The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_tl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/7.4/sys/pci/if_tl.c 214930 2010-11-07 17:48:11Z marius $");
   35 
   36 /*
   37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
   38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
   39  * the National Semiconductor DP83840A physical interface and the
   40  * Microchip Technology 24Cxx series serial EEPROM.
   41  *
   42  * Written using the following four documents:
   43  *
   44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
   45  * National Semiconductor DP83840A data sheet (www.national.com)
   46  * Microchip Technology 24C02C data sheet (www.microchip.com)
   47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
   48  * 
   49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   50  * Electrical Engineering Department
   51  * Columbia University, New York City
   52  */
   53 /*
   54  * Some notes about the ThunderLAN:
   55  *
   56  * The ThunderLAN controller is a single chip containing PCI controller
   57  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
   58  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
   59  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
   60  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
   61  * to act as a complete ethernet interface.
   62  *
   63  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
   64  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
   65  * in full or half duplex. Some of the Compaq Deskpro machines use a
   66  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
   67  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
   68  * concert with the ThunderLAN's internal PHY to provide full 10/100
   69  * support. This is cheaper than using a standalone external PHY for both
   70  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
   71  * A serial EEPROM is also attached to the ThunderLAN chip to provide
   72  * power-up default register settings and for storing the adapter's
   73  * station address. Although not supported by this driver, the ThunderLAN
   74  * chip can also be connected to token ring PHYs.
   75  *
   76  * The ThunderLAN has a set of registers which can be used to issue
   77  * commands, acknowledge interrupts, and to manipulate other internal
   78  * registers on its DIO bus. The primary registers can be accessed
   79  * using either programmed I/O (inb/outb) or via PCI memory mapping,
   80  * depending on how the card is configured during the PCI probing
   81  * phase. It is even possible to have both PIO and memory mapped
   82  * access turned on at the same time.
   83  * 
   84  * Frame reception and transmission with the ThunderLAN chip is done
   85  * using frame 'lists.' A list structure looks more or less like this:
   86  *
   87  * struct tl_frag {
   88  *      u_int32_t               fragment_address;
   89  *      u_int32_t               fragment_size;
   90  * };
   91  * struct tl_list {
   92  *      u_int32_t               forward_pointer;
   93  *      u_int16_t               cstat;
   94  *      u_int16_t               frame_size;
   95  *      struct tl_frag          fragments[10];
   96  * };
   97  *
   98  * The forward pointer in the list header can be either a 0 or the address
   99  * of another list, which allows several lists to be linked together. Each
  100  * list contains up to 10 fragment descriptors. This means the chip allows
  101  * ethernet frames to be broken up into up to 10 chunks for transfer to
  102  * and from the SRAM. Note that the forward pointer and fragment buffer
  103  * addresses are physical memory addresses, not virtual. Note also that
  104  * a single ethernet frame can not span lists: if the host wants to
  105  * transmit a frame and the frame data is split up over more than 10
  106  * buffers, the frame has to collapsed before it can be transmitted.
  107  *
  108  * To receive frames, the driver sets up a number of lists and populates
  109  * the fragment descriptors, then it sends an RX GO command to the chip.
  110  * When a frame is received, the chip will DMA it into the memory regions
  111  * specified by the fragment descriptors and then trigger an RX 'end of
  112  * frame interrupt' when done. The driver may choose to use only one
  113  * fragment per list; this may result is slighltly less efficient use
  114  * of memory in exchange for improving performance.
  115  *
  116  * To transmit frames, the driver again sets up lists and fragment
  117  * descriptors, only this time the buffers contain frame data that
  118  * is to be DMA'ed into the chip instead of out of it. Once the chip
  119  * has transfered the data into its on-board SRAM, it will trigger a
  120  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
  121  * interrupt when it reaches the end of the list.
  122  */
  123 /*
  124  * Some notes about this driver:
  125  *
  126  * The ThunderLAN chip provides a couple of different ways to organize
  127  * reception, transmission and interrupt handling. The simplest approach
  128  * is to use one list each for transmission and reception. In this mode,
  129  * the ThunderLAN will generate two interrupts for every received frame
  130  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
  131  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
  132  * performance to have to handle so many interrupts.
  133  *
  134  * Initially I wanted to create a circular list of receive buffers so
  135  * that the ThunderLAN chip would think there was an infinitely long
  136  * receive channel and never deliver an RXEOC interrupt. However this
  137  * doesn't work correctly under heavy load: while the manual says the
  138  * chip will trigger an RXEOF interrupt each time a frame is copied into
  139  * memory, you can't count on the chip waiting around for you to acknowledge
  140  * the interrupt before it starts trying to DMA the next frame. The result
  141  * is that the chip might traverse the entire circular list and then wrap
  142  * around before you have a chance to do anything about it. Consequently,
  143  * the receive list is terminated (with a 0 in the forward pointer in the
  144  * last element). Each time an RXEOF interrupt arrives, the used list
  145  * is shifted to the end of the list. This gives the appearance of an
  146  * infinitely large RX chain so long as the driver doesn't fall behind
  147  * the chip and allow all of the lists to be filled up.
