The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_sf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  *
   32  * $FreeBSD: releng/5.0/sys/pci/if_sf.c 106936 2002-11-14 23:49:09Z sam $
   33  */
   34 
   35 /*
   36  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
   37  * Programming manual is available from:
   38  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
   39  *
   40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   41  * Department of Electical Engineering
   42  * Columbia University, New York City
   43  */
   44 
   45 /*
   46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
   47  * controller designed with flexibility and reducing CPU load in mind.
   48  * The Starfire offers high and low priority buffer queues, a
   49  * producer/consumer index mechanism and several different buffer
   50  * queue and completion queue descriptor types. Any one of a number
   51  * of different driver designs can be used, depending on system and
   52  * OS requirements. This driver makes use of type0 transmit frame
   53  * descriptors (since BSD fragments packets across an mbuf chain)
   54  * and two RX buffer queues prioritized on size (one queue for small
   55  * frames that will fit into a single mbuf, another with full size
   56  * mbuf clusters for everything else). The producer/consumer indexes
   57  * and completion queues are also used.
   58  *
   59  * One downside to the Starfire has to do with alignment: buffer
   60  * queues must be aligned on 256-byte boundaries, and receive buffers
   61  * must be aligned on longword boundaries. The receive buffer alignment
   62  * causes problems on the Alpha platform, where the packet payload
   63  * should be longword aligned. There is no simple way around this.
   64  *
   65  * For receive filtering, the Starfire offers 16 perfect filter slots
   66  * and a 512-bit hash table.
   67  *
   68  * The Starfire has no internal transceiver, relying instead on an
   69  * external MII-based transceiver. Accessing registers on external
   70  * PHYs is done through a special register map rather than with the
   71  * usual bitbang MDIO method.
   72  *
   73  * Acesssing the registers on the Starfire is a little tricky. The
   74  * Starfire has a 512K internal register space. When programmed for
   75  * PCI memory mapped mode, the entire register space can be accessed
   76  * directly. However in I/O space mode, only 256 bytes are directly
   77  * mapped into PCI I/O space. The other registers can be accessed
   78  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
   79  * registers inside the 256-byte I/O window.
   80  */
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/sockio.h>
   85 #include <sys/mbuf.h>
   86 #include <sys/malloc.h>
   87 #include <sys/kernel.h>
   88 #include <sys/socket.h>
   89 
   90 #include <net/if.h>
   91 #include <net/if_arp.h>
   92 #include <net/ethernet.h>
   93 #include <net/if_dl.h>
   94 #include <net/if_media.h>
   95 
   96 #include <net/bpf.h>
   97 
   98 #include <vm/vm.h>              /* for vtophys */
   99 #include <vm/pmap.h>            /* for vtophys */
  100 #include <machine/bus_pio.h>
  101 #include <machine/bus_memio.h>
  102 #include <machine/bus.h>
  103 #include <machine/resource.h>
  104 #include <sys/bus.h>
  105 #include <sys/rman.h>
  106 
  107 #include <dev/mii/mii.h>
  108 #include <dev/mii/miivar.h>
  109 
  110 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  111 #include "miibus_if.h"
  112 
  113 #include <pci/pcireg.h>
  114 #include <pci/pcivar.h>
  115 
  116 #define SF_USEIOSPACE
  117 
  118 #include <pci/if_sfreg.h>
  119 
  120 MODULE_DEPEND(sf, miibus, 1, 1, 1);
  121 
  122 #ifndef lint
  123 static const char rcsid[] =
  124   "$FreeBSD: releng/5.0/sys/pci/if_sf.c 106936 2002-11-14 23:49:09Z sam $";
  125 #endif
  126 
  127 static struct sf_type sf_devs[] = {
  128         { AD_VENDORID, AD_DEVICEID_STARFIRE,
  129                 "Adaptec AIC-6915 10/100BaseTX" },
  130         { 0, 0, NULL }
  131 };
  132 
  133 static int sf_probe             (device_t);
  134 static int sf_attach            (device_t);
  135 static int sf_detach            (device_t);
  136 static void sf_intr             (void *);
  137 static void sf_stats_update     (void *);
  138 static void sf_rxeof            (struct sf_softc *);
  139 static void sf_txeof            (struct sf_softc *);
  140 static int sf_encap             (struct sf_softc *,
  141                                         struct sf_tx_bufdesc_type0 *,
  142                                         struct mbuf *);
  143 static void sf_start            (struct ifnet *);
  144 static int sf_ioctl             (struct ifnet *, u_long, caddr_t);
  145 static void sf_init             (void *);
  146 static void sf_stop             (struct sf_softc *);
  147 static void sf_watchdog         (struct ifnet *);
  148 static void sf_shutdown         (device_t);
  149 static int sf_ifmedia_upd       (struct ifnet *);
  150 static void sf_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  151 static void sf_reset            (struct sf_softc *);
  152 static int sf_init_rx_ring      (struct sf_softc *);
  153 static void sf_init_tx_ring     (struct sf_softc *);
  154 static int sf_newbuf            (struct sf_softc *,
  155                                         struct sf_rx_bufdesc_type0 *,
  156                                         struct mbuf *);
  157 static void sf_setmulti         (struct sf_softc *);
  158 static int sf_setperf           (struct sf_softc *, int, caddr_t);
  159 static int sf_sethash           (struct sf_softc *, caddr_t, int);
  160 #ifdef notdef
  161 static int sf_setvlan           (struct sf_softc *, int, u_int32_t);
  162 #endif
  163 
  164 static u_int8_t sf_read_eeprom  (struct sf_softc *, int);
  165 static u_int32_t sf_calchash    (caddr_t);
  166 
  167 static int sf_miibus_readreg    (device_t, int, int);
  168 static int sf_miibus_writereg   (device_t, int, int, int);
  169 static void sf_miibus_statchg   (device_t);
  170 
  171 static u_int32_t csr_read_4     (struct sf_softc *, int);
