The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_sis.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 /*
   37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
   38  * available from http://www.sis.com.tw.
   39  *
   40  * This driver also supports the NatSemi DP83815. Datasheets are
   41  * available from http://www.national.com.
   42  *
   43  * Written by Bill Paul <wpaul@ee.columbia.edu>
   44  * Electrical Engineering Department
   45  * Columbia University, New York City
   46  */
   47 /*
   48  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
   49  * simple TX and RX descriptors of 3 longwords in size. The receiver
   50  * has a single perfect filter entry for the station address and a
   51  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
   52  * transceiver while the 7016 requires an external transceiver chip.
   53  * Both chips offer the standard bit-bang MII interface as well as
   54  * an enchanced PHY interface which simplifies accessing MII registers.
   55  *
   56  * The only downside to this chipset is that RX descriptors must be
   57  * longword aligned.
   58  */
   59 
   60 #include <sys/param.h>
   61 #include <sys/systm.h>
   62 #include <sys/sockio.h>
   63 #include <sys/mbuf.h>
   64 #include <sys/malloc.h>
   65 #include <sys/kernel.h>
   66 #include <sys/module.h>
   67 #include <sys/socket.h>
   68 #include <sys/sysctl.h>
   69 
   70 #include <net/if.h>
   71 #include <net/if_arp.h>
   72 #include <net/ethernet.h>
   73 #include <net/if_dl.h>
   74 #include <net/if_media.h>
   75 #include <net/if_types.h>
   76 #include <net/if_vlan_var.h>
   77 
   78 #include <net/bpf.h>
   79 
   80 #include <machine/bus_pio.h>
   81 #include <machine/bus_memio.h>
   82 #include <machine/bus.h>
   83 #include <machine/resource.h>
   84 #include <sys/bus.h>
   85 #include <sys/rman.h>
   86 
   87 #include <dev/mii/mii.h>
   88 #include <dev/mii/miivar.h>
   89 
   90 #include <dev/pci/pcireg.h>
   91 #include <dev/pci/pcivar.h>
   92 
   93 #define SIS_USEIOSPACE
   94 
   95 #include <pci/if_sisreg.h>
   96 
   97 MODULE_DEPEND(sis, pci, 1, 1, 1);
   98 MODULE_DEPEND(sis, ether, 1, 1, 1);
   99 MODULE_DEPEND(sis, miibus, 1, 1, 1);
  100 
  101 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  102 #include "miibus_if.h"
  103 
  104 /*
  105  * Various supported device vendors/types and their names.
  106  */
  107 static struct sis_type sis_devs[] = {
  108         { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
  109         { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
  110         { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
  111         { 0, 0, NULL }
  112 };
  113 
  114 static int sis_probe            (device_t);
  115 static int sis_attach           (device_t);
  116 static int sis_detach           (device_t);
  117 
  118 static int sis_newbuf           (struct sis_softc *,
  119                                         struct sis_desc *, struct mbuf *);
  120 static int sis_encap            (struct sis_softc *,
  121                                         struct mbuf **, u_int32_t *);
  122 static void sis_rxeof           (struct sis_softc *);
  123 static void sis_rxeoc           (struct sis_softc *);
  124 static void sis_txeof           (struct sis_softc *);
  125 static void sis_intr            (void *);
  126 static void sis_tick            (void *);
  127 static void sis_start           (struct ifnet *);
  128 static int sis_ioctl            (struct ifnet *, u_long, caddr_t);
  129 static void sis_init            (void *);
  130 static void sis_stop            (struct sis_softc *);
  131 static void sis_watchdog                (struct ifnet *);
  132 static void sis_shutdown                (device_t);
  133 static int sis_ifmedia_upd      (struct ifnet *);
  134 static void sis_ifmedia_sts     (struct ifnet *, struct ifmediareq *);
  135 
  136 static u_int16_t sis_reverse    (u_int16_t);
  137 static void sis_delay           (struct sis_softc *);
  138 static void sis_eeprom_idle     (struct sis_softc *);
  139 static void sis_eeprom_putbyte  (struct sis_softc *, int);
  140 static void sis_eeprom_getword  (struct sis_softc *, int, u_int16_t *);
  141 static void sis_read_eeprom     (struct sis_softc *, caddr_t, int, int, int);
  142 #ifdef __i386__
  143 static void sis_read_cmos       (struct sis_softc *, device_t, caddr_t,
  144                                                         int, int);
  145 static void sis_read_mac        (struct sis_softc *, device_t, caddr_t);
  146 static device_t sis_find_bridge (device_t);
  147 #endif
  148 
  149 static void sis_mii_sync        (struct sis_softc *);
  150 static void sis_mii_send        (struct sis_softc *, u_int32_t, int);
  151 static int sis_mii_readreg      (struct sis_softc *, struct sis_mii_frame *);
  152 static int sis_mii_writereg     (struct sis_softc *, struct sis_mii_frame *);
  153 static int sis_miibus_readreg   (device_t, int, int);
  154 static int sis_miibus_writereg  (device_t, int, int, int);
  155 static void sis_miibus_statchg  (device_t);
  156 
  157 static void sis_setmulti_sis    (struct sis_softc *);
  158 static void sis_setmulti_ns     (struct sis_softc *);
  159 static uint32_t sis_mchash      (struct sis_softc *, const uint8_t *);
  160 static void sis_reset           (struct sis_softc *);
  161 static int sis_list_rx_init     (struct sis_softc *);
  162 static int sis_list_tx_init     (struct sis_softc *);
  163 
  164 static void sis_dma_map_desc_ptr        (void *, bus_dma_segment_t *, int, int);
  165 static void sis_dma_map_desc_next       (void *, bus_dma_segment_t *, int, int);
  166 static void sis_dma_map_ring            (void *, bus_dma_segment_t *, int, int);
  167 #ifdef SIS_USEIOSPACE
  168 #define SIS_RES                 SYS_RES_IOPORT
  169 #define SIS_RID                 SIS_PCI_LOIO
  170 #else
  171 #define SIS_RES                 SYS_RES_MEMORY
  172 #define SIS_RID                 SIS_PCI_LOMEM
  173 #endif
  174 
  175 static device_method_t sis_methods[] = {
  176         /* Device interface */
  177         DEVMETHOD(device_probe,         sis_probe),
  178         DEVMETHOD(device_attach,        sis_attach),
  179         DEVMETHOD(device_detach,        sis_detach),
  180         DEVMETHOD(device_shutdown,      sis_shutdown),
  181 
  182         /* bus interface */
  183         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  184         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  185 
  186         /* MII interface */
  187         DEVMETHOD(miibus_readreg,       sis_miibus_readreg),
  188         DEVMETHOD(miibus_writereg,      sis_miibus_writereg),
  189         DEVMETHOD(miibus_statchg,       sis_miibus_statchg),
  190 
  191         { 0, 0 }
  192 };
  193 
  194 static driver_t sis_driver = {
  195         "sis",
  196         sis_methods,
  197         sizeof(struct sis_softc)
  198 };
  199 
  200 static devclass_t sis_devclass;
  201 
  202 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
  203 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
  204 
  205 #define SIS_SETBIT(sc, reg, x)                          \
  206         CSR_WRITE_4(sc, reg,                            \
  207                 CSR_READ_4(sc, reg) | (x))
  208 
  209 #define SIS_CLRBIT(sc, reg, x)                          \
  210         CSR_WRITE_4(sc, reg,                            \
  211                 CSR_READ_4(sc, reg) & ~(x))
  212 
  213 #define SIO_SET(x)                                      \
  214         CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
  215 
  216 #define SIO_CLR(x)                                      \
  217         CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
  218 
  219 static void
  220 sis_dma_map_desc_next(arg, segs, nseg, error)
  221         void *arg;
  222         bus_dma_segment_t *segs;
  223         int nseg, error;
  224 {
  225         struct sis_desc *r;
  226 
  227         r = arg;
  228         r->sis_next = segs->ds_addr;
  229 
  230         return;
  231 }
  232 
  233 static void
  234 sis_dma_map_desc_ptr(arg, segs, nseg, error)
  235         void *arg;
  236         bus_dma_segment_t *segs;
  237         int nseg, error;
  238 {
  239         struct sis_desc *r;
  240 
  241         r = arg;
  242         r->sis_ptr = segs->ds_addr;
  243 
  244         return;
  245 }
  246 
  247 static void
  248 sis_dma_map_ring(arg, segs, nseg, error)
  249         void *arg;
  250         bus_dma_segment_t *segs;
  251         int nseg, error;
  252 {
  253         u_int32_t *p;
  254 
  255         p = arg;
  256         *p = segs->ds_addr;
  257 
  258         return;
  259 }
  260 
  261 /*
  262  * Routine to reverse the bits in a word. Stolen almost
  263  * verbatim from /usr/games/fortune.
  264  */
  265 static u_int16_t
  266 sis_reverse(n)
  267         u_int16_t               n;
  268 {
  269         n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
  270         n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
  271         n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
  272         n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
  273 
  274         return(n);
  275 }
  276 
  277 static void
  278 sis_delay(sc)
  279         struct sis_softc        *sc;
  280 {
  281         int                     idx;
  282 
  283         for (idx = (300 / 33) + 1; idx > 0; idx--)
  284                 CSR_READ_4(sc, SIS_CSR);
  285 
  286         return;
  287 }
  288 
  289 static void
  290 sis_eeprom_idle(sc)
  291         struct sis_softc        *sc;
  292 {
  293         register int            i;
  294 
  295         SIO_SET(SIS_EECTL_CSEL);
  296         sis_delay(sc);
  297         SIO_SET(SIS_EECTL_CLK);
  298         sis_delay(sc);
  299 
  300         for (i = 0; i < 25; i++) {
  301                 SIO_CLR(SIS_EECTL_CLK);
  302                 sis_delay(sc);
  303                 SIO_SET(SIS_EECTL_CLK);
  304                 sis_delay(sc);
  305         }
  306 
  307         SIO_CLR(SIS_EECTL_CLK);
  308         sis_delay(sc);
  309         SIO_CLR(SIS_EECTL_CSEL);
  310         sis_delay(sc);
  311         CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
  312 
  313         return;
  314 }
  315 
  316 /*
  317  * Send a read command and address to the EEPROM, check for ACK.
