The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_sf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.3/sys/pci/if_sf.c 134658 2004-09-02 20:57:40Z rwatson $");
   35 
   36 /*
   37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
   38  * Programming manual is available from:
   39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
   40  *
   41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   42  * Department of Electical Engineering
   43  * Columbia University, New York City
   44  */
   45 /*
   46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
   47  * controller designed with flexibility and reducing CPU load in mind.
   48  * The Starfire offers high and low priority buffer queues, a
   49  * producer/consumer index mechanism and several different buffer
   50  * queue and completion queue descriptor types. Any one of a number
   51  * of different driver designs can be used, depending on system and
   52  * OS requirements. This driver makes use of type0 transmit frame
   53  * descriptors (since BSD fragments packets across an mbuf chain)
   54  * and two RX buffer queues prioritized on size (one queue for small
   55  * frames that will fit into a single mbuf, another with full size
   56  * mbuf clusters for everything else). The producer/consumer indexes
   57  * and completion queues are also used.
   58  *
   59  * One downside to the Starfire has to do with alignment: buffer
   60  * queues must be aligned on 256-byte boundaries, and receive buffers
   61  * must be aligned on longword boundaries. The receive buffer alignment
   62  * causes problems on the Alpha platform, where the packet payload
   63  * should be longword aligned. There is no simple way around this.
   64  *
   65  * For receive filtering, the Starfire offers 16 perfect filter slots
   66  * and a 512-bit hash table.
   67  *
   68  * The Starfire has no internal transceiver, relying instead on an
   69  * external MII-based transceiver. Accessing registers on external
   70  * PHYs is done through a special register map rather than with the
   71  * usual bitbang MDIO method.
   72  *
   73  * Acesssing the registers on the Starfire is a little tricky. The
   74  * Starfire has a 512K internal register space. When programmed for
   75  * PCI memory mapped mode, the entire register space can be accessed
   76  * directly. However in I/O space mode, only 256 bytes are directly
   77  * mapped into PCI I/O space. The other registers can be accessed
   78  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
   79  * registers inside the 256-byte I/O window.
   80  */
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/sockio.h>
   85 #include <sys/mbuf.h>
   86 #include <sys/malloc.h>
   87 #include <sys/kernel.h>
   88 #include <sys/module.h>
   89 #include <sys/socket.h>
   90 
   91 #include <net/if.h>
   92 #include <net/if_arp.h>
   93 #include <net/ethernet.h>
   94 #include <net/if_dl.h>
   95 #include <net/if_media.h>
   96 
   97 #include <net/bpf.h>
   98 
   99 #include <vm/vm.h>              /* for vtophys */
  100 #include <vm/pmap.h>            /* for vtophys */
  101 #include <machine/bus_pio.h>
  102 #include <machine/bus_memio.h>
  103 #include <machine/bus.h>
  104 #include <machine/resource.h>
  105 #include <sys/bus.h>
  106 #include <sys/rman.h>
  107 
  108 #include <dev/mii/mii.h>
  109 #include <dev/mii/miivar.h>
  110 
  111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  112 #include "miibus_if.h"
  113 
  114 #include <dev/pci/pcireg.h>
  115 #include <dev/pci/pcivar.h>
  116 
  117 #define SF_USEIOSPACE
  118 
  119 #include <pci/if_sfreg.h>
  120 
  121 MODULE_DEPEND(sf, pci, 1, 1, 1);
  122 MODULE_DEPEND(sf, ether, 1, 1, 1);
  123 MODULE_DEPEND(sf, miibus, 1, 1, 1);
  124 
  125 static struct sf_type sf_devs[] = {
  126         { AD_VENDORID, AD_DEVICEID_STARFIRE,
  127                 "Adaptec AIC-6915 10/100BaseTX" },
  128         { 0, 0, NULL }
  129 };
  130 
  131 static int sf_probe             (device_t);
  132 static int sf_attach            (device_t);
  133 static int sf_detach            (device_t);
  134 static void sf_intr             (void *);
  135 static void sf_stats_update     (void *);
  136 static void sf_rxeof            (struct sf_softc *);
  137 static void sf_txeof            (struct sf_softc *);
  138 static int sf_encap             (struct sf_softc *,
  139                                         struct sf_tx_bufdesc_type0 *,
  140                                         struct mbuf *);
  141 static void sf_start            (struct ifnet *);
  142 static int sf_ioctl             (struct ifnet *, u_long, caddr_t);
  143 static void sf_init             (void *);
  144 static void sf_stop             (struct sf_softc *);
  145 static void sf_watchdog         (struct ifnet *);
  146 static void sf_shutdown         (device_t);
  147 static int sf_ifmedia_upd       (struct ifnet *);
  148 static void sf_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  149 static void sf_reset            (struct sf_softc *);
  150 static int sf_init_rx_ring      (struct sf_softc *);
  151 static void sf_init_tx_ring     (struct sf_softc *);
  152 static int sf_newbuf            (struct sf_softc *,
  153                                         struct sf_rx_bufdesc_type0 *,
  154                                         struct mbuf *);
  155 static void sf_setmulti         (struct sf_softc *);
  156 static int sf_setperf           (struct sf_softc *, int, caddr_t);
  157 static int sf_sethash           (struct sf_softc *, caddr_t, int);
  158 #ifdef notdef
  159 static int sf_setvlan           (struct sf_softc *, int, u_int32_t);
  160 #endif
  161 
  162 static u_int8_t sf_read_eeprom  (struct sf_softc *, int);
  163 
  164 static int sf_miibus_readreg    (device_t, int, int);
  165 static int sf_miibus_writereg   (device_t, int, int, int);
  166 static void sf_miibus_statchg   (device_t);
  167 
  168 static u_int32_t csr_read_4     (struct sf_softc *, int);
  169 static void csr_write_4         (struct sf_softc *, int, u_int32_t);
  170 static void sf_txthresh_adjust  (struct sf_softc *);
  171 
  172 #ifdef SF_USEIOSPACE
  173 #define SF_RES                  SYS_RES_IOPORT
  174 #define SF_RID                  SF_PCI_LOIO
  175 #else
  176 #define SF_RES                  SYS_RES_MEMORY
  177 #define SF_RID                  SF_PCI_LOMEM
  178 #endif
  179 
  180 static device_method_t sf_methods[] = {
  181         /* Device interface */
  182         DEVMETHOD(device_probe,         sf_probe),
  183         DEVMETHOD(device_attach,        sf_attach),
  184         DEVMETHOD(device_detach,        sf_detach),
  185         DEVMETHOD(device_shutdown,      sf_shutdown),
  186 
  187         /* bus interface */
  188         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  189         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  190 
  191         /* MII interface */
  192         DEVMETHOD(miibus_readreg,       sf_miibus_readreg),
  193         DEVMETHOD(miibus_writereg,      sf_miibus_writereg),
  194         DEVMETHOD(miibus_statchg,       sf_miibus_statchg),
  195 
  196         { 0, 0 }
  197 };
  198 
  199 static driver_t sf_driver = {
  200         "sf",
  201         sf_methods,
  202         sizeof(struct sf_softc),
  203 };
  204 
  205 static devclass_t sf_devclass;
  206 
  207 DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
  208 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
  209 
  210 #define SF_SETBIT(sc, reg, x)   \
  211         csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
  212 
  213 #define SF_CLRBIT(sc, reg, x)                           \
