1777 rl_ifmedia_upd(struct ifnet *ifp)
 1778 {
 1779         struct rl_softc         *sc = ifp->if_softc;
 1780         struct mii_data         *mii;
 1781 
 1782         mii = device_get_softc(sc->rl_miibus);
 1783 
 1784         RL_LOCK(sc);
 1785         mii_mediachg(mii);
 1786         RL_UNLOCK(sc);
 1787 
 1788         return (0);
 1789 }
 1790 
 1791 /*
 1792  * Report current media status.
 1793  */
 1794 static void
 1795 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1796 {
 1797         struct rl_softc         *sc = ifp->if_softc;
 1798         struct mii_data         *mii;
 1799 
 1800         mii = device_get_softc(sc->rl_miibus);
 1801 
 1802         RL_LOCK(sc);
 1803         mii_pollstat(mii);
 1804         ifmr->ifm_active = mii->mii_media_active;
 1805         ifmr->ifm_status = mii->mii_media_status;
 1806         RL_UNLOCK(sc);
 1807 }
 1808 
 1809 static int
 1810 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1811 {
 1812         struct ifreq            *ifr = (struct ifreq *)data;
 1813         struct mii_data         *mii;
 1814         struct rl_softc         *sc = ifp->if_softc;
 1815         int                     error = 0, mask;
 1816 
 1817         switch (command) {
 1818         case SIOCSIFFLAGS:
 1819                 RL_LOCK(sc);
 1820                 if (ifp->if_flags & IFF_UP) {
 1821                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 1822                             ((ifp->if_flags ^ sc->rl_if_flags) &
 1823                             (IFF_PROMISC | IFF_ALLMULTI)))
 1824                                 rl_rxfilter(sc);
 1825                         else
 1826                                 rl_init_locked(sc);
 1827                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1828                         rl_stop(sc);
 1829                 sc->rl_if_flags = ifp->if_flags;
 1830                 RL_UNLOCK(sc);
 1831                 break;
 1832         case SIOCADDMULTI:
 1833         case SIOCDELMULTI:
 1834                 RL_LOCK(sc);
 1835                 rl_rxfilter(sc);
 1836                 RL_UNLOCK(sc);
 1837                 break;
 1838         case SIOCGIFMEDIA:
 1839         case SIOCSIFMEDIA:
 1840                 mii = device_get_softc(sc->rl_miibus);
 1841                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1842                 break;
 1843         case SIOCSIFCAP:
 1844                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1845 #ifdef DEVICE_POLLING
 1846                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 1847                     !(ifp->if_capenable & IFCAP_POLLING)) {
 1848                         error = ether_poll_register(rl_poll, ifp);
 1849                         if (error)
 1850                                 return(error);
 1851                         RL_LOCK(sc);
 1852                         /* Disable interrupts */
 1853                         CSR_WRITE_2(sc, RL_IMR, 0x0000);
 1854                         ifp->if_capenable |= IFCAP_POLLING;
 1855                         RL_UNLOCK(sc);
 1856                         return (error);
 1857                         
 1858                 }
 1859                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 1860                     ifp->if_capenable & IFCAP_POLLING) {
 1861                         error = ether_poll_deregister(ifp);
 1862                         /* Enable interrupts. */
 1863                         RL_LOCK(sc);
 1864                         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
 1865                         ifp->if_capenable &= ~IFCAP_POLLING;
 1866                         RL_UNLOCK(sc);
 1867                         return (error);
 1868                 }
 1869 #endif /* DEVICE_POLLING */
 1870                 if ((mask & IFCAP_WOL) != 0 &&
 1871                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
 1872                         if ((mask & IFCAP_WOL_UCAST) != 0)
 1873                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
 1874                         if ((mask & IFCAP_WOL_MCAST) != 0)
 1875                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
 1876                         if ((mask & IFCAP_WOL_MAGIC) != 0)
 1877                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1878                 }
 1879                 break;
 1880         default:
 1881                 error = ether_ioctl(ifp, command, data);
 1882                 break;
 1883         }
 1884 
 1885         return (error);
 1886 }
 1887 
 1888 static void
 1889 rl_watchdog(struct rl_softc *sc)
 1890 {
 1891 
 1892         RL_LOCK_ASSERT(sc);
 1893 
 1894         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
 1895                 return;
 1896 
 1897         device_printf(sc->rl_dev, "watchdog timeout\n");
 1898         sc->rl_ifp->if_oerrors++;
 1899 
 1900         rl_txeof(sc);
 1901         rl_rxeof(sc);
 1902         sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1903         rl_init_locked(sc);
 1904 }
 1905 
 1906 /*
 1907  * Stop the adapter and free any mbufs allocated to the
 1908  * RX and TX lists.
