The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_tl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.3/sys/pci/if_tl.c 134658 2004-09-02 20:57:40Z rwatson $");
   35 
   36 /*
   37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
   38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
   39  * the National Semiconductor DP83840A physical interface and the
   40  * Microchip Technology 24Cxx series serial EEPROM.
   41  *
   42  * Written using the following four documents:
   43  *
   44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
   45  * National Semiconductor DP83840A data sheet (www.national.com)
   46  * Microchip Technology 24C02C data sheet (www.microchip.com)
   47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
   48  * 
   49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   50  * Electrical Engineering Department
   51  * Columbia University, New York City
   52  */
   53 /*
   54  * Some notes about the ThunderLAN:
   55  *
   56  * The ThunderLAN controller is a single chip containing PCI controller
   57  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
   58  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
   59  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
   60  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
   61  * to act as a complete ethernet interface.
   62  *
   63  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
   64  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
   65  * in full or half duplex. Some of the Compaq Deskpro machines use a
   66  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
   67  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
   68  * concert with the ThunderLAN's internal PHY to provide full 10/100
   69  * support. This is cheaper than using a standalone external PHY for both
   70  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
   71  * A serial EEPROM is also attached to the ThunderLAN chip to provide
   72  * power-up default register settings and for storing the adapter's
   73  * station address. Although not supported by this driver, the ThunderLAN
   74  * chip can also be connected to token ring PHYs.
   75  *
   76  * The ThunderLAN has a set of registers which can be used to issue
   77  * commands, acknowledge interrupts, and to manipulate other internal
   78  * registers on its DIO bus. The primary registers can be accessed
   79  * using either programmed I/O (inb/outb) or via PCI memory mapping,
   80  * depending on how the card is configured during the PCI probing
   81  * phase. It is even possible to have both PIO and memory mapped
   82  * access turned on at the same time.
   83  * 
   84  * Frame reception and transmission with the ThunderLAN chip is done
   85  * using frame 'lists.' A list structure looks more or less like this:
   86  *
   87  * struct tl_frag {
   88  *      u_int32_t               fragment_address;
   89  *      u_int32_t               fragment_size;
   90  * };
   91  * struct tl_list {
   92  *      u_int32_t               forward_pointer;
   93  *      u_int16_t               cstat;
   94  *      u_int16_t               frame_size;
   95  *      struct tl_frag          fragments[10];
   96  * };
   97  *
   98  * The forward pointer in the list header can be either a 0 or the address
   99  * of another list, which allows several lists to be linked together. Each
  100  * list contains up to 10 fragment descriptors. This means the chip allows
  101  * ethernet frames to be broken up into up to 10 chunks for transfer to
  102  * and from the SRAM. Note that the forward pointer and fragment buffer
  103  * addresses are physical memory addresses, not virtual. Note also that
  104  * a single ethernet frame can not span lists: if the host wants to
  105  * transmit a frame and the frame data is split up over more than 10
  106  * buffers, the frame has to collapsed before it can be transmitted.
  107  *
  108  * To receive frames, the driver sets up a number of lists and populates
  109  * the fragment descriptors, then it sends an RX GO command to the chip.
  110  * When a frame is received, the chip will DMA it into the memory regions
  111  * specified by the fragment descriptors and then trigger an RX 'end of
  112  * frame interrupt' when done. The driver may choose to use only one
  113  * fragment per list; this may result is slighltly less efficient use
  114  * of memory in exchange for improving performance.
  115  *
  116  * To transmit frames, the driver again sets up lists and fragment
  117  * descriptors, only this time the buffers contain frame data that
  118  * is to be DMA'ed into the chip instead of out of it. Once the chip
  119  * has transfered the data into its on-board SRAM, it will trigger a
  120  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
  121  * interrupt when it reaches the end of the list.
  122  */
  123 /*
  124  * Some notes about this driver:
  125  *
  126  * The ThunderLAN chip provides a couple of different ways to organize
  127  * reception, transmission and interrupt handling. The simplest approach
  128  * is to use one list each for transmission and reception. In this mode,
  129  * the ThunderLAN will generate two interrupts for every received frame
  130  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
  131  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
  132  * performance to have to handle so many interrupts.
  133  *
  134  * Initially I wanted to create a circular list of receive buffers so
  135  * that the ThunderLAN chip would think there was an infinitely long
  136  * receive channel and never deliver an RXEOC interrupt. However this
  137  * doesn't work correctly under heavy load: while the manual says the
  138  * chip will trigger an RXEOF interrupt each time a frame is copied into
  139  * memory, you can't count on the chip waiting around for you to acknowledge
  140  * the interrupt before it starts trying to DMA the next frame. The result
  141  * is that the chip might traverse the entire circular list and then wrap
  142  * around before you have a chance to do anything about it. Consequently,
  143  * the receive list is terminated (with a 0 in the forward pointer in the
  144  * last element). Each time an RXEOF interrupt arrives, the used list
  145  * is shifted to the end of the list. This gives the appearance of an
  146  * infinitely large RX chain so long as the driver doesn't fall behind
  147  * the chip and allow all of the lists to be filled up.
  148  *
  149  * If all the lists are filled, the adapter will deliver an RX 'end of
  150  * channel' interrupt when it hits the 0 forward pointer at the end of
  151  * the chain. The RXEOC handler then cleans out the RX chain and resets
  152  * the list head pointer in the ch_parm register and restarts the receiver.
  153  *
  154  * For frame transmission, it is possible to program the ThunderLAN's
  155  * transmit interrupt threshold so that the chip can acknowledge multiple
  156  * lists with only a single TX EOF interrupt. This allows the driver to
  157  * queue several frames in one shot, and only have to handle a total
  158  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
  159  * are transmitted. Frame transmission is done directly out of the
  160  * mbufs passed to the tl_start() routine via the interface send queue.
  161  * The driver simply sets up the fragment descriptors in the transmit
  162  * lists to point to the mbuf data regions and sends a TX GO command.
  163  *
  164  * Note that since the RX and TX lists themselves are always used
  165  * only by the driver, the are malloc()ed once at driver initialization
  166  * time and never free()ed.
  167  *
  168  * Also, in order to remain as platform independent as possible, this
  169  * driver uses memory mapped register access to manipulate the card
  170  * as opposed to programmed I/O. This avoids the use of the inb/outb
  171  * (and related) instructions which are specific to the i386 platform.
  172  *
  173  * Using these techniques, this driver achieves very high performance
  174  * by minimizing the amount of interrupts generated during large
  175  * transfers and by completely avoiding buffer copies. Frame transfer
  176  * to and from the ThunderLAN chip is performed entirely by the chip
  177  * itself thereby reducing the load on the host CPU.
  178  */
  179 
  180 #include <sys/param.h>
  181 #include <sys/systm.h>
  182 #include <sys/sockio.h>
  183 #include <sys/mbuf.h>
  184 #include <sys/malloc.h>
  185 #include <sys/kernel.h>
  186 #include <sys/module.h>
  187 #include <sys/socket.h>
  188 
  189 #include <net/if.h>
  190 #include <net/if_arp.h>
  191 #include <net/ethernet.h>
  192 #include <net/if_dl.h>
  193 #include <net/if_media.h>
  194 
  195 #include <net/bpf.h>
  196 
  197 #include <vm/vm.h>              /* for vtophys */
  198 #include <vm/pmap.h>            /* for vtophys */
  199 #include <machine/bus_memio.h>
  200 #include <machine/bus_pio.h>
  201 #include <machine/bus.h>
  202 #include <machine/resource.h>
  203 #include <sys/bus.h>
  204 #include <sys/rman.h>
  205 
  206 #include <dev/mii/mii.h>
  207 #include <dev/mii/miivar.h>
  208 
  209 #include <dev/pci/pcireg.h>
  210 #include <dev/pci/pcivar.h>
  211 
  212 /*
  213  * Default to using PIO register access mode to pacify certain
  214  * laptop docking stations with built-in ThunderLAN chips that
  215  * don't seem to handle memory mapped mode properly.
  216  */
  217 #define TL_USEIOSPACE
  218 
  219 #include <pci/if_tlreg.h>
  220 
  221 MODULE_DEPEND(tl, pci, 1, 1, 1);
  222 MODULE_DEPEND(tl, ether, 1, 1, 1);
  223 MODULE_DEPEND(tl, miibus, 1, 1, 1);
  224 
  225 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  226 #include "miibus_if.h"
  227 
  228 /*
  229  * Various supported device vendors/types and their names.
