The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_sf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
   35  * Programming manual is available from:
   36  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
   37  *
   38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   39  * Department of Electical Engineering
   40  * Columbia University, New York City
   41  */
   42 
   43 /*
   44  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
   45  * controller designed with flexibility and reducing CPU load in mind.
   46  * The Starfire offers high and low priority buffer queues, a
   47  * producer/consumer index mechanism and several different buffer
   48  * queue and completion queue descriptor types. Any one of a number
   49  * of different driver designs can be used, depending on system and
   50  * OS requirements. This driver makes use of type0 transmit frame
   51  * descriptors (since BSD fragments packets across an mbuf chain)
   52  * and two RX buffer queues prioritized on size (one queue for small
   53  * frames that will fit into a single mbuf, another with full size
   54  * mbuf clusters for everything else). The producer/consumer indexes
   55  * and completion queues are also used.
   56  *
   57  * One downside to the Starfire has to do with alignment: buffer
   58  * queues must be aligned on 256-byte boundaries, and receive buffers
   59  * must be aligned on longword boundaries. The receive buffer alignment
   60  * causes problems on the Alpha platform, where the packet payload
   61  * should be longword aligned. There is no simple way around this.
   62  *
   63  * For receive filtering, the Starfire offers 16 perfect filter slots
   64  * and a 512-bit hash table.
   65  *
   66  * The Starfire has no internal transceiver, relying instead on an
   67  * external MII-based transceiver. Accessing registers on external
   68  * PHYs is done through a special register map rather than with the
   69  * usual bitbang MDIO method.
   70  *
   71  * Acesssing the registers on the Starfire is a little tricky. The
   72  * Starfire has a 512K internal register space. When programmed for
   73  * PCI memory mapped mode, the entire register space can be accessed
   74  * directly. However in I/O space mode, only 256 bytes are directly
   75  * mapped into PCI I/O space. The other registers can be accessed
   76  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
   77  * registers inside the 256-byte I/O window.
   78  */
   79 
   80 #include <sys/cdefs.h>
   81 __FBSDID("$FreeBSD: releng/5.1/sys/pci/if_sf.c 113812 2003-04-21 18:34:04Z imp $");
   82 
   83 #include <sys/param.h>
   84 #include <sys/systm.h>
   85 #include <sys/sockio.h>
   86 #include <sys/mbuf.h>
   87 #include <sys/malloc.h>
   88 #include <sys/kernel.h>
   89 #include <sys/socket.h>
   90 
   91 #include <net/if.h>
   92 #include <net/if_arp.h>
   93 #include <net/ethernet.h>
   94 #include <net/if_dl.h>
   95 #include <net/if_media.h>
   96 
   97 #include <net/bpf.h>
   98 
   99 #include <vm/vm.h>              /* for vtophys */
  100 #include <vm/pmap.h>            /* for vtophys */
  101 #include <machine/bus_pio.h>
  102 #include <machine/bus_memio.h>
  103 #include <machine/bus.h>
  104 #include <machine/resource.h>
  105 #include <sys/bus.h>
  106 #include <sys/rman.h>
  107 
  108 #include <dev/mii/mii.h>
  109 #include <dev/mii/miivar.h>
  110 
  111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  112 #include "miibus_if.h"
  113 
  114 #include <pci/pcireg.h>
  115 #include <pci/pcivar.h>
  116 
  117 #define SF_USEIOSPACE
  118 
  119 #include <pci/if_sfreg.h>
  120 
  121 MODULE_DEPEND(sf, pci, 1, 1, 1);
  122 MODULE_DEPEND(sf, ether, 1, 1, 1);
  123 MODULE_DEPEND(sf, miibus, 1, 1, 1);
  124 
  125 static struct sf_type sf_devs[] = {
  126         { AD_VENDORID, AD_DEVICEID_STARFIRE,
  127                 "Adaptec AIC-6915 10/100BaseTX" },
  128         { 0, 0, NULL }
  129 };
  130 
  131 static int sf_probe             (device_t);
  132 static int sf_attach            (device_t);
  133 static int sf_detach            (device_t);
  134 static void sf_intr             (void *);
  135 static void sf_stats_update     (void *);
  136 static void sf_rxeof            (struct sf_softc *);
  137 static void sf_txeof            (struct sf_softc *);
  138 static int sf_encap             (struct sf_softc *,
  139                                         struct sf_tx_bufdesc_type0 *,
  140                                         struct mbuf *);
  141 static void sf_start            (struct ifnet *);
  142 static int sf_ioctl             (struct ifnet *, u_long, caddr_t);
  143 static void sf_init             (void *);
  144 static void sf_stop             (struct sf_softc *);
  145 static void sf_watchdog         (struct ifnet *);
  146 static void sf_shutdown         (device_t);
  147 static int sf_ifmedia_upd       (struct ifnet *);
  148 static void sf_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  149 static void sf_reset            (struct sf_softc *);
  150 static int sf_init_rx_ring      (struct sf_softc *);
  151 static void sf_init_tx_ring     (struct sf_softc *);
  152 static int sf_newbuf            (struct sf_softc *,
  153                                         struct sf_rx_bufdesc_type0 *,
  154                                         struct mbuf *);
  155 static void sf_setmulti         (struct sf_softc *);
  156 static int sf_setperf           (struct sf_softc *, int, caddr_t);
  157 static int sf_sethash           (struct sf_softc *, caddr_t, int);
  158 #ifdef notdef
  159 static int sf_setvlan           (struct sf_softc *, int, u_int32_t);
  160 #endif
  161 
  162 static u_int8_t sf_read_eeprom  (struct sf_softc *, int);
  163 static u_int32_t sf_calchash    (caddr_t);
  164 
  165 static int sf_miibus_readreg    (device_t, int, int);
  166 static int sf_miibus_writereg   (device_t, int, int, int);
  167 static void sf_miibus_statchg   (device_t);
  168 
  169 static u_int32_t csr_read_4     (struct sf_softc *, int);
  170 static void csr_write_4         (struct sf_softc *, int, u_int32_t);
