The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_sis.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.4/sys/pci/if_sis.c 143087 2005-03-03 04:16:17Z avatar $");
   35 
   36 /*
   37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
   38  * available from http://www.sis.com.tw.
   39  *
   40  * This driver also supports the NatSemi DP83815. Datasheets are
   41  * available from http://www.national.com.
   42  *
   43  * Written by Bill Paul <wpaul@ee.columbia.edu>
   44  * Electrical Engineering Department
   45  * Columbia University, New York City
   46  */
   47 /*
   48  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
   49  * simple TX and RX descriptors of 3 longwords in size. The receiver
   50  * has a single perfect filter entry for the station address and a
   51  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
   52  * transceiver while the 7016 requires an external transceiver chip.
   53  * Both chips offer the standard bit-bang MII interface as well as
   54  * an enchanced PHY interface which simplifies accessing MII registers.
   55  *
   56  * The only downside to this chipset is that RX descriptors must be
   57  * longword aligned.
   58  */
   59 
   60 #include <sys/param.h>
   61 #include <sys/systm.h>
   62 #include <sys/sockio.h>
   63 #include <sys/mbuf.h>
   64 #include <sys/malloc.h>
   65 #include <sys/kernel.h>
   66 #include <sys/module.h>
   67 #include <sys/socket.h>
   68 #include <sys/sysctl.h>
   69 
   70 #include <net/if.h>
   71 #include <net/if_arp.h>
   72 #include <net/ethernet.h>
   73 #include <net/if_dl.h>
   74 #include <net/if_media.h>
   75 #include <net/if_types.h>
   76 #include <net/if_vlan_var.h>
   77 
   78 #include <net/bpf.h>
   79 
   80 #include <machine/bus_pio.h>
   81 #include <machine/bus_memio.h>
   82 #include <machine/bus.h>
   83 #include <machine/resource.h>
   84 #include <sys/bus.h>
   85 #include <sys/rman.h>
   86 
   87 #include <dev/mii/mii.h>
   88 #include <dev/mii/miivar.h>
   89 
   90 #include <dev/pci/pcireg.h>
   91 #include <dev/pci/pcivar.h>
   92 
   93 #define SIS_USEIOSPACE
   94 
   95 #include <pci/if_sisreg.h>
   96 
   97 MODULE_DEPEND(sis, pci, 1, 1, 1);
   98 MODULE_DEPEND(sis, ether, 1, 1, 1);
   99 MODULE_DEPEND(sis, miibus, 1, 1, 1);
  100 
  101 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  102 #include "miibus_if.h"
  103 
  104 /*
  105  * Various supported device vendors/types and their names.
  106  */
  107 static struct sis_type sis_devs[] = {
  108         { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
  109         { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
  110         { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
  111         { 0, 0, NULL }
  112 };
  113 
  114 static int sis_probe            (device_t);
  115 static int sis_attach           (device_t);
  116 static int sis_detach           (device_t);
  117 
  118 static int sis_newbuf           (struct sis_softc *,
  119                                         struct sis_desc *, struct mbuf *);
  120 static int sis_encap            (struct sis_softc *,
  121                                         struct mbuf **, u_int32_t *);
  122 static void sis_rxeof           (struct sis_softc *);
  123 static void sis_rxeoc           (struct sis_softc *);
  124 static void sis_txeof           (struct sis_softc *);
  125 static void sis_intr            (void *);
  126 static void sis_tick            (void *);
  127 static void sis_start           (struct ifnet *);
  128 static int sis_ioctl            (struct ifnet *, u_long, caddr_t);
  129 static void sis_init            (void *);
  130 static void sis_stop            (struct sis_softc *);
  131 static void sis_watchdog                (struct ifnet *);
  132 static void sis_shutdown                (device_t);
  133 static int sis_ifmedia_upd      (struct ifnet *);
  134 static void sis_ifmedia_sts     (struct ifnet *, struct ifmediareq *);
  135 
  136 static u_int16_t sis_reverse    (u_int16_t);
  137 static void sis_delay           (struct sis_softc *);
  138 static void sis_eeprom_idle     (struct sis_softc *);
  139 static void sis_eeprom_putbyte  (struct sis_softc *, int);
  140 static void sis_eeprom_getword  (struct sis_softc *, int, u_int16_t *);
  141 static void sis_read_eeprom     (struct sis_softc *, caddr_t, int, int, int);
  142 #ifdef __i386__
  143 static void sis_read_cmos       (struct sis_softc *, device_t, caddr_t,
  144                                                         int, int);
  145 static void sis_read_mac        (struct sis_softc *, device_t, caddr_t);
  146 static device_t sis_find_bridge (device_t);
  147 #endif
  148 
  149 static void sis_mii_sync        (struct sis_softc *);
  150 static void sis_mii_send        (struct sis_softc *, u_int32_t, int);
  151 static int sis_mii_readreg      (struct sis_softc *, struct sis_mii_frame *);
  152 static int sis_mii_writereg     (struct sis_softc *, struct sis_mii_frame *);
  153 static int sis_miibus_readreg   (device_t, int, int);
  154 static int sis_miibus_writereg  (device_t, int, int, int);
  155 static void sis_miibus_statchg  (device_t);
  156 
  157 static void sis_setmulti_sis    (struct sis_softc *);
  158 static void sis_setmulti_ns     (struct sis_softc *);
  159 static uint32_t sis_mchash      (struct sis_softc *, const uint8_t *);
  160 static void sis_reset           (struct sis_softc *);
  161 static int sis_list_rx_init     (struct sis_softc *);
  162 static int sis_list_tx_init     (struct sis_softc *);
  163 
  164 static void sis_dma_map_desc_ptr        (void *, bus_dma_segment_t *, int, int);
  165 static void sis_dma_map_desc_next       (void *, bus_dma_segment_t *, int, int);
  166 static void sis_dma_map_ring            (void *, bus_dma_segment_t *, int, int);
  167 #ifdef SIS_USEIOSPACE
  168 #define SIS_RES                 SYS_RES_IOPORT
  169 #define SIS_RID                 SIS_PCI_LOIO
  170 #else
  171 #define SIS_RES                 SYS_RES_MEMORY
  172 #define SIS_RID                 SIS_PCI_LOMEM
  173 #endif
  174 
  175 static device_method_t sis_methods[] = {
  176         /* Device interface */
  177         DEVMETHOD(device_probe,         sis_probe),
  178         DEVMETHOD(device_attach,        sis_attach),
  179         DEVMETHOD(device_detach,        sis_detach),
  180         DEVMETHOD(device_shutdown,      sis_shutdown),
  181 
  182         /* bus interface */
  183         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  184         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  185 
  186         /* MII interface */
  187         DEVMETHOD(miibus_readreg,       sis_miibus_readreg),
  188         DEVMETHOD(miibus_writereg,      sis_miibus_writereg),
  189         DEVMETHOD(miibus_statchg,       sis_miibus_statchg),
  190 
  191         { 0, 0 }
  192 };
  193 
  194 static driver_t sis_driver = {
  195         "sis",
  196         sis_methods,
  197         sizeof(struct sis_softc)
  198 };
  199 
  200 static devclass_t sis_devclass;
  201 
  202 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
  203 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
  204 
  205 #define SIS_SETBIT(sc, reg, x)                          \
  206         CSR_WRITE_4(sc, reg,                            \
  207                 CSR_READ_4(sc, reg) | (x))
  208 
  209 #define SIS_CLRBIT(sc, reg, x)                          \
  210         CSR_WRITE_4(sc, reg,                            \
  211                 CSR_READ_4(sc, reg) & ~(x))
  212 
  213 #define SIO_SET(x)                                      \
  214         CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
  215 
  216 #define SIO_CLR(x)                                      \
  217         CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
  218 
  219 static void
  220 sis_dma_map_desc_next(arg, segs, nseg, error)
  221         void *arg;
  222         bus_dma_segment_t *segs;
  223         int nseg, error;
  224 {
  225         struct sis_desc *r;
  226 
  227         r = arg;
  228         r->sis_next = segs->ds_addr;
  229 
  230         return;
  231 }
  232 
  233 static void
  234 sis_dma_map_desc_ptr(arg, segs, nseg, error)
  235         void *arg;
  236         bus_dma_segment_t *segs;
  237         int nseg, error;
  238 {
  239         struct sis_desc *r;
  240 
  241         r = arg;
  242         r->sis_ptr = segs->ds_addr;
  243 
  244         return;
  245 }
  246 
  247 static void
  248 sis_dma_map_ring(arg, segs, nseg, error)
  249         void *arg;
  250         bus_dma_segment_t *segs;
  251         int nseg, error;
  252 {
  253         u_int32_t *p;
  254 
  255         p = arg;
  256         *p = segs->ds_addr;
  257 
  258         return;
  259 }
  260 
  261 /*
  262  * Routine to reverse the bits in a word. Stolen almost
  263  * verbatim from /usr/games/fortune.
  264  */
  265 static u_int16_t
  266 sis_reverse(n)
  267         u_int16_t               n;
  268 {
  269         n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
  270         n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
  271         n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
  272         n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
  273 
  274         return(n);
  275 }
  276 
  277 static void
  278 sis_delay(sc)
  279         struct sis_softc        *sc;
  280 {
  281         int                     idx;
  282 
  283         for (idx = (300 / 33) + 1; idx > 0; idx--)
  284                 CSR_READ_4(sc, SIS_CSR);
  285 
  286         return;
  287 }
  288 
  289 static void
  290 sis_eeprom_idle(sc)
  291         struct sis_softc        *sc;
  292 {
  293         register int            i;
  294 
  295         SIO_SET(SIS_EECTL_CSEL);
  296         sis_delay(sc);
  297         SIO_SET(SIS_EECTL_CLK);
  298         sis_delay(sc);
  299 
  300         for (i = 0; i < 25; i++) {
  301                 SIO_CLR(SIS_EECTL_CLK);
  302                 sis_delay(sc);
  303                 SIO_SET(SIS_EECTL_CLK);
  304                 sis_delay(sc);
  305         }
  306 
  307         SIO_CLR(SIS_EECTL_CLK);
  308         sis_delay(sc);
  309         SIO_CLR(SIS_EECTL_CSEL);
  310         sis_delay(sc);
  311         CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
  312 
  313         return;
  314 }
  315 
  316 /*
  317  * Send a read command and address to the EEPROM, check for ACK.