  230  */
  231 
  232 static struct tl_type tl_devs[] = {
  233         { TI_VENDORID,  TI_DEVICEID_THUNDERLAN,
  234                 "Texas Instruments ThunderLAN" },
  235         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
  236                 "Compaq Netelligent 10" },
  237         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
  238                 "Compaq Netelligent 10/100" },
  239         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
  240                 "Compaq Netelligent 10/100 Proliant" },
  241         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
  242                 "Compaq Netelligent 10/100 Dual Port" },
  243         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
  244                 "Compaq NetFlex-3/P Integrated" },
  245         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
  246                 "Compaq NetFlex-3/P" },
  247         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
  248                 "Compaq NetFlex 3/P w/ BNC" },
  249         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
  250                 "Compaq Netelligent 10/100 TX Embedded UTP" },
  251         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
  252                 "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
  253         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
  254                 "Compaq Netelligent 10/100 TX UTP" },
  255         { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
  256                 "Olicom OC-2183/2185" },
  257         { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
  258                 "Olicom OC-2325" },
  259         { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
  260                 "Olicom OC-2326 10/100 TX UTP" },
  261         { 0, 0, NULL }
  262 };
  263 
  264 static int tl_probe             (device_t);
  265 static int tl_attach            (device_t);
  266 static int tl_detach            (device_t);
  267 static int tl_intvec_rxeoc      (void *, u_int32_t);
  268 static int tl_intvec_txeoc      (void *, u_int32_t);
  269 static int tl_intvec_txeof      (void *, u_int32_t);
  270 static int tl_intvec_rxeof      (void *, u_int32_t);
  271 static int tl_intvec_adchk      (void *, u_int32_t);
  272 static int tl_intvec_netsts     (void *, u_int32_t);
  273 
  274 static int tl_newbuf            (struct tl_softc *, struct tl_chain_onefrag *);
  275 static void tl_stats_update     (void *);
  276 static int tl_encap             (struct tl_softc *, struct tl_chain *,
  277                                                 struct mbuf *);
  278 
  279 static void tl_intr             (void *);
  280 static void tl_start            (struct ifnet *);
  281 static int tl_ioctl             (struct ifnet *, u_long, caddr_t);
  282 static void tl_init             (void *);
  283 static void tl_stop             (struct tl_softc *);
  284 static void tl_watchdog         (struct ifnet *);
  285 static void tl_shutdown         (device_t);
  286 static int tl_ifmedia_upd       (struct ifnet *);
  287 static void tl_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
  288 
  289 static u_int8_t tl_eeprom_putbyte       (struct tl_softc *, int);
  290 static u_int8_t tl_eeprom_getbyte       (struct tl_softc *, int, u_int8_t *);
  291 static int tl_read_eeprom       (struct tl_softc *, caddr_t, int, int);
  292 
  293 static void tl_mii_sync         (struct tl_softc *);
  294 static void tl_mii_send         (struct tl_softc *, u_int32_t, int);
  295 static int tl_mii_readreg       (struct tl_softc *, struct tl_mii_frame *);
  296 static int tl_mii_writereg      (struct tl_softc *, struct tl_mii_frame *);
  297 static int tl_miibus_readreg    (device_t, int, int);
  298 static int tl_miibus_writereg   (device_t, int, int, int);
  299 static void tl_miibus_statchg   (device_t);
  300 
  301 static void tl_setmode          (struct tl_softc *, int);
  302 static uint32_t tl_mchash       (const uint8_t *);
  303 static void tl_setmulti         (struct tl_softc *);
  304 static void tl_setfilt          (struct tl_softc *, caddr_t, int);
  305 static void tl_softreset        (struct tl_softc *, int);
  306 static void tl_hardreset        (device_t);
  307 static int tl_list_rx_init      (struct tl_softc *);
  308 static int tl_list_tx_init      (struct tl_softc *);
  309 
  310 static u_int8_t tl_dio_read8    (struct tl_softc *, int);
  311 static u_int16_t tl_dio_read16  (struct tl_softc *, int);
  312 static u_int32_t tl_dio_read32  (struct tl_softc *, int);
  313 static void tl_dio_write8       (struct tl_softc *, int, int);
  314 static void tl_dio_write16      (struct tl_softc *, int, int);
  315 static void tl_dio_write32      (struct tl_softc *, int, int);
  316 static void tl_dio_setbit       (struct tl_softc *, int, int);
  317 static void tl_dio_clrbit       (struct tl_softc *, int, int);
  318 static void tl_dio_setbit16     (struct tl_softc *, int, int);
  319 static void tl_dio_clrbit16     (struct tl_softc *, int, int);
  320 
  321 #ifdef TL_USEIOSPACE
  322 #define TL_RES          SYS_RES_IOPORT
  323 #define TL_RID          TL_PCI_LOIO
  324 #else
  325 #define TL_RES          SYS_RES_MEMORY
  326 #define TL_RID          TL_PCI_LOMEM
  327 #endif
  328 
  329 static device_method_t tl_methods[] = {
  330         /* Device interface */
  331         DEVMETHOD(device_probe,         tl_probe),
  332         DEVMETHOD(device_attach,        tl_attach),
  333         DEVMETHOD(device_detach,        tl_detach),
  334         DEVMETHOD(device_shutdown,      tl_shutdown),
  335 
  336         /* bus interface */
  337         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  338         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  339 
  340         /* MII interface */
  341         DEVMETHOD(miibus_readreg,       tl_miibus_readreg),
  342         DEVMETHOD(miibus_writereg,      tl_miibus_writereg),
  343         DEVMETHOD(miibus_statchg,       tl_miibus_statchg),
  344 
  345         { 0, 0 }
  346 };
  347 
  348 static driver_t tl_driver = {
  349         "tl",
  350         tl_methods,
  351         sizeof(struct tl_softc)
  352 };
  353 
  354 static devclass_t tl_devclass;
  355 
  356 DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
  357 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
  358 
  359 static u_int8_t tl_dio_read8(sc, reg)
  360         struct tl_softc         *sc;
  361         int                     reg;
  362 {
  363         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  364         return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
  365 }
  366 
  367 static u_int16_t tl_dio_read16(sc, reg)
  368         struct tl_softc         *sc;
  369         int                     reg;
  370 {
  371         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  372         return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
  373 }
  374 
  375 static u_int32_t tl_dio_read32(sc, reg)
  376         struct tl_softc         *sc;
  377         int                     reg;
  378 {
  379         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  380         return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
  381 }
  382 
  383 static void tl_dio_write8(sc, reg, val)
  384         struct tl_softc         *sc;
  385         int                     reg;
  386         int                     val;
  387 {
  388         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  389         CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
  390         return;
  391 }
  392 
  393 static void tl_dio_write16(sc, reg, val)
  394         struct tl_softc         *sc;
  395         int                     reg;
  396         int                     val;
  397 {
  398         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  399         CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
  400         return;
  401 }
  402 
  403 static void tl_dio_write32(sc, reg, val)
  404         struct tl_softc         *sc;
  405         int                     reg;
  406         int                     val;
  407 {
  408         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  409         CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
  410         return;
  411 }
  412 
  413 static void
  414 tl_dio_setbit(sc, reg, bit)
  415         struct tl_softc         *sc;
  416         int                     reg;
  417         int                     bit;
  418 {
  419         u_int8_t                        f;
  420 
  421         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  422         f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
  423         f |= bit;
  424         CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
  425 
  426         return;
  427 }
  428 
  429 static void
  430 tl_dio_clrbit(sc, reg, bit)
  431         struct tl_softc         *sc;
  432         int                     reg;
  433         int                     bit;
  434 {
  435         u_int8_t                        f;
  436 
  437         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  438         f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
  439         f &= ~bit;
  440         CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
  441 
  442         return;
  443 }
  444 
  445 static void tl_dio_setbit16(sc, reg, bit)
  446         struct tl_softc         *sc;
  447         int                     reg;
  448         int                     bit;
  449 {
  450         u_int16_t                       f;
  451 
  452         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  453         f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
  454         f |= bit;
  455         CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
  456 
  457         return;
  458 }
  459 
  460 static void tl_dio_clrbit16(sc, reg, bit)
  461         struct tl_softc         *sc;
  462         int                     reg;
  463         int                     bit;
  464 {
  465         u_int16_t                       f;
  466 
  467         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  468         f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
  469         f &= ~bit;
  470         CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
  471 
  472         return;
  473 }
  474 
  475 /*
  476  * Send an instruction or address to the EEPROM, check for ACK.
  477  */
  478 static u_int8_t tl_eeprom_putbyte(sc, byte)
  479         struct tl_softc         *sc;
  480         int                     byte;
  481 {
  482         register int            i, ack = 0;
  483 
  484         /*
  485          * Make sure we're in TX mode.
  486          */
  487         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
  488 
  489         /*
  490          * Feed in each bit and stobe the clock.
  491          */
  492         for (i = 0x80; i; i >>= 1) {
  493                 if (byte & i) {
  494                         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
  495                 } else {
  496                         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
  497                 }
  498                 DELAY(1);
  499                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  500                 DELAY(1);
  501                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  502         }
  503 
  504         /*
  505          * Turn off TX mode.
  506          */
  507         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
  508 
  509         /*
  510          * Check for ack.
  511          */
  512         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  513         ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
  514         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  515 
  516         return(ack);
  517 }
  518 
  519 /*
  520  * Read a byte of data stored in the EEPROM at address 'addr.'
  521  */
  522 static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
  523         struct tl_softc         *sc;
  524         int                     addr;
  525         u_int8_t                *dest;
  526 {
  527         register int            i;
  528         u_int8_t                byte = 0;
  529         struct ifnet            *ifp = &sc->arpcom.ac_if;
  530 
  531         tl_dio_write8(sc, TL_NETSIO, 0);
  532 
  533         EEPROM_START;
  534 
  535         /*
  536          * Send write control code to EEPROM.
  537          */
  538         if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
  539                 if_printf(ifp, "failed to send write command, status: %x\n",
  540                     tl_dio_read8(sc, TL_NETSIO));
  541                 return(1);
  542         }
  543 
  544         /*
  545          * Send address of byte we want to read.
  546          */
  547         if (tl_eeprom_putbyte(sc, addr)) {
  548                 if_printf(ifp, "failed to send address, status: %x\n",
  549                     tl_dio_read8(sc, TL_NETSIO));
  550                 return(1);
  551         }
  552 
  553         EEPROM_STOP;
  554         EEPROM_START;
  555         /*
  556          * Send read control code to EEPROM.
  557          */
  558         if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
  559                 if_printf(ifp, "failed to send write command, status: %x\n",
  560                     tl_dio_read8(sc, TL_NETSIO));
  561                 return(1);
  562         }
  563 
  564         /*
  565          * Start reading bits from EEPROM.
  566          */
  567         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
  568         for (i = 0x80; i; i >>= 1) {
  569                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  570                 DELAY(1);
  571                 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
  572                         byte |= i;
  573                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  574                 DELAY(1);
  575         }
  576 
  577         EEPROM_STOP;
  578 
  579         /*
  580          * No ACK generated for read, so just return byte.