  171 static void sf_txthresh_adjust  (struct sf_softc *);
  172 
  173 #ifdef SF_USEIOSPACE
  174 #define SF_RES                  SYS_RES_IOPORT
  175 #define SF_RID                  SF_PCI_LOIO
  176 #else
  177 #define SF_RES                  SYS_RES_MEMORY
  178 #define SF_RID                  SF_PCI_LOMEM
  179 #endif
  180 
  181 static device_method_t sf_methods[] = {
  182         /* Device interface */
  183         DEVMETHOD(device_probe,         sf_probe),
  184         DEVMETHOD(device_attach,        sf_attach),
  185         DEVMETHOD(device_detach,        sf_detach),
  186         DEVMETHOD(device_shutdown,      sf_shutdown),
  187 
  188         /* bus interface */
  189         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  190         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  191 
  192         /* MII interface */
  193         DEVMETHOD(miibus_readreg,       sf_miibus_readreg),
  194         DEVMETHOD(miibus_writereg,      sf_miibus_writereg),
  195         DEVMETHOD(miibus_statchg,       sf_miibus_statchg),
  196 
  197         { 0, 0 }
  198 };
  199 
  200 static driver_t sf_driver = {
  201         "sf",
  202         sf_methods,
  203         sizeof(struct sf_softc),
  204 };
  205 
  206 static devclass_t sf_devclass;
  207 
  208 DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
  209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
  210 
  211 #define SF_SETBIT(sc, reg, x)   \
  212         csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
  213 
  214 #define SF_CLRBIT(sc, reg, x)                           \
  215         csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
  216 
  217 static u_int32_t
  218 csr_read_4(sc, reg)
  219         struct sf_softc         *sc;
  220         int                     reg;
  221 {
  222         u_int32_t               val;
  223 
  224 #ifdef SF_USEIOSPACE
  225         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  226         val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
  227 #else
  228         val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
  229 #endif
  230 
  231         return(val);
  232 }
  233 
  234 static u_int8_t
  235 sf_read_eeprom(sc, reg)
  236         struct sf_softc         *sc;
  237         int                     reg;
  238 {
  239         u_int8_t                val;
  240 
  241         val = (csr_read_4(sc, SF_EEADDR_BASE +
  242             (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
  243 
  244         return(val);
  245 }
  246 
  247 static void
  248 csr_write_4(sc, reg, val)
  249         struct sf_softc         *sc;
  250         int                     reg;
  251         u_int32_t               val;
  252 {
  253 #ifdef SF_USEIOSPACE
  254         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  255         CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
  256 #else
  257         CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
  258 #endif
  259         return;
  260 }
  261 
  262 static u_int32_t
  263 sf_calchash(addr)
  264         caddr_t                 addr;
  265 {
  266         u_int32_t               crc, carry;
  267         int                     i, j;
  268         u_int8_t                c;
  269 
  270         /* Compute CRC for the address value. */
  271         crc = 0xFFFFFFFF; /* initial value */
  272 
  273         for (i = 0; i < 6; i++) {
  274                 c = *(addr + i);
  275                 for (j = 0; j < 8; j++) {
  276                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
  277                         crc <<= 1;
  278                         c >>= 1;
  279                         if (carry)
  280                                 crc = (crc ^ 0x04c11db6) | carry;
  281                 }
  282         }
  283 
  284         /* return the filter bit position */
  285         return(crc >> 23 & 0x1FF);
  286 }
  287 
  288 /*
  289  * Copy the address 'mac' into the perfect RX filter entry at
  290  * offset 'idx.' The perfect filter only has 16 entries so do
  291  * some sanity tests.
  292  */
  293 static int
  294 sf_setperf(sc, idx, mac)
  295         struct sf_softc         *sc;
  296         int                     idx;
  297         caddr_t                 mac;
  298 {
  299         u_int16_t               *p;
  300 
  301         if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
  302                 return(EINVAL);
  303 
  304         if (mac == NULL)
  305                 return(EINVAL);
  306 
  307         p = (u_int16_t *)mac;
  308 
  309         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  310             (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
  311         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  312             (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
  313         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  314             (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
  315 
  316         return(0);
  317 }
  318 
  319 /*
  320  * Set the bit in the 512-bit hash table that corresponds to the
  321  * specified mac address 'mac.' If 'prio' is nonzero, update the
  322  * priority hash table instead of the filter hash table.
  323  */
  324 static int
  325 sf_sethash(sc, mac, prio)
  326         struct sf_softc         *sc;
  327         caddr_t                 mac;
  328         int                     prio;
  329 {
  330         u_int32_t               h = 0;
  331 
  332         if (mac == NULL)
  333                 return(EINVAL);
  334 
  335         h = sf_calchash(mac);
  336 
  337         if (prio) {
  338                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
  339                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  340         } else {
  341                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
  342                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  343         }
  344 
  345         return(0);
  346 }
  347 
  348 #ifdef notdef
  349 /*
  350  * Set a VLAN tag in the receive filter.