 1909  */
 1910 static void
 1911 rl_stop(struct rl_softc *sc)
 1912 {
 1913         register int            i;
 1914         struct ifnet            *ifp = sc->rl_ifp;
 1915 
 1916         RL_LOCK_ASSERT(sc);
 1917 
 1918         sc->rl_watchdog_timer = 0;
 1919         callout_stop(&sc->rl_stat_callout);
 1920         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1921         sc->rl_flags &= ~RL_FLAG_LINK;
 1922 
 1923         CSR_WRITE_1(sc, RL_COMMAND, 0x00);
 1924         CSR_WRITE_2(sc, RL_IMR, 0x0000);
 1925         for (i = 0; i < RL_TIMEOUT; i++) {
 1926                 DELAY(10);
 1927                 if ((CSR_READ_1(sc, RL_COMMAND) &
 1928                     (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
 1929                         break;
 1930         }
 1931         if (i == RL_TIMEOUT)
 1932                 device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
 1933 
 1934         /*
 1935          * Free the TX list buffers.
 1936          */
 1937         for (i = 0; i < RL_TX_LIST_CNT; i++) {
 1938                 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
 1939                         if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
 1940                                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
 1941                                     sc->rl_cdata.rl_tx_dmamap[i],
 1942                                     BUS_DMASYNC_POSTWRITE);
 1943                                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
 1944                                     sc->rl_cdata.rl_tx_dmamap[i]);
 1945                                 m_freem(sc->rl_cdata.rl_tx_chain[i]);
 1946                                 sc->rl_cdata.rl_tx_chain[i] = NULL;
 1947                         }
 1948                         CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
 1949                             0x0000000);
 1950                 }
 1951         }
 1952 }
 1953 
 1954 /*
 1955  * Device suspend routine.  Stop the interface and save some PCI
 1956  * settings in case the BIOS doesn't restore them properly on
 1957  * resume.
 1958  */
 1959 static int
 1960 rl_suspend(device_t dev)
 1961 {
 1962         struct rl_softc         *sc;
 1963 
 1964         sc = device_get_softc(dev);
 1965 
 1966         RL_LOCK(sc);
 1967         rl_stop(sc);
 1968         rl_setwol(sc);
 1969         sc->suspended = 1;
 1970         RL_UNLOCK(sc);
 1971 
 1972         return (0);
 1973 }
 1974 
 1975 /*
 1976  * Device resume routine.  Restore some PCI settings in case the BIOS
 1977  * doesn't, re-enable busmastering, and restart the interface if
 1978  * appropriate.
 1979  */
 1980 static int
 1981 rl_resume(device_t dev)
 1982 {
 1983         struct rl_softc         *sc;
 1984         struct ifnet            *ifp;
 1985         int                     pmc;
 1986         uint16_t                pmstat;
 1987 
 1988         sc = device_get_softc(dev);
 1989         ifp = sc->rl_ifp;
 1990 
 1991         RL_LOCK(sc);
 1992 
 1993         if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
 1994             pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
 1995                 /* Disable PME and clear PME status. */
 1996                 pmstat = pci_read_config(sc->rl_dev,
 1997                     pmc + PCIR_POWER_STATUS, 2);
 1998                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1999                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 2000                         pci_write_config(sc->rl_dev,
 2001                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 2002                 }
 2003                 /*
 2004                  * Clear WOL matching such that normal Rx filtering
 2005                  * wouldn't interfere with WOL patterns.