  581          */
  582 
  583         *dest = byte;
  584 
  585         return(0);
  586 }
  587 
  588 /*
  589  * Read a sequence of bytes from the EEPROM.
  590  */
  591 static int
  592 tl_read_eeprom(sc, dest, off, cnt)
  593         struct tl_softc         *sc;
  594         caddr_t                 dest;
  595         int                     off;
  596         int                     cnt;
  597 {
  598         int                     err = 0, i;
  599         u_int8_t                byte = 0;
  600 
  601         for (i = 0; i < cnt; i++) {
  602                 err = tl_eeprom_getbyte(sc, off + i, &byte);
  603                 if (err)
  604                         break;
  605                 *(dest + i) = byte;
  606         }
  607 
  608         return(err ? 1 : 0);
  609 }
  610 
  611 static void
  612 tl_mii_sync(sc)
  613         struct tl_softc         *sc;
  614 {
  615         register int            i;
  616 
  617         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  618 
  619         for (i = 0; i < 32; i++) {
  620                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  621                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  622         }
  623 
  624         return;
  625 }
  626 
  627 static void
  628 tl_mii_send(sc, bits, cnt)
  629         struct tl_softc         *sc;
  630         u_int32_t               bits;
  631         int                     cnt;
  632 {
  633         int                     i;
  634 
  635         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  636                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  637                 if (bits & i) {
  638                         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
  639                 } else {
  640                         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
  641                 }
  642                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  643         }
  644 }
  645 
  646 static int
  647 tl_mii_readreg(sc, frame)
  648         struct tl_softc         *sc;
  649         struct tl_mii_frame     *frame;
  650         
  651 {
  652         int                     i, ack;
  653         int                     minten = 0;
  654 
  655         TL_LOCK(sc);
  656 
  657         tl_mii_sync(sc);
  658 
  659         /*
  660          * Set up frame for RX.
  661          */
  662         frame->mii_stdelim = TL_MII_STARTDELIM;
  663         frame->mii_opcode = TL_MII_READOP;
  664         frame->mii_turnaround = 0;
  665         frame->mii_data = 0;
  666         
  667         /*
  668          * Turn off MII interrupt by forcing MINTEN low.
  669          */
  670         minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
  671         if (minten) {
  672                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  673         }
  674 
  675         /*
  676          * Turn on data xmit.
  677          */
  678         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  679 
  680         /*
  681          * Send command/address info.
  682          */
  683         tl_mii_send(sc, frame->mii_stdelim, 2);
  684         tl_mii_send(sc, frame->mii_opcode, 2);
  685         tl_mii_send(sc, frame->mii_phyaddr, 5);
  686         tl_mii_send(sc, frame->mii_regaddr, 5);
  687 
  688         /*
  689          * Turn off xmit.
  690          */
  691         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  692 
  693         /* Idle bit */
  694         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  695         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  696 
  697         /* Check for ack */
  698         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  699         ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
  700 
  701         /* Complete the cycle */
  702         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  703 
  704         /*
  705          * Now try reading data bits. If the ack failed, we still
  706          * need to clock through 16 cycles to keep the PHYs in sync.
  707          */
  708         if (ack) {
  709                 for(i = 0; i < 16; i++) {
  710                         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  711                         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  712                 }
  713                 goto fail;
  714         }
  715 
  716         for (i = 0x8000; i; i >>= 1) {
  717                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  718                 if (!ack) {
  719                         if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
  720                                 frame->mii_data |= i;
  721                 }
  722                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  723         }
  724 
  725 fail:
  726 
  727         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  728         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  729 
  730         /* Reenable interrupts */
  731         if (minten) {
  732                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  733         }
  734 
  735         TL_UNLOCK(sc);
  736 
  737         if (ack)
  738                 return(1);
  739         return(0);
  740 }
  741 
  742 static int
  743 tl_mii_writereg(sc, frame)
  744         struct tl_softc         *sc;
  745         struct tl_mii_frame     *frame;
  746         
  747 {
  748         int                     minten;
  749 
  750         TL_LOCK(sc);
  751 
  752         tl_mii_sync(sc);
  753 
  754         /*
  755          * Set up frame for TX.
  756          */
  757 
  758         frame->mii_stdelim = TL_MII_STARTDELIM;
  759         frame->mii_opcode = TL_MII_WRITEOP;
  760         frame->mii_turnaround = TL_MII_TURNAROUND;
  761         
  762         /*
  763          * Turn off MII interrupt by forcing MINTEN low.
  764          */
  765         minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
  766         if (minten) {
  767                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  768         }
  769 
  770         /*
  771          * Turn on data output.
  772          */
  773         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  774 
  775         tl_mii_send(sc, frame->mii_stdelim, 2);
  776         tl_mii_send(sc, frame->mii_opcode, 2);
  777         tl_mii_send(sc, frame->mii_phyaddr, 5);
  778         tl_mii_send(sc, frame->mii_regaddr, 5);
  779         tl_mii_send(sc, frame->mii_turnaround, 2);
  780         tl_mii_send(sc, frame->mii_data, 16);
  781 
  782         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  783         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  784 
  785         /*
  786          * Turn off xmit.
  787          */
  788         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  789 
  790         /* Reenable interrupts */
  791         if (minten)
  792                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  793 
  794         TL_UNLOCK(sc);
  795 
  796         return(0);
  797 }
  798 
  799 static int
  800 tl_miibus_readreg(dev, phy, reg)
  801         device_t                dev;
  802         int                     phy, reg;
  803 {
  804         struct tl_softc         *sc;
  805         struct tl_mii_frame     frame;
  806 
  807         sc = device_get_softc(dev);
  808         bzero((char *)&frame, sizeof(frame));
  809 
  810         frame.mii_phyaddr = phy;
  811         frame.mii_regaddr = reg;
  812         tl_mii_readreg(sc, &frame);
  813 
  814         return(frame.mii_data);
  815 }
  816 
  817 static int
  818 tl_miibus_writereg(dev, phy, reg, data)
  819         device_t                dev;
  820         int                     phy, reg, data;
  821 {
  822         struct tl_softc         *sc;
  823         struct tl_mii_frame     frame;
  824 
  825         sc = device_get_softc(dev);
  826         bzero((char *)&frame, sizeof(frame));
  827 
  828         frame.mii_phyaddr = phy;
  829         frame.mii_regaddr = reg;
  830         frame.mii_data = data;
  831 
  832         tl_mii_writereg(sc, &frame);
  833 
  834         return(0);
  835 }
  836 
  837 static void
  838 tl_miibus_statchg(dev)
  839         device_t                dev;
  840 {
  841         struct tl_softc         *sc;
  842         struct mii_data         *mii;
  843 
  844         sc = device_get_softc(dev);
  845         TL_LOCK(sc);
  846         mii = device_get_softc(sc->tl_miibus);
  847 
  848         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  849                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  850         } else {
  851                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  852         }
  853         TL_UNLOCK(sc);
  854 
  855         return;
  856 }
  857 
  858 /*
  859  * Set modes for bitrate devices.
  860  */
  861 static void
  862 tl_setmode(sc, media)
  863         struct tl_softc         *sc;
  864         int                     media;
  865 {
  866         if (IFM_SUBTYPE(media) == IFM_10_5)
  867                 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
  868         if (IFM_SUBTYPE(media) == IFM_10_T) {
  869                 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
  870                 if ((media & IFM_GMASK) == IFM_FDX) {
  871                         tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
  872                         tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  873                 } else {
  874                         tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
  875                         tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  876                 }
  877         }
  878 
  879         return;
  880 }
  881 
  882 /*
  883  * Calculate the hash of a MAC address for programming the multicast hash
  884  * table.  This hash is simply the address split into 6-bit chunks
  885  * XOR'd, e.g.
  886  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
  887  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
  888  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
  889  * the folded 24-bit value is split into 6-bit portions and XOR'd.
  890  */
  891 static uint32_t
  892 tl_mchash(addr)
  893         const uint8_t *addr;
  894 {
  895         int t;
  896 
  897         t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
  898                 (addr[2] ^ addr[5]);
  899         return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
  900 }
  901 
  902 /*
  903  * The ThunderLAN has a perfect MAC address filter in addition to
  904  * the multicast hash filter. The perfect filter can be programmed
  905  * with up to four MAC addresses. The first one is always used to
  906  * hold the station address, which leaves us free to use the other
  907  * three for multicast addresses.
  908  */
  909 static void
  910 tl_setfilt(sc, addr, slot)
  911         struct tl_softc         *sc;
  912         caddr_t                 addr;
  913         int                     slot;
  914 {
  915         int                     i;
  916         u_int16_t               regaddr;
  917 
  918         regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
  919 
  920         for (i = 0; i < ETHER_ADDR_LEN; i++)
  921                 tl_dio_write8(sc, regaddr + i, *(addr + i));
  922 
  923         return;
  924 }
  925 
  926 /*
  927  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
  928  * linked list. This is fine, except addresses are added from the head
  929  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
  930  * group to always be in the perfect filter, but as more groups are added,
  931  * the 224.0.0.1 entry (which is always added first) gets pushed down
  932  * the list and ends up at the tail. So after 3 or 4 multicast groups
  933  * are added, the all-hosts entry gets pushed out of the perfect filter
  934  * and into the hash table.
  935  *
  936  * Because the multicast list is a doubly-linked list as opposed to a
  937  * circular queue, we don't have the ability to just grab the tail of
  938  * the list and traverse it backwards. Instead, we have to traverse
  939  * the list once to find the tail, then traverse it again backwards to
  940  * update the multicast filter.