  318  */
  319 static void
  320 sis_eeprom_putbyte(sc, addr)
  321         struct sis_softc        *sc;
  322         int                     addr;
  323 {
  324         register int            d, i;
  325 
  326         d = addr | SIS_EECMD_READ;
  327 
  328         /*
  329          * Feed in each bit and stobe the clock.
  330          */
  331         for (i = 0x400; i; i >>= 1) {
  332                 if (d & i) {
  333                         SIO_SET(SIS_EECTL_DIN);
  334                 } else {
  335                         SIO_CLR(SIS_EECTL_DIN);
  336                 }
  337                 sis_delay(sc);
  338                 SIO_SET(SIS_EECTL_CLK);
  339                 sis_delay(sc);
  340                 SIO_CLR(SIS_EECTL_CLK);
  341                 sis_delay(sc);
  342         }
  343 
  344         return;
  345 }
  346 
  347 /*
  348  * Read a word of data stored in the EEPROM at address 'addr.'
  349  */
  350 static void
  351 sis_eeprom_getword(sc, addr, dest)
  352         struct sis_softc        *sc;
  353         int                     addr;
  354         u_int16_t               *dest;
  355 {
  356         register int            i;
  357         u_int16_t               word = 0;
  358 
  359         /* Force EEPROM to idle state. */
  360         sis_eeprom_idle(sc);
  361 
  362         /* Enter EEPROM access mode. */
  363         sis_delay(sc);
  364         SIO_CLR(SIS_EECTL_CLK);
  365         sis_delay(sc);
  366         SIO_SET(SIS_EECTL_CSEL);
  367         sis_delay(sc);
  368 
  369         /*
  370          * Send address of word we want to read.
  371          */
  372         sis_eeprom_putbyte(sc, addr);
  373 
  374         /*
  375          * Start reading bits from EEPROM.
  376          */
  377         for (i = 0x8000; i; i >>= 1) {
  378                 SIO_SET(SIS_EECTL_CLK);
  379                 sis_delay(sc);
  380                 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
  381                         word |= i;
  382                 sis_delay(sc);
  383                 SIO_CLR(SIS_EECTL_CLK);
  384                 sis_delay(sc);
  385         }
  386 
  387         /* Turn off EEPROM access mode. */
  388         sis_eeprom_idle(sc);
  389 
  390         *dest = word;
  391 
  392         return;
  393 }
  394 
  395 /*
  396  * Read a sequence of words from the EEPROM.
  397  */
  398 static void
  399 sis_read_eeprom(sc, dest, off, cnt, swap)
  400         struct sis_softc        *sc;
  401         caddr_t                 dest;
  402         int                     off;
  403         int                     cnt;
  404         int                     swap;
  405 {
  406         int                     i;
  407         u_int16_t               word = 0, *ptr;
  408 
  409         for (i = 0; i < cnt; i++) {
  410                 sis_eeprom_getword(sc, off + i, &word);
  411                 ptr = (u_int16_t *)(dest + (i * 2));
  412                 if (swap)
  413                         *ptr = ntohs(word);
  414                 else
  415                         *ptr = word;
  416         }
  417 
  418         return;
  419 }
  420 
  421 #ifdef __i386__
  422 static device_t
  423 sis_find_bridge(dev)
  424         device_t                dev;
  425 {
  426         devclass_t              pci_devclass;
  427         device_t                *pci_devices;
  428         int                     pci_count = 0;
  429         device_t                *pci_children;
  430         int                     pci_childcount = 0;
  431         device_t                *busp, *childp;
  432         device_t                child = NULL;
  433         int                     i, j;
  434 
  435         if ((pci_devclass = devclass_find("pci")) == NULL)
  436                 return(NULL);
  437 
  438         devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
  439 
  440         for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
  441                 pci_childcount = 0;
  442                 device_get_children(*busp, &pci_children, &pci_childcount);
  443                 for (j = 0, childp = pci_children;
  444                     j < pci_childcount; j++, childp++) {
  445                         if (pci_get_vendor(*childp) == SIS_VENDORID &&
  446                             pci_get_device(*childp) == 0x0008) {
  447                                 child = *childp;
  448                                 goto done;
  449                         }
  450                 }
  451         }
  452 
  453 done:
  454         free(pci_devices, M_TEMP);
  455         free(pci_children, M_TEMP);
  456         return(child);
  457 }
  458 
  459 static void
  460 sis_read_cmos(sc, dev, dest, off, cnt)
  461         struct sis_softc        *sc;
  462         device_t                dev;
  463         caddr_t                 dest;
  464         int                     off;
  465         int                     cnt;
  466 {
  467         device_t                bridge;
  468         u_int8_t                reg;
  469         int                     i;
  470         bus_space_tag_t         btag;
  471 
  472         bridge = sis_find_bridge(dev);
  473         if (bridge == NULL)
  474                 return;
  475         reg = pci_read_config(bridge, 0x48, 1);
  476         pci_write_config(bridge, 0x48, reg|0x40, 1);
  477 
  478         /* XXX */
  479         btag = I386_BUS_SPACE_IO;
  480 
  481         for (i = 0; i < cnt; i++) {
  482                 bus_space_write_1(btag, 0x0, 0x70, i + off);
  483                 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
  484         }
  485 
  486         pci_write_config(bridge, 0x48, reg & ~0x40, 1);
  487         return;
  488 }
  489 
  490 static void
  491 sis_read_mac(sc, dev, dest)
  492         struct sis_softc        *sc;
  493         device_t                dev;
  494         caddr_t                 dest;
  495 {
  496         u_int32_t               filtsave, csrsave;
  497 
  498         filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
  499         csrsave = CSR_READ_4(sc, SIS_CSR);
  500 
  501         CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
  502         CSR_WRITE_4(sc, SIS_CSR, 0);
  503                 
  504         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
  505 
  506         CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
  507         ((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  508         CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
  509         ((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  510         CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
  511         ((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  512 
  513         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
  514         CSR_WRITE_4(sc, SIS_CSR, csrsave);
  515         return;
  516 }
  517 #endif
  518 
  519 /*
  520  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  521  */
  522 static void sis_mii_sync(sc)
  523         struct sis_softc        *sc;
  524 {
  525         register int            i;
  526  
  527         SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
  528  
  529         for (i = 0; i < 32; i++) {
  530                 SIO_SET(SIS_MII_CLK);
  531                 DELAY(1);
  532                 SIO_CLR(SIS_MII_CLK);
  533                 DELAY(1);
  534         }
  535  
  536         return;
  537 }
  538  
  539 /*
  540  * Clock a series of bits through the MII.
  541  */
  542 static void sis_mii_send(sc, bits, cnt)
  543         struct sis_softc        *sc;
  544         u_int32_t               bits;
  545         int                     cnt;
  546 {
  547         int                     i;
  548  
  549         SIO_CLR(SIS_MII_CLK);
  550  
  551         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  552                 if (bits & i) {
  553                         SIO_SET(SIS_MII_DATA);
  554                 } else {
  555                         SIO_CLR(SIS_MII_DATA);
  556                 }
  557                 DELAY(1);
  558                 SIO_CLR(SIS_MII_CLK);
  559                 DELAY(1);
  560                 SIO_SET(SIS_MII_CLK);
  561         }
  562 }
  563  
  564 /*
  565  * Read an PHY register through the MII.
  566  */
  567 static int sis_mii_readreg(sc, frame)
  568         struct sis_softc        *sc;
  569         struct sis_mii_frame    *frame;
  570         
  571 {
  572         int                     i, ack, s;
  573  
  574         s = splimp();
  575  
  576         /*
  577          * Set up frame for RX.
  578          */
  579         frame->mii_stdelim = SIS_MII_STARTDELIM;
  580         frame->mii_opcode = SIS_MII_READOP;
  581         frame->mii_turnaround = 0;
  582         frame->mii_data = 0;
  583         
  584         /*
  585          * Turn on data xmit.
  586          */
  587         SIO_SET(SIS_MII_DIR);
  588 
  589         sis_mii_sync(sc);
  590  
  591         /*
  592          * Send command/address info.
  593          */
  594         sis_mii_send(sc, frame->mii_stdelim, 2);
  595         sis_mii_send(sc, frame->mii_opcode, 2);
  596         sis_mii_send(sc, frame->mii_phyaddr, 5);
  597         sis_mii_send(sc, frame->mii_regaddr, 5);
  598  
  599         /* Idle bit */
  600         SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
  601         DELAY(1);
  602         SIO_SET(SIS_MII_CLK);
  603         DELAY(1);
  604  
  605         /* Turn off xmit. */
  606         SIO_CLR(SIS_MII_DIR);
  607  
  608         /* Check for ack */
  609         SIO_CLR(SIS_MII_CLK);
  610         DELAY(1);
  611         ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
  612         SIO_SET(SIS_MII_CLK);
  613         DELAY(1);
  614  
  615         /*
  616          * Now try reading data bits. If the ack failed, we still
  617          * need to clock through 16 cycles to keep the PHY(s) in sync.
  618          */
  619         if (ack) {
  620                 for(i = 0; i < 16; i++) {
  621                         SIO_CLR(SIS_MII_CLK);
  622                         DELAY(1);
  623                         SIO_SET(SIS_MII_CLK);
  624                         DELAY(1);
  625                 }
  626                 goto fail;
  627         }
  628  
  629         for (i = 0x8000; i; i >>= 1) {
  630                 SIO_CLR(SIS_MII_CLK);
  631                 DELAY(1);
  632                 if (!ack) {
  633                         if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
  634                                 frame->mii_data |= i;
  635                         DELAY(1);
  636                 }
  637                 SIO_SET(SIS_MII_CLK);
  638                 DELAY(1);
  639         }
  640 
  641 fail:
  642 
  643         SIO_CLR(SIS_MII_CLK);
  644         DELAY(1);
  645         SIO_SET(SIS_MII_CLK);
  646         DELAY(1);
  647 
  648         splx(s);
  649 
  650         if (ack)
  651                 return(1);
  652         return(0);
  653 }
  654  
  655 /*
  656  * Write to a PHY register through the MII.