  172 static void csr_write_4         (struct sf_softc *, int, u_int32_t);
  173 static void sf_txthresh_adjust  (struct sf_softc *);
  174 
  175 #ifdef SF_USEIOSPACE
  176 #define SF_RES                  SYS_RES_IOPORT
  177 #define SF_RID                  SF_PCI_LOIO
  178 #else
  179 #define SF_RES                  SYS_RES_MEMORY
  180 #define SF_RID                  SF_PCI_LOMEM
  181 #endif
  182 
  183 static device_method_t sf_methods[] = {
  184         /* Device interface */
  185         DEVMETHOD(device_probe,         sf_probe),
  186         DEVMETHOD(device_attach,        sf_attach),
  187         DEVMETHOD(device_detach,        sf_detach),
  188         DEVMETHOD(device_shutdown,      sf_shutdown),
  189 
  190         /* bus interface */
  191         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  192         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  193 
  194         /* MII interface */
  195         DEVMETHOD(miibus_readreg,       sf_miibus_readreg),
  196         DEVMETHOD(miibus_writereg,      sf_miibus_writereg),
  197         DEVMETHOD(miibus_statchg,       sf_miibus_statchg),
  198 
  199         { 0, 0 }
  200 };
  201 
  202 static driver_t sf_driver = {
  203         "sf",
  204         sf_methods,
  205         sizeof(struct sf_softc),
  206 };
  207 
  208 static devclass_t sf_devclass;
  209 
  210 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
  211 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
  212 
  213 #define SF_SETBIT(sc, reg, x)   \
  214         csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
  215 
  216 #define SF_CLRBIT(sc, reg, x)                           \
  217         csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
  218 
  219 static u_int32_t
  220 csr_read_4(sc, reg)
  221         struct sf_softc         *sc;
  222         int                     reg;
  223 {
  224         u_int32_t               val;
  225 
  226 #ifdef SF_USEIOSPACE
  227         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  228         val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
  229 #else
  230         val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
  231 #endif
  232 
  233         return(val);
  234 }
  235 
  236 static u_int8_t
  237 sf_read_eeprom(sc, reg)
  238         struct sf_softc         *sc;
  239         int                     reg;
  240 {
  241         u_int8_t                val;
  242 
  243         val = (csr_read_4(sc, SF_EEADDR_BASE +
  244             (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
  245 
  246         return(val);
  247 }
  248 
  249 static void
  250 csr_write_4(sc, reg, val)
  251         struct sf_softc         *sc;
  252         int                     reg;
  253         u_int32_t               val;
  254 {
  255 #ifdef SF_USEIOSPACE
  256         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  257         CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
  258 #else
  259         CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
  260 #endif
  261         return;
  262 }
  263 
  264 static u_int32_t
  265 sf_calchash(addr)
  266         caddr_t                 addr;
  267 {
  268         u_int32_t               crc, carry;
  269         int                     i, j;
  270         u_int8_t                c;
  271 
  272         /* Compute CRC for the address value. */
  273         crc = 0xFFFFFFFF; /* initial value */
  274 
  275         for (i = 0; i < 6; i++) {
  276                 c = *(addr + i);
  277                 for (j = 0; j < 8; j++) {
  278                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
  279                         crc <<= 1;
  280                         c >>= 1;
  281                         if (carry)
  282                                 crc = (crc ^ 0x04c11db6) | carry;
  283                 }
  284         }
  285 
  286         /* return the filter bit position */
  287         return(crc >> 23 & 0x1FF);
  288 }
  289 
  290 /*
  291  * Copy the address 'mac' into the perfect RX filter entry at
  292  * offset 'idx.' The perfect filter only has 16 entries so do
  293  * some sanity tests.
  294  */
  295 static int
  296 sf_setperf(sc, idx, mac)
  297         struct sf_softc         *sc;
  298         int                     idx;
  299         caddr_t                 mac;
  300 {
  301         u_int16_t               *p;
  302 
  303         if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
  304                 return(EINVAL);
  305 
  306         if (mac == NULL)
  307                 return(EINVAL);
  308 
  309         p = (u_int16_t *)mac;
  310 
  311         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  312             (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
  313         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  314             (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
  315         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  316             (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
  317 
  318         return(0);
  319 }
  320 
  321 /*
  322  * Set the bit in the 512-bit hash table that corresponds to the
  323  * specified mac address 'mac.' If 'prio' is nonzero, update the
  324  * priority hash table instead of the filter hash table.
  325  */
  326 static int
  327 sf_sethash(sc, mac, prio)
  328         struct sf_softc         *sc;
  329         caddr_t                 mac;
  330         int                     prio;
  331 {
  332         u_int32_t               h = 0;
  333 
  334         if (mac == NULL)
  335                 return(EINVAL);
  336 
  337         h = sf_calchash(mac);
  338 
  339         if (prio) {
  340                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
  341                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  342         } else {
  343                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
  344                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  345         }
  346 
  347         return(0);
  348 }
  349 
  350 #ifdef notdef
  351 /*
  352  * Set a VLAN tag in the receive filter.