  148  *
  149  * If all the lists are filled, the adapter will deliver an RX 'end of
  150  * channel' interrupt when it hits the 0 forward pointer at the end of
  151  * the chain. The RXEOC handler then cleans out the RX chain and resets
  152  * the list head pointer in the ch_parm register and restarts the receiver.
  153  *
  154  * For frame transmission, it is possible to program the ThunderLAN's
  155  * transmit interrupt threshold so that the chip can acknowledge multiple
  156  * lists with only a single TX EOF interrupt. This allows the driver to
  157  * queue several frames in one shot, and only have to handle a total
  158  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
  159  * are transmitted. Frame transmission is done directly out of the
  160  * mbufs passed to the tl_start() routine via the interface send queue.
  161  * The driver simply sets up the fragment descriptors in the transmit
  162  * lists to point to the mbuf data regions and sends a TX GO command.
  163  *
  164  * Note that since the RX and TX lists themselves are always used
  165  * only by the driver, the are malloc()ed once at driver initialization
  166  * time and never free()ed.
  167  *
  168  * Also, in order to remain as platform independent as possible, this
  169  * driver uses memory mapped register access to manipulate the card
  170  * as opposed to programmed I/O. This avoids the use of the inb/outb
  171  * (and related) instructions which are specific to the i386 platform.
  172  *
  173  * Using these techniques, this driver achieves very high performance
  174  * by minimizing the amount of interrupts generated during large
  175  * transfers and by completely avoiding buffer copies. Frame transfer
  176  * to and from the ThunderLAN chip is performed entirely by the chip
  177  * itself thereby reducing the load on the host CPU.
  178  */
  179 
  180 #include <sys/param.h>
  181 #include <sys/systm.h>
  182 #include <sys/sockio.h>
  183 #include <sys/mbuf.h>
  184 #include <sys/malloc.h>
  185 #include <sys/kernel.h>
  186 #include <sys/module.h>
  187 #include <sys/socket.h>
  188 
  189 #include <net/if.h>
  190 #include <net/if_arp.h>
  191 #include <net/ethernet.h>
  192 #include <net/if_dl.h>
  193 #include <net/if_media.h>
  194 #include <net/if_types.h>
  195 
  196 #include <net/bpf.h>
  197 
  198 #include <vm/vm.h>              /* for vtophys */
  199 #include <vm/pmap.h>            /* for vtophys */
  200 #include <machine/bus.h>
  201 #include <machine/resource.h>
  202 #include <sys/bus.h>
  203 #include <sys/rman.h>
  204 
  205 #include <dev/mii/mii.h>
  206 #include <dev/mii/miivar.h>
  207 
  208 #include <dev/pci/pcireg.h>
  209 #include <dev/pci/pcivar.h>
  210 
  211 /*
  212  * Default to using PIO register access mode to pacify certain
  213  * laptop docking stations with built-in ThunderLAN chips that
  214  * don't seem to handle memory mapped mode properly.
  215  */
  216 #define TL_USEIOSPACE
  217 
  218 #include <pci/if_tlreg.h>
  219 
  220 MODULE_DEPEND(tl, pci, 1, 1, 1);
  221 MODULE_DEPEND(tl, ether, 1, 1, 1);
  222 MODULE_DEPEND(tl, miibus, 1, 1, 1);
  223 
  224 /* "device miibus" required.  See GENERIC if you get errors here. */
  225 #include "miibus_if.h"
  226 
  227 /*
  228  * Various supported device vendors/types and their names.