  657  */
  658 static int sis_mii_writereg(sc, frame)
  659         struct sis_softc        *sc;
  660         struct sis_mii_frame    *frame;
  661         
  662 {
  663         int                     s;
  664  
  665          s = splimp();
  666         /*
  667          * Set up frame for TX.
  668          */
  669  
  670         frame->mii_stdelim = SIS_MII_STARTDELIM;
  671         frame->mii_opcode = SIS_MII_WRITEOP;
  672         frame->mii_turnaround = SIS_MII_TURNAROUND;
  673         
  674         /*
  675          * Turn on data output.
  676          */
  677         SIO_SET(SIS_MII_DIR);
  678  
  679         sis_mii_sync(sc);
  680  
  681         sis_mii_send(sc, frame->mii_stdelim, 2);
  682         sis_mii_send(sc, frame->mii_opcode, 2);
  683         sis_mii_send(sc, frame->mii_phyaddr, 5);
  684         sis_mii_send(sc, frame->mii_regaddr, 5);
  685         sis_mii_send(sc, frame->mii_turnaround, 2);
  686         sis_mii_send(sc, frame->mii_data, 16);
  687  
  688         /* Idle bit. */
  689         SIO_SET(SIS_MII_CLK);
  690         DELAY(1);
  691         SIO_CLR(SIS_MII_CLK);
  692         DELAY(1);
  693  
  694         /*
  695          * Turn off xmit.
  696          */
  697         SIO_CLR(SIS_MII_DIR);
  698  
  699         splx(s);
  700  
  701         return(0);
  702 }
  703 
  704 static int
  705 sis_miibus_readreg(dev, phy, reg)
  706         device_t                dev;
  707         int                     phy, reg;
  708 {
  709         struct sis_softc        *sc;
  710         struct sis_mii_frame    frame;
  711 
  712         sc = device_get_softc(dev);
  713 
  714         if (sc->sis_type == SIS_TYPE_83815) {
  715                 if (phy != 0)
  716                         return(0);
  717                 /*
  718                  * The NatSemi chip can take a while after
  719                  * a reset to come ready, during which the BMSR
  720                  * returns a value of 0. This is *never* supposed
  721                  * to happen: some of the BMSR bits are meant to
  722                  * be hardwired in the on position, and this can
  723                  * confuse the miibus code a bit during the probe
  724                  * and attach phase. So we make an effort to check
  725                  * for this condition and wait for it to clear.
  726                  */
  727                 if (!CSR_READ_4(sc, NS_BMSR))
  728                         DELAY(1000);
  729                 return CSR_READ_4(sc, NS_BMCR + (reg * 4));
  730         }
  731 
  732         /*
  733          * Chipsets < SIS_635 seem not to be able to read/write
  734          * through mdio. Use the enhanced PHY access register
  735          * again for them.
  736          */
  737         if (sc->sis_type == SIS_TYPE_900 &&
  738             sc->sis_rev < SIS_REV_635) {
  739                 int i, val = 0;
  740 
  741                 if (phy != 0)
  742                         return(0);
  743 
  744                 CSR_WRITE_4(sc, SIS_PHYCTL,
  745                     (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
  746                 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
  747 
  748                 for (i = 0; i < SIS_TIMEOUT; i++) {
  749                         if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
  750                                 break;
  751                 }
  752 
  753                 if (i == SIS_TIMEOUT) {
  754                         printf("sis%d: PHY failed to come ready\n",
  755                             sc->sis_unit);
  756                         return(0);
  757                 }
  758 
  759                 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
  760 
  761                 if (val == 0xFFFF)
  762                         return(0);
  763 
  764                 return(val);
  765         } else {
  766                 bzero((char *)&frame, sizeof(frame));
  767 
  768                 frame.mii_phyaddr = phy;
  769                 frame.mii_regaddr = reg;
  770                 sis_mii_readreg(sc, &frame);
  771 
  772                 return(frame.mii_data);
  773         }
  774 }
  775 
  776 static int
  777 sis_miibus_writereg(dev, phy, reg, data)
  778         device_t                dev;
  779         int                     phy, reg, data;
  780 {
  781         struct sis_softc        *sc;
  782         struct sis_mii_frame    frame;
  783 
  784         sc = device_get_softc(dev);
  785 
  786         if (sc->sis_type == SIS_TYPE_83815) {
  787                 if (phy != 0)
  788                         return(0);
  789                 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
  790                 return(0);
  791         }
  792 
  793         /*
  794          * Chipsets < SIS_635 seem not to be able to read/write
  795          * through mdio. Use the enhanced PHY access register
  796          * again for them.
  797          */
  798         if (sc->sis_type == SIS_TYPE_900 &&
  799             sc->sis_rev < SIS_REV_635) {
  800                 int i;
  801 
  802                 if (phy != 0)
  803                         return(0);
  804 
  805                 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
  806                     (reg << 6) | SIS_PHYOP_WRITE);
  807                 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
  808 
  809                 for (i = 0; i < SIS_TIMEOUT; i++) {
  810                         if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
  811                                 break;
  812                 }
  813 
  814                 if (i == SIS_TIMEOUT)
  815                         printf("sis%d: PHY failed to come ready\n",
  816                             sc->sis_unit);
  817         } else {
  818                 bzero((char *)&frame, sizeof(frame));
  819 
  820                 frame.mii_phyaddr = phy;
  821                 frame.mii_regaddr = reg;
  822                 frame.mii_data = data;
  823                 sis_mii_writereg(sc, &frame);
  824         }
  825         return(0);
  826 }
  827 
  828 static void
  829 sis_miibus_statchg(dev)
  830         device_t                dev;
  831 {
  832         struct sis_softc        *sc;
  833 
  834         sc = device_get_softc(dev);
  835         sis_init(sc);
  836 
  837         return;
  838 }
  839 
  840 static u_int32_t
  841 sis_mchash(sc, addr)
  842         struct sis_softc        *sc;
  843         const uint8_t           *addr;
  844 {
  845         uint32_t                crc;
  846 
  847         /* Compute CRC for the address value. */
  848         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
  849 
  850         /*
  851          * return the filter bit position
  852          *
  853          * The NatSemi chip has a 512-bit filter, which is
  854          * different than the SiS, so we special-case it.
  855          */
  856         if (sc->sis_type == SIS_TYPE_83815)
  857                 return (crc >> 23);
  858         else if (sc->sis_rev >= SIS_REV_635 ||
  859             sc->sis_rev == SIS_REV_900B)
  860                 return (crc >> 24);
  861         else
  862                 return (crc >> 25);
  863 }
  864 
  865 static void
  866 sis_setmulti_ns(sc)
  867         struct sis_softc        *sc;
  868 {
  869         struct ifnet            *ifp;
  870         struct ifmultiaddr      *ifma;
  871         u_int32_t               h = 0, i, filtsave;
  872         int                     bit, index;
  873 
  874         ifp = &sc->arpcom.ac_if;
  875 
  876         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  877                 SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
  878                 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
  879                 return;
  880         }
  881 
  882         /*
  883          * We have to explicitly enable the multicast hash table
  884          * on the NatSemi chip if we want to use it, which we do.
  885          */
  886         SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
  887         SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
  888 
  889         filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
  890 
  891         /* first, zot all the existing hash bits */
  892         for (i = 0; i < 32; i++) {
  893                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
  894                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
  895         }
  896 
  897         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  898                 if (ifma->ifma_addr->sa_family != AF_LINK)
  899                         continue;
  900                 h = sis_mchash(sc,
  901                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  902                 index = h >> 3;
  903                 bit = h & 0x1F;
  904                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
  905                 if (bit > 0xF)
  906                         bit -= 0x10;
  907                 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
  908         }
  909 
  910         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
  911 
  912         return;
  913 }
  914 
  915 static void
  916 sis_setmulti_sis(sc)
  917         struct sis_softc        *sc;
  918 {
  919         struct ifnet            *ifp;
  920         struct ifmultiaddr      *ifma;
  921         u_int32_t               h, i, n, ctl;
  922         u_int16_t               hashes[16];
  923 
  924         ifp = &sc->arpcom.ac_if;
  925 
  926         /* hash table size */
  927         if (sc->sis_rev >= SIS_REV_635 ||
  928             sc->sis_rev == SIS_REV_900B)
  929                 n = 16;
  930         else
  931                 n = 8;
  932 
  933         ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
  934 
  935         if (ifp->if_flags & IFF_BROADCAST)
  936                 ctl |= SIS_RXFILTCTL_BROAD;
  937 
  938         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  939                 ctl |= SIS_RXFILTCTL_ALLMULTI;
  940                 if (ifp->if_flags & IFF_PROMISC)
  941                         ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
  942                 for (i = 0; i < n; i++)
  943                         hashes[i] = ~0;
  944         } else {
  945                 for (i = 0; i < n; i++)
  946                         hashes[i] = 0;
  947                 i = 0;
  948                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  949                         if (ifma->ifma_addr->sa_family != AF_LINK)
  950                         continue;
  951                         h = sis_mchash(sc,
  952                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  953                         hashes[h >> 4] |= 1 << (h & 0xf);
  954                         i++;
  955                 }
  956                 if (i > n) {
  957                         ctl |= SIS_RXFILTCTL_ALLMULTI;
  958                         for (i = 0; i < n; i++)
  959                                 hashes[i] = ~0;
  960                 }
  961         }
  962 
  963         for (i = 0; i < n; i++) {
  964                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
  965                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
  966         }
  967 
  968         CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
  969 }
  970 
  971 static void
  972 sis_reset(sc)
  973         struct sis_softc        *sc;
  974 {
  975         register int            i;
  976 
  977         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
  978 
  979         for (i = 0; i < SIS_TIMEOUT; i++) {
  980                 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
  981                         break;
  982         }
  983 
  984         if (i == SIS_TIMEOUT)
  985                 printf("sis%d: reset never completed\n", sc->sis_unit);
  986 
  987         /* Wait a little while for the chip to get its brains in order. */
  988         DELAY(1000);
  989 
  990         /*
  991          * If this is a NetSemi chip, make sure to clear
  992          * PME mode.