  351  */
  352 static int
  353 sf_setvlan(sc, idx, vlan)
  354         struct sf_softc         *sc;
  355         int                     idx;
  356         u_int32_t               vlan;
  357 {
  358         if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
  359                 return(EINVAL);
  360 
  361         csr_write_4(sc, SF_RXFILT_HASH_BASE +
  362             (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
  363 
  364         return(0);
  365 }
  366 #endif
  367 
  368 static int
  369 sf_miibus_readreg(dev, phy, reg)
  370         device_t                dev;
  371         int                     phy, reg;
  372 {
  373         struct sf_softc         *sc;
  374         int                     i;
  375         u_int32_t               val = 0;
  376 
  377         sc = device_get_softc(dev);
  378 
  379         for (i = 0; i < SF_TIMEOUT; i++) {
  380                 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
  381                 if (val & SF_MII_DATAVALID)
  382                         break;
  383         }
  384 
  385         if (i == SF_TIMEOUT)
  386                 return(0);
  387 
  388         if ((val & 0x0000FFFF) == 0xFFFF)
  389                 return(0);
  390 
  391         return(val & 0x0000FFFF);
  392 }
  393 
  394 static int
  395 sf_miibus_writereg(dev, phy, reg, val)
  396         device_t                dev;
  397         int                     phy, reg, val;
  398 {
  399         struct sf_softc         *sc;
  400         int                     i;
  401         int                     busy;
  402 
  403         sc = device_get_softc(dev);
  404 
  405         csr_write_4(sc, SF_PHY_REG(phy, reg), val);
  406 
  407         for (i = 0; i < SF_TIMEOUT; i++) {
  408                 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
  409                 if (!(busy & SF_MII_BUSY))
  410                         break;
  411         }
  412 
  413         return(0);
  414 }
  415 
  416 static void
  417 sf_miibus_statchg(dev)
  418         device_t                dev;
  419 {
  420         struct sf_softc         *sc;
  421         struct mii_data         *mii;
  422 
  423         sc = device_get_softc(dev);
  424         mii = device_get_softc(sc->sf_miibus);
  425 
  426         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  427                 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  428                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
  429         } else {
  430                 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  431                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
  432         }
  433 
  434         return;
  435 }
  436 
  437 static void
  438 sf_setmulti(sc)
  439         struct sf_softc         *sc;
  440 {
  441         struct ifnet            *ifp;
  442         int                     i;
  443         struct ifmultiaddr      *ifma;
  444         u_int8_t                dummy[] = { 0, 0, 0, 0, 0, 0 };
  445 
  446         ifp = &sc->arpcom.ac_if;
  447 
  448         /* First zot all the existing filters. */
  449         for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
  450                 sf_setperf(sc, i, (char *)&dummy);
  451         for (i = SF_RXFILT_HASH_BASE;
  452             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
  453                 csr_write_4(sc, i, 0);
  454         SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  455 
  456         /* Now program new ones. */
  457         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  458                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  459         } else {
  460                 i = 1;
  461                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
  462                         if (ifma->ifma_addr->sa_family != AF_LINK)
  463                                 continue;
  464                         /*
  465                          * Program the first 15 multicast groups
  466                          * into the perfect filter. For all others,
  467                          * use the hash table.
  468                          */
  469                         if (i < SF_RXFILT_PERFECT_CNT) {
  470                                 sf_setperf(sc, i,
  471                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  472                                 i++;
  473                                 continue;
  474                         }
  475 
  476                         sf_sethash(sc,
  477                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
  478                 }
  479         }
  480 
  481         return;
  482 }
  483 
  484 /*
  485  * Set media options.
  486  */
  487 static int
  488 sf_ifmedia_upd(ifp)
  489         struct ifnet            *ifp;
  490 {
  491         struct sf_softc         *sc;
  492         struct mii_data         *mii;
  493 
  494         sc = ifp->if_softc;
  495         mii = device_get_softc(sc->sf_miibus);
  496         sc->sf_link = 0;
  497         if (mii->mii_instance) {
  498                 struct mii_softc        *miisc;
  499                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  500                         mii_phy_reset(miisc);
  501         }
  502         mii_mediachg(mii);
  503 
  504         return(0);
  505 }
  506 
  507 /*
  508  * Report current media status.
  509  */
  510 static void
  511 sf_ifmedia_sts(ifp, ifmr)
  512         struct ifnet            *ifp;
  513         struct ifmediareq       *ifmr;
  514 {
  515         struct sf_softc         *sc;
  516         struct mii_data         *mii;
  517 
  518         sc = ifp->if_softc;
  519         mii = device_get_softc(sc->sf_miibus);
  520 
  521         mii_pollstat(mii);
  522         ifmr->ifm_active = mii->mii_media_active;
  523         ifmr->ifm_status = mii->mii_media_status;
  524 
  525         return;
  526 }
  527 
  528 static int
  529 sf_ioctl(ifp, command, data)
  530         struct ifnet            *ifp;
  531         u_long                  command;
  532         caddr_t                 data;
  533 {
  534         struct sf_softc         *sc = ifp->if_softc;
  535         struct ifreq            *ifr = (struct ifreq *) data;
  536         struct mii_data         *mii;
  537         int                     error = 0;
  538 
  539         SF_LOCK(sc);
  540 
  541         switch(command) {
  542         case SIOCSIFFLAGS:
  543                 if (ifp->if_flags & IFF_UP) {
  544                         if (ifp->if_flags & IFF_RUNNING &&
  545                             ifp->if_flags & IFF_PROMISC &&
  546                             !(sc->sf_if_flags & IFF_PROMISC)) {
  547                                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  548                         } else if (ifp->if_flags & IFF_RUNNING &&
  549                             !(ifp->if_flags & IFF_PROMISC) &&
  550                             sc->sf_if_flags & IFF_PROMISC) {
  551                                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  552                         } else if (!(ifp->if_flags & IFF_RUNNING))
  553                                 sf_init(sc);
  554                 } else {
  555                         if (ifp->if_flags & IFF_RUNNING)
  556                                 sf_stop(sc);
  557                 }
  558                 sc->sf_if_flags = ifp->if_flags;
  559                 error = 0;
  560                 break;
  561         case SIOCADDMULTI:
  562         case SIOCDELMULTI:
  563                 sf_setmulti(sc);
  564                 error = 0;
  565                 break;
  566         case SIOCGIFMEDIA:
  567         case SIOCSIFMEDIA:
  568                 mii = device_get_softc(sc->sf_miibus);
  569                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
  570                 break;
  571         default:
  572                 error = ether_ioctl(ifp, command, data);
  573                 break;
  574         }
  575 
  576         SF_UNLOCK(sc);
  577 
  578         return(error);
  579 }
  580 
  581 static void
  582 sf_reset(sc)
  583         struct sf_softc         *sc;
  584 {
  585         register int            i;
  586 
  587         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
  588         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  589         DELAY(1000);
  590         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  591 
  592         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
  593 
  594         for (i = 0; i < SF_TIMEOUT; i++) {
  595                 DELAY(10);
  596                 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
  597                         break;
  598         }
  599 
  600         if (i == SF_TIMEOUT)
  601                 printf("sf%d: reset never completed!\n", sc->sf_unit);
  602 
  603         /* Wait a little while for the chip to get its brains in order. */
  604         DELAY(1000);
  605         return;
  606 }
  607 
  608 /*
  609  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
  610  * IDs against our list and return a device name if we find a match.