  214         csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
  215 
  216 static u_int32_t
  217 csr_read_4(sc, reg)
  218         struct sf_softc         *sc;
  219         int                     reg;
  220 {
  221         u_int32_t               val;
  222 
  223 #ifdef SF_USEIOSPACE
  224         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  225         val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
  226 #else
  227         val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
  228 #endif
  229 
  230         return(val);
  231 }
  232 
  233 static u_int8_t
  234 sf_read_eeprom(sc, reg)
  235         struct sf_softc         *sc;
  236         int                     reg;
  237 {
  238         u_int8_t                val;
  239 
  240         val = (csr_read_4(sc, SF_EEADDR_BASE +
  241             (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
  242 
  243         return(val);
  244 }
  245 
  246 static void
  247 csr_write_4(sc, reg, val)
  248         struct sf_softc         *sc;
  249         int                     reg;
  250         u_int32_t               val;
  251 {
  252 #ifdef SF_USEIOSPACE
  253         CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  254         CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
  255 #else
  256         CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
  257 #endif
  258 }
  259 
  260 /*
  261  * Copy the address 'mac' into the perfect RX filter entry at
  262  * offset 'idx.' The perfect filter only has 16 entries so do
  263  * some sanity tests.
  264  */
  265 static int
  266 sf_setperf(sc, idx, mac)
  267         struct sf_softc         *sc;
  268         int                     idx;
  269         caddr_t                 mac;
  270 {
  271         u_int16_t               *p;
  272 
  273         if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
  274                 return(EINVAL);
  275 
  276         if (mac == NULL)
  277                 return(EINVAL);
  278 
  279         p = (u_int16_t *)mac;
  280 
  281         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  282             (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
  283         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  284             (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
  285         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  286             (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
  287 
  288         return(0);
  289 }
  290 
  291 /*
  292  * Set the bit in the 512-bit hash table that corresponds to the
  293  * specified mac address 'mac.' If 'prio' is nonzero, update the
  294  * priority hash table instead of the filter hash table.
  295  */
  296 static int
  297 sf_sethash(sc, mac, prio)
  298         struct sf_softc         *sc;
  299         caddr_t                 mac;
  300         int                     prio;
  301 {
  302         u_int32_t               h;
  303 
  304         if (mac == NULL)
  305                 return(EINVAL);
  306 
  307         h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
  308 
  309         if (prio) {
  310                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
  311                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  312         } else {
  313                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
  314                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  315         }
  316 
  317         return(0);
  318 }
  319 
  320 #ifdef notdef
  321 /*
  322  * Set a VLAN tag in the receive filter.
  323  */
  324 static int
  325 sf_setvlan(sc, idx, vlan)
  326         struct sf_softc         *sc;
  327         int                     idx;
  328         u_int32_t               vlan;
  329 {
  330         if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
  331                 return(EINVAL);
  332 
  333         csr_write_4(sc, SF_RXFILT_HASH_BASE +
  334             (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
  335 
  336         return(0);
  337 }
  338 #endif
  339 
  340 static int
  341 sf_miibus_readreg(dev, phy, reg)
  342         device_t                dev;
  343         int                     phy, reg;
  344 {
  345         struct sf_softc         *sc;
  346         int                     i;
  347         u_int32_t               val = 0;
  348 
  349         sc = device_get_softc(dev);
  350 
  351         for (i = 0; i < SF_TIMEOUT; i++) {
  352                 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
  353                 if (val & SF_MII_DATAVALID)
  354                         break;
  355         }
  356 
  357         if (i == SF_TIMEOUT)
  358                 return(0);
  359 
  360         if ((val & 0x0000FFFF) == 0xFFFF)
  361                 return(0);
  362 
  363         return(val & 0x0000FFFF);
  364 }
  365 
  366 static int
  367 sf_miibus_writereg(dev, phy, reg, val)
  368         device_t                dev;
  369         int                     phy, reg, val;
  370 {
  371         struct sf_softc         *sc;
  372         int                     i;
  373         int                     busy;
  374 
  375         sc = device_get_softc(dev);
  376 
  377         csr_write_4(sc, SF_PHY_REG(phy, reg), val);
  378 
  379         for (i = 0; i < SF_TIMEOUT; i++) {
  380                 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
  381                 if (!(busy & SF_MII_BUSY))
  382                         break;
  383         }
  384 
  385         return(0);
  386 }
  387 
  388 static void
  389 sf_miibus_statchg(dev)
  390         device_t                dev;
  391 {
  392         struct sf_softc         *sc;
  393         struct mii_data         *mii;
  394 
  395         sc = device_get_softc(dev);
  396         mii = device_get_softc(sc->sf_miibus);
  397 
  398         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  399                 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  400                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
  401         } else {
  402                 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
  403                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
  404         }
  405 }
  406 
  407 static void
  408 sf_setmulti(sc)
  409         struct sf_softc         *sc;
  410 {
  411         struct ifnet            *ifp;
  412         int                     i;
  413         struct ifmultiaddr      *ifma;
  414         u_int8_t                dummy[] = { 0, 0, 0, 0, 0, 0 };
  415 
  416         ifp = &sc->arpcom.ac_if;
  417 
  418         /* First zot all the existing filters. */
  419         for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
  420                 sf_setperf(sc, i, (char *)&dummy);
  421         for (i = SF_RXFILT_HASH_BASE;
  422             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
  423                 csr_write_4(sc, i, 0);
  424         SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  425 
  426         /* Now program new ones. */
  427         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  428                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
  429         } else {
  430                 i = 1;
  431                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
  432                         if (ifma->ifma_addr->sa_family != AF_LINK)
  433                                 continue;
  434                         /*
  435                          * Program the first 15 multicast groups
  436                          * into the perfect filter. For all others,
  437                          * use the hash table.