  353  */
  354 static int
  355 sf_setvlan(sc, idx, vlan)
  356         struct sf_softc         *sc;
  357         int                     idx;
  358         u_int32_t               vlan;
  359 {
  360         if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
  361                 return(EINVAL);
  362 
  363         csr_write_4(sc, SF_RXFILT_HASH_BASE +
  364             (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
  365 
  366         return(0);
  367 }
  368 #endif
  369 
  370 static int
  371 sf_miibus_readreg(dev, phy, reg)
  372         device_t                dev;
  373         int                     phy, reg;
  374 {
  375         struct sf_softc         *sc;
  376         int                     i;
  377         u_int32_t               val = 0;
  378 
  379         sc = device_get_softc(dev);
  380 
  381         for (i = 0; i < SF_TIMEOUT; i++) {
  382                 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
  383                 if (val & SF_MII_DATAVALID)
  384                         break;
  385         }
  386 
  387         if (i == SF_TIMEOUT)
  388                 return(0);
  389 
  390         if ((val & 0x0000FFFF) == 0xFFFF)
  391                 return(0);
  392 
  393         return(val & 0x0000FFFF);
  394 }
  395 
  396 static int
  397 sf_miibus_writereg(dev, phy, reg, val)
  398         device_t                dev;
  399         int                     phy, reg, val;
  400 {
  401         struct sf_softc         *sc;
  402         int                     i;
  403         int                     busy;
  404 
  405         sc = device_get_softc(dev);
  406 
  407         csr_write_4(sc, SF_PHY_REG(phy, reg), val);
  408 
  409         for (i = 0; i < SF_TIMEOUT; i++) {
  410                 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
  411                 if (!(busy & SF_MII_BUSY))
  412                         break;
  413         }
  414 
  415         return(0);
  416 }
  417 
  418 static void
  419 sf_miibus_statchg(dev)
  420         device_t                dev;
  421 {
  422         struct sf_softc         *sc;
  423         struct mii_data         *mii;
  424 
  425         sc = device_get_softc(dev);
  426         mii = device_get_softc(sc->sf_miibus);
  427 
  428         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  429                 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  430                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
  431         } else {
  432                 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  433                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
  434         }
  435 
  436         return;
  437 }
  438 
  439 static void
  440 sf_setmulti(sc)
  441         struct sf_softc         *sc;
  442 {
  443         struct ifnet            *ifp;
  444         int                     i;
  445         struct ifmultiaddr      *ifma;
  446         u_int8_t                dummy[] = { 0, 0, 0, 0, 0, 0 };
  447 
  448         ifp = &sc->arpcom.ac_if;
  449 
  450         /* First zot all the existing filters. */
  451         for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
  452                 sf_setperf(sc, i, (char *)&dummy);
  453         for (i = SF_RXFILT_HASH_BASE;
  454             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
  455                 csr_write_4(sc, i, 0);
  456         SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  457 
  458         /* Now program new ones. */
  459         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  460                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  461         } else {
  462                 i = 1;
  463                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
  464                         if (ifma->ifma_addr->sa_family != AF_LINK)
  465                                 continue;
  466                         /*
  467                          * Program the first 15 multicast groups
  468                          * into the perfect filter. For all others,
  469                          * use the hash table.
  470                          */
  471                         if (i < SF_RXFILT_PERFECT_CNT) {
  472                                 sf_setperf(sc, i,
  473                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  474                                 i++;
  475                                 continue;
  476                         }
  477 
  478                         sf_sethash(sc,
  479                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
  480                 }
  481         }
  482 
  483         return;
  484 }
  485 
  486 /*
  487  * Set media options.
  488  */
  489 static int
  490 sf_ifmedia_upd(ifp)
  491         struct ifnet            *ifp;
  492 {
  493         struct sf_softc         *sc;
  494         struct mii_data         *mii;
  495 
  496         sc = ifp->if_softc;
  497         mii = device_get_softc(sc->sf_miibus);
  498         sc->sf_link = 0;
  499         if (mii->mii_instance) {
  500                 struct mii_softc        *miisc;
  501                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  502                         mii_phy_reset(miisc);
  503         }
  504         mii_mediachg(mii);
  505 
  506         return(0);
  507 }
  508 
  509 /*
  510  * Report current media status.
  511  */
  512 static void
  513 sf_ifmedia_sts(ifp, ifmr)
  514         struct ifnet            *ifp;
  515         struct ifmediareq       *ifmr;
  516 {
  517         struct sf_softc         *sc;
  518         struct mii_data         *mii;
  519 
  520         sc = ifp->if_softc;
  521         mii = device_get_softc(sc->sf_miibus);
  522 
  523         mii_pollstat(mii);
  524         ifmr->ifm_active = mii->mii_media_active;
  525         ifmr->ifm_status = mii->mii_media_status;
  526 
  527         return;
  528 }
  529 
  530 static int
  531 sf_ioctl(ifp, command, data)
  532         struct ifnet            *ifp;
  533         u_long                  command;
  534         caddr_t                 data;
  535 {
  536         struct sf_softc         *sc = ifp->if_softc;
  537         struct ifreq            *ifr = (struct ifreq *) data;
  538         struct mii_data         *mii;
  539         int                     error = 0;
  540 
  541         SF_LOCK(sc);
  542 
  543         switch(command) {
  544         case SIOCSIFFLAGS:
  545                 if (ifp->if_flags & IFF_UP) {
  546                         if (ifp->if_flags & IFF_RUNNING &&
  547                             ifp->if_flags & IFF_PROMISC &&
  548                             !(sc->sf_if_flags & IFF_PROMISC)) {
  549                                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  550                         } else if (ifp->if_flags & IFF_RUNNING &&
  551                             !(ifp->if_flags & IFF_PROMISC) &&
  552                             sc->sf_if_flags & IFF_PROMISC) {
  553                                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  554                         } else if (!(ifp->if_flags & IFF_RUNNING))
  555                                 sf_init(sc);
  556                 } else {
  557                         if (ifp->if_flags & IFF_RUNNING)
  558                                 sf_stop(sc);
  559                 }
  560                 sc->sf_if_flags = ifp->if_flags;
  561                 error = 0;
  562                 break;
  563         case SIOCADDMULTI:
  564         case SIOCDELMULTI:
  565                 sf_setmulti(sc);
  566                 error = 0;
  567                 break;
  568         case SIOCGIFMEDIA:
  569         case SIOCSIFMEDIA:
  570                 mii = device_get_softc(sc->sf_miibus);
  571                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
  572                 break;
  573         default:
  574                 error = ether_ioctl(ifp, command, data);
  575                 break;
  576         }
  577 
  578         SF_UNLOCK(sc);
  579 
  580         return(error);
  581 }
  582 
  583 static void
  584 sf_reset(sc)
  585         struct sf_softc         *sc;
  586 {
  587         register int            i;
  588 
  589         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
  590         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  591         DELAY(1000);
  592         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  593 
  594         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
  595 
  596         for (i = 0; i < SF_TIMEOUT; i++) {
  597                 DELAY(10);
  598                 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
  599                         break;
  600         }
  601 
  602         if (i == SF_TIMEOUT)
  603                 printf("sf%d: reset never completed!\n", sc->sf_unit);
  604 
  605         /* Wait a little while for the chip to get its brains in order. */
  606         DELAY(1000);
  607         return;
  608 }
  609 
  610 /*
  611  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
  612  * IDs against our list and return a device name if we find a match.