  941  */
  942 static void
  943 tl_setmulti(sc)
  944         struct tl_softc         *sc;
  945 {
  946         struct ifnet            *ifp;
  947         u_int32_t               hashes[2] = { 0, 0 };
  948         int                     h, i;
  949         struct ifmultiaddr      *ifma;
  950         u_int8_t                dummy[] = { 0, 0, 0, 0, 0 ,0 };
  951         ifp = &sc->arpcom.ac_if;
  952 
  953         /* First, zot all the existing filters. */
  954         for (i = 1; i < 4; i++)
  955                 tl_setfilt(sc, (caddr_t)&dummy, i);
  956         tl_dio_write32(sc, TL_HASH1, 0);
  957         tl_dio_write32(sc, TL_HASH2, 0);
  958 
  959         /* Now program new ones. */
  960         if (ifp->if_flags & IFF_ALLMULTI) {
  961                 hashes[0] = 0xFFFFFFFF;
  962                 hashes[1] = 0xFFFFFFFF;
  963         } else {
  964                 i = 1;
  965                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
  966                         if (ifma->ifma_addr->sa_family != AF_LINK)
  967                                 continue;
  968                         /*
  969                          * Program the first three multicast groups
  970                          * into the perfect filter. For all others,
  971                          * use the hash table.
  972                          */
  973                         if (i < 4) {
  974                                 tl_setfilt(sc,
  975                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
  976                                 i++;
  977                                 continue;
  978                         }
  979 
  980                         h = tl_mchash(
  981                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  982                         if (h < 32)
  983                                 hashes[0] |= (1 << h);
  984                         else
  985                                 hashes[1] |= (1 << (h - 32));
  986                 }
  987         }
  988 
  989         tl_dio_write32(sc, TL_HASH1, hashes[0]);
  990         tl_dio_write32(sc, TL_HASH2, hashes[1]);
  991 
  992         return;
  993 }
  994 
  995 /*
  996  * This routine is recommended by the ThunderLAN manual to insure that
  997  * the internal PHY is powered up correctly. It also recommends a one
  998  * second pause at the end to 'wait for the clocks to start' but in my
  999  * experience this isn't necessary.
 1000  */
 1001 static void
 1002 tl_hardreset(dev)
 1003         device_t                dev;
 1004 {
 1005         struct tl_softc         *sc;
 1006         int                     i;
 1007         u_int16_t               flags;
 1008 
 1009         sc = device_get_softc(dev);
 1010 
 1011         tl_mii_sync(sc);
 1012 
 1013         flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
 1014 
 1015         for (i = 0; i < MII_NPHY; i++)
 1016                 tl_miibus_writereg(dev, i, MII_BMCR, flags);
 1017 
 1018         tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
 1019         DELAY(50000);
 1020         tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
 1021         tl_mii_sync(sc);
 1022         while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
 1023 
 1024         DELAY(50000);
 1025         return;
 1026 }
 1027 
 1028 static void
 1029 tl_softreset(sc, internal)
 1030         struct tl_softc         *sc;
 1031         int                     internal;
 1032 {
 1033         u_int32_t               cmd, dummy, i;
 1034 
 1035         /* Assert the adapter reset bit. */
 1036         CMD_SET(sc, TL_CMD_ADRST);
 1037 
 1038         /* Turn off interrupts */
 1039         CMD_SET(sc, TL_CMD_INTSOFF);
 1040 
 1041         /* First, clear the stats registers. */
 1042         for (i = 0; i < 5; i++)
 1043                 dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
 1044 
 1045         /* Clear Areg and Hash registers */
 1046         for (i = 0; i < 8; i++)
 1047                 tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
 1048 
 1049         /*
 1050          * Set up Netconfig register. Enable one channel and
 1051          * one fragment mode.
 1052          */
 1053         tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
 1054         if (internal && !sc->tl_bitrate) {
 1055                 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
 1056         } else {
 1057                 tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
 1058         }
 1059 
 1060         /* Handle cards with bitrate devices. */
 1061         if (sc->tl_bitrate)
 1062                 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
 1063 
 1064         /*
 1065          * Load adapter irq pacing timer and tx threshold.
 1066          * We make the transmit threshold 1 initially but we may
 1067          * change that later.
 1068          */
 1069         cmd = CSR_READ_4(sc, TL_HOSTCMD);
 1070         cmd |= TL_CMD_NES;
 1071         cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
 1072         CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
 1073         CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
 1074 
 1075         /* Unreset the MII */
 1076         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
 1077 
 1078         /* Take the adapter out of reset */
 1079         tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
 1080 
 1081         /* Wait for things to settle down a little. */
 1082         DELAY(500);
 1083 
 1084         return;
 1085 }
 1086 
 1087 /*
 1088  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
 1089  * against our list and return its name if we find a match.
 1090  */
 1091 static int
 1092 tl_probe(dev)
 1093         device_t                dev;
 1094 {
 1095         struct tl_type          *t;
 1096 
 1097         t = tl_devs;
 1098 
 1099         while(t->tl_name != NULL) {
 1100                 if ((pci_get_vendor(dev) == t->tl_vid) &&
 1101                     (pci_get_device(dev) == t->tl_did)) {
 1102                         device_set_desc(dev, t->tl_name);
 1103                         return(0);
 1104                 }
 1105                 t++;
 1106         }
 1107 
 1108         return(ENXIO);
 1109 }
 1110 
 1111 static int
 1112 tl_attach(dev)
 1113         device_t                dev;
 1114 {
 1115         int                     i;
 1116         u_int16_t               did, vid;
 1117         struct tl_type          *t;
 1118         struct ifnet            *ifp;
 1119         struct tl_softc         *sc;
 1120         int                     unit, error = 0, rid;
 1121 
 1122         vid = pci_get_vendor(dev);
 1123         did = pci_get_device(dev);
 1124         sc = device_get_softc(dev);
 1125         unit = device_get_unit(dev);
 1126 
 1127         t = tl_devs;
 1128         while(t->tl_name != NULL) {
 1129                 if (vid == t->tl_vid && did == t->tl_did)
 1130                         break;
 1131                 t++;
 1132         }
 1133 
 1134         if (t->tl_name == NULL) {
 1135                 device_printf(dev, "unknown device!?\n");
 1136                 return (ENXIO);
 1137         }
 1138 
 1139         mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1140             MTX_DEF | MTX_RECURSE);
 1141 
 1142         /*
 1143          * Map control/status registers.
 1144          */
 1145         pci_enable_busmaster(dev);
 1146 
 1147 #ifdef TL_USEIOSPACE
 1148 
 1149         rid = TL_PCI_LOIO;
 1150         sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
 1151                 RF_ACTIVE);
 1152 
 1153         /*
 1154          * Some cards have the I/O and memory mapped address registers
 1155          * reversed. Try both combinations before giving up.
 1156          */
 1157         if (sc->tl_res == NULL) {
 1158                 rid = TL_PCI_LOMEM;
 1159                 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
 1160                     RF_ACTIVE);
 1161         }
 1162 #else
 1163         rid = TL_PCI_LOMEM;
 1164         sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 1165             RF_ACTIVE);
 1166         if (sc->tl_res == NULL) {
 1167                 rid = TL_PCI_LOIO;
 1168                 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 1169                     RF_ACTIVE);
 1170         }
 1171 #endif
 1172 
 1173         if (sc->tl_res == NULL) {
 1174                 device_printf(dev, "couldn't map ports/memory\n");
 1175                 error = ENXIO;
 1176                 goto fail;
 1177         }
 1178 
 1179         sc->tl_btag = rman_get_bustag(sc->tl_res);
 1180         sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
 1181 
 1182 #ifdef notdef
 1183         /*
 1184          * The ThunderLAN manual suggests jacking the PCI latency
 1185          * timer all the way up to its maximum value. I'm not sure
 1186          * if this is really necessary, but what the manual wants,
 1187          * the manual gets.
 1188          */
 1189         command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
 1190         command |= 0x0000FF00;
 1191         pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
 1192 #endif
 1193 
 1194         /* Allocate interrupt */
 1195         rid = 0;
 1196         sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1197             RF_SHAREABLE | RF_ACTIVE);
 1198 
 1199         if (sc->tl_irq == NULL) {
 1200                 device_printf(dev, "couldn't map interrupt\n");
 1201                 error = ENXIO;
 1202                 goto fail;
 1203         }
 1204 
 1205         /*
 1206          * Now allocate memory for the TX and RX lists.
 1207          */
 1208         sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
 1209             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
 1210 
 1211         if (sc->tl_ldata == NULL) {
 1212                 device_printf(dev, "no memory for list buffers!\n");
 1213                 error = ENXIO;
 1214                 goto fail;
 1215         }
 1216 
 1217         bzero(sc->tl_ldata, sizeof(struct tl_list_data));
 1218 
 1219         sc->tl_dinfo = t;
 1220         if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
 1221                 sc->tl_eeaddr = TL_EEPROM_EADDR;
 1222         if (t->tl_vid == OLICOM_VENDORID)
 1223                 sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
 1224 
 1225         /* Reset the adapter. */
 1226         tl_softreset(sc, 1);
 1227         tl_hardreset(dev);
 1228         tl_softreset(sc, 1);
 1229 
 1230         /*
 1231          * Get station address from the EEPROM.
 1232          */
 1233         if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
 1234                                 sc->tl_eeaddr, ETHER_ADDR_LEN)) {
 1235                 device_printf(dev, "failed to read station address\n");
 1236                 error = ENXIO;
 1237                 goto fail;
 1238         }
 1239 
 1240         /*
 1241          * XXX Olicom, in its desire to be different from the
 1242          * rest of the world, has done strange things with the
 1243          * encoding of the station address in the EEPROM. First
 1244          * of all, they store the address at offset 0xF8 rather
 1245          * than at 0x83 like the ThunderLAN manual suggests.