  438                          */
  439                         if (i < SF_RXFILT_PERFECT_CNT) {
  440                                 sf_setperf(sc, i,
  441                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  442                                 i++;
  443                                 continue;
  444                         }
  445 
  446                         sf_sethash(sc,
  447                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
  448                 }
  449         }
  450 }
  451 
  452 /*
  453  * Set media options.
  454  */
  455 static int
  456 sf_ifmedia_upd(ifp)
  457         struct ifnet            *ifp;
  458 {
  459         struct sf_softc         *sc;
  460         struct mii_data         *mii;
  461 
  462         sc = ifp->if_softc;
  463         mii = device_get_softc(sc->sf_miibus);
  464         sc->sf_link = 0;
  465         if (mii->mii_instance) {
  466                 struct mii_softc        *miisc;
  467                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  468                         mii_phy_reset(miisc);
  469         }
  470         mii_mediachg(mii);
  471 
  472         return(0);
  473 }
  474 
  475 /*
  476  * Report current media status.
  477  */
  478 static void
  479 sf_ifmedia_sts(ifp, ifmr)
  480         struct ifnet            *ifp;
  481         struct ifmediareq       *ifmr;
  482 {
  483         struct sf_softc         *sc;
  484         struct mii_data         *mii;
  485 
  486         sc = ifp->if_softc;
  487         mii = device_get_softc(sc->sf_miibus);
  488 
  489         mii_pollstat(mii);
  490         ifmr->ifm_active = mii->mii_media_active;
  491         ifmr->ifm_status = mii->mii_media_status;
  492 }
  493 
  494 static int
  495 sf_ioctl(ifp, command, data)
  496         struct ifnet            *ifp;
  497         u_long                  command;
  498         caddr_t                 data;
  499 {
  500         struct sf_softc         *sc = ifp->if_softc;
  501         struct ifreq            *ifr = (struct ifreq *) data;
  502         struct mii_data         *mii;
  503         int                     error = 0;
  504 
  505         SF_LOCK(sc);
  506 
  507         switch(command) {
  508         case SIOCSIFFLAGS:
  509                 if (ifp->if_flags & IFF_UP) {
  510                         if (ifp->if_flags & IFF_RUNNING &&
  511                             ifp->if_flags & IFF_PROMISC &&
  512                             !(sc->sf_if_flags & IFF_PROMISC)) {
  513                                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  514                         } else if (ifp->if_flags & IFF_RUNNING &&
  515                             !(ifp->if_flags & IFF_PROMISC) &&
  516                             sc->sf_if_flags & IFF_PROMISC) {
  517                                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
  518                         } else if (!(ifp->if_flags & IFF_RUNNING))
  519                                 sf_init(sc);
  520                 } else {
  521                         if (ifp->if_flags & IFF_RUNNING)
  522                                 sf_stop(sc);
  523                 }
  524                 sc->sf_if_flags = ifp->if_flags;
  525                 error = 0;
  526                 break;
  527         case SIOCADDMULTI:
  528         case SIOCDELMULTI:
  529                 sf_setmulti(sc);
  530                 error = 0;
  531                 break;
  532         case SIOCGIFMEDIA:
  533         case SIOCSIFMEDIA:
  534                 mii = device_get_softc(sc->sf_miibus);
  535                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
  536                 break;
  537         default:
  538                 error = ether_ioctl(ifp, command, data);
  539                 break;
  540         }
  541 
  542         SF_UNLOCK(sc);
  543 
  544         return(error);
  545 }
  546 
  547 static void
  548 sf_reset(sc)
  549         struct sf_softc         *sc;
  550 {
  551         register int            i;
  552 
  553         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
  554         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  555         DELAY(1000);
  556         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  557 
  558         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
  559 
  560         for (i = 0; i < SF_TIMEOUT; i++) {
  561                 DELAY(10);
  562                 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
  563                         break;
  564         }
  565 
  566         if (i == SF_TIMEOUT)
  567                 printf("sf%d: reset never completed!\n", sc->sf_unit);
  568 
  569         /* Wait a little while for the chip to get its brains in order. */
  570         DELAY(1000);
  571 }
  572 
  573 /*
  574  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
  575  * IDs against our list and return a device name if we find a match.