  318  */
  319 static void
  320 sis_eeprom_putbyte(sc, addr)
  321         struct sis_softc        *sc;
  322         int                     addr;
  323 {
  324         register int            d, i;
  325 
  326         d = addr | SIS_EECMD_READ;
  327 
  328         /*
  329          * Feed in each bit and stobe the clock.
  330          */
  331         for (i = 0x400; i; i >>= 1) {
  332                 if (d & i) {
  333                         SIO_SET(SIS_EECTL_DIN);
  334                 } else {
  335                         SIO_CLR(SIS_EECTL_DIN);
  336                 }
  337                 sis_delay(sc);
  338                 SIO_SET(SIS_EECTL_CLK);
  339                 sis_delay(sc);
  340                 SIO_CLR(SIS_EECTL_CLK);
  341                 sis_delay(sc);
  342         }
  343 
  344         return;
  345 }
  346 
  347 /*
  348  * Read a word of data stored in the EEPROM at address 'addr.'
  349  */
  350 static void
  351 sis_eeprom_getword(sc, addr, dest)
  352         struct sis_softc        *sc;
  353         int                     addr;
  354         u_int16_t               *dest;
  355 {
  356         register int            i;
  357         u_int16_t               word = 0;
  358 
  359         /* Force EEPROM to idle state. */
  360         sis_eeprom_idle(sc);
  361 
  362         /* Enter EEPROM access mode. */
  363         sis_delay(sc);
  364         SIO_CLR(SIS_EECTL_CLK);
  365         sis_delay(sc);
  366         SIO_SET(SIS_EECTL_CSEL);
  367         sis_delay(sc);
  368 
  369         /*
  370          * Send address of word we want to read.
  371          */
  372         sis_eeprom_putbyte(sc, addr);
  373 
  374         /*
  375          * Start reading bits from EEPROM.
  376          */
  377         for (i = 0x8000; i; i >>= 1) {
  378                 SIO_SET(SIS_EECTL_CLK);
  379                 sis_delay(sc);
  380                 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
  381                         word |= i;
  382                 sis_delay(sc);
  383                 SIO_CLR(SIS_EECTL_CLK);
  384                 sis_delay(sc);
  385         }
  386 
  387         /* Turn off EEPROM access mode. */
  388         sis_eeprom_idle(sc);
  389 
  390         *dest = word;
  391 
  392         return;
  393 }
  394 
  395 /*
  396  * Read a sequence of words from the EEPROM.
  397  */
  398 static void
  399 sis_read_eeprom(sc, dest, off, cnt, swap)
  400         struct sis_softc        *sc;
  401         caddr_t                 dest;
  402         int                     off;
  403         int                     cnt;
  404         int                     swap;
  405 {
  406         int                     i;
  407         u_int16_t               word = 0, *ptr;
  408 
  409         for (i = 0; i < cnt; i++) {
  410                 sis_eeprom_getword(sc, off + i, &word);
  411                 ptr = (u_int16_t *)(dest + (i * 2));
  412                 if (swap)
  413                         *ptr = ntohs(word);
  414                 else
  415                         *ptr = word;
  416         }
  417 
  418         return;
  419 }
  420 
  421 #ifdef __i386__
  422 static device_t
  423 sis_find_bridge(dev)
  424         device_t                dev;
  425 {
  426         devclass_t              pci_devclass;
  427         device_t                *pci_devices;
  428         int                     pci_count = 0;
  429         device_t                *pci_children;
  430         int                     pci_childcount = 0;
  431         device_t                *busp, *childp;
  432         device_t                child = NULL;
  433         int                     i, j;
  434 
  435         if ((pci_devclass = devclass_find("pci")) == NULL)
  436                 return(NULL);
  437 
  438         devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
  439 
  440         for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
  441                 pci_childcount = 0;
  442                 device_get_children(*busp, &pci_children, &pci_childcount);
  443                 for (j = 0, childp = pci_children;
  444                     j < pci_childcount; j++, childp++) {
  445                         if (pci_get_vendor(*childp) == SIS_VENDORID &&
  446                             pci_get_device(*childp) == 0x0008) {
  447                                 child = *childp;
  448                                 goto done;
  449                         }
  450                 }
  451         }
  452 
  453 done:
  454         free(pci_devices, M_TEMP);
  455         free(pci_children, M_TEMP);
  456         return(child);
  457 }
  458 
  459 static void
  460 sis_read_cmos(sc, dev, dest, off, cnt)
  461         struct sis_softc        *sc;
  462         device_t                dev;
  463         caddr_t                 dest;
  464         int                     off;
  465         int                     cnt;
  466 {
  467         device_t                bridge;
  468         u_int8_t                reg;
  469         int                     i;
  470         bus_space_tag_t         btag;
  471 
  472         bridge = sis_find_bridge(dev);
  473         if (bridge == NULL)
  474                 return;
  475         reg = pci_read_config(bridge, 0x48, 1);
  476         pci_write_config(bridge, 0x48, reg|0x40, 1);
  477 
  478         /* XXX */
  479         btag = I386_BUS_SPACE_IO;
  480 
  481         for (i = 0; i < cnt; i++) {
  482                 bus_space_write_1(btag, 0x0, 0x70, i + off);
  483                 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
  484         }
  485 
  486         pci_write_config(bridge, 0x48, reg & ~0x40, 1);
  487         return;
  488 }
  489 
  490 static void
  491 sis_read_mac(sc, dev, dest)
  492         struct sis_softc        *sc;
  493         device_t                dev;
  494         caddr_t                 dest;
  495 {
  496         u_int32_t               filtsave, csrsave;
  497 
  498         filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
  499         csrsave = CSR_READ_4(sc, SIS_CSR);
  500 
  501         CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
  502         CSR_WRITE_4(sc, SIS_CSR, 0);
  503                 
  504         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
  505 
  506         CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
  507         ((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  508         CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
  509         ((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  510         CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
  511         ((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  512 
  513         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
  514         CSR_WRITE_4(sc, SIS_CSR, csrsave);
  515         return;
  516 }
  517 #endif
  518 
  519 /*
  520  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  521  */
  522 static void sis_mii_sync(sc)
  523         struct sis_softc        *sc;
  524 {
  525         register int            i;
  526  
  527         SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
  528  
  529         for (i = 0; i < 32; i++) {
  530                 SIO_SET(SIS_MII_CLK);
  531                 DELAY(1);
  532                 SIO_CLR(SIS_MII_CLK);
  533                 DELAY(1);
  534         }
  535  
  536         return;
  537 }
  538  
  539 /*
  540  * Clock a series of bits through the MII.
  541  */
  542 static void sis_mii_send(sc, bits, cnt)
  543         struct sis_softc        *sc;
  544         u_int32_t               bits;
  545         int                     cnt;
  546 {
  547         int                     i;
  548  
  549         SIO_CLR(SIS_MII_CLK);
  550  
  551         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  552                 if (bits & i) {
  553                         SIO_SET(SIS_MII_DATA);
  554                 } else {
  555                         SIO_CLR(SIS_MII_DATA);
  556                 }
  557                 DELAY(1);
  558                 SIO_CLR(SIS_MII_CLK);
  559                 DELAY(1);
  560                 SIO_SET(SIS_MII_CLK);
  561         }
  562 }
  563  
  564 /*
  565  * Read an PHY register through the MII.
  566  */
  567 static int sis_mii_readreg(sc, frame)
  568         struct sis_softc        *sc;
  569         struct sis_mii_frame    *frame;
  570         
  571 {
  572         int                     i, ack, s;
  573  
  574         s = splimp();
  575  
  576         /*
  577          * Set up frame for RX.
  578          */
  579         frame->mii_stdelim = SIS_MII_STARTDELIM;
  580         frame->mii_opcode = SIS_MII_READOP;
  581         frame->mii_turnaround = 0;
  582         frame->mii_data = 0;
  583         
  584         /*
  585          * Turn on data xmit.
  586          */
  587         SIO_SET(SIS_MII_DIR);
  588 
  589         sis_mii_sync(sc);
  590  
  591         /*
  592          * Send command/address info.
  593          */
  594         sis_mii_send(sc, frame->mii_stdelim, 2);
  595         sis_mii_send(sc, frame->mii_opcode, 2);
  596         sis_mii_send(sc, frame->mii_phyaddr, 5);
  597         sis_mii_send(sc, frame->mii_regaddr, 5);
  598  
  599         /* Idle bit */
  600         SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
  601         DELAY(1);
  602         SIO_SET(SIS_MII_CLK);
  603         DELAY(1);
  604  
  605         /* Turn off xmit. */
  606         SIO_CLR(SIS_MII_DIR);
  607  
  608         /* Check for ack */
  609         SIO_CLR(SIS_MII_CLK);
  610         DELAY(1);
  611         ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
  612         SIO_SET(SIS_MII_CLK);
  613         DELAY(1);
  614  
  615         /*
  616          * Now try reading data bits. If the ack failed, we still
  617          * need to clock through 16 cycles to keep the PHY(s) in sync.
  618          */
  619         if (ack) {
  620                 for(i = 0; i < 16; i++) {
  621                         SIO_CLR(SIS_MII_CLK);
  622                         DELAY(1);
  623                         SIO_SET(SIS_MII_CLK);
  624                         DELAY(1);
  625                 }
  626                 goto fail;
  627         }
  628  
  629         for (i = 0x8000; i; i >>= 1) {
  630                 SIO_CLR(SIS_MII_CLK);
  631                 DELAY(1);
  632                 if (!ack) {
  633                         if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
  634                                 frame->mii_data |= i;
  635                         DELAY(1);
  636                 }
  637                 SIO_SET(SIS_MII_CLK);
  638                 DELAY(1);
  639         }
  640 
  641 fail:
  642 
  643         SIO_CLR(SIS_MII_CLK);
  644         DELAY(1);
  645         SIO_SET(SIS_MII_CLK);
  646         DELAY(1);
  647 
  648         splx(s);
  649 
  650         if (ack)
  651                 return(1);
  652         return(0);
  653 }
  654  
  655 /*
  656  * Write to a PHY register through the MII.