  229  */
  230 
  231 static struct tl_type tl_devs[] = {
  232         { TI_VENDORID,  TI_DEVICEID_THUNDERLAN,
  233                 "Texas Instruments ThunderLAN" },
  234         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
  235                 "Compaq Netelligent 10" },
  236         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
  237                 "Compaq Netelligent 10/100" },
  238         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
  239                 "Compaq Netelligent 10/100 Proliant" },
  240         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
  241                 "Compaq Netelligent 10/100 Dual Port" },
  242         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
  243                 "Compaq NetFlex-3/P Integrated" },
  244         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
  245                 "Compaq NetFlex-3/P" },
  246         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
  247                 "Compaq NetFlex 3/P w/ BNC" },
  248         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
  249                 "Compaq Netelligent 10/100 TX Embedded UTP" },
  250         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
  251                 "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
  252         { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
  253                 "Compaq Netelligent 10/100 TX UTP" },
  254         { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
  255                 "Olicom OC-2183/2185" },
  256         { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
  257                 "Olicom OC-2325" },
  258         { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
  259                 "Olicom OC-2326 10/100 TX UTP" },
  260         { 0, 0, NULL }
  261 };
  262 
  263 static int tl_probe(device_t);
  264 static int tl_attach(device_t);
  265 static int tl_detach(device_t);
  266 static int tl_intvec_rxeoc(void *, u_int32_t);
  267 static int tl_intvec_txeoc(void *, u_int32_t);
  268 static int tl_intvec_txeof(void *, u_int32_t);
  269 static int tl_intvec_rxeof(void *, u_int32_t);
  270 static int tl_intvec_adchk(void *, u_int32_t);
  271 static int tl_intvec_netsts(void *, u_int32_t);
  272 
  273 static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
  274 static void tl_stats_update(void *);
  275 static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
  276 
  277 static void tl_intr(void *);
  278 static void tl_start(struct ifnet *);
  279 static void tl_start_locked(struct ifnet *);
  280 static int tl_ioctl(struct ifnet *, u_long, caddr_t);
  281 static void tl_init(void *);
  282 static void tl_init_locked(struct tl_softc *);
  283 static void tl_stop(struct tl_softc *);
  284 static void tl_watchdog(struct ifnet *);
  285 static int tl_shutdown(device_t);
  286 static int tl_ifmedia_upd(struct ifnet *);
  287 static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  288 
  289 static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
  290 static u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
  291 static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
  292 
  293 static void tl_mii_sync(struct tl_softc *);
  294 static void tl_mii_send(struct tl_softc *, u_int32_t, int);
  295 static int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *);
  296 static int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *);
  297 static int tl_miibus_readreg(device_t, int, int);
  298 static int tl_miibus_writereg(device_t, int, int, int);
  299 static void tl_miibus_statchg(device_t);
  300 
  301 static void tl_setmode(struct tl_softc *, int);
  302 static uint32_t tl_mchash(const uint8_t *);
  303 static void tl_setmulti(struct tl_softc *);
  304 static void tl_setfilt(struct tl_softc *, caddr_t, int);
  305 static void tl_softreset(struct tl_softc *, int);
  306 static void tl_hardreset(device_t);
  307 static int tl_list_rx_init(struct tl_softc *);
  308 static int tl_list_tx_init(struct tl_softc *);
  309 
  310 static u_int8_t tl_dio_read8(struct tl_softc *, int);
  311 static u_int16_t tl_dio_read16(struct tl_softc *, int);
  312 static u_int32_t tl_dio_read32(struct tl_softc *, int);
  313 static void tl_dio_write8(struct tl_softc *, int, int);
  314 static void tl_dio_write16(struct tl_softc *, int, int);
  315 static void tl_dio_write32(struct tl_softc *, int, int);
  316 static void tl_dio_setbit(struct tl_softc *, int, int);
  317 static void tl_dio_clrbit(struct tl_softc *, int, int);
  318 static void tl_dio_setbit16(struct tl_softc *, int, int);
  319 static void tl_dio_clrbit16(struct tl_softc *, int, int);
  320 
  321 #ifdef TL_USEIOSPACE
  322 #define TL_RES          SYS_RES_IOPORT
  323 #define TL_RID          TL_PCI_LOIO
  324 #else
  325 #define TL_RES          SYS_RES_MEMORY
  326 #define TL_RID          TL_PCI_LOMEM
  327 #endif
  328 
  329 static device_method_t tl_methods[] = {
  330         /* Device interface */
  331         DEVMETHOD(device_probe,         tl_probe),
  332         DEVMETHOD(device_attach,        tl_attach),
  333         DEVMETHOD(device_detach,        tl_detach),
  334         DEVMETHOD(device_shutdown,      tl_shutdown),
  335 
  336         /* bus interface */
  337         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  338         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  339 
  340         /* MII interface */
  341         DEVMETHOD(miibus_readreg,       tl_miibus_readreg),
  342         DEVMETHOD(miibus_writereg,      tl_miibus_writereg),
  343         DEVMETHOD(miibus_statchg,       tl_miibus_statchg),
  344 
  345         { 0, 0 }
  346 };
  347 
  348 static driver_t tl_driver = {
  349         "tl",
  350         tl_methods,
  351         sizeof(struct tl_softc)
  352 };
  353 
  354 static devclass_t tl_devclass;
  355 
  356 DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
  357 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
  358 
  359 static u_int8_t tl_dio_read8(sc, reg)
  360         struct tl_softc         *sc;
  361         int                     reg;
  362 {
  363         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  364         return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
  365 }
  366 
  367 static u_int16_t tl_dio_read16(sc, reg)
  368         struct tl_softc         *sc;
  369         int                     reg;
  370 {
  371         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  372         return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