  576  * We also check the subsystem ID so that we can identify exactly which
  577  * NIC has been found, if possible.
  578  */
  579 static int
  580 sf_probe(dev)
  581         device_t                dev;
  582 {
  583         struct sf_type          *t;
  584 
  585         t = sf_devs;
  586 
  587         while(t->sf_name != NULL) {
  588                 if ((pci_get_vendor(dev) == t->sf_vid) &&
  589                     (pci_get_device(dev) == t->sf_did)) {
  590                         switch((pci_read_config(dev,
  591                             SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
  592                         case AD_SUBSYSID_62011_REV0:
  593                         case AD_SUBSYSID_62011_REV1:
  594                                 device_set_desc(dev,
  595                                     "Adaptec ANA-62011 10/100BaseTX");
  596                                 return(0);
  597                         case AD_SUBSYSID_62022:
  598                                 device_set_desc(dev,
  599                                     "Adaptec ANA-62022 10/100BaseTX");
  600                                 return(0);
  601                         case AD_SUBSYSID_62044_REV0:
  602                         case AD_SUBSYSID_62044_REV1:
  603                                 device_set_desc(dev,
  604                                     "Adaptec ANA-62044 10/100BaseTX");
  605                                 return(0);
  606                         case AD_SUBSYSID_62020:
  607                                 device_set_desc(dev,
  608                                     "Adaptec ANA-62020 10/100BaseFX");
  609                                 return(0);
  610                         case AD_SUBSYSID_69011:
  611                                 device_set_desc(dev,
  612                                     "Adaptec ANA-69011 10/100BaseTX");
  613                                 return(0);
  614                         default:
  615                                 device_set_desc(dev, t->sf_name);
  616                                 return(0);
  617                                 break;
  618                         }
  619                 }
  620                 t++;
  621         }
  622 
  623         return(ENXIO);
  624 }
  625 
  626 /*
  627  * Attach the interface. Allocate softc structures, do ifmedia
  628  * setup and ethernet/BPF attach.
  629  */
  630 static int
  631 sf_attach(dev)
  632         device_t                dev;
  633 {
  634         int                     i;
  635         struct sf_softc         *sc;
  636         struct ifnet            *ifp;
  637         int                     unit, rid, error = 0;
  638 
  639         sc = device_get_softc(dev);
  640         unit = device_get_unit(dev);
  641 
  642         mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  643             MTX_DEF | MTX_RECURSE);
  644         /*
  645          * Map control/status registers.
  646          */
  647         pci_enable_busmaster(dev);
  648 
  649         rid = SF_RID;
  650         sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
  651 
  652         if (sc->sf_res == NULL) {
  653                 printf ("sf%d: couldn't map ports\n", unit);
  654                 error = ENXIO;
  655                 goto fail;
  656         }
  657 
  658         sc->sf_btag = rman_get_bustag(sc->sf_res);
  659         sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
  660 
  661         /* Allocate interrupt */
  662         rid = 0;
  663         sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  664             RF_SHAREABLE | RF_ACTIVE);
  665 
  666         if (sc->sf_irq == NULL) {
  667                 printf("sf%d: couldn't map interrupt\n", unit);
  668                 error = ENXIO;
  669                 goto fail;
  670         }
  671 
  672         callout_handle_init(&sc->sf_stat_ch);
  673         /* Reset the adapter. */
  674         sf_reset(sc);
  675 
  676         /*
  677          * Get station address from the EEPROM.
  678          */
  679         for (i = 0; i < ETHER_ADDR_LEN; i++)
  680                 sc->arpcom.ac_enaddr[i] =
  681                     sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
  682 
  683         sc->sf_unit = unit;
  684 
  685         /* Allocate the descriptor queues. */
  686         sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
  687             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
  688 
  689         if (sc->sf_ldata == NULL) {
  690                 printf("sf%d: no memory for list buffers!\n", unit);
  691                 error = ENXIO;
  692                 goto fail;
  693         }
  694 
  695         bzero(sc->sf_ldata, sizeof(struct sf_list_data));
  696 
  697         /* Do MII setup. */
  698         if (mii_phy_probe(dev, &sc->sf_miibus,
  699             sf_ifmedia_upd, sf_ifmedia_sts)) {
  700                 printf("sf%d: MII without any phy!\n", sc->sf_unit);
  701                 error = ENXIO;
  702                 goto fail;
  703         }
  704 
  705         ifp = &sc->arpcom.ac_if;
  706         ifp->if_softc = sc;
  707         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  708         ifp->if_mtu = ETHERMTU;
  709         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
  710             IFF_NEEDSGIANT;
  711         ifp->if_ioctl = sf_ioctl;
  712         ifp->if_start = sf_start;
  713         ifp->if_watchdog = sf_watchdog;
  714         ifp->if_init = sf_init;
  715         ifp->if_baudrate = 10000000;
  716         ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
  717 
  718         /*
  719          * Call MI attach routine.
  720          */
  721         ether_ifattach(ifp, sc->arpcom.ac_enaddr);
  722 
  723         /* Hook interrupt last to avoid having to lock softc */
  724         error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
  725             sf_intr, sc, &sc->sf_intrhand);
  726 
  727         if (error) {
  728                 printf("sf%d: couldn't set up irq\n", unit);
  729                 ether_ifdetach(ifp);
  730                 goto fail;
  731         }
  732 
  733 fail:
  734         if (error)
  735                 sf_detach(dev);
  736 
  737         return(error);
  738 }
  739 
  740 /*
  741  * Shutdown hardware and free up resources. This can be called any
  742  * time after the mutex has been initialized. It is called in both
  743  * the error case in attach and the normal detach case so it needs
  744  * to be careful about only freeing resources that have actually been
  745  * allocated.