  611  * We also check the subsystem ID so that we can identify exactly which
  612  * NIC has been found, if possible.
  613  */
  614 static int
  615 sf_probe(dev)
  616         device_t                dev;
  617 {
  618         struct sf_type          *t;
  619 
  620         t = sf_devs;
  621 
  622         while(t->sf_name != NULL) {
  623                 if ((pci_get_vendor(dev) == t->sf_vid) &&
  624                     (pci_get_device(dev) == t->sf_did)) {
  625                         switch((pci_read_config(dev,
  626                             SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
  627                         case AD_SUBSYSID_62011_REV0:
  628                         case AD_SUBSYSID_62011_REV1:
  629                                 device_set_desc(dev,
  630                                     "Adaptec ANA-62011 10/100BaseTX");
  631                                 return(0);
  632                                 break;
  633                         case AD_SUBSYSID_62022:
  634                                 device_set_desc(dev,
  635                                     "Adaptec ANA-62022 10/100BaseTX");
  636                                 return(0);
  637                                 break;
  638                         case AD_SUBSYSID_62044_REV0:
  639                         case AD_SUBSYSID_62044_REV1:
  640                                 device_set_desc(dev,
  641                                     "Adaptec ANA-62044 10/100BaseTX");
  642                                 return(0);
  643                                 break;
  644                         case AD_SUBSYSID_62020:
  645                                 device_set_desc(dev,
  646                                     "Adaptec ANA-62020 10/100BaseFX");
  647                                 return(0);
  648                                 break;
  649                         case AD_SUBSYSID_69011:
  650                                 device_set_desc(dev,
  651                                     "Adaptec ANA-69011 10/100BaseTX");
  652                                 return(0);
  653                                 break;
  654                         default:
  655                                 device_set_desc(dev, t->sf_name);
  656                                 return(0);
  657                                 break;
  658                         }
  659                 }
  660                 t++;
  661         }
  662 
  663         return(ENXIO);
  664 }
  665 
  666 /*
  667  * Attach the interface. Allocate softc structures, do ifmedia
  668  * setup and ethernet/BPF attach.
  669  */
  670 static int
  671 sf_attach(dev)
  672         device_t                dev;
  673 {
  674         int                     i;
  675         struct sf_softc         *sc;
  676         struct ifnet            *ifp;
  677         int                     unit, rid, error = 0;
  678 
  679         sc = device_get_softc(dev);
  680         unit = device_get_unit(dev);
  681 
  682         mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  683             MTX_DEF | MTX_RECURSE);
  684 
  685         /*
  686          * Handle power management nonsense.
  687          */
  688         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  689                 u_int32_t               iobase, membase, irq;
  690 
  691                 /* Save important PCI config data. */
  692                 iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
  693                 membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
  694                 irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
  695 
  696                 /* Reset the power state. */
  697                 printf("sf%d: chip is in D%d power mode "
  698                     "-- setting to D0\n", unit,
  699                     pci_get_powerstate(dev));
  700                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  701 
  702                 /* Restore PCI config data. */
  703                 pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
  704                 pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
  705                 pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
  706         }
  707 
  708         /*
  709          * Map control/status registers.
  710          */
  711         pci_enable_busmaster(dev);
  712 
  713         rid = SF_RID;
  714         sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
  715             0, ~0, 1, RF_ACTIVE);
  716 
  717         if (sc->sf_res == NULL) {
  718                 printf ("sf%d: couldn't map ports\n", unit);
  719                 error = ENXIO;
  720                 goto fail;
  721         }
  722 
  723         sc->sf_btag = rman_get_bustag(sc->sf_res);
  724         sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
  725 
  726         /* Allocate interrupt */
  727         rid = 0;
  728         sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
  729             RF_SHAREABLE | RF_ACTIVE);
  730 
  731         if (sc->sf_irq == NULL) {
  732                 printf("sf%d: couldn't map interrupt\n", unit);
  733                 error = ENXIO;
  734                 goto fail;
  735         }
  736 
  737         callout_handle_init(&sc->sf_stat_ch);
  738         /* Reset the adapter. */
  739         sf_reset(sc);
  740 
  741         /*
  742          * Get station address from the EEPROM.
  743          */
  744         for (i = 0; i < ETHER_ADDR_LEN; i++)
  745                 sc->arpcom.ac_enaddr[i] =
  746                     sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
  747 
  748         /*
  749          * An Adaptec chip was detected. Inform the world.
  750          */
  751         printf("sf%d: Ethernet address: %6D\n", unit,
  752             sc->arpcom.ac_enaddr, ":");
  753 
  754         sc->sf_unit = unit;
  755 
  756         /* Allocate the descriptor queues. */
  757         sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
  758             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
  759 
  760         if (sc->sf_ldata == NULL) {
  761                 printf("sf%d: no memory for list buffers!\n", unit);
  762                 error = ENXIO;
  763                 goto fail;
  764         }
  765 
  766         bzero(sc->sf_ldata, sizeof(struct sf_list_data));
  767 
  768         /* Do MII setup. */
  769         if (mii_phy_probe(dev, &sc->sf_miibus,
  770             sf_ifmedia_upd, sf_ifmedia_sts)) {
  771                 printf("sf%d: MII without any phy!\n", sc->sf_unit);
  772                 error = ENXIO;
  773                 goto fail;
  774         }
  775 
  776         ifp = &sc->arpcom.ac_if;
  777         ifp->if_softc = sc;
  778         ifp->if_unit = unit;
  779         ifp->if_name = "sf";
  780         ifp->if_mtu = ETHERMTU;
  781         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  782         ifp->if_ioctl = sf_ioctl;
  783         ifp->if_output = ether_output;
  784         ifp->if_start = sf_start;
  785         ifp->if_watchdog = sf_watchdog;
  786         ifp->if_init = sf_init;
  787         ifp->if_baudrate = 10000000;
  788         ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
  789 
  790         /*
  791          * Call MI attach routine.