  657  */
  658 static int sis_mii_writereg(sc, frame)
  659         struct sis_softc        *sc;
  660         struct sis_mii_frame    *frame;
  661         
  662 {
  663         int                     s;
  664  
  665          s = splimp();
  666         /*
  667          * Set up frame for TX.
  668          */
  669  
  670         frame->mii_stdelim = SIS_MII_STARTDELIM;
  671         frame->mii_opcode = SIS_MII_WRITEOP;
  672         frame->mii_turnaround = SIS_MII_TURNAROUND;
  673         
  674         /*
  675          * Turn on data output.
  676          */
  677         SIO_SET(SIS_MII_DIR);
  678  
  679         sis_mii_sync(sc);
  680  
  681         sis_mii_send(sc, frame->mii_stdelim, 2);
  682         sis_mii_send(sc, frame->mii_opcode, 2);
  683         sis_mii_send(sc, frame->mii_phyaddr, 5);
  684         sis_mii_send(sc, frame->mii_regaddr, 5);
  685         sis_mii_send(sc, frame->mii_turnaround, 2);
  686         sis_mii_send(sc, frame->mii_data, 16);
  687  
  688         /* Idle bit. */
  689         SIO_SET(SIS_MII_CLK);
  690         DELAY(1);
  691         SIO_CLR(SIS_MII_CLK);
  692         DELAY(1);
  693  
  694         /*
  695          * Turn off xmit.
  696          */
  697         SIO_CLR(SIS_MII_DIR);
  698  
  699         splx(s);
  700  
  701         return(0);
  702 }
  703 
  704 static int
  705 sis_miibus_readreg(dev, phy, reg)
  706         device_t                dev;
  707         int                     phy, reg;
  708 {
  709         struct sis_softc        *sc;
  710         struct sis_mii_frame    frame;
  711 
  712         sc = device_get_softc(dev);
  713 
  714         if (sc->sis_type == SIS_TYPE_83815) {
  715                 if (phy != 0)
  716                         return(0);
  717                 /*
  718                  * The NatSemi chip can take a while after
  719                  * a reset to come ready, during which the BMSR
  720                  * returns a value of 0. This is *never* supposed
  721                  * to happen: some of the BMSR bits are meant to
  722                  * be hardwired in the on position, and this can
  723                  * confuse the miibus code a bit during the probe
  724                  * and attach phase. So we make an effort to check
  725                  * for this condition and wait for it to clear.
  726                  */
  727                 if (!CSR_READ_4(sc, NS_BMSR))
  728                         DELAY(1000);
  729                 return CSR_READ_4(sc, NS_BMCR + (reg * 4));
  730         }
  731 
  732         /*
  733          * Chipsets < SIS_635 seem not to be able to read/write
  734          * through mdio. Use the enhanced PHY access register
  735          * again for them.
  736          */
  737         if (sc->sis_type == SIS_TYPE_900 &&
  738             sc->sis_rev < SIS_REV_635) {
  739                 int i, val = 0;
  740 
  741                 if (phy != 0)
  742                         return(0);
  743 
  744                 CSR_WRITE_4(sc, SIS_PHYCTL,
  745                     (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
  746                 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
  747 
  748                 for (i = 0; i < SIS_TIMEOUT; i++) {
  749                         if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
  750                                 break;
  751                 }
  752 
  753                 if (i == SIS_TIMEOUT) {
  754                         printf("sis%d: PHY failed to come ready\n",
  755                             sc->sis_unit);
  756                         return(0);
  757                 }
  758 
  759                 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
  760 
  761                 if (val == 0xFFFF)
  762                         return(0);
  763 
  764                 return(val);
  765         } else {
  766                 bzero((char *)&frame, sizeof(frame));
  767 
  768                 frame.mii_phyaddr = phy;
  769                 frame.mii_regaddr = reg;
  770                 sis_mii_readreg(sc, &frame);
  771 
  772                 return(frame.mii_data);
  773         }
  774 }
  775 
  776 static int
  777 sis_miibus_writereg(dev, phy, reg, data)
  778         device_t                dev;
  779         int                     phy, reg, data;
  780 {
  781         struct sis_softc        *sc;
  782         struct sis_mii_frame    frame;
  783 
  784         sc = device_get_softc(dev);
  785 
  786         if (sc->sis_type == SIS_TYPE_83815) {
  787                 if (phy != 0)
  788                         return(0);
  789                 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
  790                 return(0);
  791         }
  792 
  793         /*
  794          * Chipsets < SIS_635 seem not to be able to read/write
  795          * through mdio. Use the enhanced PHY access register
  796          * again for them.
  797          */
  798         if (sc->sis_type == SIS_TYPE_900 &&
  799             sc->sis_rev < SIS_REV_635) {
  800                 int i;
  801 
  802                 if (phy != 0)
  803                         return(0);
  804 
  805                 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
  806                     (reg << 6) | SIS_PHYOP_WRITE);
  807                 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
  808 
  809                 for (i = 0; i < SIS_TIMEOUT; i++) {
  810                         if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
  811                                 break;
  812                 }
  813 
  814                 if (i == SIS_TIMEOUT)
  815                         printf("sis%d: PHY failed to come ready\n",
  816                             sc->sis_unit);
  817         } else {
  818                 bzero((char *)&frame, sizeof(frame));
  819 
  820                 frame.mii_phyaddr = phy;
  821                 frame.mii_regaddr = reg;
  822                 frame.mii_data = data;
  823                 sis_mii_writereg(sc, &frame);
  824         }
  825         return(0);
  826 }
  827 
  828 static void
  829 sis_miibus_statchg(dev)
  830         device_t                dev;
  831 {
  832         struct sis_softc        *sc;
  833 
  834         sc = device_get_softc(dev);
  835         sis_init(sc);
  836 
  837         return;
  838 }
  839 
  840 static u_int32_t
  841 sis_mchash(sc, addr)
  842         struct sis_softc        *sc;
  843         const uint8_t           *addr;
  844 {
  845         uint32_t                crc;
  846 
  847         /* Compute CRC for the address value. */
  848         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
  849 
  850         /*
  851          * return the filter bit position
  852          *
  853          * The NatSemi chip has a 512-bit filter, which is
  854          * different than the SiS, so we special-case it.
  855          */
  856         if (sc->sis_type == SIS_TYPE_83815)
  857                 return (crc >> 23);
  858         else if (sc->sis_rev >= SIS_REV_635 ||
  859             sc->sis_rev == SIS_REV_900B)
  860                 return (crc >> 24);
  861         else
  862                 return (crc >> 25);
  863 }
  864 
  865 static void
  866 sis_setmulti_ns(sc)
  867         struct sis_softc        *sc;
  868 {
  869         struct ifnet            *ifp;
  870         struct ifmultiaddr      *ifma;
  871         u_int32_t               h = 0, i, filtsave;
  872         int                     bit, index;
  873 
  874         ifp = &sc->arpcom.ac_if;
  875 
  876         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  877                 SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
  878                 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
  879                 return;
  880         }
  881 
  882         /*
  883          * We have to explicitly enable the multicast hash table
  884          * on the NatSemi chip if we want to use it, which we do.
  885          */
  886         SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
  887         SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
  888 
  889         filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
  890 
  891         /* first, zot all the existing hash bits */
  892         for (i = 0; i < 32; i++) {
  893                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
  894                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
  895         }
  896 
  897         IF_ADDR_LOCK(ifp);
  898         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  899                 if (ifma->ifma_addr->sa_family != AF_LINK)
  900                         continue;
  901                 h = sis_mchash(sc,
  902                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  903                 index = h >> 3;
  904                 bit = h & 0x1F;
  905                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
  906                 if (bit > 0xF)
  907                         bit -= 0x10;
  908                 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
  909         }
  910         IF_ADDR_UNLOCK(ifp);
  911 
  912         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
  913 
  914         return;
  915 }
  916 
  917 static void
  918 sis_setmulti_sis(sc)
  919         struct sis_softc        *sc;
  920 {
  921         struct ifnet            *ifp;
  922         struct ifmultiaddr      *ifma;
  923         u_int32_t               h, i, n, ctl;
  924         u_int16_t               hashes[16];
  925 
  926         ifp = &sc->arpcom.ac_if;
  927 
  928         /* hash table size */
  929         if (sc->sis_rev >= SIS_REV_635 ||
  930             sc->sis_rev == SIS_REV_900B)
  931                 n = 16;
  932         else
  933                 n = 8;
  934 
  935         ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
  936 
  937         if (ifp->if_flags & IFF_BROADCAST)
  938                 ctl |= SIS_RXFILTCTL_BROAD;
  939 
  940         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  941                 ctl |= SIS_RXFILTCTL_ALLMULTI;
  942                 if (ifp->if_flags & IFF_PROMISC)
  943                         ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
  944                 for (i = 0; i < n; i++)
  945                         hashes[i] = ~0;
  946         } else {
  947                 for (i = 0; i < n; i++)
  948                         hashes[i] = 0;
  949                 i = 0;
  950                 IF_ADDR_LOCK(ifp);
  951                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  952                         if (ifma->ifma_addr->sa_family != AF_LINK)
  953                         continue;
  954                         h = sis_mchash(sc,
  955                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  956                         hashes[h >> 4] |= 1 << (h & 0xf);
  957                         i++;
  958                 }
  959                 IF_ADDR_UNLOCK(ifp);
  960                 if (i > n) {
  961                         ctl |= SIS_RXFILTCTL_ALLMULTI;
  962                         for (i = 0; i < n; i++)
  963                                 hashes[i] = ~0;
  964                 }
  965         }
  966 
  967         for (i = 0; i < n; i++) {
  968                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
  969                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
  970         }
  971 
  972         CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
  973 }
  974 
  975 static void
  976 sis_reset(sc)
  977         struct sis_softc        *sc;
  978 {
  979         register int            i;
  980 
  981         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
  982 
  983         for (i = 0; i < SIS_TIMEOUT; i++) {
  984                 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
  985                         break;
  986         }
  987 
  988         if (i == SIS_TIMEOUT)
  989                 printf("sis%d: reset never completed\n", sc->sis_unit);
  990 
  991         /* Wait a little while for the chip to get its brains in order. */
  992         DELAY(1000);
  993 
  994         /*
  995          * If this is a NetSemi chip, make sure to clear
  996          * PME mode.