 1246          * Second, they store the address in three 16-bit words in
 1247          * network byte order, as opposed to storing it sequentially
 1248          * like all the other ThunderLAN cards. In order to get
 1249          * the station address in a form that matches what the Olicom
 1250          * diagnostic utility specifies, we have to byte-swap each
 1251          * word. To make things even more confusing, neither 00:00:28
 1252          * nor 00:00:24 appear in the IEEE OUI database.
 1253          */
 1254         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
 1255                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1256                         u_int16_t               *p;
 1257                         p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
 1258                         *p = ntohs(*p);
 1259                 }
 1260         }
 1261 
 1262         ifp = &sc->arpcom.ac_if;
 1263         ifp->if_softc = sc;
 1264         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1265         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
 1266             IFF_NEEDSGIANT;
 1267         ifp->if_ioctl = tl_ioctl;
 1268         ifp->if_start = tl_start;
 1269         ifp->if_watchdog = tl_watchdog;
 1270         ifp->if_init = tl_init;
 1271         ifp->if_mtu = ETHERMTU;
 1272         ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
 1273         callout_handle_init(&sc->tl_stat_ch);
 1274 
 1275         /* Reset the adapter again. */
 1276         tl_softreset(sc, 1);
 1277         tl_hardreset(dev);
 1278         tl_softreset(sc, 1);
 1279 
 1280         /*
 1281          * Do MII setup. If no PHYs are found, then this is a
 1282          * bitrate ThunderLAN chip that only supports 10baseT
 1283          * and AUI/BNC.
 1284          */
 1285         if (mii_phy_probe(dev, &sc->tl_miibus,
 1286             tl_ifmedia_upd, tl_ifmedia_sts)) {
 1287                 struct ifmedia          *ifm;
 1288                 sc->tl_bitrate = 1;
 1289                 ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
 1290                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
 1291                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
 1292                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
 1293                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
 1294                 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
 1295                 /* Reset again, this time setting bitrate mode. */
 1296                 tl_softreset(sc, 1);
 1297                 ifm = &sc->ifmedia;
 1298                 ifm->ifm_media = ifm->ifm_cur->ifm_media;
 1299                 tl_ifmedia_upd(ifp);
 1300         }
 1301 
 1302         /*
 1303          * Call MI attach routine.
 1304          */
 1305         ether_ifattach(ifp, sc->arpcom.ac_enaddr);
 1306 
 1307         /* Hook interrupt last to avoid having to lock softc */
 1308         error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
 1309             tl_intr, sc, &sc->tl_intrhand);
 1310 
 1311         if (error) {
 1312                 device_printf(dev, "couldn't set up irq\n");
 1313                 ether_ifdetach(ifp);
 1314                 goto fail;
 1315         }
 1316 
 1317 fail:
 1318         if (error)
 1319                 tl_detach(dev);
 1320 
 1321         return(error);
 1322 }
 1323 
 1324 /*
 1325  * Shutdown hardware and free up resources. This can be called any
 1326  * time after the mutex has been initialized. It is called in both
 1327  * the error case in attach and the normal detach case so it needs
 1328  * to be careful about only freeing resources that have actually been
 1329  * allocated.
 1330  */
 1331 static int
 1332 tl_detach(dev)
 1333         device_t                dev;
 1334 {
 1335         struct tl_softc         *sc;
 1336         struct ifnet            *ifp;
 1337 
 1338         sc = device_get_softc(dev);
 1339         KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
 1340         TL_LOCK(sc);
 1341         ifp = &sc->arpcom.ac_if;
 1342 
 1343         /* These should only be active if attach succeeded */
 1344         if (device_is_attached(dev)) {
 1345                 tl_stop(sc);
 1346                 ether_ifdetach(ifp);
 1347         }
 1348         if (sc->tl_miibus)
 1349                 device_delete_child(dev, sc->tl_miibus);
 1350         bus_generic_detach(dev);
 1351 
 1352         if (sc->tl_ldata)
 1353                 contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
 1354         if (sc->tl_bitrate)
 1355                 ifmedia_removeall(&sc->ifmedia);
 1356 
 1357         if (sc->tl_intrhand)
 1358                 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
 1359         if (sc->tl_irq)
 1360                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
 1361         if (sc->tl_res)
 1362                 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
 1363 
 1364         TL_UNLOCK(sc);
 1365         mtx_destroy(&sc->tl_mtx);
 1366 
 1367         return(0);
 1368 }
 1369 
 1370 /*
 1371  * Initialize the transmit lists.
 1372  */
 1373 static int
 1374 tl_list_tx_init(sc)
 1375         struct tl_softc         *sc;
 1376 {
 1377         struct tl_chain_data    *cd;
 1378         struct tl_list_data     *ld;
 1379         int                     i;
 1380 
 1381         cd = &sc->tl_cdata;
 1382         ld = sc->tl_ldata;
 1383         for (i = 0; i < TL_TX_LIST_CNT; i++) {
 1384                 cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
 1385                 if (i == (TL_TX_LIST_CNT - 1))
 1386                         cd->tl_tx_chain[i].tl_next = NULL;
 1387                 else
 1388                         cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
 1389         }
 1390 
 1391         cd->tl_tx_free = &cd->tl_tx_chain[0];
 1392         cd->tl_tx_tail = cd->tl_tx_head = NULL;
 1393         sc->tl_txeoc = 1;
 1394 
 1395         return(0);
 1396 }
 1397 
 1398 /*
 1399  * Initialize the RX lists and allocate mbufs for them.
 1400  */
 1401 static int
 1402 tl_list_rx_init(sc)
 1403         struct tl_softc         *sc;
 1404 {
 1405         struct tl_chain_data    *cd;
 1406         struct tl_list_data     *ld;
 1407         int                     i;
 1408 
 1409         cd = &sc->tl_cdata;
 1410         ld = sc->tl_ldata;
 1411 
 1412         for (i = 0; i < TL_RX_LIST_CNT; i++) {
 1413                 cd->tl_rx_chain[i].tl_ptr =
 1414                         (struct tl_list_onefrag *)&ld->tl_rx_list[i];
 1415                 if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
 1416                         return(ENOBUFS);
 1417                 if (i == (TL_RX_LIST_CNT - 1)) {
 1418                         cd->tl_rx_chain[i].tl_next = NULL;
 1419                         ld->tl_rx_list[i].tlist_fptr = 0;
 1420                 } else {
 1421                         cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
 1422                         ld->tl_rx_list[i].tlist_fptr =
 1423                                         vtophys(&ld->tl_rx_list[i + 1]);
 1424                 }
 1425         }
 1426 
 1427         cd->tl_rx_head = &cd->tl_rx_chain[0];
 1428         cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
 1429 
 1430         return(0);
 1431 }
 1432 
 1433 static int
 1434 tl_newbuf(sc, c)
 1435         struct tl_softc         *sc;
 1436         struct tl_chain_onefrag *c;
 1437 {
 1438         struct mbuf             *m_new = NULL;
 1439 
 1440         MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1441         if (m_new == NULL)
 1442                 return(ENOBUFS);
 1443 
 1444         MCLGET(m_new, M_DONTWAIT);
 1445         if (!(m_new->m_flags & M_EXT)) {
 1446                 m_freem(m_new);
 1447                 return(ENOBUFS);
 1448         }
 1449 
 1450 #ifdef __alpha__
 1451         m_new->m_data += 2;
 1452 #endif
 1453 
 1454         c->tl_mbuf = m_new;
 1455         c->tl_next = NULL;
 1456         c->tl_ptr->tlist_frsize = MCLBYTES;
 1457         c->tl_ptr->tlist_fptr = 0;
 1458         c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
 1459         c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
 1460         c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
 1461 
 1462         return(0);
 1463 }
 1464 /*
 1465  * Interrupt handler for RX 'end of frame' condition (EOF). This
 1466  * tells us that a full ethernet frame has been captured and we need
 1467  * to handle it.
 1468  *
 1469  * Reception is done using 'lists' which consist of a header and a
 1470  * series of 10 data count/data address pairs that point to buffers.
 1471  * Initially you're supposed to create a list, populate it with pointers
 1472  * to buffers, then load the physical address of the list into the
 1473  * ch_parm register. The adapter is then supposed to DMA the received
 1474  * frame into the buffers for you.
 1475  *
 1476  * To make things as fast as possible, we have the chip DMA directly
 1477  * into mbufs. This saves us from having to do a buffer copy: we can
 1478  * just hand the mbufs directly to ether_input(). Once the frame has
 1479  * been sent on its way, the 'list' structure is assigned a new buffer
 1480  * and moved to the end of the RX chain. As long we we stay ahead of
 1481  * the chip, it will always think it has an endless receive channel.
 1482  *
 1483  * If we happen to fall behind and the chip manages to fill up all of
 1484  * the buffers, it will generate an end of channel interrupt and wait
 1485  * for us to empty the chain and restart the receiver.
 1486  */
 1487 static int
 1488 tl_intvec_rxeof(xsc, type)
 1489         void                    *xsc;
 1490         u_int32_t               type;
 1491 {
 1492         struct tl_softc         *sc;
 1493         int                     r = 0, total_len = 0;
 1494         struct ether_header     *eh;
 1495         struct mbuf             *m;
 1496         struct ifnet            *ifp;
 1497         struct tl_chain_onefrag *cur_rx;
 1498 
 1499         sc = xsc;
 1500         ifp = &sc->arpcom.ac_if;
 1501 
 1502         TL_LOCK_ASSERT(sc);
 1503 
 1504         while(sc->tl_cdata.tl_rx_head != NULL) {
 1505                 cur_rx = sc->tl_cdata.tl_rx_head;
 1506                 if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
 1507                         break;
 1508                 r++;
 1509                 sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
 1510                 m = cur_rx->tl_mbuf;
 1511                 total_len = cur_rx->tl_ptr->tlist_frsize;
 1512 
 1513                 if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
 1514                         ifp->if_ierrors++;
 1515                         cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
 1516                         cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
 1517                         cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
 1518                         continue;
 1519                 }
 1520 
 1521                 sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
 1522                                                 vtophys(cur_rx->tl_ptr);
 1523                 sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
 1524                 sc->tl_cdata.tl_rx_tail = cur_rx;
 1525 
 1526                 /*
 1527                  * Note: when the ThunderLAN chip is in 'capture all
 1528                  * frames' mode, it will receive its own transmissions.