  993          */
  994         if (sc->sis_type == SIS_TYPE_83815) {
  995                 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
  996                 CSR_WRITE_4(sc, NS_CLKRUN, 0);
  997         }
  998 
  999         return;
 1000 }
 1001 
 1002 /*
 1003  * Probe for an SiS chip. Check the PCI vendor and device
 1004  * IDs against our list and return a device name if we find a match.
 1005  */
 1006 static int
 1007 sis_probe(dev)
 1008         device_t                dev;
 1009 {
 1010         struct sis_type         *t;
 1011 
 1012         t = sis_devs;
 1013 
 1014         while(t->sis_name != NULL) {
 1015                 if ((pci_get_vendor(dev) == t->sis_vid) &&
 1016                     (pci_get_device(dev) == t->sis_did)) {
 1017                         device_set_desc(dev, t->sis_name);
 1018                         return(0);
 1019                 }
 1020                 t++;
 1021         }
 1022 
 1023         return(ENXIO);
 1024 }
 1025 
 1026 /*
 1027  * Attach the interface. Allocate softc structures, do ifmedia
 1028  * setup and ethernet/BPF attach.
 1029  */
 1030 static int
 1031 sis_attach(dev)
 1032         device_t                dev;
 1033 {
 1034         u_char                  eaddr[ETHER_ADDR_LEN];
 1035         struct sis_softc        *sc;
 1036         struct ifnet            *ifp;
 1037         int                     unit, error = 0, rid, waittime = 0;
 1038 
 1039         waittime = 0;
 1040         sc = device_get_softc(dev);
 1041         unit = device_get_unit(dev);
 1042 
 1043         sc->sis_self = dev;
 1044 
 1045         mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1046             MTX_DEF | MTX_RECURSE);
 1047 
 1048         if (pci_get_device(dev) == SIS_DEVICEID_900)
 1049                 sc->sis_type = SIS_TYPE_900;
 1050         if (pci_get_device(dev) == SIS_DEVICEID_7016)
 1051                 sc->sis_type = SIS_TYPE_7016;
 1052         if (pci_get_vendor(dev) == NS_VENDORID)
 1053                 sc->sis_type = SIS_TYPE_83815;
 1054 
 1055         sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
 1056         /*
 1057          * Map control/status registers.
 1058          */
 1059         pci_enable_busmaster(dev);
 1060 
 1061         rid = SIS_RID;
 1062         sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
 1063 
 1064         if (sc->sis_res == NULL) {
 1065                 printf("sis%d: couldn't map ports/memory\n", unit);
 1066                 error = ENXIO;
 1067                 goto fail;
 1068         }
 1069 
 1070         sc->sis_btag = rman_get_bustag(sc->sis_res);
 1071         sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
 1072 
 1073         /* Allocate interrupt */
 1074         rid = 0;
 1075         sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1076             RF_SHAREABLE | RF_ACTIVE);
 1077 
 1078         if (sc->sis_irq == NULL) {
 1079                 printf("sis%d: couldn't map interrupt\n", unit);
 1080                 error = ENXIO;
 1081                 goto fail;
 1082         }
 1083 
 1084         /* Reset the adapter. */
 1085         sis_reset(sc);
 1086 
 1087         if (sc->sis_type == SIS_TYPE_900 &&
 1088             (sc->sis_rev == SIS_REV_635 ||
 1089             sc->sis_rev == SIS_REV_900B)) {
 1090                 SIO_SET(SIS_CFG_RND_CNT);
 1091                 SIO_SET(SIS_CFG_PERR_DETECT);
 1092         }
 1093 
 1094         /*
 1095          * Get station address from the EEPROM.
 1096          */
 1097         switch (pci_get_vendor(dev)) {
 1098         case NS_VENDORID:
 1099                 sc->sis_srr = CSR_READ_4(sc, NS_SRR);
 1100 
 1101                 /* We can't update the device description, so spew */
 1102                 if (sc->sis_srr == NS_SRR_15C)
 1103                         device_printf(dev, "Silicon Revision: DP83815C\n");
 1104                 else if (sc->sis_srr == NS_SRR_15D)
 1105                         device_printf(dev, "Silicon Revision: DP83815D\n");
 1106                 else if (sc->sis_srr == NS_SRR_16A)
 1107                         device_printf(dev, "Silicon Revision: DP83816A\n");
 1108                 else
 1109                         device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
 1110 
 1111                 /*
 1112                  * Reading the MAC address out of the EEPROM on
 1113                  * the NatSemi chip takes a bit more work than
 1114                  * you'd expect. The address spans 4 16-bit words,
 1115                  * with the first word containing only a single bit.
 1116                  * You have to shift everything over one bit to
 1117                  * get it aligned properly. Also, the bits are
 1118                  * stored backwards (the LSB is really the MSB,
 1119                  * and so on) so you have to reverse them in order
 1120                  * to get the MAC address into the form we want.
 1121                  * Why? Who the hell knows.
 1122                  */
 1123                 {
 1124                         u_int16_t               tmp[4];
 1125 
 1126                         sis_read_eeprom(sc, (caddr_t)&tmp,
 1127                             NS_EE_NODEADDR, 4, 0);
 1128 
 1129                         /* Shift everything over one bit. */
 1130                         tmp[3] = tmp[3] >> 1;
 1131                         tmp[3] |= tmp[2] << 15;
 1132                         tmp[2] = tmp[2] >> 1;
 1133                         tmp[2] |= tmp[1] << 15;
 1134                         tmp[1] = tmp[1] >> 1;
 1135                         tmp[1] |= tmp[0] << 15;
 1136 
 1137                         /* Now reverse all the bits. */
 1138                         tmp[3] = sis_reverse(tmp[3]);
 1139                         tmp[2] = sis_reverse(tmp[2]);
 1140                         tmp[1] = sis_reverse(tmp[1]);
 1141 
 1142                         bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
 1143                 }
 1144                 break;
 1145         case SIS_VENDORID:
 1146         default:
 1147 #ifdef __i386__
 1148                 /*
 1149                  * If this is a SiS 630E chipset with an embedded
 1150                  * SiS 900 controller, we have to read the MAC address
 1151                  * from the APC CMOS RAM. Our method for doing this
 1152                  * is very ugly since we have to reach out and grab
 1153                  * ahold of hardware for which we cannot properly
 1154                  * allocate resources. This code is only compiled on
 1155                  * the i386 architecture since the SiS 630E chipset
 1156                  * is for x86 motherboards only. Note that there are
 1157                  * a lot of magic numbers in this hack. These are
 1158                  * taken from SiS's Linux driver. I'd like to replace
 1159                  * them with proper symbolic definitions, but that
 1160                  * requires some datasheets that I don't have access
 1161                  * to at the moment.
 1162                  */
 1163                 if (sc->sis_rev == SIS_REV_630S ||
 1164                     sc->sis_rev == SIS_REV_630E ||
 1165                     sc->sis_rev == SIS_REV_630EA1)
 1166                         sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
 1167 
 1168                 else if (sc->sis_rev == SIS_REV_635 ||
 1169                          sc->sis_rev == SIS_REV_630ET)
 1170                         sis_read_mac(sc, dev, (caddr_t)&eaddr);
 1171                 else if (sc->sis_rev == SIS_REV_96x) {
 1172                         /* Allow to read EEPROM from LAN. It is shared
 1173                          * between a 1394 controller and the NIC and each
 1174                          * time we access it, we need to set SIS_EECMD_REQ.
 1175                          */
 1176                         SIO_SET(SIS_EECMD_REQ);
 1177                         for (waittime = 0; waittime < SIS_TIMEOUT;
 1178                             waittime++) {
 1179                                 /* Force EEPROM to idle state. */
 1180                                 sis_eeprom_idle(sc);
 1181                                 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
 1182                                         sis_read_eeprom(sc, (caddr_t)&eaddr,
 1183                                             SIS_EE_NODEADDR, 3, 0);
 1184                                         break;
 1185                                 }
 1186                                 DELAY(1);
 1187                         }
 1188                         /*
 1189                          * Set SIS_EECTL_CLK to high, so a other master
 1190                          * can operate on the i2c bus.
 1191                          */
 1192                         SIO_SET(SIS_EECTL_CLK);
 1193                         /* Refuse EEPROM access by LAN */
 1194                         SIO_SET(SIS_EECMD_DONE);
 1195                 } else
 1196 #endif
 1197                         sis_read_eeprom(sc, (caddr_t)&eaddr,
 1198                             SIS_EE_NODEADDR, 3, 0);
 1199                 break;
 1200         }
 1201 
 1202         sc->sis_unit = unit;
 1203         if (debug_mpsafenet)
 1204                 callout_init(&sc->sis_stat_ch, CALLOUT_MPSAFE);
 1205         else
 1206                 callout_init(&sc->sis_stat_ch, 0);
 1207         bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
 1208 
 1209         /*
 1210          * Allocate the parent bus DMA tag appropriate for PCI.
 1211          */
 1212 #define SIS_NSEG_NEW 32
 1213          error = bus_dma_tag_create(NULL,       /* parent */ 
 1214                         1, 0,                   /* alignment, boundary */
 1215                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
 1216                         BUS_SPACE_MAXADDR,      /* highaddr */
 1217                         NULL, NULL,             /* filter, filterarg */
 1218                         MAXBSIZE, SIS_NSEG_NEW, /* maxsize, nsegments */
 1219                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 
 1220                         BUS_DMA_ALLOCNOW,       /* flags */
 1221                         NULL, NULL,             /* lockfunc, lockarg */
 1222                         &sc->sis_parent_tag);
 1223         if (error)
 1224                 goto fail;
 1225 
 1226         /*
 1227          * Now allocate a tag for the DMA descriptor lists and a chunk
 1228          * of DMA-able memory based on the tag.  Also obtain the physical
 1229          * addresses of the RX and TX ring, which we'll need later.