  613  * We also check the subsystem ID so that we can identify exactly which
  614  * NIC has been found, if possible.
  615  */
  616 static int
  617 sf_probe(dev)
  618         device_t                dev;
  619 {
  620         struct sf_type          *t;
  621 
  622         t = sf_devs;
  623 
  624         while(t->sf_name != NULL) {
  625                 if ((pci_get_vendor(dev) == t->sf_vid) &&
  626                     (pci_get_device(dev) == t->sf_did)) {
  627                         switch((pci_read_config(dev,
  628                             SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
  629                         case AD_SUBSYSID_62011_REV0:
  630                         case AD_SUBSYSID_62011_REV1:
  631                                 device_set_desc(dev,
  632                                     "Adaptec ANA-62011 10/100BaseTX");
  633                                 return(0);
  634                                 break;
  635                         case AD_SUBSYSID_62022:
  636                                 device_set_desc(dev,
  637                                     "Adaptec ANA-62022 10/100BaseTX");
  638                                 return(0);
  639                                 break;
  640                         case AD_SUBSYSID_62044_REV0:
  641                         case AD_SUBSYSID_62044_REV1:
  642                                 device_set_desc(dev,
  643                                     "Adaptec ANA-62044 10/100BaseTX");
  644                                 return(0);
  645                                 break;
  646                         case AD_SUBSYSID_62020:
  647                                 device_set_desc(dev,
  648                                     "Adaptec ANA-62020 10/100BaseFX");
  649                                 return(0);
  650                                 break;
  651                         case AD_SUBSYSID_69011:
  652                                 device_set_desc(dev,
  653                                     "Adaptec ANA-69011 10/100BaseTX");
  654                                 return(0);
  655                                 break;
  656                         default:
  657                                 device_set_desc(dev, t->sf_name);
  658                                 return(0);
  659                                 break;
  660                         }
  661                 }
  662                 t++;
  663         }
  664 
  665         return(ENXIO);
  666 }
  667 
  668 /*
  669  * Attach the interface. Allocate softc structures, do ifmedia
  670  * setup and ethernet/BPF attach.
  671  */
  672 static int
  673 sf_attach(dev)
  674         device_t                dev;
  675 {
  676         int                     i;
  677         u_int32_t               command;
  678         struct sf_softc         *sc;
  679         struct ifnet            *ifp;
  680         int                     unit, rid, error = 0;
  681 
  682         sc = device_get_softc(dev);
  683         unit = device_get_unit(dev);
  684         bzero(sc, sizeof(struct sf_softc));
  685 
  686         mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  687             MTX_DEF | MTX_RECURSE);
  688         SF_LOCK(sc);
  689         /*
  690          * Handle power management nonsense.
  691          */
  692         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  693                 u_int32_t               iobase, membase, irq;
  694 
  695                 /* Save important PCI config data. */
  696                 iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
  697                 membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
  698                 irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
  699 
  700                 /* Reset the power state. */
  701                 printf("sf%d: chip is in D%d power mode "
  702                     "-- setting to D0\n", unit,
  703                     pci_get_powerstate(dev));
  704                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  705 
  706                 /* Restore PCI config data. */
  707                 pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
  708                 pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
  709                 pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
  710         }
  711 
  712         /*
  713          * Map control/status registers.
  714          */
  715         pci_enable_busmaster(dev);
  716         pci_enable_io(dev, SYS_RES_IOPORT);
  717         pci_enable_io(dev, SYS_RES_MEMORY);
  718         command = pci_read_config(dev, PCIR_COMMAND, 4);
  719 
  720 #ifdef SF_USEIOSPACE
  721         if (!(command & PCIM_CMD_PORTEN)) {
  722                 printf("sf%d: failed to enable I/O ports!\n", unit);
  723                 error = ENXIO;
  724                 goto fail;
  725         }
  726 #else
  727         if (!(command & PCIM_CMD_MEMEN)) {
  728                 printf("sf%d: failed to enable memory mapping!\n", unit);
  729                 error = ENXIO;
  730                 goto fail;
  731         }
  732 #endif
  733 
  734         rid = SF_RID;
  735         sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
  736             0, ~0, 1, RF_ACTIVE);
  737 
  738         if (sc->sf_res == NULL) {
  739                 printf ("sf%d: couldn't map ports\n", unit);
  740                 error = ENXIO;
  741                 goto fail;
  742         }
  743 
  744         sc->sf_btag = rman_get_bustag(sc->sf_res);
  745         sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
  746 
  747         /* Allocate interrupt */
  748         rid = 0;
  749         sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
  750             RF_SHAREABLE | RF_ACTIVE);
  751 
  752         if (sc->sf_irq == NULL) {
  753                 printf("sf%d: couldn't map interrupt\n", unit);
  754                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  755                 error = ENXIO;
  756                 goto fail;
  757         }
  758 
  759         error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
  760             sf_intr, sc, &sc->sf_intrhand);
  761 
  762         if (error) {
  763                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
  764                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  765                 printf("sf%d: couldn't set up irq\n", unit);
  766                 goto fail;
  767         }
  768 
  769         callout_handle_init(&sc->sf_stat_ch);
  770         /* Reset the adapter. */
  771         sf_reset(sc);
  772 
  773         /*
  774          * Get station address from the EEPROM.
  775          */
  776         for (i = 0; i < ETHER_ADDR_LEN; i++)
  777                 sc->arpcom.ac_enaddr[i] =
  778                     sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
  779 
  780         /*
  781          * An Adaptec chip was detected. Inform the world.