  997          */
  998         if (sc->sis_type == SIS_TYPE_83815) {
  999                 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
 1000                 CSR_WRITE_4(sc, NS_CLKRUN, 0);
 1001         }
 1002 
 1003         return;
 1004 }
 1005 
 1006 /*
 1007  * Probe for an SiS chip. Check the PCI vendor and device
 1008  * IDs against our list and return a device name if we find a match.
 1009  */
 1010 static int
 1011 sis_probe(dev)
 1012         device_t                dev;
 1013 {
 1014         struct sis_type         *t;
 1015 
 1016         t = sis_devs;
 1017 
 1018         while(t->sis_name != NULL) {
 1019                 if ((pci_get_vendor(dev) == t->sis_vid) &&
 1020                     (pci_get_device(dev) == t->sis_did)) {
 1021                         device_set_desc(dev, t->sis_name);
 1022                         return(0);
 1023                 }
 1024                 t++;
 1025         }
 1026 
 1027         return(ENXIO);
 1028 }
 1029 
 1030 /*
 1031  * Attach the interface. Allocate softc structures, do ifmedia
 1032  * setup and ethernet/BPF attach.
 1033  */
 1034 static int
 1035 sis_attach(dev)
 1036         device_t                dev;
 1037 {
 1038         u_char                  eaddr[ETHER_ADDR_LEN];
 1039         struct sis_softc        *sc;
 1040         struct ifnet            *ifp;
 1041         int                     unit, error = 0, rid, waittime = 0;
 1042 
 1043         waittime = 0;
 1044         sc = device_get_softc(dev);
 1045         unit = device_get_unit(dev);
 1046 
 1047         sc->sis_self = dev;
 1048 
 1049         mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1050             MTX_DEF | MTX_RECURSE);
 1051 
 1052         if (pci_get_device(dev) == SIS_DEVICEID_900)
 1053                 sc->sis_type = SIS_TYPE_900;
 1054         if (pci_get_device(dev) == SIS_DEVICEID_7016)
 1055                 sc->sis_type = SIS_TYPE_7016;
 1056         if (pci_get_vendor(dev) == NS_VENDORID)
 1057                 sc->sis_type = SIS_TYPE_83815;
 1058 
 1059         sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
 1060         /*
 1061          * Map control/status registers.
 1062          */
 1063         pci_enable_busmaster(dev);
 1064 
 1065         rid = SIS_RID;
 1066         sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
 1067 
 1068         if (sc->sis_res == NULL) {
 1069                 printf("sis%d: couldn't map ports/memory\n", unit);
 1070                 error = ENXIO;
 1071                 goto fail;
 1072         }
 1073 
 1074         sc->sis_btag = rman_get_bustag(sc->sis_res);
 1075         sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
 1076 
 1077         /* Allocate interrupt */
 1078         rid = 0;
 1079         sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1080             RF_SHAREABLE | RF_ACTIVE);
 1081 
 1082         if (sc->sis_irq == NULL) {
 1083                 printf("sis%d: couldn't map interrupt\n", unit);
 1084                 error = ENXIO;
 1085                 goto fail;
 1086         }
 1087 
 1088         /* Reset the adapter. */
 1089         sis_reset(sc);
 1090 
 1091         if (sc->sis_type == SIS_TYPE_900 &&
 1092             (sc->sis_rev == SIS_REV_635 ||
 1093             sc->sis_rev == SIS_REV_900B)) {
 1094                 SIO_SET(SIS_CFG_RND_CNT);
 1095                 SIO_SET(SIS_CFG_PERR_DETECT);
 1096         }
 1097 
 1098         /*
 1099          * Get station address from the EEPROM.
 1100          */
 1101         switch (pci_get_vendor(dev)) {
 1102         case NS_VENDORID:
 1103                 sc->sis_srr = CSR_READ_4(sc, NS_SRR);
 1104 
 1105                 /* We can't update the device description, so spew */
 1106                 if (sc->sis_srr == NS_SRR_15C)
 1107                         device_printf(dev, "Silicon Revision: DP83815C\n");
 1108                 else if (sc->sis_srr == NS_SRR_15D)
 1109                         device_printf(dev, "Silicon Revision: DP83815D\n");
 1110                 else if (sc->sis_srr == NS_SRR_16A)
 1111                         device_printf(dev, "Silicon Revision: DP83816A\n");
 1112                 else
 1113                         device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
 1114 
 1115                 /*
 1116                  * Reading the MAC address out of the EEPROM on
 1117                  * the NatSemi chip takes a bit more work than
 1118                  * you'd expect. The address spans 4 16-bit words,
 1119                  * with the first word containing only a single bit.
 1120                  * You have to shift everything over one bit to
 1121                  * get it aligned properly. Also, the bits are
 1122                  * stored backwards (the LSB is really the MSB,
 1123                  * and so on) so you have to reverse them in order
 1124                  * to get the MAC address into the form we want.
 1125                  * Why? Who the hell knows.
 1126                  */
 1127                 {
 1128                         u_int16_t               tmp[4];
 1129 
 1130                         sis_read_eeprom(sc, (caddr_t)&tmp,
 1131                             NS_EE_NODEADDR, 4, 0);
 1132 
 1133                         /* Shift everything over one bit. */
 1134                         tmp[3] = tmp[3] >> 1;
 1135                         tmp[3] |= tmp[2] << 15;
 1136                         tmp[2] = tmp[2] >> 1;
 1137                         tmp[2] |= tmp[1] << 15;
 1138                         tmp[1] = tmp[1] >> 1;
 1139                         tmp[1] |= tmp[0] << 15;
 1140 
 1141                         /* Now reverse all the bits. */
 1142                         tmp[3] = sis_reverse(tmp[3]);
 1143                         tmp[2] = sis_reverse(tmp[2]);
 1144                         tmp[1] = sis_reverse(tmp[1]);
 1145 
 1146                         bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
 1147                 }
 1148                 break;
 1149         case SIS_VENDORID:
 1150         default:
 1151 #ifdef __i386__
 1152                 /*
 1153                  * If this is a SiS 630E chipset with an embedded
 1154                  * SiS 900 controller, we have to read the MAC address
 1155                  * from the APC CMOS RAM. Our method for doing this
 1156                  * is very ugly since we have to reach out and grab
 1157                  * ahold of hardware for which we cannot properly
 1158                  * allocate resources. This code is only compiled on
 1159                  * the i386 architecture since the SiS 630E chipset
 1160                  * is for x86 motherboards only. Note that there are
 1161                  * a lot of magic numbers in this hack. These are
 1162                  * taken from SiS's Linux driver. I'd like to replace
 1163                  * them with proper symbolic definitions, but that
 1164                  * requires some datasheets that I don't have access
 1165                  * to at the moment.
 1166                  */
 1167                 if (sc->sis_rev == SIS_REV_630S ||
 1168                     sc->sis_rev == SIS_REV_630E ||
 1169                     sc->sis_rev == SIS_REV_630EA1)
 1170                         sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
 1171 
 1172                 else if (sc->sis_rev == SIS_REV_635 ||
 1173                          sc->sis_rev == SIS_REV_630ET)
 1174                         sis_read_mac(sc, dev, (caddr_t)&eaddr);
 1175                 else if (sc->sis_rev == SIS_REV_96x) {
 1176                         /* Allow to read EEPROM from LAN. It is shared
 1177                          * between a 1394 controller and the NIC and each
 1178                          * time we access it, we need to set SIS_EECMD_REQ.
 1179                          */
 1180                         SIO_SET(SIS_EECMD_REQ);
 1181                         for (waittime = 0; waittime < SIS_TIMEOUT;
 1182                             waittime++) {
 1183                                 /* Force EEPROM to idle state. */
 1184                                 sis_eeprom_idle(sc);
 1185                                 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
 1186                                         sis_read_eeprom(sc, (caddr_t)&eaddr,
 1187                                             SIS_EE_NODEADDR, 3, 0);
 1188                                         break;
 1189                                 }
 1190                                 DELAY(1);
 1191                         }
 1192                         /*
 1193                          * Set SIS_EECTL_CLK to high, so a other master
 1194                          * can operate on the i2c bus.
 1195                          */
 1196                         SIO_SET(SIS_EECTL_CLK);
 1197                         /* Refuse EEPROM access by LAN */
 1198                         SIO_SET(SIS_EECMD_DONE);
 1199                 } else
 1200 #endif
 1201                         sis_read_eeprom(sc, (caddr_t)&eaddr,
 1202                             SIS_EE_NODEADDR, 3, 0);
 1203                 break;
 1204         }
 1205 
 1206         sc->sis_unit = unit;
 1207         if (debug_mpsafenet)
 1208                 callout_init(&sc->sis_stat_ch, CALLOUT_MPSAFE);
 1209         else
 1210                 callout_init(&sc->sis_stat_ch, 0);
 1211         bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
 1212 
 1213         /*
 1214          * Allocate the parent bus DMA tag appropriate for PCI.
 1215          */
 1216 #define SIS_NSEG_NEW 32
 1217          error = bus_dma_tag_create(NULL,       /* parent */ 
 1218                         1, 0,                   /* alignment, boundary */
 1219                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
 1220                         BUS_SPACE_MAXADDR,      /* highaddr */
 1221                         NULL, NULL,             /* filter, filterarg */
 1222                         MAXBSIZE, SIS_NSEG_NEW, /* maxsize, nsegments */
 1223                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 
 1224                         BUS_DMA_ALLOCNOW,       /* flags */
 1225                         NULL, NULL,             /* lockfunc, lockarg */
 1226                         &sc->sis_parent_tag);
 1227         if (error)
 1228                 goto fail;
 1229 
 1230         /*
 1231          * Now allocate a tag for the DMA descriptor lists and a chunk
 1232          * of DMA-able memory based on the tag.  Also obtain the physical
 1233          * addresses of the RX and TX ring, which we'll need later.