 1230          * All of our lists are allocated as a contiguous block
 1231          * of memory.
 1232          */
 1233         error = bus_dma_tag_create(sc->sis_parent_tag,  /* parent */
 1234                         1, 0,                   /* alignment, boundary */
 1235                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1236                         BUS_SPACE_MAXADDR,      /* highaddr */
 1237                         NULL, NULL,             /* filter, filterarg */
 1238                         SIS_RX_LIST_SZ, 1,      /* maxsize,nsegments */
 1239                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1240                         0,                      /* flags */
 1241                         busdma_lock_mutex,      /* lockfunc */
 1242                         &Giant,                 /* lockarg */
 1243                         &sc->sis_ldata.sis_rx_tag);
 1244         if (error)
 1245                 goto fail;
 1246 
 1247         error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
 1248             (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 1249             &sc->sis_ldata.sis_rx_dmamap);
 1250 
 1251         if (error) {
 1252                 printf("sis%d: no memory for rx list buffers!\n", unit);
 1253                 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
 1254                 sc->sis_ldata.sis_rx_tag = NULL;
 1255                 goto fail;
 1256         }
 1257 
 1258         error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
 1259             sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
 1260             sizeof(struct sis_desc), sis_dma_map_ring,
 1261             &sc->sis_cdata.sis_rx_paddr, 0);
 1262 
 1263         if (error) {
 1264                 printf("sis%d: cannot get address of the rx ring!\n", unit);
 1265                 bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
 1266                     sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
 1267                 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
 1268                 sc->sis_ldata.sis_rx_tag = NULL;
 1269                 goto fail;
 1270         }
 1271 
 1272         error = bus_dma_tag_create(sc->sis_parent_tag,  /* parent */
 1273                         1, 0,                   /* alignment, boundary */
 1274                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1275                         BUS_SPACE_MAXADDR,      /* highaddr */
 1276                         NULL, NULL,             /* filter, filterarg */
 1277                         SIS_TX_LIST_SZ, 1,      /* maxsize,nsegments */
 1278                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1279                         0,                      /* flags */
 1280                         busdma_lock_mutex,      /* lockfunc */
 1281                         &Giant,                 /* lockarg */
 1282                         &sc->sis_ldata.sis_tx_tag);
 1283         if (error)
 1284                 goto fail;
 1285 
 1286         error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
 1287             (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 1288             &sc->sis_ldata.sis_tx_dmamap);
 1289 
 1290         if (error) {
 1291                 printf("sis%d: no memory for tx list buffers!\n", unit);
 1292                 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
 1293                 sc->sis_ldata.sis_tx_tag = NULL;
 1294                 goto fail;
 1295         }
 1296 
 1297         error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
 1298             sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
 1299             sizeof(struct sis_desc), sis_dma_map_ring,
 1300             &sc->sis_cdata.sis_tx_paddr, 0);
 1301 
 1302         if (error) {
 1303                 printf("sis%d: cannot get address of the tx ring!\n", unit);
 1304                 bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
 1305                     sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
 1306                 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
 1307                 sc->sis_ldata.sis_tx_tag = NULL;
 1308                 goto fail;
 1309         }
 1310 
 1311         error = bus_dma_tag_create(sc->sis_parent_tag,  /* parent */
 1312                         1, 0,                   /* alignment, boundary */
 1313                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1314                         BUS_SPACE_MAXADDR,      /* highaddr */
 1315                         NULL, NULL,             /* filter, filterarg */
 1316                         MCLBYTES, 1,            /* maxsize,nsegments */
 1317                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1318                         0,                      /* flags */
 1319                         busdma_lock_mutex,      /* lockfunc */
 1320                         &Giant,                 /* lockarg */
 1321                         &sc->sis_tag);
 1322         if (error)
 1323                 goto fail;
 1324 
 1325         /*
 1326          * Obtain the physical addresses of the RX and TX
 1327          * rings which we'll need later in the init routine.
 1328          */
 1329 
 1330         ifp = &sc->arpcom.ac_if;
 1331         ifp->if_softc = sc;
 1332         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1333         ifp->if_mtu = ETHERMTU;
 1334         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1335         ifp->if_ioctl = sis_ioctl;
 1336         ifp->if_start = sis_start;
 1337         ifp->if_watchdog = sis_watchdog;
 1338         ifp->if_init = sis_init;
 1339         ifp->if_baudrate = 10000000;
 1340         IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
 1341         ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
 1342         IFQ_SET_READY(&ifp->if_snd);
 1343 
 1344         /*
 1345          * Do MII setup.
 1346          */
 1347         if (mii_phy_probe(dev, &sc->sis_miibus,
 1348             sis_ifmedia_upd, sis_ifmedia_sts)) {
 1349                 printf("sis%d: MII without any PHY!\n", sc->sis_unit);
 1350                 error = ENXIO;
 1351                 goto fail;
 1352         }
 1353 
 1354         /*
 1355          * Call MI attach routine.
 1356          */
 1357         ether_ifattach(ifp, eaddr);
 1358         
 1359         /*
 1360          * Tell the upper layer(s) we support long frames.
 1361          */
 1362         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1363         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1364 
 1365 #ifdef DEVICE_POLLING
 1366         ifp->if_capabilities |= IFCAP_POLLING;
 1367 #endif
 1368         ifp->if_capenable = ifp->if_capabilities;
 1369 
 1370         /* Hook interrupt last to avoid having to lock softc */
 1371         error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1372             sis_intr, sc, &sc->sis_intrhand);
 1373 
 1374         if (error) {
 1375                 printf("sis%d: couldn't set up irq\n", unit);
 1376                 ether_ifdetach(ifp);
 1377                 goto fail;
 1378         }
 1379 
 1380 fail:
 1381         if (error)
 1382                 sis_detach(dev);
 1383 
 1384         return(error);
 1385 }
 1386 
 1387 /*
 1388  * Shutdown hardware and free up resources. This can be called any
 1389  * time after the mutex has been initialized. It is called in both
 1390  * the error case in attach and the normal detach case so it needs
 1391  * to be careful about only freeing resources that have actually been
 1392  * allocated.
 1393  */
 1394 static int
 1395 sis_detach(dev)
 1396         device_t                dev;
 1397 {
 1398         struct sis_softc        *sc;
 1399         struct ifnet            *ifp;
 1400 
 1401         sc = device_get_softc(dev);
 1402         KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
 1403         SIS_LOCK(sc);
 1404         ifp = &sc->arpcom.ac_if;
 1405 
 1406         /* These should only be active if attach succeeded. */
 1407         if (device_is_attached(dev)) {
 1408                 sis_reset(sc);
 1409                 sis_stop(sc);
 1410                 ether_ifdetach(ifp);
 1411         }
 1412         if (sc->sis_miibus)
 1413                 device_delete_child(dev, sc->sis_miibus);
 1414         bus_generic_detach(dev);
 1415 
 1416         if (sc->sis_intrhand)
 1417                 bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
 1418         if (sc->sis_irq)
 1419                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
 1420         if (sc->sis_res)
 1421                 bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
 1422 
 1423         if (sc->sis_ldata.sis_rx_tag) {
 1424                 bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
 1425                     sc->sis_ldata.sis_rx_dmamap);
 1426                 bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
 1427                     sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
 1428                 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
 1429         }
 1430         if (sc->sis_ldata.sis_tx_tag) {
 1431                 bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
 1432                     sc->sis_ldata.sis_tx_dmamap);
 1433                 bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
 1434                     sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
 1435                 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
 1436         }
 1437         if (sc->sis_parent_tag)
 1438                 bus_dma_tag_destroy(sc->sis_parent_tag);
 1439         if (sc->sis_tag)
 1440                 bus_dma_tag_destroy(sc->sis_tag);
 1441 
 1442         SIS_UNLOCK(sc);
 1443         mtx_destroy(&sc->sis_mtx);
 1444 
 1445         return(0);
 1446 }
 1447 
 1448 /*
 1449  * Initialize the transmit descriptors.
 1450  */
 1451 static int
 1452 sis_list_tx_init(sc)
 1453         struct sis_softc        *sc;
 1454 {
 1455         struct sis_list_data    *ld;
 1456         struct sis_ring_data    *cd;
 1457         int                     i, nexti;
 1458 
 1459         cd = &sc->sis_cdata;
 1460         ld = &sc->sis_ldata;
 1461 
 1462         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 1463                 nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
 1464                         ld->sis_tx_list[i].sis_nextdesc =
 1465                             &ld->sis_tx_list[nexti];
 1466                         bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
 1467                             sc->sis_ldata.sis_tx_dmamap,
 1468                             &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
 1469                             sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
 1470                 ld->sis_tx_list[i].sis_mbuf = NULL;
 1471                 ld->sis_tx_list[i].sis_ptr = 0;
 1472                 ld->sis_tx_list[i].sis_ctl = 0;
 1473         }
 1474 
 1475         cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
 1476 
 1477         bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
 1478             sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
 1479 
 1480         return(0);
 1481 }
 1482 
 1483 /*
 1484  * Initialize the RX descriptors and allocate mbufs for them. Note that
 1485  * we arrange the descriptors in a closed ring, so that the last descriptor
 1486  * points back to the first.
 1487  */
 1488 static int
 1489 sis_list_rx_init(sc)
 1490         struct sis_softc        *sc;
 1491 {
 1492         struct sis_list_data    *ld;
 1493         struct sis_ring_data    *cd;
 1494         int                     i,nexti;
 1495 
 1496         ld = &sc->sis_ldata;
 1497         cd = &sc->sis_cdata;
 1498 
 1499         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 1500                 if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
 1501                         return(ENOBUFS);
 1502                 nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
 1503                         ld->sis_rx_list[i].sis_nextdesc =
 1504                             &ld->sis_rx_list[nexti];
 1505                         bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
 1506                             sc->sis_ldata.sis_rx_dmamap,
 1507                             &ld->sis_rx_list[nexti],
 1508                             sizeof(struct sis_desc), sis_dma_map_desc_next,
 1509                             &ld->sis_rx_list[i], 0);
 1510                 }
 1511 
 1512         bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
 1513             sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
 1514 
 1515         cd->sis_rx_prod = 0;
 1516 
 1517         return(0);
 1518 }
 1519 
 1520 /*
 1521  * Initialize an RX descriptor and attach an MBUF cluster.