  746  */
  747 static int
  748 sf_detach(dev)
  749         device_t                dev;
  750 {
  751         struct sf_softc         *sc;
  752         struct ifnet            *ifp;
  753 
  754         sc = device_get_softc(dev);
  755         KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
  756         SF_LOCK(sc);
  757         ifp = &sc->arpcom.ac_if;
  758 
  759         /* These should only be active if attach succeeded */
  760         if (device_is_attached(dev)) {
  761                 sf_stop(sc);
  762                 ether_ifdetach(ifp);
  763         }
  764         if (sc->sf_miibus)
  765                 device_delete_child(dev, sc->sf_miibus);
  766         bus_generic_detach(dev);
  767 
  768         if (sc->sf_intrhand)
  769                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  770         if (sc->sf_irq)
  771                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  772         if (sc->sf_res)
  773                 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
  774 
  775         if (sc->sf_ldata)
  776                 contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
  777 
  778         SF_UNLOCK(sc);
  779         mtx_destroy(&sc->sf_mtx);
  780 
  781         return(0);
  782 }
  783 
  784 static int
  785 sf_init_rx_ring(sc)
  786         struct sf_softc         *sc;
  787 {
  788         struct sf_list_data     *ld;
  789         int                     i;
  790 
  791         ld = sc->sf_ldata;
  792 
  793         bzero((char *)ld->sf_rx_dlist_big,
  794             sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
  795         bzero((char *)ld->sf_rx_clist,
  796             sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
  797 
  798         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
  799                 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
  800                         return(ENOBUFS);
  801         }
  802 
  803         return(0);
  804 }
  805 
  806 static void
  807 sf_init_tx_ring(sc)
  808         struct sf_softc         *sc;
  809 {
  810         struct sf_list_data     *ld;
  811         int                     i;
  812 
  813         ld = sc->sf_ldata;
  814 
  815         bzero((char *)ld->sf_tx_dlist,
  816             sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
  817         bzero((char *)ld->sf_tx_clist,
  818             sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
  819 
  820         for (i = 0; i < SF_TX_DLIST_CNT; i++)
  821                 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
  822         for (i = 0; i < SF_TX_CLIST_CNT; i++)
  823                 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
  824 
  825         ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
  826         sc->sf_tx_cnt = 0;
  827 }
  828 
  829 static int
  830 sf_newbuf(sc, c, m)
  831         struct sf_softc         *sc;
  832         struct sf_rx_bufdesc_type0      *c;
  833         struct mbuf             *m;
  834 {
  835         struct mbuf             *m_new = NULL;
  836 
  837         if (m == NULL) {
  838                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
  839                 if (m_new == NULL)
  840                         return(ENOBUFS);
  841 
  842                 MCLGET(m_new, M_DONTWAIT);
  843                 if (!(m_new->m_flags & M_EXT)) {
  844                         m_freem(m_new);
  845                         return(ENOBUFS);
  846                 }
  847                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  848         } else {
  849                 m_new = m;
  850                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  851                 m_new->m_data = m_new->m_ext.ext_buf;
  852         }
  853 
  854         m_adj(m_new, sizeof(u_int64_t));
  855 
  856         c->sf_mbuf = m_new;
  857         c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
  858         c->sf_valid = 1;
  859 
  860         return(0);
  861 }
  862 
  863 /*
  864  * The starfire is programmed to use 'normal' mode for packet reception,
  865  * which means we use the consumer/producer model for both the buffer
  866  * descriptor queue and the completion descriptor queue. The only problem
  867  * with this is that it involves a lot of register accesses: we have to
  868  * read the RX completion consumer and producer indexes and the RX buffer
  869  * producer index, plus the RX completion consumer and RX buffer producer
  870  * indexes have to be updated. It would have been easier if Adaptec had
  871  * put each index in a separate register, especially given that the damn
  872  * NIC has a 512K register space.
  873  *
  874  * In spite of all the lovely features that Adaptec crammed into the 6915,
  875  * it is marred by one truly stupid design flaw, which is that receive
  876  * buffer addresses must be aligned on a longword boundary. This forces
  877  * the packet payload to be unaligned, which is suboptimal on the x86 and
  878  * completely unuseable on the Alpha. Our only recourse is to copy received
  879  * packets into properly aligned buffers before handing them off.
  880  */
  881 
  882 static void
  883 sf_rxeof(sc)
  884         struct sf_softc         *sc;
  885 {
  886         struct mbuf             *m;
  887         struct ifnet            *ifp;
  888         struct sf_rx_bufdesc_type0      *desc;
  889         struct sf_rx_cmpdesc_type3      *cur_rx;
  890         u_int32_t               rxcons, rxprod;
  891         int                     cmpprodidx, cmpconsidx, bufprodidx;
  892 
  893         SF_LOCK_ASSERT(sc);
  894 
  895         ifp = &sc->arpcom.ac_if;
  896 
  897         rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
  898         rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
  899         cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
  900         cmpconsidx = SF_IDX_LO(rxcons);
  901         bufprodidx = SF_IDX_LO(rxprod);
  902 
  903         while (cmpconsidx != cmpprodidx) {
  904                 struct mbuf             *m0;
  905 
  906                 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
  907                 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
  908                 m = desc->sf_mbuf;
  909                 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
  910                 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
  911 
  912                 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
  913                         ifp->if_ierrors++;
  914                         sf_newbuf(sc, desc, m);
  915                         continue;
  916                 }
  917 
  918                 m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
  919                     ifp, NULL);
  920                 sf_newbuf(sc, desc, m);
  921                 if (m0 == NULL) {
  922                         ifp->if_ierrors++;
  923                         continue;
  924                 }
  925                 m = m0;
  926 
  927                 ifp->if_ipackets++;
  928                 SF_UNLOCK(sc);
  929                 (*ifp->if_input)(ifp, m);
  930                 SF_LOCK(sc);
  931         }
  932 
  933         csr_write_4(sc, SF_CQ_CONSIDX,
  934             (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
  935         csr_write_4(sc, SF_RXDQ_PTR_Q1,
  936             (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
  937 }
  938 
  939 /*
  940  * Read the transmit status from the completion queue and release
  941  * mbufs. Note that the buffer descriptor index in the completion
  942  * descriptor is an offset from the start of the transmit buffer
  943  * descriptor list in bytes. This is important because the manual
  944  * gives the impression that it should match the producer/consumer
  945  * index, which is the offset in 8 byte blocks.