  792          */
  793         ether_ifattach(ifp, sc->arpcom.ac_enaddr);
  794 
  795         /* Hook interrupt last to avoid having to lock softc */
  796         error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
  797             sf_intr, sc, &sc->sf_intrhand);
  798 
  799         if (error) {
  800                 printf("sf%d: couldn't set up irq\n", unit);
  801                 ether_ifdetach(ifp);
  802                 goto fail;
  803         }
  804 
  805 fail:
  806         if (error)
  807                 sf_detach(dev);
  808 
  809         return(error);
  810 }
  811 
  812 /*
  813  * Shutdown hardware and free up resources. This can be called any
  814  * time after the mutex has been initialized. It is called in both
  815  * the error case in attach and the normal detach case so it needs
  816  * to be careful about only freeing resources that have actually been
  817  * allocated.
  818  */
  819 static int
  820 sf_detach(dev)
  821         device_t                dev;
  822 {
  823         struct sf_softc         *sc;
  824         struct ifnet            *ifp;
  825 
  826         sc = device_get_softc(dev);
  827         KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
  828         SF_LOCK(sc);
  829         ifp = &sc->arpcom.ac_if;
  830 
  831         /* These should only be active if attach succeeded */
  832         if (device_is_attached(dev)) {
  833                 sf_stop(sc);
  834                 ether_ifdetach(ifp);
  835         }
  836         if (sc->sf_miibus)
  837                 device_delete_child(dev, sc->sf_miibus);
  838         bus_generic_detach(dev);
  839 
  840         if (sc->sf_intrhand)
  841                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  842         if (sc->sf_irq)
  843                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  844         if (sc->sf_res)
  845                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  846 
  847         if (sc->sf_ldata)
  848                 contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
  849 
  850         SF_UNLOCK(sc);
  851         mtx_destroy(&sc->sf_mtx);
  852 
  853         return(0);
  854 }
  855 
  856 static int
  857 sf_init_rx_ring(sc)
  858         struct sf_softc         *sc;
  859 {
  860         struct sf_list_data     *ld;
  861         int                     i;
  862 
  863         ld = sc->sf_ldata;
  864 
  865         bzero((char *)ld->sf_rx_dlist_big,
  866             sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
  867         bzero((char *)ld->sf_rx_clist,
  868             sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
  869 
  870         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
  871                 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
  872                         return(ENOBUFS);
  873         }
  874 
  875         return(0);
  876 }
  877 
  878 static void
  879 sf_init_tx_ring(sc)
  880         struct sf_softc         *sc;
  881 {
  882         struct sf_list_data     *ld;
  883         int                     i;
  884 
  885         ld = sc->sf_ldata;
  886 
  887         bzero((char *)ld->sf_tx_dlist,
  888             sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
  889         bzero((char *)ld->sf_tx_clist,
  890             sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
  891 
  892         for (i = 0; i < SF_TX_DLIST_CNT; i++)
  893                 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
  894         for (i = 0; i < SF_TX_CLIST_CNT; i++)
  895                 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
  896 
  897         ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
  898         sc->sf_tx_cnt = 0;
  899 
  900         return;
  901 }
  902 
  903 static int
  904 sf_newbuf(sc, c, m)
  905         struct sf_softc         *sc;
  906         struct sf_rx_bufdesc_type0      *c;
  907         struct mbuf             *m;
  908 {
  909         struct mbuf             *m_new = NULL;
  910 
  911         if (m == NULL) {
  912                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
  913                 if (m_new == NULL)
  914                         return(ENOBUFS);
  915 
  916                 MCLGET(m_new, M_DONTWAIT);
  917                 if (!(m_new->m_flags & M_EXT)) {
  918                         m_freem(m_new);
  919                         return(ENOBUFS);
  920                 }
  921                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  922         } else {
  923                 m_new = m;
  924                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  925                 m_new->m_data = m_new->m_ext.ext_buf;
  926         }
  927 
  928         m_adj(m_new, sizeof(u_int64_t));
  929 
  930         c->sf_mbuf = m_new;
  931         c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
  932         c->sf_valid = 1;
  933 
  934         return(0);
  935 }
  936 
  937 /*
  938  * The starfire is programmed to use 'normal' mode for packet reception,
  939  * which means we use the consumer/producer model for both the buffer
  940  * descriptor queue and the completion descriptor queue. The only problem
  941  * with this is that it involves a lot of register accesses: we have to
  942  * read the RX completion consumer and producer indexes and the RX buffer
  943  * producer index, plus the RX completion consumer and RX buffer producer
  944  * indexes have to be updated. It would have been easier if Adaptec had
  945  * put each index in a separate register, especially given that the damn
  946  * NIC has a 512K register space.
  947  *
  948  * In spite of all the lovely features that Adaptec crammed into the 6915,
  949  * it is marred by one truly stupid design flaw, which is that receive
  950  * buffer addresses must be aligned on a longword boundary. This forces
  951  * the packet payload to be unaligned, which is suboptimal on the x86 and
  952  * completely unuseable on the Alpha. Our only recourse is to copy received
  953  * packets into properly aligned buffers before handing them off.