 1234          * All of our lists are allocated as a contiguous block
 1235          * of memory.
 1236          */
 1237         error = bus_dma_tag_create(sc->sis_parent_tag,  /* parent */
 1238                         1, 0,                   /* alignment, boundary */
 1239                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1240                         BUS_SPACE_MAXADDR,      /* highaddr */
 1241                         NULL, NULL,             /* filter, filterarg */
 1242                         SIS_RX_LIST_SZ, 1,      /* maxsize,nsegments */
 1243                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1244                         0,                      /* flags */
 1245                         busdma_lock_mutex,      /* lockfunc */
 1246                         &Giant,                 /* lockarg */
 1247                         &sc->sis_ldata.sis_rx_tag);
 1248         if (error)
 1249                 goto fail;
 1250 
 1251         error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
 1252             (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 1253             &sc->sis_ldata.sis_rx_dmamap);
 1254 
 1255         if (error) {
 1256                 printf("sis%d: no memory for rx list buffers!\n", unit);
 1257                 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
 1258                 sc->sis_ldata.sis_rx_tag = NULL;
 1259                 goto fail;
 1260         }
 1261 
 1262         error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
 1263             sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
 1264             sizeof(struct sis_desc), sis_dma_map_ring,
 1265             &sc->sis_cdata.sis_rx_paddr, 0);
 1266 
 1267         if (error) {
 1268                 printf("sis%d: cannot get address of the rx ring!\n", unit);
 1269                 bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
 1270                     sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
 1271                 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
 1272                 sc->sis_ldata.sis_rx_tag = NULL;
 1273                 goto fail;
 1274         }
 1275 
 1276         error = bus_dma_tag_create(sc->sis_parent_tag,  /* parent */
 1277                         1, 0,                   /* alignment, boundary */
 1278                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1279                         BUS_SPACE_MAXADDR,      /* highaddr */
 1280                         NULL, NULL,             /* filter, filterarg */
 1281                         SIS_TX_LIST_SZ, 1,      /* maxsize,nsegments */
 1282                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1283                         0,                      /* flags */
 1284                         busdma_lock_mutex,      /* lockfunc */
 1285                         &Giant,                 /* lockarg */
 1286                         &sc->sis_ldata.sis_tx_tag);
 1287         if (error)
 1288                 goto fail;
 1289 
 1290         error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
 1291             (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 1292             &sc->sis_ldata.sis_tx_dmamap);
 1293 
 1294         if (error) {
 1295                 printf("sis%d: no memory for tx list buffers!\n", unit);
 1296                 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
 1297                 sc->sis_ldata.sis_tx_tag = NULL;
 1298                 goto fail;
 1299         }
 1300 
 1301         error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
 1302             sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
 1303             sizeof(struct sis_desc), sis_dma_map_ring,
 1304             &sc->sis_cdata.sis_tx_paddr, 0);
 1305 
 1306         if (error) {
 1307                 printf("sis%d: cannot get address of the tx ring!\n", unit);
 1308                 bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
 1309                     sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
 1310                 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
 1311                 sc->sis_ldata.sis_tx_tag = NULL;
 1312                 goto fail;
 1313         }
 1314 
 1315         error = bus_dma_tag_create(sc->sis_parent_tag,  /* parent */
 1316                         1, 0,                   /* alignment, boundary */
 1317                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1318                         BUS_SPACE_MAXADDR,      /* highaddr */
 1319                         NULL, NULL,             /* filter, filterarg */
 1320                         MCLBYTES, 1,            /* maxsize,nsegments */
 1321                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
 1322                         0,                      /* flags */
 1323                         busdma_lock_mutex,      /* lockfunc */
 1324                         &Giant,                 /* lockarg */
 1325                         &sc->sis_tag);
 1326         if (error)
 1327                 goto fail;
 1328 
 1329         /*
 1330          * Obtain the physical addresses of the RX and TX
 1331          * rings which we'll need later in the init routine.
 1332          */
 1333 
 1334         ifp = &sc->arpcom.ac_if;
 1335         ifp->if_softc = sc;
 1336         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1337         ifp->if_mtu = ETHERMTU;
 1338         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1339         ifp->if_ioctl = sis_ioctl;
 1340         ifp->if_start = sis_start;
 1341         ifp->if_watchdog = sis_watchdog;
 1342         ifp->if_init = sis_init;
 1343         ifp->if_baudrate = 10000000;
 1344         IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
 1345         ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
 1346         IFQ_SET_READY(&ifp->if_snd);
 1347 
 1348         /*
 1349          * Do MII setup.
 1350          */
 1351         if (mii_phy_probe(dev, &sc->sis_miibus,
 1352             sis_ifmedia_upd, sis_ifmedia_sts)) {
 1353                 printf("sis%d: MII without any PHY!\n", sc->sis_unit);
 1354                 error = ENXIO;
 1355                 goto fail;
 1356         }
 1357 
 1358         /*
 1359          * Call MI attach routine.
 1360          */
 1361         ether_ifattach(ifp, eaddr);
 1362         
 1363         /*
 1364          * Tell the upper layer(s) we support long frames.
 1365          */
 1366         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1367         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1368 
 1369 #ifdef DEVICE_POLLING
 1370         ifp->if_capabilities |= IFCAP_POLLING;
 1371 #endif
 1372         ifp->if_capenable = ifp->if_capabilities;
 1373 
 1374         /* Hook interrupt last to avoid having to lock softc */
 1375         error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1376             sis_intr, sc, &sc->sis_intrhand);
 1377 
 1378         if (error) {
 1379                 printf("sis%d: couldn't set up irq\n", unit);
 1380                 ether_ifdetach(ifp);
 1381                 goto fail;
 1382         }
 1383 
 1384 fail:
 1385         if (error)
 1386                 sis_detach(dev);
 1387 
 1388         return(error);
 1389 }
 1390 
 1391 /*
 1392  * Shutdown hardware and free up resources. This can be called any
 1393  * time after the mutex has been initialized. It is called in both
 1394  * the error case in attach and the normal detach case so it needs
 1395  * to be careful about only freeing resources that have actually been
 1396  * allocated.
 1397  */
 1398 static int
 1399 sis_detach(dev)
 1400         device_t                dev;
 1401 {
 1402         struct sis_softc        *sc;
 1403         struct ifnet            *ifp;
 1404 
 1405         sc = device_get_softc(dev);
 1406         KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
 1407         SIS_LOCK(sc);
 1408         ifp = &sc->arpcom.ac_if;
 1409 
 1410         /* These should only be active if attach succeeded. */
 1411         if (device_is_attached(dev)) {
 1412                 sis_reset(sc);
 1413                 sis_stop(sc);
 1414                 ether_ifdetach(ifp);
 1415         }
 1416         if (sc->sis_miibus)
 1417                 device_delete_child(dev, sc->sis_miibus);
 1418         bus_generic_detach(dev);
 1419 
 1420         if (sc->sis_intrhand)
 1421                 bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
 1422         if (sc->sis_irq)
 1423                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
 1424         if (sc->sis_res)
 1425                 bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
 1426 
 1427         if (sc->sis_ldata.sis_rx_tag) {
 1428                 bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
 1429                     sc->sis_ldata.sis_rx_dmamap);
 1430                 bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
 1431                     sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
 1432                 bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
 1433         }
 1434         if (sc->sis_ldata.sis_tx_tag) {
 1435                 bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
 1436                     sc->sis_ldata.sis_tx_dmamap);
 1437                 bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
 1438                     sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
 1439                 bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
 1440         }
 1441         if (sc->sis_parent_tag)
 1442                 bus_dma_tag_destroy(sc->sis_parent_tag);
 1443         if (sc->sis_tag)
 1444                 bus_dma_tag_destroy(sc->sis_tag);
 1445 
 1446         SIS_UNLOCK(sc);
 1447         mtx_destroy(&sc->sis_mtx);
 1448 
 1449         return(0);
 1450 }
 1451 
 1452 /*
 1453  * Initialize the transmit descriptors.
 1454  */
 1455 static int
 1456 sis_list_tx_init(sc)
 1457         struct sis_softc        *sc;
 1458 {
 1459         struct sis_list_data    *ld;
 1460         struct sis_ring_data    *cd;
 1461         int                     i, nexti;
 1462 
 1463         cd = &sc->sis_cdata;
 1464         ld = &sc->sis_ldata;
 1465 
 1466         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 1467                 nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
 1468                         ld->sis_tx_list[i].sis_nextdesc =
 1469                             &ld->sis_tx_list[nexti];
 1470                         bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
 1471                             sc->sis_ldata.sis_tx_dmamap,
 1472                             &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
 1473                             sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
 1474                 ld->sis_tx_list[i].sis_mbuf = NULL;
 1475                 ld->sis_tx_list[i].sis_ptr = 0;
 1476                 ld->sis_tx_list[i].sis_ctl = 0;
 1477         }
 1478 
 1479         cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
 1480 
 1481         bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
 1482             sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
 1483 
 1484         return(0);
 1485 }
 1486 
 1487 /*
 1488  * Initialize the RX descriptors and allocate mbufs for them. Note that
 1489  * we arrange the descriptors in a closed ring, so that the last descriptor
 1490  * points back to the first.
 1491  */
 1492 static int
 1493 sis_list_rx_init(sc)
 1494         struct sis_softc        *sc;
 1495 {
 1496         struct sis_list_data    *ld;
 1497         struct sis_ring_data    *cd;
 1498         int                     i,nexti;
 1499 
 1500         ld = &sc->sis_ldata;
 1501         cd = &sc->sis_cdata;
 1502 
 1503         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 1504                 if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
 1505                         return(ENOBUFS);
 1506                 nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
 1507                         ld->sis_rx_list[i].sis_nextdesc =
 1508                             &ld->sis_rx_list[nexti];
 1509                         bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
 1510                             sc->sis_ldata.sis_rx_dmamap,
 1511                             &ld->sis_rx_list[nexti],
 1512                             sizeof(struct sis_desc), sis_dma_map_desc_next,
 1513                             &ld->sis_rx_list[i], 0);
 1514                 }
 1515 
 1516         bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
 1517             sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
 1518 
 1519         cd->sis_rx_prod = 0;
 1520 
 1521         return(0);
 1522 }
 1523 
 1524 /*
 1525  * Initialize an RX descriptor and attach an MBUF cluster.