 1522  */
 1523 static int
 1524 sis_newbuf(sc, c, m)
 1525         struct sis_softc        *sc;
 1526         struct sis_desc         *c;
 1527         struct mbuf             *m;
 1528 {
 1529 
 1530         if (c == NULL)
 1531                 return(EINVAL);
 1532 
 1533         if (m == NULL) {
 1534                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1535                 if (m == NULL)
 1536                         return(ENOBUFS);
 1537         } else
 1538                 m->m_data = m->m_ext.ext_buf;
 1539 
 1540         c->sis_mbuf = m;
 1541         c->sis_ctl = SIS_RXLEN;
 1542 
 1543         bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
 1544         bus_dmamap_load(sc->sis_tag, c->sis_map,
 1545             mtod(m, void *), MCLBYTES,
 1546             sis_dma_map_desc_ptr, c, 0);
 1547         bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
 1548 
 1549         return(0);
 1550 }
 1551 
 1552 /*
 1553  * A frame has been uploaded: pass the resulting mbuf chain up to
 1554  * the higher level protocols.
 1555  */
 1556 static void
 1557 sis_rxeof(sc)
 1558         struct sis_softc        *sc;
 1559 {
 1560         struct mbuf             *m;
 1561         struct ifnet            *ifp;
 1562         struct sis_desc         *cur_rx;
 1563         int                     i, total_len = 0;
 1564         u_int32_t               rxstat;
 1565 
 1566         SIS_LOCK_ASSERT(sc);
 1567 
 1568         ifp = &sc->arpcom.ac_if;
 1569         i = sc->sis_cdata.sis_rx_prod;
 1570 
 1571         while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
 1572 
 1573 #ifdef DEVICE_POLLING
 1574                 if (ifp->if_flags & IFF_POLLING) {
 1575                         if (sc->rxcycles <= 0)
 1576                                 break;
 1577                         sc->rxcycles--;
 1578                 }
 1579 #endif /* DEVICE_POLLING */
 1580                 cur_rx = &sc->sis_ldata.sis_rx_list[i];
 1581                 rxstat = cur_rx->sis_rxstat;
 1582                 bus_dmamap_sync(sc->sis_tag,
 1583                     cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
 1584                 bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
 1585                 bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
 1586                 m = cur_rx->sis_mbuf;
 1587                 cur_rx->sis_mbuf = NULL;
 1588                 total_len = SIS_RXBYTES(cur_rx);
 1589                 SIS_INC(i, SIS_RX_LIST_CNT);
 1590 
 1591                 /*
 1592                  * If an error occurs, update stats, clear the
 1593                  * status word and leave the mbuf cluster in place:
 1594                  * it should simply get re-used next time this descriptor
 1595                  * comes up in the ring.
 1596                  */
 1597                 if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
 1598                         ifp->if_ierrors++;
 1599                         if (rxstat & SIS_RXSTAT_COLL)
 1600                                 ifp->if_collisions++;
 1601                         sis_newbuf(sc, cur_rx, m);
 1602                         continue;
 1603                 }
 1604 
 1605                 /* No errors; receive the packet. */    
 1606 #ifdef __i386__
 1607                 /*
 1608                  * On the x86 we do not have alignment problems, so try to
 1609                  * allocate a new buffer for the receive ring, and pass up
 1610                  * the one where the packet is already, saving the expensive
 1611                  * copy done in m_devget().
 1612                  * If we are on an architecture with alignment problems, or
 1613                  * if the allocation fails, then use m_devget and leave the
 1614                  * existing buffer in the receive ring.
 1615                  */
 1616                 if (sis_newbuf(sc, cur_rx, NULL) == 0)
 1617                         m->m_pkthdr.len = m->m_len = total_len;
 1618                 else
 1619 #endif
 1620                 {
 1621                         struct mbuf             *m0;
 1622                         m0 = m_devget(mtod(m, char *), total_len,
 1623                                 ETHER_ALIGN, ifp, NULL);
 1624                         sis_newbuf(sc, cur_rx, m);
 1625                         if (m0 == NULL) {
 1626                                 ifp->if_ierrors++;
 1627                                 continue;
 1628                         }
 1629                         m = m0;
 1630                 }
 1631 
 1632                 ifp->if_ipackets++;
 1633                 m->m_pkthdr.rcvif = ifp;
 1634 
 1635                 SIS_UNLOCK(sc);
 1636                 (*ifp->if_input)(ifp, m);
 1637                 SIS_LOCK(sc);
 1638         }
 1639 
 1640         sc->sis_cdata.sis_rx_prod = i;
 1641 
 1642         return;
 1643 }
 1644 
 1645 static void
 1646 sis_rxeoc(sc)
 1647         struct sis_softc        *sc;
 1648 {
 1649         sis_rxeof(sc);
 1650         sis_init(sc);
 1651         return;
 1652 }
 1653 
 1654 /*
 1655  * A frame was downloaded to the chip. It's safe for us to clean up
 1656  * the list buffers.
 1657  */
 1658 
 1659 static void
 1660 sis_txeof(sc)
 1661         struct sis_softc        *sc;
 1662 {
 1663         struct ifnet            *ifp;
 1664         u_int32_t               idx;
 1665 
 1666         ifp = &sc->arpcom.ac_if;
 1667 
 1668         /*
 1669          * Go through our tx list and free mbufs for those
 1670          * frames that have been transmitted.
 1671          */
 1672         for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
 1673             sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
 1674                 struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
 1675 
 1676                 if (SIS_OWNDESC(cur_tx))
 1677                         break;
 1678 
 1679                 if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
 1680                         continue;
 1681 
 1682                 if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
 1683                         ifp->if_oerrors++;
 1684                         if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
 1685                                 ifp->if_collisions++;
 1686                         if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
 1687                                 ifp->if_collisions++;
 1688                 }
 1689 
 1690                 ifp->if_collisions +=
 1691                     (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
 1692 
 1693                 ifp->if_opackets++;
 1694                 if (cur_tx->sis_mbuf != NULL) {
 1695                         m_freem(cur_tx->sis_mbuf);
 1696                         cur_tx->sis_mbuf = NULL;
 1697                         bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
 1698                         bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
 1699                 }
 1700         }
 1701 
 1702         if (idx != sc->sis_cdata.sis_tx_cons) {
 1703                 /* we freed up some buffers */
 1704                 sc->sis_cdata.sis_tx_cons = idx;
 1705                 ifp->if_flags &= ~IFF_OACTIVE;
 1706         }
 1707 
 1708         ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
 1709 
 1710         return;
 1711 }
 1712 
 1713 static void
 1714 sis_tick(xsc)
 1715         void                    *xsc;
 1716 {
 1717         struct sis_softc        *sc;
 1718         struct mii_data         *mii;
 1719         struct ifnet            *ifp;
 1720 
 1721         sc = xsc;
 1722         SIS_LOCK(sc);
 1723         sc->in_tick = 1;
 1724         ifp = &sc->arpcom.ac_if;
 1725 
 1726         mii = device_get_softc(sc->sis_miibus);
 1727         mii_tick(mii);
 1728 
 1729         if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
 1730             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1731                 sc->sis_link++;
 1732                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1733                         sis_start(ifp);
 1734         }
 1735 
 1736         callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
 1737         sc->in_tick = 0;
 1738         SIS_UNLOCK(sc);
 1739 
 1740         return;
 1741 }
 1742 
 1743 #ifdef DEVICE_POLLING
 1744 static poll_handler_t sis_poll;
 1745 
 1746 static void
 1747 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1748 {
 1749         struct  sis_softc *sc = ifp->if_softc;
 1750 
 1751         SIS_LOCK(sc);
 1752         if (!(ifp->if_capenable & IFCAP_POLLING)) {
 1753                 ether_poll_deregister(ifp);
 1754                 cmd = POLL_DEREGISTER;
 1755         }
 1756         if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
 1757                 CSR_WRITE_4(sc, SIS_IER, 1);
 1758                 goto done;
 1759         }
 1760 
 1761         /*
 1762          * On the sis, reading the status register also clears it.
 1763          * So before returning to intr mode we must make sure that all
 1764          * possible pending sources of interrupts have been served.