  946  */
  947 static void
  948 sf_txeof(sc)
  949         struct sf_softc         *sc;
  950 {
  951         int                     txcons, cmpprodidx, cmpconsidx;
  952         struct sf_tx_cmpdesc_type1 *cur_cmp;
  953         struct sf_tx_bufdesc_type0 *cur_tx;
  954         struct ifnet            *ifp;
  955 
  956         ifp = &sc->arpcom.ac_if;
  957 
  958         txcons = csr_read_4(sc, SF_CQ_CONSIDX);
  959         cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
  960         cmpconsidx = SF_IDX_HI(txcons);
  961 
  962         while (cmpconsidx != cmpprodidx) {
  963                 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
  964                 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
  965 
  966                 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
  967                         ifp->if_opackets++;
  968                 else {
  969                         if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
  970                                 sf_txthresh_adjust(sc);
  971                         ifp->if_oerrors++;
  972                 }
  973 
  974                 sc->sf_tx_cnt--;
  975                 if (cur_tx->sf_mbuf != NULL) {
  976                         m_freem(cur_tx->sf_mbuf);
  977                         cur_tx->sf_mbuf = NULL;
  978                 } else
  979                         break;
  980                 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
  981         }
  982 
  983         ifp->if_timer = 0;
  984         ifp->if_flags &= ~IFF_OACTIVE;
  985 
  986         csr_write_4(sc, SF_CQ_CONSIDX,
  987             (txcons & ~SF_CQ_CONSIDX_TXQ) |
  988             ((cmpconsidx << 16) & 0xFFFF0000));
  989 }
  990 
  991 static void
  992 sf_txthresh_adjust(sc)
  993         struct sf_softc         *sc;
  994 {
  995         u_int32_t               txfctl;
  996         u_int8_t                txthresh;
  997 
  998         txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
  999         txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
 1000         if (txthresh < 0xFF) {
 1001                 txthresh++;
 1002                 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
 1003                 txfctl |= txthresh;
 1004 #ifdef DIAGNOSTIC
 1005                 printf("sf%d: tx underrun, increasing "
 1006                     "tx threshold to %d bytes\n",
 1007                     sc->sf_unit, txthresh * 4);
 1008 #endif
 1009                 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
 1010         }
 1011 }
 1012 
 1013 static void
 1014 sf_intr(arg)
 1015         void                    *arg;
 1016 {
 1017         struct sf_softc         *sc;
 1018         struct ifnet            *ifp;
 1019         u_int32_t               status;
 1020 
 1021         sc = arg;
 1022         SF_LOCK(sc);
 1023 
 1024         ifp = &sc->arpcom.ac_if;
 1025 
 1026         if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
 1027                 SF_UNLOCK(sc);
 1028                 return;
 1029         }
 1030 
 1031         /* Disable interrupts. */
 1032         csr_write_4(sc, SF_IMR, 0x00000000);
 1033 
 1034         for (;;) {
 1035                 status = csr_read_4(sc, SF_ISR);
 1036                 if (status)
 1037                         csr_write_4(sc, SF_ISR, status);
 1038 
 1039                 if (!(status & SF_INTRS))
 1040                         break;
 1041 
 1042                 if (status & SF_ISR_RXDQ1_DMADONE)
 1043                         sf_rxeof(sc);
 1044 
 1045                 if (status & SF_ISR_TX_TXDONE ||
 1046                     status & SF_ISR_TX_DMADONE ||
 1047                     status & SF_ISR_TX_QUEUEDONE)
 1048                         sf_txeof(sc);
 1049 
 1050                 if (status & SF_ISR_TX_LOFIFO)
 1051                         sf_txthresh_adjust(sc);
 1052 
 1053                 if (status & SF_ISR_ABNORMALINTR) {
 1054                         if (status & SF_ISR_STATSOFLOW) {
 1055                                 untimeout(sf_stats_update, sc,
 1056                                     sc->sf_stat_ch);
 1057                                 sf_stats_update(sc);
 1058                         } else
 1059                                 sf_init(sc);
 1060                 }
 1061         }
 1062 
 1063         /* Re-enable interrupts. */
 1064         csr_write_4(sc, SF_IMR, SF_INTRS);
 1065 
 1066         if (ifp->if_snd.ifq_head != NULL)
 1067                 sf_start(ifp);
 1068 
 1069         SF_UNLOCK(sc);
 1070 }
 1071 
 1072 static void
 1073 sf_init(xsc)
 1074         void                    *xsc;
 1075 {
 1076         struct sf_softc         *sc;
 1077         struct ifnet            *ifp;
 1078         struct mii_data         *mii;
 1079         int                     i;
 1080 
 1081         sc = xsc;
 1082         SF_LOCK(sc);
 1083         ifp = &sc->arpcom.ac_if;
 1084         mii = device_get_softc(sc->sf_miibus);
 1085 
 1086         sf_stop(sc);
 1087         sf_reset(sc);
 1088 
 1089         /* Init all the receive filter registers */
 1090         for (i = SF_RXFILT_PERFECT_BASE;
 1091             i < (SF_RXFILT_HASH_MAX + 1); i += 4)
 1092                 csr_write_4(sc, i, 0);
 1093 
 1094         /* Empty stats counter registers. */
 1095         for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
 1096                 csr_write_4(sc, SF_STATS_BASE +
 1097                     (i + sizeof(u_int32_t)), 0);
 1098 
 1099         /* Init our MAC address */
 1100         csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
 1101         csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
 1102         sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
 1103 
 1104         if (sf_init_rx_ring(sc) == ENOBUFS) {
 1105                 printf("sf%d: initialization failed: no "
 1106                     "memory for rx buffers\n", sc->sf_unit);
 1107                 SF_UNLOCK(sc);
 1108                 return;
 1109         }
 1110 
 1111         sf_init_tx_ring(sc);
 1112 
 1113         csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
 1114 
 1115         /* If we want promiscuous mode, set the allframes bit. */
 1116         if (ifp->if_flags & IFF_PROMISC) {
 1117                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1118         } else {
 1119                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
 1120         }
 1121 
 1122         if (ifp->if_flags & IFF_BROADCAST) {
 1123                 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1124         } else {
 1125                 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
 1126         }
 1127 
 1128         /*
 1129          * Load the multicast filter.