  782          */
  783         printf("sf%d: Ethernet address: %6D\n", unit,
  784             sc->arpcom.ac_enaddr, ":");
  785 
  786         sc->sf_unit = unit;
  787 
  788         /* Allocate the descriptor queues. */
  789         sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
  790             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
  791 
  792         if (sc->sf_ldata == NULL) {
  793                 printf("sf%d: no memory for list buffers!\n", unit);
  794                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  795                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  796                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  797                 error = ENXIO;
  798                 goto fail;
  799         }
  800 
  801         bzero(sc->sf_ldata, sizeof(struct sf_list_data));
  802 
  803         /* Do MII setup. */
  804         if (mii_phy_probe(dev, &sc->sf_miibus,
  805             sf_ifmedia_upd, sf_ifmedia_sts)) {
  806                 printf("sf%d: MII without any phy!\n", sc->sf_unit);
  807                 contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
  808                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  809                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  810                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  811                 error = ENXIO;
  812                 goto fail;
  813         }
  814 
  815         ifp = &sc->arpcom.ac_if;
  816         ifp->if_softc = sc;
  817         ifp->if_unit = unit;
  818         ifp->if_name = "sf";
  819         ifp->if_mtu = ETHERMTU;
  820         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  821         ifp->if_ioctl = sf_ioctl;
  822         ifp->if_output = ether_output;
  823         ifp->if_start = sf_start;
  824         ifp->if_watchdog = sf_watchdog;
  825         ifp->if_init = sf_init;
  826         ifp->if_baudrate = 10000000;
  827         ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
  828 
  829         /*
  830          * Call MI attach routine.
  831          */
  832         ether_ifattach(ifp, sc->arpcom.ac_enaddr);
  833         SF_UNLOCK(sc);
  834         return(0);
  835 
  836 fail:
  837         SF_UNLOCK(sc);
  838         mtx_destroy(&sc->sf_mtx);
  839         return(error);
  840 }
  841 
  842 static int
  843 sf_detach(dev)
  844         device_t                dev;
  845 {
  846         struct sf_softc         *sc;
  847         struct ifnet            *ifp;
  848 
  849         sc = device_get_softc(dev);
  850         SF_LOCK(sc);
  851         ifp = &sc->arpcom.ac_if;
  852 
  853         ether_ifdetach(ifp);
  854         sf_stop(sc);
  855 
  856         bus_generic_detach(dev);
  857         device_delete_child(dev, sc->sf_miibus);
  858 
  859         bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  860         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  861         bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  862 
  863         contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
  864 
  865         SF_UNLOCK(sc);
  866         mtx_destroy(&sc->sf_mtx);
  867 
  868         return(0);
  869 }
  870 
  871 static int
  872 sf_init_rx_ring(sc)
  873         struct sf_softc         *sc;
  874 {
  875         struct sf_list_data     *ld;
  876         int                     i;
  877 
  878         ld = sc->sf_ldata;
  879 
  880         bzero((char *)ld->sf_rx_dlist_big,
  881             sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
  882         bzero((char *)ld->sf_rx_clist,
  883             sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
  884 
  885         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
  886                 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
  887                         return(ENOBUFS);
  888         }
  889 
  890         return(0);
  891 }
  892 
  893 static void
  894 sf_init_tx_ring(sc)
  895         struct sf_softc         *sc;
  896 {
  897         struct sf_list_data     *ld;
  898         int                     i;
  899 
  900         ld = sc->sf_ldata;
  901 
  902         bzero((char *)ld->sf_tx_dlist,
  903             sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
  904         bzero((char *)ld->sf_tx_clist,
  905             sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
  906 
  907         for (i = 0; i < SF_TX_DLIST_CNT; i++)
  908                 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
  909         for (i = 0; i < SF_TX_CLIST_CNT; i++)
  910                 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
  911 
  912         ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
  913         sc->sf_tx_cnt = 0;
  914 
  915         return;
  916 }
  917 
  918 static int
  919 sf_newbuf(sc, c, m)
  920         struct sf_softc         *sc;
  921         struct sf_rx_bufdesc_type0      *c;
  922         struct mbuf             *m;
  923 {
  924         struct mbuf             *m_new = NULL;
  925 
  926         if (m == NULL) {
  927                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
  928                 if (m_new == NULL)
  929                         return(ENOBUFS);
  930 
  931                 MCLGET(m_new, M_DONTWAIT);
  932                 if (!(m_new->m_flags & M_EXT)) {
  933                         m_freem(m_new);
  934                         return(ENOBUFS);
  935                 }
  936                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  937         } else {
  938                 m_new = m;
  939                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  940                 m_new->m_data = m_new->m_ext.ext_buf;
  941         }
  942 
  943         m_adj(m_new, sizeof(u_int64_t));
  944 
  945         c->sf_mbuf = m_new;
  946         c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
  947         c->sf_valid = 1;
  948 
  949         return(0);
  950 }
  951 
  952 /*
  953  * The starfire is programmed to use 'normal' mode for packet reception,
  954  * which means we use the consumer/producer model for both the buffer
  955  * descriptor queue and the completion descriptor queue. The only problem
  956  * with this is that it involves a lot of register accesses: we have to
  957  * read the RX completion consumer and producer indexes and the RX buffer
  958  * producer index, plus the RX completion consumer and RX buffer producer
  959  * indexes have to be updated. It would have been easier if Adaptec had
  960  * put each index in a separate register, especially given that the damn
  961  * NIC has a 512K register space.
  962  *
  963  * In spite of all the lovely features that Adaptec crammed into the 6915,
  964  * it is marred by one truly stupid design flaw, which is that receive
  965  * buffer addresses must be aligned on a longword boundary. This forces
  966  * the packet payload to be unaligned, which is suboptimal on the x86 and
  967  * completely unuseable on the Alpha. Our only recourse is to copy received
  968  * packets into properly aligned buffers before handing them off.