 1765          * In practice this means run to completion the *eof routines,
 1766          * and then call the interrupt routine
 1767          */
 1768         sc->rxcycles = count;
 1769         sis_rxeof(sc);
 1770         sis_txeof(sc);
 1771         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1772                 sis_start(ifp);
 1773 
 1774         if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
 1775                 u_int32_t       status;
 1776 
 1777                 /* Reading the ISR register clears all interrupts. */
 1778                 status = CSR_READ_4(sc, SIS_ISR);
 1779 
 1780                 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
 1781                         sis_rxeoc(sc);
 1782 
 1783                 if (status & (SIS_ISR_RX_IDLE))
 1784                         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 1785 
 1786                 if (status & SIS_ISR_SYSERR) {
 1787                         sis_reset(sc);
 1788                         sis_init(sc);
 1789                 }
 1790         }
 1791 done:
 1792         SIS_UNLOCK(sc);
 1793         return;
 1794 }
 1795 #endif /* DEVICE_POLLING */
 1796 
 1797 static void
 1798 sis_intr(arg)
 1799         void                    *arg;
 1800 {
 1801         struct sis_softc        *sc;
 1802         struct ifnet            *ifp;
 1803         u_int32_t               status;
 1804 
 1805         sc = arg;
 1806         ifp = &sc->arpcom.ac_if;
 1807 
 1808         SIS_LOCK(sc);
 1809 #ifdef DEVICE_POLLING
 1810         if (ifp->if_flags & IFF_POLLING)
 1811                 goto done;
 1812         if ((ifp->if_capenable & IFCAP_POLLING) &&
 1813             ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
 1814                 CSR_WRITE_4(sc, SIS_IER, 0);
 1815                 goto done;
 1816         }
 1817 #endif /* DEVICE_POLLING */
 1818 
 1819         /* Supress unwanted interrupts */
 1820         if (!(ifp->if_flags & IFF_UP)) {
 1821                 sis_stop(sc);
 1822                 goto done;
 1823         }
 1824 
 1825         /* Disable interrupts. */
 1826         CSR_WRITE_4(sc, SIS_IER, 0);
 1827 
 1828         for (;;) {
 1829                 /* Reading the ISR register clears all interrupts. */
 1830                 status = CSR_READ_4(sc, SIS_ISR);
 1831 
 1832                 if ((status & SIS_INTRS) == 0)
 1833                         break;
 1834 
 1835                 if (status &
 1836                     (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
 1837                      SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
 1838                         sis_txeof(sc);
 1839 
 1840                 if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
 1841                         sis_rxeof(sc);
 1842 
 1843                 if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
 1844                         sis_rxeoc(sc);
 1845 
 1846                 if (status & (SIS_ISR_RX_IDLE))
 1847                         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 1848 
 1849                 if (status & SIS_ISR_SYSERR) {
 1850                         sis_reset(sc);
 1851                         sis_init(sc);
 1852                 }
 1853         }
 1854 
 1855         /* Re-enable interrupts. */
 1856         CSR_WRITE_4(sc, SIS_IER, 1);
 1857 
 1858         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1859                 sis_start(ifp);
 1860 done:
 1861         SIS_UNLOCK(sc);
 1862 
 1863         return;
 1864 }
 1865 
 1866 /*
 1867  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1868  * pointers to the fragment pointers.
 1869  */
 1870 static int
 1871 sis_encap(sc, m_head, txidx)
 1872         struct sis_softc        *sc;
 1873         struct mbuf             **m_head;
 1874         u_int32_t               *txidx;
 1875 {
 1876         struct sis_desc         *f = NULL;
 1877         struct mbuf             *m;
 1878         int                     frag, cur, cnt = 0, chainlen = 0;
 1879 
 1880         /*
 1881          * If there's no way we can send any packets, return now.
 1882          */
 1883         if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
 1884                 return (ENOBUFS);
 1885 
 1886         /*
 1887          * Count the number of frags in this chain to see if
 1888          * we need to m_defrag.  Since the descriptor list is shared
 1889          * by all packets, we'll m_defrag long chains so that they
 1890          * do not use up the entire list, even if they would fit.
 1891          */
 1892 
 1893         for (m = *m_head; m != NULL; m = m->m_next)
 1894                 chainlen++;
 1895 
 1896         if ((chainlen > SIS_TX_LIST_CNT / 4) ||
 1897             ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
 1898                 m = m_defrag(*m_head, M_DONTWAIT);
 1899                 if (m == NULL)
 1900                         return (ENOBUFS);
 1901                 *m_head = m;
 1902         }
 1903         
 1904         /*
 1905          * Start packing the mbufs in this chain into
 1906          * the fragment pointers. Stop when we run out
 1907          * of fragments or hit the end of the mbuf chain.
 1908          */
 1909         cur = frag = *txidx;
 1910 
 1911         for (m = *m_head; m != NULL; m = m->m_next) {
 1912                 if (m->m_len != 0) {
 1913                         if ((SIS_TX_LIST_CNT -
 1914                             (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
 1915                                 return(ENOBUFS);
 1916                         f = &sc->sis_ldata.sis_tx_list[frag];
 1917                         f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
 1918                         bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
 1919                         bus_dmamap_load(sc->sis_tag, f->sis_map,
 1920                             mtod(m, void *), m->m_len,
 1921                             sis_dma_map_desc_ptr, f, 0);
 1922                         bus_dmamap_sync(sc->sis_tag,
 1923                             f->sis_map, BUS_DMASYNC_PREREAD);
 1924                         if (cnt != 0)
 1925                                 f->sis_ctl |= SIS_CMDSTS_OWN;
 1926                         cur = frag;
 1927                         SIS_INC(frag, SIS_TX_LIST_CNT);
 1928                         cnt++;
 1929                 }
 1930         }
 1931 
 1932         if (m != NULL)
 1933                 return(ENOBUFS);
 1934 
 1935         sc->sis_ldata.sis_tx_list[cur].sis_mbuf = *m_head;
 1936         sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
 1937         sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
 1938         sc->sis_cdata.sis_tx_cnt += cnt;
 1939         *txidx = frag;
 1940 
 1941         return(0);
 1942 }
 1943 
 1944 /*
 1945  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 1946  * to the mbuf data regions directly in the transmit lists. We also save a
 1947  * copy of the pointers since the transmit list fragment pointers are
 1948  * physical addresses.
 1949  */
 1950 
 1951 static void
 1952 sis_start(ifp)
 1953         struct ifnet            *ifp;
 1954 {
 1955         struct sis_softc        *sc;
 1956         struct mbuf             *m_head = NULL;
 1957         u_int32_t               idx, queued = 0;
 1958 
 1959         sc = ifp->if_softc;
 1960         SIS_LOCK(sc);
 1961 
 1962         if (!sc->sis_link) {
 1963                 SIS_UNLOCK(sc);
 1964                 return;
 1965         }
 1966 
 1967         idx = sc->sis_cdata.sis_tx_prod;
 1968 
 1969         if (ifp->if_flags & IFF_OACTIVE) {
 1970                 SIS_UNLOCK(sc);
 1971                 return;
 1972         }
 1973 
 1974         while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
 1975                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1976                 if (m_head == NULL)
 1977                         break;
 1978 
 1979                 if (sis_encap(sc, &m_head, &idx)) {
 1980                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1981                         ifp->if_flags |= IFF_OACTIVE;
 1982                         break;
 1983                 }
 1984 
 1985                 queued++;
 1986 
 1987                 /*
 1988                  * If there's a BPF listener, bounce a copy of this frame
 1989                  * to him.
 1990                  */
 1991                 BPF_MTAP(ifp, m_head);
 1992 
 1993         }
 1994 
 1995         if (queued) {
 1996                 /* Transmit */
 1997                 sc->sis_cdata.sis_tx_prod = idx;
 1998                 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
 1999 
 2000                 /*
 2001                  * Set a timeout in case the chip goes out to lunch.
 2002                  */
 2003                 ifp->if_timer = 5;
 2004         }
 2005 
 2006         SIS_UNLOCK(sc);
 2007 
 2008         return;
 2009 }
 2010 
 2011 static void
 2012 sis_init(xsc)
 2013         void                    *xsc;
 2014 {
 2015         struct sis_softc        *sc = xsc;
 2016         struct ifnet            *ifp = &sc->arpcom.ac_if;
 2017         struct mii_data         *mii;
 2018 
 2019         SIS_LOCK(sc);
 2020 
 2021         /*
 2022          * Cancel pending I/O and free all RX/TX buffers.
 2023          */
 2024         sis_stop(sc);
 2025         sc->sis_stopped = 0;
 2026 
 2027 #ifdef notyet
 2028         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
 2029                 /*
 2030                  * Configure 400usec of interrupt holdoff.  This is based
 2031                  * on emperical tests on a Soekris 4801.
 2032                  */
 2033                 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
 2034         }
 2035 #endif
 2036 
 2037         mii = device_get_softc(sc->sis_miibus);
 2038 
 2039         /* Set MAC address */
 2040         if (sc->sis_type == SIS_TYPE_83815) {
 2041                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
 2042                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2043                     ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 2044                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
 2045                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2046                     ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 2047                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
 2048                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2049                     ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 2050         } else {
 2051                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
 2052                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2053                     ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 2054                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
 2055                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2056                     ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 2057                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
 2058                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2059                     ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 2060         }
 2061 
 2062         /* Init circular RX list. */
 2063         if (sis_list_rx_init(sc) == ENOBUFS) {
 2064                 printf("sis%d: initialization failed: no "
 2065                         "memory for rx buffers\n", sc->sis_unit);
 2066                 sis_stop(sc);
 2067                 SIS_UNLOCK(sc);
 2068                 return;
 2069         }
 2070 
 2071         /*
 2072          * Init tx descriptors.
 2073          */
 2074         sis_list_tx_init(sc);
 2075 
 2076         /*
 2077          * Page 78 of the DP83815 data sheet (september 2002 version)
 2078          * recommends the following register settings "for optimum
 2079          * performance." for rev 15C.  The driver from NS also sets
 2080          * the PHY_CR register for later versions.
 2081          */
 2082         if (sc->sis_type == SIS_TYPE_83815) {
 2083                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
 2084                 /* DC speed = 01 */
 2085                 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
 2086                 if (sc->sis_srr == NS_SRR_15C) {
 2087                         /* set val for c2 */
 2088                         CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
 2089                         /* load/kill c2 */
 2090                         CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
 2091                         /* rais SD off, from 4 to c */
 2092                         CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
 2093                 }
 2094                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
 2095         }
 2096 
 2097 
 2098         /*
 2099          * For the NatSemi chip, we have to explicitly enable the
 2100          * reception of ARP frames, as well as turn on the 'perfect
 2101          * match' filter where we store the station address, otherwise
 2102          * we won't receive unicasts meant for this host.
 2103          */
 2104         if (sc->sis_type == SIS_TYPE_83815) {
 2105                 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
 2106                 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
 2107         }
 2108 
 2109          /* If we want promiscuous mode, set the allframes bit. */
 2110         if (ifp->if_flags & IFF_PROMISC) {
 2111                 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
 2112         } else {
 2113                 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
 2114         }
 2115 
 2116         /*
 2117          * Set the capture broadcast bit to capture broadcast frames.
 2118          */
 2119         if (ifp->if_flags & IFF_BROADCAST) {
 2120                 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
 2121         } else {
 2122                 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
 2123         }
 2124 
 2125         /*
 2126          * Load the multicast filter.