 1130          */
 1131         sf_setmulti(sc);
 1132 
 1133         /* Init the completion queue indexes */
 1134         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1135         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1136 
 1137         /* Init the RX completion queue */
 1138         csr_write_4(sc, SF_RXCQ_CTL_1,
 1139             vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
 1140         SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
 1141 
 1142         /* Init RX DMA control. */
 1143         SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
 1144 
 1145         /* Init the RX buffer descriptor queue. */
 1146         csr_write_4(sc, SF_RXDQ_ADDR_Q1,
 1147             vtophys(sc->sf_ldata->sf_rx_dlist_big));
 1148         csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
 1149         csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
 1150 
 1151         /* Init the TX completion queue */
 1152         csr_write_4(sc, SF_TXCQ_CTL,
 1153             vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
 1154 
 1155         /* Init the TX buffer descriptor queue. */
 1156         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
 1157                 vtophys(sc->sf_ldata->sf_tx_dlist));
 1158         SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
 1159         csr_write_4(sc, SF_TXDQ_CTL,
 1160             SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
 1161         SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
 1162 
 1163         /* Enable autopadding of short TX frames. */
 1164         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
 1165 
 1166         /* Enable interrupts. */
 1167         csr_write_4(sc, SF_IMR, SF_INTRS);
 1168         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
 1169 
 1170         /* Enable the RX and TX engines. */
 1171         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
 1172         SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
 1173 
 1174         /*mii_mediachg(mii);*/
 1175         sf_ifmedia_upd(ifp);
 1176 
 1177         ifp->if_flags |= IFF_RUNNING;
 1178         ifp->if_flags &= ~IFF_OACTIVE;
 1179 
 1180         sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
 1181 
 1182         SF_UNLOCK(sc);
 1183 }
 1184 
 1185 static int
 1186 sf_encap(sc, c, m_head)
 1187         struct sf_softc         *sc;
 1188         struct sf_tx_bufdesc_type0 *c;
 1189         struct mbuf             *m_head;
 1190 {
 1191         int                     frag = 0;
 1192         struct sf_frag          *f = NULL;
 1193         struct mbuf             *m;
 1194 
 1195         m = m_head;
 1196 
 1197         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1198                 if (m->m_len != 0) {
 1199                         if (frag == SF_MAXFRAGS)
 1200                                 break;
 1201                         f = &c->sf_frags[frag];
 1202                         if (frag == 0)
 1203                                 f->sf_pktlen = m_head->m_pkthdr.len;
 1204                         f->sf_fraglen = m->m_len;
 1205                         f->sf_addr = vtophys(mtod(m, vm_offset_t));
 1206                         frag++;
 1207                 }
 1208         }
 1209 
 1210         if (m != NULL) {
 1211                 struct mbuf             *m_new = NULL;
 1212 
 1213                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1214                 if (m_new == NULL) {
 1215                         printf("sf%d: no memory for tx list\n", sc->sf_unit);
 1216                         return(1);
 1217                 }
 1218 
 1219                 if (m_head->m_pkthdr.len > MHLEN) {
 1220                         MCLGET(m_new, M_DONTWAIT);
 1221                         if (!(m_new->m_flags & M_EXT)) {
 1222                                 m_freem(m_new);
 1223                                 printf("sf%d: no memory for tx list\n",
 1224                                     sc->sf_unit);
 1225                                 return(1);
 1226                         }
 1227                 }
 1228                 m_copydata(m_head, 0, m_head->m_pkthdr.len,
 1229                     mtod(m_new, caddr_t));
 1230                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1231                 m_freem(m_head);
 1232                 m_head = m_new;
 1233                 f = &c->sf_frags[0];
 1234                 f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
 1235                 f->sf_addr = vtophys(mtod(m_head, caddr_t));
 1236                 frag = 1;
 1237         }
 1238 
 1239         c->sf_mbuf = m_head;
 1240         c->sf_id = SF_TX_BUFDESC_ID;
 1241         c->sf_fragcnt = frag;
 1242         c->sf_intr = 1;
 1243         c->sf_caltcp = 0;
 1244         c->sf_crcen = 1;
 1245 
 1246         return(0);
 1247 }
 1248 
 1249 static void
 1250 sf_start(ifp)
 1251         struct ifnet            *ifp;
 1252 {
 1253         struct sf_softc         *sc;
 1254         struct sf_tx_bufdesc_type0 *cur_tx = NULL;
 1255         struct mbuf             *m_head = NULL;
 1256         int                     i, txprod;
 1257 
 1258         sc = ifp->if_softc;
 1259         SF_LOCK(sc);
 1260 
 1261         if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
 1262                 SF_UNLOCK(sc);
 1263                 return;
 1264         }
 1265 
 1266         if (ifp->if_flags & IFF_OACTIVE) {
 1267                 SF_UNLOCK(sc);
 1268                 return;
 1269         }
 1270 
 1271         txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1272         i = SF_IDX_HI(txprod) >> 4;
 1273 
 1274         if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1275                 printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
 1276                 sf_init(sc);
 1277                 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
 1278                 i = SF_IDX_HI(txprod) >> 4;
 1279         }
 1280 
 1281         while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
 1282                 if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
 1283                         ifp->if_flags |= IFF_OACTIVE;
 1284                         cur_tx = NULL;
 1285                         break;
 1286                 }
 1287                 IF_DEQUEUE(&ifp->if_snd, m_head);
 1288                 if (m_head == NULL)
 1289                         break;
 1290 
 1291                 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
 1292                 if (sf_encap(sc, cur_tx, m_head)) {
 1293                         IF_PREPEND(&ifp->if_snd, m_head);
 1294                         ifp->if_flags |= IFF_OACTIVE;
 1295                         cur_tx = NULL;
 1296                         break;
 1297                 }
 1298 
 1299                 /*
 1300                  * If there's a BPF listener, bounce a copy of this frame
 1301                  * to him.