  969  */
  970 
  971 static void
  972 sf_rxeof(sc)
  973         struct sf_softc         *sc;
  974 {
  975         struct mbuf             *m;
  976         struct ifnet            *ifp;
  977         struct sf_rx_bufdesc_type0      *desc;
  978         struct sf_rx_cmpdesc_type3      *cur_rx;
  979         u_int32_t               rxcons, rxprod;
  980         int                     cmpprodidx, cmpconsidx, bufprodidx;
  981 
  982         ifp = &sc->arpcom.ac_if;
  983 
  984         rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
  985         rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
  986         cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
  987         cmpconsidx = SF_IDX_LO(rxcons);
  988         bufprodidx = SF_IDX_LO(rxprod);
  989 
  990         while (cmpconsidx != cmpprodidx) {
  991                 struct mbuf             *m0;
  992 
  993                 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
  994                 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
  995                 m = desc->sf_mbuf;
  996                 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
  997                 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
  998 
  999                 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
 1000                         ifp->if_ierrors++;
 1001                         sf_newbuf(sc, desc, m);
 1002                         continue;
 1003                 }
 1004 
 1005                 m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
 1006                     ifp, NULL);
 1007                 sf_newbuf(sc, desc, m);
 1008                 if (m0 == NULL) {
 1009                         ifp->if_ierrors++;
 1010                         continue;
 1011                 }
 1012                 m = m0;
 1013 
 1014                 ifp->if_ipackets++;
 1015                 (*ifp->if_input)(ifp, m);
 1016         }
 1017 
 1018         csr_write_4(sc, SF_CQ_CONSIDX,
 1019             (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
 1020         csr_write_4(sc, SF_RXDQ_PTR_Q1,
 1021             (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
 1022 
 1023         return;
 1024 }
 1025 
 1026 /*
 1027  * Read the transmit status from the completion queue and release
 1028  * mbufs. Note that the buffer descriptor index in the completion
 1029  * descriptor is an offset from the start of the transmit buffer
 1030  * descriptor list in bytes. This is important because the manual
 1031  * gives the impression that it should match the producer/consumer
 1032  * index, which is the offset in 8 byte blocks.
 1033  */
 1034 static void
 1035 sf_txeof(sc)
 1036         struct sf_softc         *sc;
 1037 {
 1038         int                     txcons, cmpprodidx, cmpconsidx;
 1039         struct sf_tx_cmpdesc_type1 *cur_cmp;
 1040         struct sf_tx_bufdesc_type0 *cur_tx;
 1041         struct ifnet            *ifp;
 1042 
 1043         ifp = &sc->arpcom.ac_if;
 1044 
 1045         txcons = csr_read_4(sc, SF_CQ_CONSIDX);
 1046         cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
 1047         cmpconsidx = SF_IDX_HI(txcons);
 1048 
 1049         while (cmpconsidx != cmpprodidx) {
 1050                 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
 1051                 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
 1052 
 1053                 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
 1054                         ifp->if_opackets++;
 1055                 else {
 1056                         if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
 1057                                 sf_txthresh_adjust(sc);
 1058                         ifp->if_oerrors++;
 1059                 }
 1060 
 1061                 sc->sf_tx_cnt--;
 1062                 if (cur_tx->sf_mbuf != NULL) {
 1063                         m_freem(cur_tx->sf_mbuf);
 1064                         cur_tx->sf_mbuf = NULL;
 1065                 } else
 1066                         break;
 1067                 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
 1068         }
 1069 
 1070         ifp->if_timer = 0;
 1071         ifp->if_flags &= ~IFF_OACTIVE;
 1072 
 1073         csr_write_4(sc, SF_CQ_CONSIDX,
 1074             (txcons & ~SF_CQ_CONSIDX_TXQ) |
 1075             ((cmpconsidx << 16) & 0xFFFF0000));
 1076 
 1077         return;
 1078 }
 1079 
 1080 static void
 1081 sf_txthresh_adjust(sc)
 1082         struct sf_softc         *sc;
 1083 {
 1084         u_int32_t               txfctl;
 1085         u_int8_t                txthresh;
 1086 
 1087         txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
 1088         txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
 1089         if (txthresh < 0xFF) {
 1090                 txthresh++;
 1091                 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
 1092                 txfctl |= txthresh;
 1093 #ifdef DIAGNOSTIC
 1094                 printf("sf%d: tx underrun, increasing "
 1095                     "tx threshold to %d bytes\n",
 1096                     sc->sf_unit, txthresh * 4);
 1097 #endif
 1098                 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
 1099         }
 1100 
 1101         return;
 1102 }
 1103 
 1104 static void
 1105 sf_intr(arg)
 1106         void                    *arg;
 1107 {
 1108         struct sf_softc         *sc;
 1109         struct ifnet            *ifp;
 1110         u_int32_t               status;
 1111 
 1112         sc = arg;
 1113         SF_LOCK(sc);
 1114 
 1115         ifp = &sc->arpcom.ac_if;
 1116 
 1117         if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
 1118                 SF_UNLOCK(sc);
 1119                 return;
 1120         }
 1121 
 1122         /* Disable interrupts. */
 1123         csr_write_4(sc, SF_IMR, 0x00000000);
 1124 
 1125         for (;;) {
 1126                 status = csr_read_4(sc, SF_ISR);
 1127                 if (status)
 1128                         csr_write_4(sc, SF_ISR, status);
 1129 
 1130                 if (!(status & SF_INTRS))
 1131                         break;
 1132 
 1133                 if (status & SF_ISR_RXDQ1_DMADONE)
 1134                         sf_rxeof(sc);
 1135 
 1136                 if (status & SF_ISR_TX_TXDONE ||
 1137                     status & SF_ISR_TX_DMADONE ||
 1138                     status & SF_ISR_TX_QUEUEDONE)
 1139                         sf_txeof(sc);
 1140 
 1141                 if (status & SF_ISR_TX_LOFIFO)
 1142                         sf_txthresh_adjust(sc);
 1143 
 1144                 if (status & SF_ISR_ABNORMALINTR) {
 1145                         if (status & SF_ISR_STATSOFLOW) {
 1146                                 untimeout(sf_stats_update, sc,
 1147                                     sc->sf_stat_ch);
 1148                                 sf_stats_update(sc);
 1149                         } else
 1150                                 sf_init(sc);
 1151                 }
 1152         }
 1153 
 1154         /* Re-enable interrupts. */
 1155         csr_write_4(sc, SF_IMR, SF_INTRS);
 1156 
 1157         if (ifp->if_snd.ifq_head != NULL)
 1158                 sf_start(ifp);
 1159 
 1160         SF_UNLOCK(sc);
 1161         return;
 1162 }
 1163 
 1164 static void
 1165 sf_init(xsc)
 1166         void                    *xsc;
 1167 {
 1168         struct sf_softc         *sc;
 1169         struct ifnet            *ifp;
 1170         struct mii_data         *mii;
 1171         int                     i;
 1172 
 1173         sc = xsc;
 1174         SF_LOCK(sc);
 1175         ifp = &sc->arpcom.ac_if;
 1176         mii = device_get_softc(sc->sf_miibus);
 1177 
 1178         sf_stop(sc);
 1179         sf_reset(sc);
 1180 
 1181         /* Init all the receive filter registers */
 1182         for (i = SF_RXFILT_PERFECT_BASE;
 1183             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
 1184                 csr_write_4(sc, i, 0);
 1185 
 1186         /* Empty stats counter registers. */
 1187         for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
 1188                 csr_write_4(sc, SF_STATS_BASE +
 1189                     (i + sizeof(u_int32_t)), 0);
 1190 
 1191         /* Init our MAC address */
 1192         csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1193         csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1194         sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
 1195 
 1196         if (sf_init_rx_ring(sc) == ENOBUFS) {
 1197                 printf("sf%d: initialization failed: no "
 1198                     "memory for rx buffers\n", sc->sf_unit);
 1199                 SF_UNLOCK(sc);
 1200                 return;
 1201         }
 1202 
 1203         sf_init_tx_ring(sc);
 1204 
 1205         csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
 1206 
 1207         /* If we want promiscuous mode, set the allframes bit. */
 1208         if (ifp->if_flags & IFF_PROMISC) {
 1209                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1210         } else {
 1211                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1212         }
 1213 
 1214         if (ifp->if_flags & IFF_BROADCAST) {
 1215                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1216         } else {
 1217                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1218         }
 1219 
 1220         /*
 1221          * Load the multicast filter.