 1526  */
 1527 static int
 1528 sis_newbuf(sc, c, m)
 1529         struct sis_softc        *sc;
 1530         struct sis_desc         *c;
 1531         struct mbuf             *m;
 1532 {
 1533 
 1534         if (c == NULL)
 1535                 return(EINVAL);
 1536 
 1537         if (m == NULL) {
 1538                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1539                 if (m == NULL)
 1540                         return(ENOBUFS);
 1541         } else
 1542                 m->m_data = m->m_ext.ext_buf;
 1543 
 1544         c->sis_mbuf = m;
 1545         c->sis_ctl = SIS_RXLEN;
 1546 
 1547         bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
 1548         bus_dmamap_load(sc->sis_tag, c->sis_map,
 1549             mtod(m, void *), MCLBYTES,
 1550             sis_dma_map_desc_ptr, c, 0);
 1551         bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
 1552 
 1553         return(0);
 1554 }
 1555 
 1556 /*
 1557  * A frame has been uploaded: pass the resulting mbuf chain up to
 1558  * the higher level protocols.
 1559  */
 1560 static void
 1561 sis_rxeof(sc)
 1562         struct sis_softc        *sc;
 1563 {
 1564         struct mbuf             *m;
 1565         struct ifnet            *ifp;
 1566         struct sis_desc         *cur_rx;
 1567         int                     i, total_len = 0;
 1568         u_int32_t               rxstat;
 1569 
 1570         SIS_LOCK_ASSERT(sc);
 1571 
 1572         ifp = &sc->arpcom.ac_if;
 1573         i = sc->sis_cdata.sis_rx_prod;
 1574 
 1575         while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
 1576 
 1577 #ifdef DEVICE_POLLING
 1578                 if (ifp->if_flags & IFF_POLLING) {
 1579                         if (sc->rxcycles <= 0)
 1580                                 break;
 1581                         sc->rxcycles--;
 1582                 }
 1583 #endif /* DEVICE_POLLING */
 1584                 cur_rx = &sc->sis_ldata.sis_rx_list[i];
 1585                 rxstat = cur_rx->sis_rxstat;
 1586                 bus_dmamap_sync(sc->sis_tag,
 1587                     cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
 1588                 bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
 1589                 bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
 1590                 m = cur_rx->sis_mbuf;
 1591                 cur_rx->sis_mbuf = NULL;
 1592                 total_len = SIS_RXBYTES(cur_rx);
 1593                 SIS_INC(i, SIS_RX_LIST_CNT);
 1594 
 1595                 /*
 1596                  * If an error occurs, update stats, clear the
 1597                  * status word and leave the mbuf cluster in place:
 1598                  * it should simply get re-used next time this descriptor
 1599                  * comes up in the ring.
 1600                  */
 1601                 if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
 1602                         ifp->if_ierrors++;
 1603                         if (rxstat & SIS_RXSTAT_COLL)
 1604                                 ifp->if_collisions++;
 1605                         sis_newbuf(sc, cur_rx, m);
 1606                         continue;
 1607                 }
 1608 
 1609                 /* No errors; receive the packet. */    
 1610 #ifdef __i386__
 1611                 /*
 1612                  * On the x86 we do not have alignment problems, so try to
 1613                  * allocate a new buffer for the receive ring, and pass up
 1614                  * the one where the packet is already, saving the expensive
 1615                  * copy done in m_devget().
 1616                  * If we are on an architecture with alignment problems, or
 1617                  * if the allocation fails, then use m_devget and leave the
 1618                  * existing buffer in the receive ring.
 1619                  */
 1620                 if (sis_newbuf(sc, cur_rx, NULL) == 0)
 1621                         m->m_pkthdr.len = m->m_len = total_len;
 1622                 else
 1623 #endif
 1624                 {
 1625                         struct mbuf             *m0;
 1626                         m0 = m_devget(mtod(m, char *), total_len,
 1627                                 ETHER_ALIGN, ifp, NULL);
 1628                         sis_newbuf(sc, cur_rx, m);
 1629                         if (m0 == NULL) {
 1630                                 ifp->if_ierrors++;
 1631                                 continue;
 1632                         }
 1633                         m = m0;
 1634                 }
 1635 
 1636                 ifp->if_ipackets++;
 1637                 m->m_pkthdr.rcvif = ifp;
 1638 
 1639                 SIS_UNLOCK(sc);
 1640                 (*ifp->if_input)(ifp, m);
 1641                 SIS_LOCK(sc);
 1642         }
 1643 
 1644         sc->sis_cdata.sis_rx_prod = i;
 1645 
 1646         return;
 1647 }
 1648 
 1649 static void
 1650 sis_rxeoc(sc)
 1651         struct sis_softc        *sc;
 1652 {
 1653         sis_rxeof(sc);
 1654         sis_init(sc);
 1655         return;
 1656 }
 1657 
 1658 /*
 1659  * A frame was downloaded to the chip. It's safe for us to clean up
 1660  * the list buffers.
 1661  */
 1662 
 1663 static void
 1664 sis_txeof(sc)
 1665         struct sis_softc        *sc;
 1666 {
 1667         struct ifnet            *ifp;
 1668         u_int32_t               idx;
 1669 
 1670         ifp = &sc->arpcom.ac_if;
 1671 
 1672         /*
 1673          * Go through our tx list and free mbufs for those
 1674          * frames that have been transmitted.
 1675          */
 1676         for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
 1677             sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
 1678                 struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
 1679 
 1680                 if (SIS_OWNDESC(cur_tx))
 1681                         break;
 1682 
 1683                 if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
 1684                         continue;
 1685 
 1686                 if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
 1687                         ifp->if_oerrors++;
 1688                         if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
 1689                                 ifp->if_collisions++;
 1690                         if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
 1691                                 ifp->if_collisions++;
 1692                 }
 1693 
 1694                 ifp->if_collisions +=
 1695                     (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
 1696 
 1697                 ifp->if_opackets++;
 1698                 if (cur_tx->sis_mbuf != NULL) {
 1699                         m_freem(cur_tx->sis_mbuf);
 1700                         cur_tx->sis_mbuf = NULL;
 1701                         bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
 1702                         bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
 1703                 }
 1704         }
 1705 
 1706         if (idx != sc->sis_cdata.sis_tx_cons) {
 1707                 /* we freed up some buffers */
 1708                 sc->sis_cdata.sis_tx_cons = idx;
 1709                 ifp->if_flags &= ~IFF_OACTIVE;
 1710         }
 1711 
 1712         ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
 1713 
 1714         return;
 1715 }
 1716 
 1717 static void
 1718 sis_tick(xsc)
 1719         void                    *xsc;
 1720 {
 1721         struct sis_softc        *sc;
 1722         struct mii_data         *mii;
 1723         struct ifnet            *ifp;
 1724 
 1725         sc = xsc;
 1726         SIS_LOCK(sc);
 1727         sc->in_tick = 1;
 1728         ifp = &sc->arpcom.ac_if;
 1729 
 1730         mii = device_get_softc(sc->sis_miibus);
 1731         mii_tick(mii);
 1732 
 1733         if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
 1734             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 1735                 sc->sis_link++;
 1736                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1737                         sis_start(ifp);
 1738         }
 1739 
 1740         callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
 1741         sc->in_tick = 0;
 1742         SIS_UNLOCK(sc);
 1743 
 1744         return;
 1745 }
 1746 
 1747 #ifdef DEVICE_POLLING
 1748 static poll_handler_t sis_poll;
 1749 
 1750 static void
 1751 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1752 {
 1753         struct  sis_softc *sc = ifp->if_softc;
 1754 
 1755         SIS_LOCK(sc);
 1756         if (!(ifp->if_capenable & IFCAP_POLLING)) {
 1757                 ether_poll_deregister(ifp);
 1758                 cmd = POLL_DEREGISTER;
 1759         }
 1760         if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
 1761                 CSR_WRITE_4(sc, SIS_IER, 1);
 1762                 goto done;
 1763         }
 1764 
 1765         /*
 1766          * On the sis, reading the status register also clears it.
 1767          * So before returning to intr mode we must make sure that all
 1768          * possible pending sources of interrupts have been served.