  954  */
  955 
  956 static void
  957 sf_rxeof(sc)
  958         struct sf_softc         *sc;
  959 {
  960         struct mbuf             *m;
  961         struct ifnet            *ifp;
  962         struct sf_rx_bufdesc_type0      *desc;
  963         struct sf_rx_cmpdesc_type3      *cur_rx;
  964         u_int32_t               rxcons, rxprod;
  965         int                     cmpprodidx, cmpconsidx, bufprodidx;
  966 
  967         ifp = &sc->arpcom.ac_if;
  968 
  969         rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
  970         rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
  971         cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
  972         cmpconsidx = SF_IDX_LO(rxcons);
  973         bufprodidx = SF_IDX_LO(rxprod);
  974 
  975         while (cmpconsidx != cmpprodidx) {
  976                 struct mbuf             *m0;
  977 
  978                 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
  979                 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
  980                 m = desc->sf_mbuf;
  981                 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
  982                 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
  983 
  984                 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
  985                         ifp->if_ierrors++;
  986                         sf_newbuf(sc, desc, m);
  987                         continue;
  988                 }
  989 
  990                 m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
  991                     ifp, NULL);
  992                 sf_newbuf(sc, desc, m);
  993                 if (m0 == NULL) {
  994                         ifp->if_ierrors++;
  995                         continue;
  996                 }
  997                 m = m0;
  998 
  999                 ifp->if_ipackets++;
 1000                 (*ifp->if_input)(ifp, m);
 1001         }
 1002 
 1003         csr_write_4(sc, SF_CQ_CONSIDX,
 1004             (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
 1005         csr_write_4(sc, SF_RXDQ_PTR_Q1,
 1006             (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
 1007 
 1008         return;
 1009 }
 1010 
 1011 /*
 1012  * Read the transmit status from the completion queue and release
 1013  * mbufs. Note that the buffer descriptor index in the completion
 1014  * descriptor is an offset from the start of the transmit buffer
 1015  * descriptor list in bytes. This is important because the manual
 1016  * gives the impression that it should match the producer/consumer
 1017  * index, which is the offset in 8 byte blocks.
 1018  */
 1019 static void
 1020 sf_txeof(sc)
 1021         struct sf_softc         *sc;
 1022 {
 1023         int                     txcons, cmpprodidx, cmpconsidx;
 1024         struct sf_tx_cmpdesc_type1 *cur_cmp;
 1025         struct sf_tx_bufdesc_type0 *cur_tx;
 1026         struct ifnet            *ifp;
 1027 
 1028         ifp = &sc->arpcom.ac_if;
 1029 
 1030         txcons = csr_read_4(sc, SF_CQ_CONSIDX);
 1031         cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
 1032         cmpconsidx = SF_IDX_HI(txcons);
 1033 
 1034         while (cmpconsidx != cmpprodidx) {
 1035                 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
 1036                 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
 1037 
 1038                 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
 1039                         ifp->if_opackets++;
 1040                 else {
 1041                         if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
 1042                                 sf_txthresh_adjust(sc);
 1043                         ifp->if_oerrors++;
 1044                 }
 1045 
 1046                 sc->sf_tx_cnt--;
 1047                 if (cur_tx->sf_mbuf != NULL) {
 1048                         m_freem(cur_tx->sf_mbuf);
 1049                         cur_tx->sf_mbuf = NULL;
 1050                 } else
 1051                         break;
 1052                 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
 1053         }
 1054 
 1055         ifp->if_timer = 0;
 1056         ifp->if_flags &= ~IFF_OACTIVE;
 1057 
 1058         csr_write_4(sc, SF_CQ_CONSIDX,
 1059             (txcons & ~SF_CQ_CONSIDX_TXQ) |
 1060             ((cmpconsidx << 16) & 0xFFFF0000));
 1061 
 1062         return;
 1063 }
 1064 
 1065 static void
 1066 sf_txthresh_adjust(sc)
 1067         struct sf_softc         *sc;
 1068 {
 1069         u_int32_t               txfctl;
 1070         u_int8_t                txthresh;
 1071 
 1072         txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
 1073         txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
 1074         if (txthresh < 0xFF) {
 1075                 txthresh++;
 1076                 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
 1077                 txfctl |= txthresh;
 1078 #ifdef DIAGNOSTIC
 1079                 printf("sf%d: tx underrun, increasing "
 1080                     "tx threshold to %d bytes\n",
 1081                     sc->sf_unit, txthresh * 4);
 1082 #endif
 1083                 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
 1084         }
 1085 
 1086         return;
 1087 }
 1088 
 1089 static void
 1090 sf_intr(arg)
 1091         void                    *arg;
 1092 {
 1093         struct sf_softc         *sc;
 1094         struct ifnet            *ifp;
 1095         u_int32_t               status;
 1096 
 1097         sc = arg;
 1098         SF_LOCK(sc);
 1099 
 1100         ifp = &sc->arpcom.ac_if;
 1101 
 1102         if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
 1103                 SF_UNLOCK(sc);
 1104                 return;
 1105         }
 1106 
 1107         /* Disable interrupts. */
 1108         csr_write_4(sc, SF_IMR, 0x00000000);
 1109 
 1110         for (;;) {
 1111                 status = csr_read_4(sc, SF_ISR);
 1112                 if (status)
 1113                         csr_write_4(sc, SF_ISR, status);
 1114 
 1115                 if (!(status & SF_INTRS))
 1116                         break;
 1117 
 1118                 if (status & SF_ISR_RXDQ1_DMADONE)
 1119                         sf_rxeof(sc);
 1120 
 1121                 if (status & SF_ISR_TX_TXDONE ||
 1122                     status & SF_ISR_TX_DMADONE ||
 1123                     status & SF_ISR_TX_QUEUEDONE)
 1124                         sf_txeof(sc);
 1125 
 1126                 if (status & SF_ISR_TX_LOFIFO)
 1127                         sf_txthresh_adjust(sc);
 1128 
 1129                 if (status & SF_ISR_ABNORMALINTR) {
 1130                         if (status & SF_ISR_STATSOFLOW) {
 1131                                 untimeout(sf_stats_update, sc,
 1132                                     sc->sf_stat_ch);
 1133                                 sf_stats_update(sc);
 1134                         } else
 1135                                 sf_init(sc);
 1136                 }
 1137         }
 1138 
 1139         /* Re-enable interrupts. */
 1140         csr_write_4(sc, SF_IMR, SF_INTRS);
 1141 
 1142         if (ifp->if_snd.ifq_head != NULL)
 1143                 sf_start(ifp);
 1144 
 1145         SF_UNLOCK(sc);
 1146         return;
 1147 }
 1148 
 1149 static void
 1150 sf_init(xsc)
 1151         void                    *xsc;
 1152 {
 1153         struct sf_softc         *sc;
 1154         struct ifnet            *ifp;
 1155         struct mii_data         *mii;
 1156         int                     i;
 1157 
 1158         sc = xsc;
 1159         SF_LOCK(sc);
 1160         ifp = &sc->arpcom.ac_if;
 1161         mii = device_get_softc(sc->sf_miibus);
 1162 
 1163         sf_stop(sc);
 1164         sf_reset(sc);
 1165 
 1166         /* Init all the receive filter registers */
 1167         for (i = SF_RXFILT_PERFECT_BASE;
 1168             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
 1169                 csr_write_4(sc, i, 0);
 1170 
 1171         /* Empty stats counter registers. */
 1172         for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
 1173                 csr_write_4(sc, SF_STATS_BASE +
 1174                     (i + sizeof(u_int32_t)), 0);
 1175 
 1176         /* Init our MAC address */
 1177         csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1178         csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1179         sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
 1180 
 1181         if (sf_init_rx_ring(sc) == ENOBUFS) {
 1182                 printf("sf%d: initialization failed: no "
 1183                     "memory for rx buffers\n", sc->sf_unit);
 1184                 SF_UNLOCK(sc);
 1185                 return;
 1186         }
 1187 
 1188         sf_init_tx_ring(sc);
 1189 
 1190         csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
 1191 
 1192         /* If we want promiscuous mode, set the allframes bit. */
 1193         if (ifp->if_flags & IFF_PROMISC) {
 1194                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1195         } else {
 1196                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1197         }
 1198 
 1199         if (ifp->if_flags & IFF_BROADCAST) {
 1200                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1201         } else {
 1202                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1203         }
 1204 
 1205         /*
 1206          * Load the multicast filter.