 1529                  * We drop don't need to process our own transmissions,
 1530                  * so we drop them here and continue.
 1531                  */
 1532                 eh = mtod(m, struct ether_header *);
 1533                 /*if (ifp->if_flags & IFF_PROMISC && */
 1534                 if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
 1535                                                         ETHER_ADDR_LEN)) {
 1536                                 m_freem(m);
 1537                                 continue;
 1538                 }
 1539 
 1540                 m->m_pkthdr.rcvif = ifp;
 1541                 m->m_pkthdr.len = m->m_len = total_len;
 1542 
 1543                 TL_UNLOCK(sc);
 1544                 (*ifp->if_input)(ifp, m);
 1545                 TL_LOCK(sc);
 1546         }
 1547 
 1548         return(r);
 1549 }
 1550 
 1551 /*
 1552  * The RX-EOC condition hits when the ch_parm address hasn't been
 1553  * initialized or the adapter reached a list with a forward pointer
 1554  * of 0 (which indicates the end of the chain). In our case, this means
 1555  * the card has hit the end of the receive buffer chain and we need to
 1556  * empty out the buffers and shift the pointer back to the beginning again.
 1557  */
 1558 static int
 1559 tl_intvec_rxeoc(xsc, type)
 1560         void                    *xsc;
 1561         u_int32_t               type;
 1562 {
 1563         struct tl_softc         *sc;
 1564         int                     r;
 1565         struct tl_chain_data    *cd;
 1566 
 1567 
 1568         sc = xsc;
 1569         cd = &sc->tl_cdata;
 1570 
 1571         /* Flush out the receive queue and ack RXEOF interrupts. */
 1572         r = tl_intvec_rxeof(xsc, type);
 1573         CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
 1574         r = 1;
 1575         cd->tl_rx_head = &cd->tl_rx_chain[0];
 1576         cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
 1577         CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
 1578         r |= (TL_CMD_GO|TL_CMD_RT);
 1579         return(r);
 1580 }
 1581 
 1582 static int
 1583 tl_intvec_txeof(xsc, type)
 1584         void                    *xsc;
 1585         u_int32_t               type;
 1586 {
 1587         struct tl_softc         *sc;
 1588         int                     r = 0;
 1589         struct tl_chain         *cur_tx;
 1590 
 1591         sc = xsc;
 1592 
 1593         /*
 1594          * Go through our tx list and free mbufs for those
 1595          * frames that have been sent.
 1596          */
 1597         while (sc->tl_cdata.tl_tx_head != NULL) {
 1598                 cur_tx = sc->tl_cdata.tl_tx_head;
 1599                 if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
 1600                         break;
 1601                 sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
 1602 
 1603                 r++;
 1604                 m_freem(cur_tx->tl_mbuf);
 1605                 cur_tx->tl_mbuf = NULL;
 1606 
 1607                 cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
 1608                 sc->tl_cdata.tl_tx_free = cur_tx;
 1609                 if (!cur_tx->tl_ptr->tlist_fptr)
 1610                         break;
 1611         }
 1612 
 1613         return(r);
 1614 }
 1615 
 1616 /*
 1617  * The transmit end of channel interrupt. The adapter triggers this
 1618  * interrupt to tell us it hit the end of the current transmit list.
 1619  *
 1620  * A note about this: it's possible for a condition to arise where
 1621  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
 1622  * You have to avoid this since the chip expects things to go in a
 1623  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
 1624  * When the TXEOF handler is called, it will free all of the transmitted
 1625  * frames and reset the tx_head pointer to NULL. However, a TXEOC
 1626  * interrupt should be received and acknowledged before any more frames
 1627  * are queued for transmission. If tl_statrt() is called after TXEOF
 1628  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
 1629  * it could attempt to issue a transmit command prematurely.
 1630  *
 1631  * To guard against this, tl_start() will only issue transmit commands
 1632  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
 1633  * can set this flag once tl_start() has cleared it.
 1634  */
 1635 static int
 1636 tl_intvec_txeoc(xsc, type)
 1637         void                    *xsc;
 1638         u_int32_t               type;
 1639 {
 1640         struct tl_softc         *sc;
 1641         struct ifnet            *ifp;
 1642         u_int32_t               cmd;
 1643 
 1644         sc = xsc;
 1645         ifp = &sc->arpcom.ac_if;
 1646 
 1647         /* Clear the timeout timer. */
 1648         ifp->if_timer = 0;
 1649 
 1650         if (sc->tl_cdata.tl_tx_head == NULL) {
 1651                 ifp->if_flags &= ~IFF_OACTIVE;
 1652                 sc->tl_cdata.tl_tx_tail = NULL;
 1653                 sc->tl_txeoc = 1;
 1654         } else {
 1655                 sc->tl_txeoc = 0;
 1656                 /* First we have to ack the EOC interrupt. */
 1657                 CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
 1658                 /* Then load the address of the next TX list. */
 1659                 CSR_WRITE_4(sc, TL_CH_PARM,
 1660                     vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
 1661                 /* Restart TX channel. */
 1662                 cmd = CSR_READ_4(sc, TL_HOSTCMD);
 1663                 cmd &= ~TL_CMD_RT;
 1664                 cmd |= TL_CMD_GO|TL_CMD_INTSON;
 1665                 CMD_PUT(sc, cmd);
 1666                 return(0);
 1667         }
 1668 
 1669         return(1);
 1670 }
 1671 
 1672 static int
 1673 tl_intvec_adchk(xsc, type)
 1674         void                    *xsc;
 1675         u_int32_t               type;
 1676 {
 1677         struct tl_softc         *sc;
 1678 
 1679         sc = xsc;
 1680 
 1681         if (type)
 1682                 if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
 1683                         (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
 1684 
 1685         tl_softreset(sc, 1);
 1686         tl_stop(sc);
 1687         tl_init(sc);
 1688         CMD_SET(sc, TL_CMD_INTSON);
 1689 
 1690         return(0);
 1691 }
 1692 
 1693 static int
 1694 tl_intvec_netsts(xsc, type)
 1695         void                    *xsc;
 1696         u_int32_t               type;
 1697 {
 1698         struct tl_softc         *sc;
 1699         u_int16_t               netsts;
 1700 
 1701         sc = xsc;
 1702 
 1703         netsts = tl_dio_read16(sc, TL_NETSTS);
 1704         tl_dio_write16(sc, TL_NETSTS, netsts);
 1705 
 1706         if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
 1707 
 1708         return(1);
 1709 }
 1710 
 1711 static void
 1712 tl_intr(xsc)
 1713         void                    *xsc;
 1714 {
 1715         struct tl_softc         *sc;
 1716         struct ifnet            *ifp;
 1717         int                     r = 0;
 1718         u_int32_t               type = 0;
 1719         u_int16_t               ints = 0;
 1720         u_int8_t                ivec = 0;
 1721 
 1722         sc = xsc;
 1723         TL_LOCK(sc);
 1724 
 1725         /* Disable interrupts */
 1726         ints = CSR_READ_2(sc, TL_HOST_INT);
 1727         CSR_WRITE_2(sc, TL_HOST_INT, ints);
 1728         type = (ints << 16) & 0xFFFF0000;
 1729         ivec = (ints & TL_VEC_MASK) >> 5;
 1730         ints = (ints & TL_INT_MASK) >> 2;
 1731 
 1732         ifp = &sc->arpcom.ac_if;
 1733 
 1734         switch(ints) {
 1735         case (TL_INTR_INVALID):
 1736 #ifdef DIAGNOSTIC
 1737                 if_printf(ifp, "got an invalid interrupt!\n");
 1738 #endif
 1739                 /* Re-enable interrupts but don't ack this one. */
 1740                 CMD_PUT(sc, type);
 1741                 r = 0;
 1742                 break;
 1743         case (TL_INTR_TXEOF):
 1744                 r = tl_intvec_txeof((void *)sc, type);
 1745                 break;
 1746         case (TL_INTR_TXEOC):
 1747                 r = tl_intvec_txeoc((void *)sc, type);
 1748                 break;
 1749         case (TL_INTR_STATOFLOW):
 1750                 tl_stats_update(sc);
 1751                 r = 1;
 1752                 break;
 1753         case (TL_INTR_RXEOF):
 1754                 r = tl_intvec_rxeof((void *)sc, type);
 1755                 break;
 1756         case (TL_INTR_DUMMY):
 1757                 if_printf(ifp, "got a dummy interrupt\n");
 1758                 r = 1;
 1759                 break;
 1760         case (TL_INTR_ADCHK):
 1761                 if (ivec)
 1762                         r = tl_intvec_adchk((void *)sc, type);
 1763                 else
 1764                         r = tl_intvec_netsts((void *)sc, type);
 1765                 break;
 1766         case (TL_INTR_RXEOC):
 1767                 r = tl_intvec_rxeoc((void *)sc, type);
 1768                 break;
 1769         default:
 1770                 if_printf(ifp, "bogus interrupt type\n");
 1771                 break;
 1772         }
 1773 
 1774         /* Re-enable interrupts */
 1775         if (r) {
 1776                 CMD_PUT(sc, TL_CMD_ACK | r | type);
 1777         }
 1778 
 1779         if (ifp->if_snd.ifq_head != NULL)
 1780                 tl_start(ifp);
 1781 
 1782         TL_UNLOCK(sc);
 1783 
 1784         return;
 1785 }
 1786 
 1787 static void
 1788 tl_stats_update(xsc)
 1789         void                    *xsc;
 1790 {
 1791         struct tl_softc         *sc;
 1792         struct ifnet            *ifp;
 1793         struct tl_stats         tl_stats;
 1794         struct mii_data         *mii;
 1795         u_int32_t               *p;
 1796 
 1797         bzero((char *)&tl_stats, sizeof(struct tl_stats));
 1798 
 1799         sc = xsc;
 1800         TL_LOCK(sc);
 1801         ifp = &sc->arpcom.ac_if;
 1802 
 1803         p = (u_int32_t *)&tl_stats;
 1804 
 1805         CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
 1806         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1807         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1808         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1809         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1810         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1811 
 1812         ifp->if_opackets += tl_tx_goodframes(tl_stats);
 1813         ifp->if_collisions += tl_stats.tl_tx_single_collision +
 1814                                 tl_stats.tl_tx_multi_collision;
 1815         ifp->if_ipackets += tl_rx_goodframes(tl_stats);
 1816         ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
 1817                             tl_rx_overrun(tl_stats);
 1818         ifp->if_oerrors += tl_tx_underrun(tl_stats);
 1819 
 1820         if (tl_tx_underrun(tl_stats)) {
 1821                 u_int8_t                tx_thresh;
 1822                 tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
 1823                 if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
 1824                         tx_thresh >>= 4;
 1825                         tx_thresh++;
 1826                         if_printf(ifp, "tx underrun -- increasing "
 1827                             "tx threshold to %d bytes\n",
 1828                             (64 * (tx_thresh * 4)));
 1829                         tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
 1830                         tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
 1831                 }
 1832         }
 1833 
 1834         sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
 1835 
 1836         if (!sc->tl_bitrate) {
 1837                 mii = device_get_softc(sc->tl_miibus);
 1838                 mii_tick(mii);
 1839         }
 1840 
 1841         TL_UNLOCK(sc);
 1842 
 1843         return;
 1844 }
 1845 
 1846 /*
 1847  * Encapsulate an mbuf chain in a list by coupling the mbuf data
 1848  * pointers to the fragment pointers.