 1222          */
 1223         sf_setmulti(sc);
 1224 
 1225         /* Init the completion queue indexes */
 1226         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1227         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1228 
 1229         /* Init the RX completion queue */
 1230         csr_write_4(sc, SF_RXCQ_CTL_1,
 1231             vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
 1232         SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
 1233 
 1234         /* Init RX DMA control. */
 1235         SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
 1236 
 1237         /* Init the RX buffer descriptor queue. */
 1238         csr_write_4(sc, SF_RXDQ_ADDR_Q1,
 1239             vtophys(sc->sf_ldata->sf_rx_dlist_big));
 1240         csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
 1241         csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
 1242 
 1243         /* Init the TX completion queue */
 1244         csr_write_4(sc, SF_TXCQ_CTL,
 1245             vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
 1246 
 1247         /* Init the TX buffer descriptor queue. */
 1248         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
 1249                 vtophys(sc->sf_ldata->sf_tx_dlist));
 1250         SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
 1251         csr_write_4(sc, SF_TXDQ_CTL,
 1252             SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
 1253         SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
 1254 
 1255         /* Enable autopadding of short TX frames. */
 1256         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
 1257 
 1258         /* Enable interrupts. */
 1259         csr_write_4(sc, SF_IMR, SF_INTRS);
 1260         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
 1261 
 1262         /* Enable the RX and TX engines. */
 1263         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
 1264         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
 1265 
 1266         /*mii_mediachg(mii);*/
 1267         sf_ifmedia_upd(ifp);
 1268 
 1269         ifp->if_flags |= IFF_RUNNING;
 1270         ifp->if_flags &= ~IFF_OACTIVE;
 1271 
 1272         sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
 1273 
 1274         SF_UNLOCK(sc);
 1275 
 1276         return;
 1277 }
 1278 
 1279 static int
 1280 sf_encap(sc, c, m_head)
 1281         struct sf_softc         *sc;
 1282         struct sf_tx_bufdesc_type0 *c;
 1283         struct mbuf             *m_head;
 1284 {
 1285         int                     frag = 0;
 1286         struct sf_frag          *f = NULL;
 1287         struct mbuf             *m;
 1288 
 1289         m = m_head;
 1290 
 1291         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1292                 if (m->m_len != 0) {
 1293                         if (frag == SF_MAXFRAGS)
 1294                                 break;
 1295                         f = &c->sf_frags[frag];
 1296                         if (frag == 0)
 1297                                 f->sf_pktlen = m_head->m_pkthdr.len;
 1298                         f->sf_fraglen = m->m_len;
 1299                         f->sf_addr = vtophys(mtod(m, vm_offset_t));
 1300                         frag++;
 1301                 }
 1302         }
 1303 
 1304         if (m != NULL) {
 1305                 struct mbuf             *m_new = NULL;
 1306 
 1307                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1308                 if (m_new == NULL) {
 1309                         printf("sf%d: no memory for tx list\n", sc->sf_unit);
 1310                         return(1);
 1311                 }
 1312 
 1313                 if (m_head->m_pkthdr.len > MHLEN) {
 1314                         MCLGET(m_new, M_DONTWAIT);
 1315                         if (!(m_new->m_flags & M_EXT)) {
 1316                                 m_freem(m_new);
 1317                                 printf("sf%d: no memory for tx list\n",
 1318                                     sc->sf_unit);
 1319                                 return(1);
 1320                         }
 1321                 }
 1322                 m_copydata(m_head, 0, m_head->m_pkthdr.len,
 1323                     mtod(m_new, caddr_t));
 1324                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1325                 m_freem(m_head);
 1326                 m_head = m_new;
 1327                 f = &c->sf_frags[0];
 1328                 f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
 1329                 f->sf_addr = vtophys(mtod(m_head, caddr_t));
 1330                 frag = 1;
 1331         }
 1332 
 1333         c->sf_mbuf = m_head;
 1334         c->sf_id = SF_TX_BUFDESC_ID;
 1335         c->sf_fragcnt = frag;
 1336         c->sf_intr = 1;
 1337         c->sf_caltcp = 0;
 1338         c->sf_crcen = 1;
 1339 
 1340         return(0);
 1341 }
 1342 
 1343 static void
 1344 sf_start(ifp)
 1345         struct ifnet            *ifp;
 1346 {
 1347         struct sf_softc         *sc;
 1348         struct sf_tx_bufdesc_type0 *cur_tx = NULL;
 1349         struct mbuf             *m_head = NULL;
 1350         int                     i, txprod;
 1351 
 1352         sc = ifp->if_softc;
 1353         SF_LOCK(sc);
 1354 
 1355         if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
 1356                 SF_UNLOCK(sc);
 1357                 return;
 1358         }
 1359 
 1360         if (ifp->if_flags & IFF_OACTIVE) {
 1361                 SF_UNLOCK(sc);
 1362                 return;
 1363         }
 1364 
 1365         txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1366         i = SF_IDX_HI(txprod) >> 4;
 1367 
 1368         if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1369                 printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
 1370                 sf_init(sc);
 1371                 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1372                 i = SF_IDX_HI(txprod) >> 4;
 1373         }
 1374 
 1375         while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
 1376                 if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
 1377                         ifp->if_flags |= IFF_OACTIVE;
 1378                         cur_tx = NULL;
 1379                         break;
 1380                 }
 1381                 IF_DEQUEUE(&ifp->if_snd, m_head);
 1382                 if (m_head == NULL)
 1383                         break;
 1384 
 1385                 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
 1386                 if (sf_encap(sc, cur_tx, m_head)) {
 1387                         IF_PREPEND(&ifp->if_snd, m_head);
 1388                         ifp->if_flags |= IFF_OACTIVE;
 1389                         cur_tx = NULL;
 1390                         break;
 1391                 }
 1392 
 1393                 /*
 1394                  * If there's a BPF listener, bounce a copy of this frame
 1395                  * to him.