 1207          */
 1208         sf_setmulti(sc);
 1209 
 1210         /* Init the completion queue indexes */
 1211         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1212         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1213 
 1214         /* Init the RX completion queue */
 1215         csr_write_4(sc, SF_RXCQ_CTL_1,
 1216             vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
 1217         SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
 1218 
 1219         /* Init RX DMA control. */
 1220         SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
 1221 
 1222         /* Init the RX buffer descriptor queue. */
 1223         csr_write_4(sc, SF_RXDQ_ADDR_Q1,
 1224             vtophys(sc->sf_ldata->sf_rx_dlist_big));
 1225         csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
 1226         csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
 1227 
 1228         /* Init the TX completion queue */
 1229         csr_write_4(sc, SF_TXCQ_CTL,
 1230             vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
 1231 
 1232         /* Init the TX buffer descriptor queue. */
 1233         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
 1234                 vtophys(sc->sf_ldata->sf_tx_dlist));
 1235         SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
 1236         csr_write_4(sc, SF_TXDQ_CTL,
 1237             SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
 1238         SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
 1239 
 1240         /* Enable autopadding of short TX frames. */
 1241         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
 1242 
 1243         /* Enable interrupts. */
 1244         csr_write_4(sc, SF_IMR, SF_INTRS);
 1245         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
 1246 
 1247         /* Enable the RX and TX engines. */
 1248         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
 1249         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
 1250 
 1251         /*mii_mediachg(mii);*/
 1252         sf_ifmedia_upd(ifp);
 1253 
 1254         ifp->if_flags |= IFF_RUNNING;
 1255         ifp->if_flags &= ~IFF_OACTIVE;
 1256 
 1257         sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
 1258 
 1259         SF_UNLOCK(sc);
 1260 
 1261         return;
 1262 }
 1263 
 1264 static int
 1265 sf_encap(sc, c, m_head)
 1266         struct sf_softc         *sc;
 1267         struct sf_tx_bufdesc_type0 *c;
 1268         struct mbuf             *m_head;
 1269 {
 1270         int                     frag = 0;
 1271         struct sf_frag          *f = NULL;
 1272         struct mbuf             *m;
 1273 
 1274         m = m_head;
 1275 
 1276         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1277                 if (m->m_len != 0) {
 1278                         if (frag == SF_MAXFRAGS)
 1279                                 break;
 1280                         f = &c->sf_frags[frag];
 1281                         if (frag == 0)
 1282                                 f->sf_pktlen = m_head->m_pkthdr.len;
 1283                         f->sf_fraglen = m->m_len;
 1284                         f->sf_addr = vtophys(mtod(m, vm_offset_t));
 1285                         frag++;
 1286                 }
 1287         }
 1288 
 1289         if (m != NULL) {
 1290                 struct mbuf             *m_new = NULL;
 1291 
 1292                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1293                 if (m_new == NULL) {
 1294                         printf("sf%d: no memory for tx list\n", sc->sf_unit);
 1295                         return(1);
 1296                 }
 1297 
 1298                 if (m_head->m_pkthdr.len > MHLEN) {
 1299                         MCLGET(m_new, M_DONTWAIT);
 1300                         if (!(m_new->m_flags & M_EXT)) {
 1301                                 m_freem(m_new);
 1302                                 printf("sf%d: no memory for tx list\n",
 1303                                     sc->sf_unit);
 1304                                 return(1);
 1305                         }
 1306                 }
 1307                 m_copydata(m_head, 0, m_head->m_pkthdr.len,
 1308                     mtod(m_new, caddr_t));
 1309                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1310                 m_freem(m_head);
 1311                 m_head = m_new;
 1312                 f = &c->sf_frags[0];
 1313                 f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
 1314                 f->sf_addr = vtophys(mtod(m_head, caddr_t));
 1315                 frag = 1;
 1316         }
 1317 
 1318         c->sf_mbuf = m_head;
 1319         c->sf_id = SF_TX_BUFDESC_ID;
 1320         c->sf_fragcnt = frag;
 1321         c->sf_intr = 1;
 1322         c->sf_caltcp = 0;
 1323         c->sf_crcen = 1;
 1324 
 1325         return(0);
 1326 }
 1327 
 1328 static void
 1329 sf_start(ifp)
 1330         struct ifnet            *ifp;
 1331 {
 1332         struct sf_softc         *sc;
 1333         struct sf_tx_bufdesc_type0 *cur_tx = NULL;
 1334         struct mbuf             *m_head = NULL;
 1335         int                     i, txprod;
 1336 
 1337         sc = ifp->if_softc;
 1338         SF_LOCK(sc);
 1339 
 1340         if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
 1341                 SF_UNLOCK(sc);
 1342                 return;
 1343         }
 1344 
 1345         if (ifp->if_flags & IFF_OACTIVE) {
 1346                 SF_UNLOCK(sc);
 1347                 return;
 1348         }
 1349 
 1350         txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1351         i = SF_IDX_HI(txprod) >> 4;
 1352 
 1353         if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1354                 printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
 1355                 sf_init(sc);
 1356                 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1357                 i = SF_IDX_HI(txprod) >> 4;
 1358         }
 1359 
 1360         while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
 1361                 if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
 1362                         ifp->if_flags |= IFF_OACTIVE;
 1363                         cur_tx = NULL;
 1364                         break;
 1365                 }
 1366                 IF_DEQUEUE(&ifp->if_snd, m_head);
 1367                 if (m_head == NULL)
 1368                         break;
 1369 
 1370                 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
 1371                 if (sf_encap(sc, cur_tx, m_head)) {
 1372                         IF_PREPEND(&ifp->if_snd, m_head);
 1373                         ifp->if_flags |= IFF_OACTIVE;
 1374                         cur_tx = NULL;
 1375                         break;
 1376                 }
 1377 
 1378                 /*
 1379                  * If there's a BPF listener, bounce a copy of this frame
 1380                  * to him.