 1849  */
 1850 static int
 1851 tl_encap(sc, c, m_head)
 1852         struct tl_softc         *sc;
 1853         struct tl_chain         *c;
 1854         struct mbuf             *m_head;
 1855 {
 1856         int                     frag = 0;
 1857         struct tl_frag          *f = NULL;
 1858         int                     total_len;
 1859         struct mbuf             *m;
 1860         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1861 
 1862         /*
 1863          * Start packing the mbufs in this chain into
 1864          * the fragment pointers. Stop when we run out
 1865          * of fragments or hit the end of the mbuf chain.
 1866          */
 1867         m = m_head;
 1868         total_len = 0;
 1869 
 1870         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1871                 if (m->m_len != 0) {
 1872                         if (frag == TL_MAXFRAGS)
 1873                                 break;
 1874                         total_len+= m->m_len;
 1875                         c->tl_ptr->tl_frag[frag].tlist_dadr =
 1876                                 vtophys(mtod(m, vm_offset_t));
 1877                         c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
 1878                         frag++;
 1879                 }
 1880         }
 1881 
 1882         /*
 1883          * Handle special cases.
 1884          * Special case #1: we used up all 10 fragments, but
 1885          * we have more mbufs left in the chain. Copy the
 1886          * data into an mbuf cluster. Note that we don't
 1887          * bother clearing the values in the other fragment
 1888          * pointers/counters; it wouldn't gain us anything,
 1889          * and would waste cycles.
 1890          */
 1891         if (m != NULL) {
 1892                 struct mbuf             *m_new = NULL;
 1893 
 1894                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1895                 if (m_new == NULL) {
 1896                         if_printf(ifp, "no memory for tx list\n");
 1897                         return(1);
 1898                 }
 1899                 if (m_head->m_pkthdr.len > MHLEN) {
 1900                         MCLGET(m_new, M_DONTWAIT);
 1901                         if (!(m_new->m_flags & M_EXT)) {
 1902                                 m_freem(m_new);
 1903                                 if_printf(ifp, "no memory for tx list\n");
 1904                                 return(1);
 1905                         }
 1906                 }
 1907                 m_copydata(m_head, 0, m_head->m_pkthdr.len,     
 1908                                         mtod(m_new, caddr_t));
 1909                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1910                 m_freem(m_head);
 1911                 m_head = m_new;
 1912                 f = &c->tl_ptr->tl_frag[0];
 1913                 f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
 1914                 f->tlist_dcnt = total_len = m_new->m_len;
 1915                 frag = 1;
 1916         }
 1917 
 1918         /*
 1919          * Special case #2: the frame is smaller than the minimum
 1920          * frame size. We have to pad it to make the chip happy.
 1921          */
 1922         if (total_len < TL_MIN_FRAMELEN) {
 1923                 if (frag == TL_MAXFRAGS)
 1924                         if_printf(ifp,
 1925                             "all frags filled but frame still to small!\n");
 1926                 f = &c->tl_ptr->tl_frag[frag];
 1927                 f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
 1928                 f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
 1929                 total_len += f->tlist_dcnt;
 1930                 frag++;
 1931         }
 1932 
 1933         c->tl_mbuf = m_head;
 1934         c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
 1935         c->tl_ptr->tlist_frsize = total_len;
 1936         c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
 1937         c->tl_ptr->tlist_fptr = 0;
 1938 
 1939         return(0);
 1940 }
 1941 
 1942 /*
 1943  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 1944  * to the mbuf data regions directly in the transmit lists. We also save a
 1945  * copy of the pointers since the transmit list fragment pointers are
 1946  * physical addresses.
 1947  */
 1948 static void
 1949 tl_start(ifp)
 1950         struct ifnet            *ifp;
 1951 {
 1952         struct tl_softc         *sc;
 1953         struct mbuf             *m_head = NULL;
 1954         u_int32_t               cmd;
 1955         struct tl_chain         *prev = NULL, *cur_tx = NULL, *start_tx;
 1956 
 1957         sc = ifp->if_softc;
 1958         TL_LOCK(sc);
 1959 
 1960         /*
 1961          * Check for an available queue slot. If there are none,
 1962          * punt.
 1963          */
 1964         if (sc->tl_cdata.tl_tx_free == NULL) {
 1965                 ifp->if_flags |= IFF_OACTIVE;
 1966                 TL_UNLOCK(sc);
 1967                 return;
 1968         }
 1969 
 1970         start_tx = sc->tl_cdata.tl_tx_free;
 1971 
 1972         while(sc->tl_cdata.tl_tx_free != NULL) {
 1973                 IF_DEQUEUE(&ifp->if_snd, m_head);
 1974                 if (m_head == NULL)
 1975                         break;
 1976 
 1977                 /* Pick a chain member off the free list. */
 1978                 cur_tx = sc->tl_cdata.tl_tx_free;
 1979                 sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
 1980 
 1981                 cur_tx->tl_next = NULL;
 1982 
 1983                 /* Pack the data into the list. */
 1984                 tl_encap(sc, cur_tx, m_head);
 1985 
 1986                 /* Chain it together */
 1987                 if (prev != NULL) {
 1988                         prev->tl_next = cur_tx;
 1989                         prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
 1990                 }
 1991                 prev = cur_tx;
 1992 
 1993                 /*
 1994                  * If there's a BPF listener, bounce a copy of this frame
 1995                  * to him.
 1996                  */
 1997                 BPF_MTAP(ifp, cur_tx->tl_mbuf);
 1998         }
 1999 
 2000         /*
 2001          * If there are no packets queued, bail.
 2002          */
 2003         if (cur_tx == NULL) {
 2004                 TL_UNLOCK(sc);
 2005                 return;
 2006         }
 2007 
 2008         /*
 2009          * That's all we can stands, we can't stands no more.
 2010          * If there are no other transfers pending, then issue the
 2011          * TX GO command to the adapter to start things moving.
 2012          * Otherwise, just leave the data in the queue and let
 2013          * the EOF/EOC interrupt handler send.
 2014          */
 2015         if (sc->tl_cdata.tl_tx_head == NULL) {
 2016                 sc->tl_cdata.tl_tx_head = start_tx;
 2017                 sc->tl_cdata.tl_tx_tail = cur_tx;
 2018 
 2019                 if (sc->tl_txeoc) {
 2020                         sc->tl_txeoc = 0;
 2021                         CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
 2022                         cmd = CSR_READ_4(sc, TL_HOSTCMD);
 2023                         cmd &= ~TL_CMD_RT;
 2024                         cmd |= TL_CMD_GO|TL_CMD_INTSON;
 2025                         CMD_PUT(sc, cmd);
 2026                 }
 2027         } else {
 2028                 sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
 2029                 sc->tl_cdata.tl_tx_tail = cur_tx;
 2030         }
 2031 
 2032         /*
 2033          * Set a timeout in case the chip goes out to lunch.
 2034          */
 2035         ifp->if_timer = 5;
 2036         TL_UNLOCK(sc);
 2037 
 2038         return;
 2039 }
 2040 
 2041 static void
 2042 tl_init(xsc)
 2043         void                    *xsc;
 2044 {
 2045         struct tl_softc         *sc = xsc;
 2046         struct ifnet            *ifp = &sc->arpcom.ac_if;
 2047         struct mii_data         *mii;
 2048 
 2049         TL_LOCK(sc);
 2050 
 2051         ifp = &sc->arpcom.ac_if;
 2052 
 2053         /*
 2054          * Cancel pending I/O.