 1769          * In practice this means run to completion the *eof routines,
 1770          * and then call the interrupt routine
 1771          */
 1772         sc->rxcycles = count;
 1773         sis_rxeof(sc);
 1774         sis_txeof(sc);
 1775         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1776                 sis_start(ifp);
 1777 
 1778         if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
 1779                 u_int32_t       status;
 1780 
 1781                 /* Reading the ISR register clears all interrupts. */
 1782                 status = CSR_READ_4(sc, SIS_ISR);
 1783 
 1784                 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
 1785                         sis_rxeoc(sc);
 1786 
 1787                 if (status & (SIS_ISR_RX_IDLE))
 1788                         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 1789 
 1790                 if (status & SIS_ISR_SYSERR) {
 1791                         sis_reset(sc);
 1792                         sis_init(sc);
 1793                 }
 1794         }
 1795 done:
 1796         SIS_UNLOCK(sc);
 1797         return;
 1798 }
 1799 #endif /* DEVICE_POLLING */
 1800 
 1801 static void
 1802 sis_intr(arg)
 1803         void                    *arg;
 1804 {
 1805         struct sis_softc        *sc;
 1806         struct ifnet            *ifp;
 1807         u_int32_t               status;
 1808 
 1809         sc = arg;
 1810         ifp = &sc->arpcom.ac_if;
 1811 
 1812         SIS_LOCK(sc);
 1813 #ifdef DEVICE_POLLING
 1814         if (ifp->if_flags & IFF_POLLING)
 1815                 goto done;
 1816         if ((ifp->if_capenable & IFCAP_POLLING) &&
 1817             ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
 1818                 CSR_WRITE_4(sc, SIS_IER, 0);
 1819                 goto done;
 1820         }
 1821 #endif /* DEVICE_POLLING */
 1822 
 1823         /* Supress unwanted interrupts */
 1824         if (!(ifp->if_flags & IFF_UP)) {
 1825                 sis_stop(sc);
 1826                 goto done;
 1827         }
 1828 
 1829         /* Disable interrupts. */
 1830         CSR_WRITE_4(sc, SIS_IER, 0);
 1831 
 1832         for (;;) {
 1833                 /* Reading the ISR register clears all interrupts. */
 1834                 status = CSR_READ_4(sc, SIS_ISR);
 1835 
 1836                 if ((status & SIS_INTRS) == 0)
 1837                         break;
 1838 
 1839                 if (status &
 1840                     (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
 1841                      SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
 1842                         sis_txeof(sc);
 1843 
 1844                 if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
 1845                         sis_rxeof(sc);
 1846 
 1847                 if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
 1848                         sis_rxeoc(sc);
 1849 
 1850                 if (status & (SIS_ISR_RX_IDLE))
 1851                         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 1852 
 1853                 if (status & SIS_ISR_SYSERR) {
 1854                         sis_reset(sc);
 1855                         sis_init(sc);
 1856                 }
 1857         }
 1858 
 1859         /* Re-enable interrupts. */
 1860         CSR_WRITE_4(sc, SIS_IER, 1);
 1861 
 1862         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1863                 sis_start(ifp);
 1864 done:
 1865         SIS_UNLOCK(sc);
 1866 
 1867         return;
 1868 }
 1869 
 1870 /*
 1871  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1872  * pointers to the fragment pointers.
 1873  */
 1874 static int
 1875 sis_encap(sc, m_head, txidx)
 1876         struct sis_softc        *sc;
 1877         struct mbuf             **m_head;
 1878         u_int32_t               *txidx;
 1879 {
 1880         struct sis_desc         *f = NULL;
 1881         struct mbuf             *m;
 1882         int                     frag, cur, cnt = 0, chainlen = 0;
 1883 
 1884         /*
 1885          * If there's no way we can send any packets, return now.
 1886          */
 1887         if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
 1888                 return (ENOBUFS);
 1889 
 1890         /*
 1891          * Count the number of frags in this chain to see if
 1892          * we need to m_defrag.  Since the descriptor list is shared
 1893          * by all packets, we'll m_defrag long chains so that they
 1894          * do not use up the entire list, even if they would fit.
 1895          */
 1896 
 1897         for (m = *m_head; m != NULL; m = m->m_next)
 1898                 chainlen++;
 1899 
 1900         if ((chainlen > SIS_TX_LIST_CNT / 4) ||
 1901             ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
 1902                 m = m_defrag(*m_head, M_DONTWAIT);
 1903                 if (m == NULL)
 1904                         return (ENOBUFS);
 1905                 *m_head = m;
 1906         }
 1907         
 1908         /*
 1909          * Start packing the mbufs in this chain into
 1910          * the fragment pointers. Stop when we run out
 1911          * of fragments or hit the end of the mbuf chain.
 1912          */
 1913         cur = frag = *txidx;
 1914 
 1915         for (m = *m_head; m != NULL; m = m->m_next) {
 1916                 if (m->m_len != 0) {
 1917                         if ((SIS_TX_LIST_CNT -
 1918                             (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
 1919                                 return(ENOBUFS);
 1920                         f = &sc->sis_ldata.sis_tx_list[frag];
 1921                         f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
 1922                         bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
 1923                         bus_dmamap_load(sc->sis_tag, f->sis_map,
 1924                             mtod(m, void *), m->m_len,
 1925                             sis_dma_map_desc_ptr, f, 0);
 1926                         bus_dmamap_sync(sc->sis_tag,
 1927                             f->sis_map, BUS_DMASYNC_PREREAD);
 1928                         if (cnt != 0)
 1929                                 f->sis_ctl |= SIS_CMDSTS_OWN;
 1930                         cur = frag;
 1931                         SIS_INC(frag, SIS_TX_LIST_CNT);
 1932                         cnt++;
 1933                 }
 1934         }
 1935 
 1936         if (m != NULL)
 1937                 return(ENOBUFS);
 1938 
 1939         sc->sis_ldata.sis_tx_list[cur].sis_mbuf = *m_head;
 1940         sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
 1941         sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
 1942         sc->sis_cdata.sis_tx_cnt += cnt;
 1943         *txidx = frag;
 1944 
 1945         return(0);
 1946 }
 1947 
 1948 /*
 1949  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 1950  * to the mbuf data regions directly in the transmit lists. We also save a
 1951  * copy of the pointers since the transmit list fragment pointers are
 1952  * physical addresses.
 1953  */
 1954 
 1955 static void
 1956 sis_start(ifp)
 1957         struct ifnet            *ifp;
 1958 {
 1959         struct sis_softc        *sc;
 1960         struct mbuf             *m_head = NULL;
 1961         u_int32_t               idx, queued = 0;
 1962 
 1963         sc = ifp->if_softc;
 1964         SIS_LOCK(sc);
 1965 
 1966         if (!sc->sis_link) {
 1967                 SIS_UNLOCK(sc);
 1968                 return;
 1969         }
 1970 
 1971         idx = sc->sis_cdata.sis_tx_prod;
 1972 
 1973         if (ifp->if_flags & IFF_OACTIVE) {
 1974                 SIS_UNLOCK(sc);
 1975                 return;
 1976         }
 1977 
 1978         while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
 1979                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1980                 if (m_head == NULL)
 1981                         break;
 1982 
 1983                 if (sis_encap(sc, &m_head, &idx)) {
 1984                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1985                         ifp->if_flags |= IFF_OACTIVE;
 1986                         break;
 1987                 }
 1988 
 1989                 queued++;
 1990 
 1991                 /*
 1992                  * If there's a BPF listener, bounce a copy of this frame
 1993                  * to him.
 1994                  */
 1995                 BPF_MTAP(ifp, m_head);
 1996 
 1997         }
 1998 
 1999         if (queued) {
 2000                 /* Transmit */
 2001                 sc->sis_cdata.sis_tx_prod = idx;
 2002                 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
 2003 
 2004                 /*
 2005                  * Set a timeout in case the chip goes out to lunch.
 2006                  */
 2007                 ifp->if_timer = 5;
 2008         }
 2009 
 2010         SIS_UNLOCK(sc);
 2011 
 2012         return;
 2013 }
 2014 
 2015 static void
 2016 sis_init(xsc)
 2017         void                    *xsc;
 2018 {
 2019         struct sis_softc        *sc = xsc;
 2020         struct ifnet            *ifp = &sc->arpcom.ac_if;
 2021         struct mii_data         *mii;
 2022 
 2023         SIS_LOCK(sc);
 2024 
 2025         /*
 2026          * Cancel pending I/O and free all RX/TX buffers.
 2027          */
 2028         sis_stop(sc);
 2029         sc->sis_stopped = 0;
 2030 
 2031 #ifdef notyet
 2032         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
 2033                 /*
 2034                  * Configure 400usec of interrupt holdoff.  This is based
 2035                  * on emperical tests on a Soekris 4801.
 2036                  */
 2037                 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
 2038         }
 2039 #endif
 2040 
 2041         mii = device_get_softc(sc->sis_miibus);
 2042 
 2043         /* Set MAC address */
 2044         if (sc->sis_type == SIS_TYPE_83815) {
 2045                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
 2046                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2047                     ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 2048                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
 2049                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2050                     ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 2051                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
 2052                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2053                     ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 2054         } else {
 2055                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
 2056                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2057                     ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
 2058                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
 2059                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2060                     ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
 2061                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
 2062                 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
 2063                     ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
 2064         }
 2065 
 2066         /* Init circular RX list. */
 2067         if (sis_list_rx_init(sc) == ENOBUFS) {
 2068                 printf("sis%d: initialization failed: no "
 2069                         "memory for rx buffers\n", sc->sis_unit);
 2070                 sis_stop(sc);
 2071                 SIS_UNLOCK(sc);
 2072                 return;
 2073         }
 2074 
 2075         /*
 2076          * Init tx descriptors.
 2077          */
 2078         sis_list_tx_init(sc);
 2079 
 2080         /*
 2081          * Page 78 of the DP83815 data sheet (september 2002 version)
 2082          * recommends the following register settings "for optimum
 2083          * performance." for rev 15C.  The driver from NS also sets
 2084          * the PHY_CR register for later versions.
 2085          */
 2086         if (sc->sis_type == SIS_TYPE_83815) {
 2087                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
 2088                 /* DC speed = 01 */
 2089                 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
 2090                 if (sc->sis_srr == NS_SRR_15C) {
 2091                         /* set val for c2 */
 2092                         CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
 2093                         /* load/kill c2 */
 2094                         CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
 2095                         /* rais SD off, from 4 to c */
 2096                         CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
 2097                 }
 2098                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
 2099         }
 2100 
 2101 
 2102         /*
 2103          * For the NatSemi chip, we have to explicitly enable the
 2104          * reception of ARP frames, as well as turn on the 'perfect
 2105          * match' filter where we store the station address, otherwise
 2106          * we won't receive unicasts meant for this host.
 2107          */
 2108         if (sc->sis_type == SIS_TYPE_83815) {
 2109                 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
 2110                 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
 2111         }
 2112 
 2113          /* If we want promiscuous mode, set the allframes bit. */
 2114         if (ifp->if_flags & IFF_PROMISC) {
 2115                 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
 2116         } else {
 2117                 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
 2118         }
 2119 
 2120         /*
 2121          * Set the capture broadcast bit to capture broadcast frames.
 2122          */
 2123         if (ifp->if_flags & IFF_BROADCAST) {
 2124                 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
 2125         } else {
 2126                 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
 2127         }
 2128 
 2129         /*
 2130          * Load the multicast filter.