 1381                  */
 1382                 BPF_MTAP(ifp, m_head);
 1383 
 1384                 SF_INC(i, SF_TX_DLIST_CNT);
 1385                 sc->sf_tx_cnt++;
 1386                 /*
 1387                  * Don't get the TX DMA queue get too full.
 1388                  */
 1389                 if (sc->sf_tx_cnt > 64)
 1390                         break;
 1391         }
 1392 
 1393         if (cur_tx == NULL) {
 1394                 SF_UNLOCK(sc);
 1395                 return;
 1396         }
 1397 
 1398         /* Transmit */
 1399         csr_write_4(sc, SF_TXDQ_PRODIDX,
 1400             (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
 1401             ((i << 20) & 0xFFFF0000));
 1402 
 1403         ifp->if_timer = 5;
 1404 
 1405         SF_UNLOCK(sc);
 1406 
 1407         return;
 1408 }
 1409 
 1410 static void
 1411 sf_stop(sc)
 1412         struct sf_softc         *sc;
 1413 {
 1414         int                     i;
 1415         struct ifnet            *ifp;
 1416 
 1417         SF_LOCK(sc);
 1418 
 1419         ifp = &sc->arpcom.ac_if;
 1420 
 1421         untimeout(sf_stats_update, sc, sc->sf_stat_ch);
 1422 
 1423         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
 1424         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1425         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1426         csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
 1427         csr_write_4(sc, SF_RXDQ_CTL_1, 0);
 1428         csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
 1429         csr_write_4(sc, SF_TXCQ_CTL, 0);
 1430         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 1431         csr_write_4(sc, SF_TXDQ_CTL, 0);
 1432         sf_reset(sc);
 1433 
 1434         sc->sf_link = 0;
 1435 
 1436         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1437                 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
 1438                         m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
 1439                         sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
 1440                 }
 1441         }
 1442 
 1443         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1444                 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1445                         m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
 1446                         sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
 1447                 }
 1448         }
 1449 
 1450         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
 1451         SF_UNLOCK(sc);
 1452 
 1453         return;
 1454 }
 1455 
 1456 /*
 1457  * Note: it is important that this function not be interrupted. We
 1458  * use a two-stage register access scheme: if we are interrupted in
 1459  * between setting the indirect address register and reading from the
 1460  * indirect data register, the contents of the address register could
 1461  * be changed out from under us.
 1462  */     
 1463 static void
 1464 sf_stats_update(xsc)
 1465         void                    *xsc;
 1466 {
 1467         struct sf_softc         *sc;
 1468         struct ifnet            *ifp;
 1469         struct mii_data         *mii;
 1470         struct sf_stats         stats;
 1471         u_int32_t               *ptr;
 1472         int                     i;
 1473 
 1474         sc = xsc;
 1475         SF_LOCK(sc);
 1476         ifp = &sc->arpcom.ac_if;
 1477         mii = device_get_softc(sc->sf_miibus);
 1478 
 1479         ptr = (u_int32_t *)&stats;
 1480         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1481                 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
 1482                     (i + sizeof(u_int32_t)));
 1483 
 1484         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1485                 csr_write_4(sc, SF_STATS_BASE +
 1486                     (i + sizeof(u_int32_t)), 0);
 1487 
 1488         ifp->if_collisions += stats.sf_tx_single_colls +
 1489             stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
 1490 
 1491         mii_tick(mii);
 1492 
 1493         if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
 1494             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1495                 sc->sf_link++;
 1496                 if (ifp->if_snd.ifq_head != NULL)
 1497                         sf_start(ifp);
 1498         }
 1499 
 1500         sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
 1501 
 1502         SF_UNLOCK(sc);
 1503 
 1504         return;
 1505 }
 1506 
 1507 static void
 1508 sf_watchdog(ifp)
 1509         struct ifnet            *ifp;
 1510 {
 1511         struct sf_softc         *sc;
 1512 
 1513         sc = ifp->if_softc;
 1514 
 1515         SF_LOCK(sc);
 1516 
 1517         ifp->if_oerrors++;
 1518         printf("sf%d: watchdog timeout\n", sc->sf_unit);
 1519 
 1520         sf_stop(sc);
 1521         sf_reset(sc);
 1522         sf_init(sc);
 1523 
 1524         if (ifp->if_snd.ifq_head != NULL)
 1525                 sf_start(ifp);
 1526 
 1527         SF_UNLOCK(sc);
 1528 
 1529         return;
 1530 }
 1531 
 1532 static void
 1533 sf_shutdown(dev)
 1534         device_t                dev;
 1535 {
 1536         struct sf_softc         *sc;
 1537 
 1538         sc = device_get_softc(dev);
 1539 
 1540         sf_stop(sc);
 1541 
 1542         return;
 1543 }

Cache object: 1fe8c7570f1f66bb2da65d492cbe6f21


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.