 2127          */
 2128         if (sc->sis_type == SIS_TYPE_83815)
 2129                 sis_setmulti_ns(sc);
 2130         else
 2131                 sis_setmulti_sis(sc);
 2132 
 2133         /* Turn the receive filter on */
 2134         SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
 2135 
 2136         /*
 2137          * Load the address of the RX and TX lists.
 2138          */
 2139         CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
 2140         CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
 2141 
 2142         /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
 2143          * the PCI bus. When this bit is set, the Max DMA Burst Size
 2144          * for TX/RX DMA should be no larger than 16 double words.
 2145          */
 2146         if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
 2147                 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
 2148         } else {
 2149                 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
 2150         }
 2151 
 2152         /* Accept Long Packets for VLAN support */
 2153         SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
 2154 
 2155         /* Set TX configuration */
 2156         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
 2157                 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
 2158         } else {
 2159                 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
 2160         }
 2161 
 2162         /* Set full/half duplex mode. */
 2163         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
 2164                 SIS_SETBIT(sc, SIS_TX_CFG,
 2165                     (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
 2166                 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
 2167         } else {
 2168                 SIS_CLRBIT(sc, SIS_TX_CFG,
 2169                     (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
 2170                 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
 2171         }
 2172 
 2173         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
 2174              IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
 2175                 uint32_t reg;
 2176 
 2177                 /*
 2178                  * Some DP83815s experience problems when used with short
 2179                  * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
 2180                  * sequence adjusts the DSP's signal attenuation to fix the
 2181                  * problem.
 2182                  */
 2183                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
 2184 
 2185                 reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
 2186                 /* Allow coefficient to be read */
 2187                 CSR_WRITE_4(sc, NS_PHY_DSPCFG, (reg & 0xfff) | 0x1000);
 2188                 DELAY(100);
 2189                 reg = CSR_READ_4(sc, NS_PHY_TDATA);
 2190                 if ((reg & 0x0080) == 0 ||
 2191                      (reg > 0xd8 && reg <= 0xff)) {
 2192                         device_printf(sc->sis_self, "Applying short cable fix (reg=%x)\n", reg);
 2193                         CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
 2194                         /* Adjust coefficient and prevent change */
 2195                         SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
 2196                 }
 2197                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
 2198         }
 2199 
 2200         /*
 2201          * Enable interrupts.
 2202          */
 2203         CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
 2204 #ifdef DEVICE_POLLING
 2205         /*
 2206          * ... only enable interrupts if we are not polling, make sure
 2207          * they are off otherwise.
 2208          */
 2209         if (ifp->if_flags & IFF_POLLING)
 2210                 CSR_WRITE_4(sc, SIS_IER, 0);
 2211         else
 2212 #endif /* DEVICE_POLLING */
 2213         CSR_WRITE_4(sc, SIS_IER, 1);
 2214 
 2215         /* Enable receiver and transmitter. */
 2216         SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
 2217         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 2218 
 2219 #ifdef notdef
 2220         mii_mediachg(mii);
 2221 #endif
 2222 
 2223         ifp->if_flags |= IFF_RUNNING;
 2224         ifp->if_flags &= ~IFF_OACTIVE;
 2225 
 2226         if (!sc->in_tick)
 2227                 callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
 2228 
 2229         SIS_UNLOCK(sc);
 2230 
 2231         return;
 2232 }
 2233 
 2234 /*
 2235  * Set media options.
 2236  */
 2237 static int
 2238 sis_ifmedia_upd(ifp)
 2239         struct ifnet            *ifp;
 2240 {
 2241         struct sis_softc        *sc;
 2242         struct mii_data         *mii;
 2243 
 2244         sc = ifp->if_softc;
 2245 
 2246         mii = device_get_softc(sc->sis_miibus);
 2247         sc->sis_link = 0;
 2248         if (mii->mii_instance) {
 2249                 struct mii_softc        *miisc;
 2250                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 2251                         mii_phy_reset(miisc);
 2252         }
 2253         mii_mediachg(mii);
 2254 
 2255         return(0);
 2256 }
 2257 
 2258 /*
 2259  * Report current media status.
 2260  */
 2261 static void
 2262 sis_ifmedia_sts(ifp, ifmr)
 2263         struct ifnet            *ifp;
 2264         struct ifmediareq       *ifmr;
 2265 {
 2266         struct sis_softc        *sc;
 2267         struct mii_data         *mii;
 2268 
 2269         sc = ifp->if_softc;
 2270 
 2271         mii = device_get_softc(sc->sis_miibus);
 2272         mii_pollstat(mii);
 2273         ifmr->ifm_active = mii->mii_media_active;
 2274         ifmr->ifm_status = mii->mii_media_status;
 2275 
 2276         return;
 2277 }
 2278 
 2279 static int
 2280 sis_ioctl(ifp, command, data)
 2281         struct ifnet            *ifp;
 2282         u_long                  command;
 2283         caddr_t                 data;
 2284 {
 2285         struct sis_softc        *sc = ifp->if_softc;
 2286         struct ifreq            *ifr = (struct ifreq *) data;
 2287         struct mii_data         *mii;
 2288         int                     error = 0;
 2289 
 2290         switch(command) {
 2291         case SIOCSIFFLAGS:
 2292                 if (ifp->if_flags & IFF_UP) {
 2293                         sis_init(sc);
 2294                 } else {
 2295                         if (ifp->if_flags & IFF_RUNNING)
 2296                                 sis_stop(sc);
 2297                 }
 2298                 error = 0;
 2299                 break;
 2300         case SIOCADDMULTI:
 2301         case SIOCDELMULTI:
 2302                 SIS_LOCK(sc);
 2303                 if (sc->sis_type == SIS_TYPE_83815)
 2304                         sis_setmulti_ns(sc);
 2305                 else
 2306                         sis_setmulti_sis(sc);
 2307                 SIS_UNLOCK(sc);
 2308                 error = 0;
 2309                 break;
 2310         case SIOCGIFMEDIA:
 2311         case SIOCSIFMEDIA:
 2312                 mii = device_get_softc(sc->sis_miibus);
 2313                 SIS_LOCK(sc);
 2314                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2315                 SIS_UNLOCK(sc);
 2316                 break;
 2317         case SIOCSIFCAP:
 2318                 ifp->if_capenable &= ~IFCAP_POLLING;
 2319                 ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
 2320                 break;
 2321         default:
 2322                 error = ether_ioctl(ifp, command, data);
 2323                 break;
 2324         }
 2325 
 2326         return(error);
 2327 }
 2328 
 2329 static void
 2330 sis_watchdog(ifp)
 2331         struct ifnet            *ifp;
 2332 {
 2333         struct sis_softc        *sc;
 2334 
 2335         sc = ifp->if_softc;
 2336 
 2337         SIS_LOCK(sc);
 2338 
 2339         ifp->if_oerrors++;
 2340         printf("sis%d: watchdog timeout\n", sc->sis_unit);
 2341 
 2342         sis_stop(sc);
 2343         sis_reset(sc);
 2344         sis_init(sc);
 2345 
 2346         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2347                 sis_start(ifp);
 2348 
 2349         SIS_UNLOCK(sc);
 2350 
 2351         return;
 2352 }
 2353 
 2354 /*
 2355  * Stop the adapter and free any mbufs allocated to the
 2356  * RX and TX lists.
 2357  */
 2358 static void
 2359 sis_stop(sc)
 2360         struct sis_softc        *sc;
 2361 {
 2362         register int            i;
 2363         struct ifnet            *ifp;
 2364 
 2365         if (sc->sis_stopped)
 2366                 return;
 2367         SIS_LOCK(sc);
 2368         ifp = &sc->arpcom.ac_if;
 2369         ifp->if_timer = 0;
 2370 
 2371         callout_stop(&sc->sis_stat_ch);
 2372 
 2373         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 2374 #ifdef DEVICE_POLLING
 2375         ether_poll_deregister(ifp);
 2376 #endif
 2377         CSR_WRITE_4(sc, SIS_IER, 0);
 2378         CSR_WRITE_4(sc, SIS_IMR, 0);
 2379         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
 2380         DELAY(1000);
 2381         CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
 2382         CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
 2383 
 2384         sc->sis_link = 0;
 2385 
 2386         /*
 2387          * Free data in the RX lists.
 2388          */
 2389         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 2390                 if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
 2391                         bus_dmamap_unload(sc->sis_tag,
 2392                             sc->sis_ldata.sis_rx_list[i].sis_map);
 2393                         bus_dmamap_destroy(sc->sis_tag,
 2394                             sc->sis_ldata.sis_rx_list[i].sis_map);
 2395                         m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
 2396                         sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
 2397                 }
 2398         }
 2399         bzero(sc->sis_ldata.sis_rx_list,
 2400                 sizeof(sc->sis_ldata.sis_rx_list));
 2401 
 2402         /*
 2403          * Free the TX list buffers.
 2404          */
 2405         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 2406                 if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
 2407                         bus_dmamap_unload(sc->sis_tag,
 2408                             sc->sis_ldata.sis_tx_list[i].sis_map);
 2409                         bus_dmamap_destroy(sc->sis_tag,
 2410                             sc->sis_ldata.sis_tx_list[i].sis_map);
 2411                         m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
 2412                         sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
 2413                 }
 2414         }
 2415 
 2416         bzero(sc->sis_ldata.sis_tx_list,
 2417                 sizeof(sc->sis_ldata.sis_tx_list));
 2418 
 2419         sc->sis_stopped = 1;
 2420         SIS_UNLOCK(sc);
 2421 
 2422         return;
 2423 }
 2424 
 2425 /*
 2426  * Stop all chip I/O so that the kernel's probe routines don't
 2427  * get confused by errant DMAs when rebooting.
 2428  */
 2429 static void
 2430 sis_shutdown(dev)
 2431         device_t                dev;
 2432 {
 2433         struct sis_softc        *sc;
 2434 
 2435         sc = device_get_softc(dev);
 2436         SIS_LOCK(sc);
 2437         sis_reset(sc);
 2438         sis_stop(sc);
 2439         SIS_UNLOCK(sc);
 2440 
 2441         return;
 2442 }

Cache object: c206f65e935ca1ec176f4e71fee058c6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.