 2131          */
 2132         if (sc->sis_type == SIS_TYPE_83815)
 2133                 sis_setmulti_ns(sc);
 2134         else
 2135                 sis_setmulti_sis(sc);
 2136 
 2137         /* Turn the receive filter on */
 2138         SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
 2139 
 2140         /*
 2141          * Load the address of the RX and TX lists.
 2142          */
 2143         CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
 2144         CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
 2145 
 2146         /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
 2147          * the PCI bus. When this bit is set, the Max DMA Burst Size
 2148          * for TX/RX DMA should be no larger than 16 double words.
 2149          */
 2150         if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
 2151                 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
 2152         } else {
 2153                 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
 2154         }
 2155 
 2156         /* Accept Long Packets for VLAN support */
 2157         SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
 2158 
 2159         /* Set TX configuration */
 2160         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
 2161                 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
 2162         } else {
 2163                 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
 2164         }
 2165 
 2166         /* Set full/half duplex mode. */
 2167         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
 2168                 SIS_SETBIT(sc, SIS_TX_CFG,
 2169                     (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
 2170                 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
 2171         } else {
 2172                 SIS_CLRBIT(sc, SIS_TX_CFG,
 2173                     (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
 2174                 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
 2175         }
 2176 
 2177         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
 2178              IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
 2179                 uint32_t reg;
 2180 
 2181                 /*
 2182                  * Some DP83815s experience problems when used with short
 2183                  * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
 2184                  * sequence adjusts the DSP's signal attenuation to fix the
 2185                  * problem.
 2186                  */
 2187                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
 2188 
 2189                 reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
 2190                 /* Allow coefficient to be read */
 2191                 CSR_WRITE_4(sc, NS_PHY_DSPCFG, (reg & 0xfff) | 0x1000);
 2192                 DELAY(100);
 2193                 reg = CSR_READ_4(sc, NS_PHY_TDATA);
 2194                 if ((reg & 0x0080) == 0 ||
 2195                      (reg > 0xd8 && reg <= 0xff)) {
 2196                         device_printf(sc->sis_self, "Applying short cable fix (reg=%x)\n", reg);
 2197                         CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
 2198                         /* Adjust coefficient and prevent change */
 2199                         SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
 2200                 }
 2201                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
 2202         }
 2203 
 2204         /*
 2205          * Enable interrupts.
 2206          */
 2207         CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
 2208 #ifdef DEVICE_POLLING
 2209         /*
 2210          * ... only enable interrupts if we are not polling, make sure
 2211          * they are off otherwise.
 2212          */
 2213         if (ifp->if_flags & IFF_POLLING)
 2214                 CSR_WRITE_4(sc, SIS_IER, 0);
 2215         else
 2216 #endif /* DEVICE_POLLING */
 2217         CSR_WRITE_4(sc, SIS_IER, 1);
 2218 
 2219         /* Enable receiver and transmitter. */
 2220         SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
 2221         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 2222 
 2223 #ifdef notdef
 2224         mii_mediachg(mii);
 2225 #endif
 2226 
 2227         ifp->if_flags |= IFF_RUNNING;
 2228         ifp->if_flags &= ~IFF_OACTIVE;
 2229 
 2230         if (!sc->in_tick)
 2231                 callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
 2232 
 2233         SIS_UNLOCK(sc);
 2234 
 2235         return;
 2236 }
 2237 
 2238 /*
 2239  * Set media options.
 2240  */
 2241 static int
 2242 sis_ifmedia_upd(ifp)
 2243         struct ifnet            *ifp;
 2244 {
 2245         struct sis_softc        *sc;
 2246         struct mii_data         *mii;
 2247 
 2248         sc = ifp->if_softc;
 2249 
 2250         mii = device_get_softc(sc->sis_miibus);
 2251         sc->sis_link = 0;
 2252         if (mii->mii_instance) {
 2253                 struct mii_softc        *miisc;
 2254                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 2255                         mii_phy_reset(miisc);
 2256         }
 2257         mii_mediachg(mii);
 2258 
 2259         return(0);
 2260 }
 2261 
 2262 /*
 2263  * Report current media status.
 2264  */
 2265 static void
 2266 sis_ifmedia_sts(ifp, ifmr)
 2267         struct ifnet            *ifp;
 2268         struct ifmediareq       *ifmr;
 2269 {
 2270         struct sis_softc        *sc;
 2271         struct mii_data         *mii;
 2272 
 2273         sc = ifp->if_softc;
 2274 
 2275         mii = device_get_softc(sc->sis_miibus);
 2276         mii_pollstat(mii);
 2277         ifmr->ifm_active = mii->mii_media_active;
 2278         ifmr->ifm_status = mii->mii_media_status;
 2279 
 2280         return;
 2281 }
 2282 
 2283 static int
 2284 sis_ioctl(ifp, command, data)
 2285         struct ifnet            *ifp;
 2286         u_long                  command;
 2287         caddr_t                 data;
 2288 {
 2289         struct sis_softc        *sc = ifp->if_softc;
 2290         struct ifreq            *ifr = (struct ifreq *) data;
 2291         struct mii_data         *mii;
 2292         int                     error = 0;
 2293 
 2294         switch(command) {
 2295         case SIOCSIFFLAGS:
 2296                 if (ifp->if_flags & IFF_UP) {
 2297                         sis_init(sc);
 2298                 } else {
 2299                         if (ifp->if_flags & IFF_RUNNING)
 2300                                 sis_stop(sc);
 2301                 }
 2302                 error = 0;
 2303                 break;
 2304         case SIOCADDMULTI:
 2305         case SIOCDELMULTI:
 2306                 SIS_LOCK(sc);
 2307                 if (sc->sis_type == SIS_TYPE_83815)
 2308                         sis_setmulti_ns(sc);
 2309                 else
 2310                         sis_setmulti_sis(sc);
 2311                 SIS_UNLOCK(sc);
 2312                 error = 0;
 2313                 break;
 2314         case SIOCGIFMEDIA:
 2315         case SIOCSIFMEDIA:
 2316                 mii = device_get_softc(sc->sis_miibus);
 2317                 SIS_LOCK(sc);
 2318                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2319                 SIS_UNLOCK(sc);
 2320                 break;
 2321         case SIOCSIFCAP:
 2322                 ifp->if_capenable &= ~IFCAP_POLLING;
 2323                 ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
 2324                 break;
 2325         default:
 2326                 error = ether_ioctl(ifp, command, data);
 2327                 break;
 2328         }
 2329 
 2330         return(error);
 2331 }
 2332 
 2333 static void
 2334 sis_watchdog(ifp)
 2335         struct ifnet            *ifp;
 2336 {
 2337         struct sis_softc        *sc;
 2338 
 2339         sc = ifp->if_softc;
 2340 
 2341         SIS_LOCK(sc);
 2342 
 2343         ifp->if_oerrors++;
 2344         printf("sis%d: watchdog timeout\n", sc->sis_unit);
 2345 
 2346         sis_stop(sc);
 2347         sis_reset(sc);
 2348         sis_init(sc);
 2349 
 2350         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2351                 sis_start(ifp);
 2352 
 2353         SIS_UNLOCK(sc);
 2354 
 2355         return;
 2356 }
 2357 
 2358 /*
 2359  * Stop the adapter and free any mbufs allocated to the
 2360  * RX and TX lists.
 2361  */
 2362 static void
 2363 sis_stop(sc)
 2364         struct sis_softc        *sc;
 2365 {
 2366         register int            i;
 2367         struct ifnet            *ifp;
 2368 
 2369         if (sc->sis_stopped)
 2370                 return;
 2371         SIS_LOCK(sc);
 2372         ifp = &sc->arpcom.ac_if;
 2373         ifp->if_timer = 0;
 2374 
 2375         callout_stop(&sc->sis_stat_ch);
 2376 
 2377         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 2378 #ifdef DEVICE_POLLING
 2379         ether_poll_deregister(ifp);
 2380 #endif
 2381         CSR_WRITE_4(sc, SIS_IER, 0);
 2382         CSR_WRITE_4(sc, SIS_IMR, 0);
 2383         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
 2384         DELAY(1000);
 2385         CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
 2386         CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
 2387 
 2388         sc->sis_link = 0;
 2389 
 2390         /*
 2391          * Free data in the RX lists.
 2392          */
 2393         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 2394                 if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
 2395                         bus_dmamap_unload(sc->sis_tag,
 2396                             sc->sis_ldata.sis_rx_list[i].sis_map);
 2397                         bus_dmamap_destroy(sc->sis_tag,
 2398                             sc->sis_ldata.sis_rx_list[i].sis_map);
 2399                         m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
 2400                         sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
 2401                 }
 2402         }
 2403         bzero(sc->sis_ldata.sis_rx_list,
 2404                 sizeof(sc->sis_ldata.sis_rx_list));
 2405 
 2406         /*
 2407          * Free the TX list buffers.
 2408          */
 2409         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 2410                 if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
 2411                         bus_dmamap_unload(sc->sis_tag,
 2412                             sc->sis_ldata.sis_tx_list[i].sis_map);
 2413                         bus_dmamap_destroy(sc->sis_tag,
 2414                             sc->sis_ldata.sis_tx_list[i].sis_map);
 2415                         m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
 2416                         sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
 2417                 }
 2418         }
 2419 
 2420         bzero(sc->sis_ldata.sis_tx_list,
 2421                 sizeof(sc->sis_ldata.sis_tx_list));
 2422 
 2423         sc->sis_stopped = 1;
 2424         SIS_UNLOCK(sc);
 2425 
 2426         return;
 2427 }
 2428 
 2429 /*
 2430  * Stop all chip I/O so that the kernel's probe routines don't
 2431  * get confused by errant DMAs when rebooting.
 2432  */
 2433 static void
 2434 sis_shutdown(dev)
 2435         device_t                dev;
 2436 {
 2437         struct sis_softc        *sc;
 2438 
 2439         sc = device_get_softc(dev);
 2440         SIS_LOCK(sc);
 2441         sis_reset(sc);
 2442         sis_stop(sc);
 2443         SIS_UNLOCK(sc);
 2444 
 2445         return;
 2446 }

Cache object: 2cb06ac50a87e0dfe645708ed36d7acf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.