 2006                  */
 2007                 rl_clrwol(sc);
 2008         }
 2009 
 2010         /* reinitialize interface if necessary */
 2011         if (ifp->if_flags & IFF_UP)
 2012                 rl_init_locked(sc);
 2013 
 2014         sc->suspended = 0;
 2015 
 2016         RL_UNLOCK(sc);
 2017 
 2018         return (0);
 2019 }
 2020 
 2021 /*
 2022  * Stop all chip I/O so that the kernel's probe routines don't
 2023  * get confused by errant DMAs when rebooting.
 2024  */
 2025 static int
 2026 rl_shutdown(device_t dev)
 2027 {
 2028         struct rl_softc         *sc;
 2029 
 2030         sc = device_get_softc(dev);
 2031 
 2032         RL_LOCK(sc);
 2033         rl_stop(sc);
 2034         /*
 2035          * Mark interface as down since otherwise we will panic if
 2036          * interrupt comes in later on, which can happen in some
 2037          * cases.
 2038          */
 2039         sc->rl_ifp->if_flags &= ~IFF_UP;
 2040         rl_setwol(sc);
 2041         RL_UNLOCK(sc);
 2042 
 2043         return (0);
 2044 }
 2045 
 2046 static void
 2047 rl_setwol(struct rl_softc *sc)
 2048 {
 2049         struct ifnet            *ifp;
 2050         int                     pmc;
 2051         uint16_t                pmstat;
 2052         uint8_t                 v;
 2053 
 2054         RL_LOCK_ASSERT(sc);
 2055 
 2056         ifp = sc->rl_ifp;
 2057         if ((ifp->if_capabilities & IFCAP_WOL) == 0)
 2058                 return;
 2059         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
 2060                 return;
 2061 
 2062         /* Enable config register write. */
 2063         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 2064 
 2065         /* Enable PME. */
 2066         v = CSR_READ_1(sc, sc->rl_cfg1);
 2067         v &= ~RL_CFG1_PME;
 2068         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2069                 v |= RL_CFG1_PME;
 2070         CSR_WRITE_1(sc, sc->rl_cfg1, v);
 2071 
 2072         v = CSR_READ_1(sc, sc->rl_cfg3);
 2073         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
 2074         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2075                 v |= RL_CFG3_WOL_MAGIC;
 2076         CSR_WRITE_1(sc, sc->rl_cfg3, v);
 2077 
 2078         v = CSR_READ_1(sc, sc->rl_cfg5);
 2079         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
 2080         v &= ~RL_CFG5_WOL_LANWAKE;
 2081         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
 2082                 v |= RL_CFG5_WOL_UCAST;
 2083         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 2084                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
 2085         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2086                 v |= RL_CFG5_WOL_LANWAKE;
 2087         CSR_WRITE_1(sc, sc->rl_cfg5, v);
 2088 
 2089         /* Config register write done. */
 2090         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 2091 
 2092         /* Request PME if WOL is requested. */
 2093         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
 2094         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2095         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2096                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2097         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 2098 }
 2099 
 2100 static void
 2101 rl_clrwol(struct rl_softc *sc)
 2102 {
 2103         struct ifnet            *ifp;
 2104         uint8_t                 v;
 2105 
 2106         ifp = sc->rl_ifp;
 2107         if ((ifp->if_capabilities & IFCAP_WOL) == 0)
 2108                 return;
 2109 
 2110         /* Enable config register write. */
 2111         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
 2112 
 2113         v = CSR_READ_1(sc, sc->rl_cfg3);
 2114         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
 2115         CSR_WRITE_1(sc, sc->rl_cfg3, v);
 2116 
 2117         /* Config register write done. */
 2118         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
 2119 
 2120         v = CSR_READ_1(sc, sc->rl_cfg5);
 2121         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
 2122         v &= ~RL_CFG5_WOL_LANWAKE;
 2123         CSR_WRITE_1(sc, sc->rl_cfg5, v);
 2124 }

Cache object: dde41b14ba305380507edf7e8b89a8e1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.