 1396                  */
 1397                 BPF_MTAP(ifp, m_head);
 1398 
 1399                 SF_INC(i, SF_TX_DLIST_CNT);
 1400                 sc->sf_tx_cnt++;
 1401                 /*
 1402                  * Don't get the TX DMA queue get too full.
 1403                  */
 1404                 if (sc->sf_tx_cnt > 64)
 1405                         break;
 1406         }
 1407 
 1408         if (cur_tx == NULL) {
 1409                 SF_UNLOCK(sc);
 1410                 return;
 1411         }
 1412 
 1413         /* Transmit */
 1414         csr_write_4(sc, SF_TXDQ_PRODIDX,
 1415             (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
 1416             ((i << 20) & 0xFFFF0000));
 1417 
 1418         ifp->if_timer = 5;
 1419 
 1420         SF_UNLOCK(sc);
 1421 
 1422         return;
 1423 }
 1424 
 1425 static void
 1426 sf_stop(sc)
 1427         struct sf_softc         *sc;
 1428 {
 1429         int                     i;
 1430         struct ifnet            *ifp;
 1431 
 1432         SF_LOCK(sc);
 1433 
 1434         ifp = &sc->arpcom.ac_if;
 1435 
 1436         untimeout(sf_stats_update, sc, sc->sf_stat_ch);
 1437 
 1438         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
 1439         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1440         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1441         csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
 1442         csr_write_4(sc, SF_RXDQ_CTL_1, 0);
 1443         csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
 1444         csr_write_4(sc, SF_TXCQ_CTL, 0);
 1445         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 1446         csr_write_4(sc, SF_TXDQ_CTL, 0);
 1447         sf_reset(sc);
 1448 
 1449         sc->sf_link = 0;
 1450 
 1451         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1452                 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
 1453                         m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
 1454                         sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
 1455                 }
 1456         }
 1457 
 1458         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1459                 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1460                         m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
 1461                         sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
 1462                 }
 1463         }
 1464 
 1465         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
 1466         SF_UNLOCK(sc);
 1467 
 1468         return;
 1469 }
 1470 
 1471 /*
 1472  * Note: it is important that this function not be interrupted. We
 1473  * use a two-stage register access scheme: if we are interrupted in
 1474  * between setting the indirect address register and reading from the
 1475  * indirect data register, the contents of the address register could
 1476  * be changed out from under us.
 1477  */     
 1478 static void
 1479 sf_stats_update(xsc)
 1480         void                    *xsc;
 1481 {
 1482         struct sf_softc         *sc;
 1483         struct ifnet            *ifp;
 1484         struct mii_data         *mii;
 1485         struct sf_stats         stats;
 1486         u_int32_t               *ptr;
 1487         int                     i;
 1488 
 1489         sc = xsc;
 1490         SF_LOCK(sc);
 1491         ifp = &sc->arpcom.ac_if;
 1492         mii = device_get_softc(sc->sf_miibus);
 1493 
 1494         ptr = (u_int32_t *)&stats;
 1495         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1496                 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
 1497                     (i + sizeof(u_int32_t)));
 1498 
 1499         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1500                 csr_write_4(sc, SF_STATS_BASE +
 1501                     (i + sizeof(u_int32_t)), 0);
 1502 
 1503         ifp->if_collisions += stats.sf_tx_single_colls +
 1504             stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
 1505 
 1506         mii_tick(mii);
 1507 
 1508         if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
 1509             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1510                 sc->sf_link++;
 1511                 if (ifp->if_snd.ifq_head != NULL)
 1512                         sf_start(ifp);
 1513         }
 1514 
 1515         sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
 1516 
 1517         SF_UNLOCK(sc);
 1518 
 1519         return;
 1520 }
 1521 
 1522 static void
 1523 sf_watchdog(ifp)
 1524         struct ifnet            *ifp;
 1525 {
 1526         struct sf_softc         *sc;
 1527 
 1528         sc = ifp->if_softc;
 1529 
 1530         SF_LOCK(sc);
 1531 
 1532         ifp->if_oerrors++;
 1533         printf("sf%d: watchdog timeout\n", sc->sf_unit);
 1534 
 1535         sf_stop(sc);
 1536         sf_reset(sc);
 1537         sf_init(sc);
 1538 
 1539         if (ifp->if_snd.ifq_head != NULL)
 1540                 sf_start(ifp);
 1541 
 1542         SF_UNLOCK(sc);
 1543 
 1544         return;
 1545 }
 1546 
 1547 static void
 1548 sf_shutdown(dev)
 1549         device_t                dev;
 1550 {
 1551         struct sf_softc         *sc;
 1552 
 1553         sc = device_get_softc(dev);
 1554 
 1555         sf_stop(sc);
 1556 
 1557         return;
 1558 }

Cache object: 2d04bc3f7d95032d8856c3ec0a2f86d3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.