 2055          */
 2056         tl_stop(sc);
 2057 
 2058         /* Initialize TX FIFO threshold */
 2059         tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
 2060         tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
 2061 
 2062         /* Set PCI burst size */
 2063         tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
 2064 
 2065         /*
 2066          * Set 'capture all frames' bit for promiscuous mode.
 2067          */
 2068         if (ifp->if_flags & IFF_PROMISC)
 2069                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
 2070         else
 2071                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
 2072 
 2073         /*
 2074          * Set capture broadcast bit to capture broadcast frames.
 2075          */
 2076         if (ifp->if_flags & IFF_BROADCAST)
 2077                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
 2078         else
 2079                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
 2080 
 2081         tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
 2082 
 2083         /* Init our MAC address */
 2084         tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
 2085 
 2086         /* Init multicast filter, if needed. */
 2087         tl_setmulti(sc);
 2088 
 2089         /* Init circular RX list. */
 2090         if (tl_list_rx_init(sc) == ENOBUFS) {
 2091                 if_printf(ifp,
 2092                     "initialization failed: no memory for rx buffers\n");
 2093                 tl_stop(sc);
 2094                 TL_UNLOCK(sc);
 2095                 return;
 2096         }
 2097 
 2098         /* Init TX pointers. */
 2099         tl_list_tx_init(sc);
 2100 
 2101         /* Enable PCI interrupts. */
 2102         CMD_SET(sc, TL_CMD_INTSON);
 2103 
 2104         /* Load the address of the rx list */
 2105         CMD_SET(sc, TL_CMD_RT);
 2106         CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
 2107 
 2108         if (!sc->tl_bitrate) {
 2109                 if (sc->tl_miibus != NULL) {
 2110                         mii = device_get_softc(sc->tl_miibus);
 2111                         mii_mediachg(mii);
 2112                 }
 2113         } else {
 2114                 tl_ifmedia_upd(ifp);
 2115         }
 2116 
 2117         /* Send the RX go command */
 2118         CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
 2119 
 2120         ifp->if_flags |= IFF_RUNNING;
 2121         ifp->if_flags &= ~IFF_OACTIVE;
 2122 
 2123         /* Start the stats update counter */
 2124         sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
 2125         TL_UNLOCK(sc);
 2126 
 2127         return;
 2128 }
 2129 
 2130 /*
 2131  * Set media options.
 2132  */
 2133 static int
 2134 tl_ifmedia_upd(ifp)
 2135         struct ifnet            *ifp;
 2136 {
 2137         struct tl_softc         *sc;
 2138         struct mii_data         *mii = NULL;
 2139 
 2140         sc = ifp->if_softc;
 2141 
 2142         if (sc->tl_bitrate)
 2143                 tl_setmode(sc, sc->ifmedia.ifm_media);
 2144         else {
 2145                 mii = device_get_softc(sc->tl_miibus);
 2146                 mii_mediachg(mii);
 2147         }
 2148 
 2149         return(0);
 2150 }
 2151 
 2152 /*
 2153  * Report current media status.
 2154  */
 2155 static void
 2156 tl_ifmedia_sts(ifp, ifmr)
 2157         struct ifnet            *ifp;
 2158         struct ifmediareq       *ifmr;
 2159 {
 2160         struct tl_softc         *sc;
 2161         struct mii_data         *mii;
 2162 
 2163         sc = ifp->if_softc;
 2164 
 2165         ifmr->ifm_active = IFM_ETHER;
 2166 
 2167         if (sc->tl_bitrate) {
 2168                 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
 2169                         ifmr->ifm_active = IFM_ETHER|IFM_10_5;
 2170                 else
 2171                         ifmr->ifm_active = IFM_ETHER|IFM_10_T;
 2172                 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
 2173                         ifmr->ifm_active |= IFM_HDX;
 2174                 else
 2175                         ifmr->ifm_active |= IFM_FDX;
 2176                 return;
 2177         } else {
 2178                 mii = device_get_softc(sc->tl_miibus);
 2179                 mii_pollstat(mii);
 2180                 ifmr->ifm_active = mii->mii_media_active;
 2181                 ifmr->ifm_status = mii->mii_media_status;
 2182         }
 2183 
 2184         return;
 2185 }
 2186 
 2187 static int
 2188 tl_ioctl(ifp, command, data)
 2189         struct ifnet            *ifp;
 2190         u_long                  command;
 2191         caddr_t                 data;
 2192 {
 2193         struct tl_softc         *sc = ifp->if_softc;
 2194         struct ifreq            *ifr = (struct ifreq *) data;
 2195         int                     s, error = 0;
 2196 
 2197         s = splimp();
 2198 
 2199         switch(command) {
 2200         case SIOCSIFFLAGS:
 2201                 if (ifp->if_flags & IFF_UP) {
 2202                         if (ifp->if_flags & IFF_RUNNING &&
 2203                             ifp->if_flags & IFF_PROMISC &&
 2204                             !(sc->tl_if_flags & IFF_PROMISC)) {
 2205                                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
 2206                                 tl_setmulti(sc);
 2207                         } else if (ifp->if_flags & IFF_RUNNING &&
 2208                             !(ifp->if_flags & IFF_PROMISC) &&
 2209                             sc->tl_if_flags & IFF_PROMISC) {
 2210                                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
 2211                                 tl_setmulti(sc);
 2212                         } else
 2213                                 tl_init(sc);
 2214                 } else {
 2215                         if (ifp->if_flags & IFF_RUNNING) {
 2216                                 tl_stop(sc);
 2217                         }
 2218                 }
 2219                 sc->tl_if_flags = ifp->if_flags;
 2220                 error = 0;
 2221                 break;
 2222         case SIOCADDMULTI:
 2223         case SIOCDELMULTI:
 2224                 tl_setmulti(sc);
 2225                 error = 0;
 2226                 break;
 2227         case SIOCSIFMEDIA:
 2228         case SIOCGIFMEDIA:
 2229                 if (sc->tl_bitrate)
 2230                         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
 2231                 else {
 2232                         struct mii_data         *mii;
 2233                         mii = device_get_softc(sc->tl_miibus);
 2234                         error = ifmedia_ioctl(ifp, ifr,
 2235                             &mii->mii_media, command);
 2236                 }
 2237                 break;
 2238         default:
 2239                 error = ether_ioctl(ifp, command, data);
 2240                 break;
 2241         }
 2242 
 2243         (void)splx(s);
 2244 
 2245         return(error);
 2246 }
 2247 
 2248 static void
 2249 tl_watchdog(ifp)
 2250         struct ifnet            *ifp;
 2251 {
 2252         struct tl_softc         *sc;
 2253 
 2254         sc = ifp->if_softc;
 2255 
 2256         if_printf(ifp, "device timeout\n");
 2257 
 2258         ifp->if_oerrors++;
 2259 
 2260         tl_softreset(sc, 1);
 2261         tl_init(sc);
 2262 
 2263         return;
 2264 }
 2265 
 2266 /*
 2267  * Stop the adapter and free any mbufs allocated to the
 2268  * RX and TX lists.
 2269  */
 2270 static void
 2271 tl_stop(sc)
 2272         struct tl_softc         *sc;
 2273 {
 2274         register int            i;
 2275         struct ifnet            *ifp;
 2276 
 2277         TL_LOCK(sc);
 2278 
 2279         ifp = &sc->arpcom.ac_if;
 2280 
 2281         /* Stop the stats updater. */
 2282         untimeout(tl_stats_update, sc, sc->tl_stat_ch);
 2283 
 2284         /* Stop the transmitter */
 2285         CMD_CLR(sc, TL_CMD_RT);
 2286         CMD_SET(sc, TL_CMD_STOP);
 2287         CSR_WRITE_4(sc, TL_CH_PARM, 0);
 2288 
 2289         /* Stop the receiver */
 2290         CMD_SET(sc, TL_CMD_RT);
 2291         CMD_SET(sc, TL_CMD_STOP);
 2292         CSR_WRITE_4(sc, TL_CH_PARM, 0);
 2293 
 2294         /*
 2295          * Disable host interrupts.
 2296          */
 2297         CMD_SET(sc, TL_CMD_INTSOFF);
 2298 
 2299         /*
 2300          * Clear list pointer.
 2301          */
 2302         CSR_WRITE_4(sc, TL_CH_PARM, 0);
 2303 
 2304         /*
 2305          * Free the RX lists.
 2306          */
 2307         for (i = 0; i < TL_RX_LIST_CNT; i++) {
 2308                 if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
 2309                         m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
 2310                         sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
 2311                 }
 2312         }
 2313         bzero((char *)&sc->tl_ldata->tl_rx_list,
 2314                 sizeof(sc->tl_ldata->tl_rx_list));
 2315 
 2316         /*
 2317          * Free the TX list buffers.
 2318          */
 2319         for (i = 0; i < TL_TX_LIST_CNT; i++) {
 2320                 if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
 2321                         m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
 2322                         sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
 2323                 }
 2324         }
 2325         bzero((char *)&sc->tl_ldata->tl_tx_list,
 2326                 sizeof(sc->tl_ldata->tl_tx_list));
 2327 
 2328         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 2329         TL_UNLOCK(sc);
 2330 
 2331         return;
 2332 }
 2333 
 2334 /*
 2335  * Stop all chip I/O so that the kernel's probe routines don't
 2336  * get confused by errant DMAs when rebooting.
 2337  */
 2338 static void
 2339 tl_shutdown(dev)
 2340         device_t                dev;
 2341 {
 2342         struct tl_softc         *sc;
 2343 
 2344         sc = device_get_softc(dev);
 2345 
 2346         tl_stop(sc);
 2347 
 2348         return;
 2349 }

Cache object: 67c488c779fb0734bf568fe0cad1be56


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.