 1302                  */
 1303                 BPF_MTAP(ifp, m_head);
 1304 
 1305                 SF_INC(i, SF_TX_DLIST_CNT);
 1306                 sc->sf_tx_cnt++;
 1307                 /*
 1308                  * Don't get the TX DMA queue get too full.
 1309                  */
 1310                 if (sc->sf_tx_cnt > 64)
 1311                         break;
 1312         }
 1313 
 1314         if (cur_tx == NULL) {
 1315                 SF_UNLOCK(sc);
 1316                 return;
 1317         }
 1318 
 1319         /* Transmit */
 1320         csr_write_4(sc, SF_TXDQ_PRODIDX,
 1321             (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
 1322             ((i << 20) & 0xFFFF0000));
 1323 
 1324         ifp->if_timer = 5;
 1325 
 1326         SF_UNLOCK(sc);
 1327 }
 1328 
 1329 static void
 1330 sf_stop(sc)
 1331         struct sf_softc         *sc;
 1332 {
 1333         int                     i;
 1334         struct ifnet            *ifp;
 1335 
 1336         SF_LOCK(sc);
 1337 
 1338         ifp = &sc->arpcom.ac_if;
 1339 
 1340         untimeout(sf_stats_update, sc, sc->sf_stat_ch);
 1341 
 1342         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
 1343         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 1344         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 1345         csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
 1346         csr_write_4(sc, SF_RXDQ_CTL_1, 0);
 1347         csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
 1348         csr_write_4(sc, SF_TXCQ_CTL, 0);
 1349         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 1350         csr_write_4(sc, SF_TXDQ_CTL, 0);
 1351         sf_reset(sc);
 1352 
 1353         sc->sf_link = 0;
 1354 
 1355         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1356                 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
 1357                         m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
 1358                         sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
 1359                 }
 1360         }
 1361 
 1362         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1363                 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
 1364                         m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
 1365                         sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
 1366                 }
 1367         }
 1368 
 1369         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
 1370         SF_UNLOCK(sc);
 1371 }
 1372 
 1373 /*
 1374  * Note: it is important that this function not be interrupted. We
 1375  * use a two-stage register access scheme: if we are interrupted in
 1376  * between setting the indirect address register and reading from the
 1377  * indirect data register, the contents of the address register could
 1378  * be changed out from under us.
 1379  */
 1380 static void
 1381 sf_stats_update(xsc)
 1382         void                    *xsc;
 1383 {
 1384         struct sf_softc         *sc;
 1385         struct ifnet            *ifp;
 1386         struct mii_data         *mii;
 1387         struct sf_stats         stats;
 1388         u_int32_t               *ptr;
 1389         int                     i;
 1390 
 1391         sc = xsc;
 1392         SF_LOCK(sc);
 1393         ifp = &sc->arpcom.ac_if;
 1394         mii = device_get_softc(sc->sf_miibus);
 1395 
 1396         ptr = (u_int32_t *)&stats;
 1397         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1398                 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
 1399                     (i + sizeof(u_int32_t)));
 1400 
 1401         for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
 1402                 csr_write_4(sc, SF_STATS_BASE +
 1403                     (i + sizeof(u_int32_t)), 0);
 1404 
 1405         ifp->if_collisions += stats.sf_tx_single_colls +
 1406             stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
 1407 
 1408         mii_tick(mii);
 1409 
 1410         if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
 1411             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1412                 sc->sf_link++;
 1413                 if (ifp->if_snd.ifq_head != NULL)
 1414                         sf_start(ifp);
 1415         }
 1416 
 1417         sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
 1418 
 1419         SF_UNLOCK(sc);
 1420 }
 1421 
 1422 static void
 1423 sf_watchdog(ifp)
 1424         struct ifnet            *ifp;
 1425 {
 1426         struct sf_softc         *sc;
 1427 
 1428         sc = ifp->if_softc;
 1429 
 1430         SF_LOCK(sc);
 1431 
 1432         ifp->if_oerrors++;
 1433         printf("sf%d: watchdog timeout\n", sc->sf_unit);
 1434 
 1435         sf_stop(sc);
 1436         sf_reset(sc);
 1437         sf_init(sc);
 1438 
 1439         if (ifp->if_snd.ifq_head != NULL)
 1440                 sf_start(ifp);
 1441 
 1442         SF_UNLOCK(sc);
 1443 }
 1444 
 1445 static void
 1446 sf_shutdown(dev)
 1447         device_t                dev;
 1448 {
 1449         struct sf_softc         *sc;
 1450 
 1451         sc = device_get_softc(dev);
 1452 
 1453         sf_stop(sc);
 1454 }

Cache object: ab148afb60f530da1a2c8f9cb4ca26de


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.