  373 }
  374 
  375 static u_int32_t tl_dio_read32(sc, reg)
  376         struct tl_softc         *sc;
  377         int                     reg;
  378 {
  379         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  380         return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
  381 }
  382 
  383 static void tl_dio_write8(sc, reg, val)
  384         struct tl_softc         *sc;
  385         int                     reg;
  386         int                     val;
  387 {
  388         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  389         CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
  390         return;
  391 }
  392 
  393 static void tl_dio_write16(sc, reg, val)
  394         struct tl_softc         *sc;
  395         int                     reg;
  396         int                     val;
  397 {
  398         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  399         CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
  400         return;
  401 }
  402 
  403 static void tl_dio_write32(sc, reg, val)
  404         struct tl_softc         *sc;
  405         int                     reg;
  406         int                     val;
  407 {
  408         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  409         CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
  410         return;
  411 }
  412 
  413 static void
  414 tl_dio_setbit(sc, reg, bit)
  415         struct tl_softc         *sc;
  416         int                     reg;
  417         int                     bit;
  418 {
  419         u_int8_t                        f;
  420 
  421         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  422         f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
  423         f |= bit;
  424         CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
  425 
  426         return;
  427 }
  428 
  429 static void
  430 tl_dio_clrbit(sc, reg, bit)
  431         struct tl_softc         *sc;
  432         int                     reg;
  433         int                     bit;
  434 {
  435         u_int8_t                        f;
  436 
  437         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  438         f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
  439         f &= ~bit;
  440         CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
  441 
  442         return;
  443 }
  444 
  445 static void tl_dio_setbit16(sc, reg, bit)
  446         struct tl_softc         *sc;
  447         int                     reg;
  448         int                     bit;
  449 {
  450         u_int16_t                       f;
  451 
  452         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  453         f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
  454         f |= bit;
  455         CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
  456 
  457         return;
  458 }
  459 
  460 static void tl_dio_clrbit16(sc, reg, bit)
  461         struct tl_softc         *sc;
  462         int                     reg;
  463         int                     bit;
  464 {
  465         u_int16_t                       f;
  466 
  467         CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
  468         f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
  469         f &= ~bit;
  470         CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
  471 
  472         return;
  473 }
  474 
  475 /*
  476  * Send an instruction or address to the EEPROM, check for ACK.
  477  */
  478 static u_int8_t tl_eeprom_putbyte(sc, byte)
  479         struct tl_softc         *sc;
  480         int                     byte;
  481 {
  482         register int            i, ack = 0;
  483 
  484         /*
  485          * Make sure we're in TX mode.
  486          */
  487         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
  488 
  489         /*
  490          * Feed in each bit and stobe the clock.
  491          */
  492         for (i = 0x80; i; i >>= 1) {
  493                 if (byte & i) {
  494                         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
  495                 } else {
  496                         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
  497                 }
  498                 DELAY(1);
  499                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  500                 DELAY(1);
  501                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  502         }
  503 
  504         /*
  505          * Turn off TX mode.
  506          */
  507         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
  508 
  509         /*
  510          * Check for ack.
  511          */
  512         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  513         ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
  514         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  515 
  516         return(ack);
  517 }
  518 
  519 /*
  520  * Read a byte of data stored in the EEPROM at address 'addr.'
  521  */
  522 static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
  523         struct tl_softc         *sc;
  524         int                     addr;
  525         u_int8_t                *dest;
  526 {
  527         register int            i;
  528         u_int8_t                byte = 0;
  529         device_t                tl_dev = sc->tl_dev;
  530 
  531         tl_dio_write8(sc, TL_NETSIO, 0);
  532 
  533         EEPROM_START;
  534 
  535         /*
  536          * Send write control code to EEPROM.
  537          */
  538         if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
  539                 device_printf(tl_dev, "failed to send write command, status: %x\n",
  540                     tl_dio_read8(sc, TL_NETSIO));
  541                 return(1);
  542         }
  543 
  544         /*
  545          * Send address of byte we want to read.
  546          */
  547         if (tl_eeprom_putbyte(sc, addr)) {
  548                 device_printf(tl_dev, "failed to send address, status: %x\n",
  549                     tl_dio_read8(sc, TL_NETSIO));
  550                 return(1);
  551         }
  552 
  553         EEPROM_STOP;
  554         EEPROM_START;
  555         /*
  556          * Send read control code to EEPROM.
  557          */
  558         if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
  559                 device_printf(tl_dev, "failed to send write command, status: %x\n",
  560                     tl_dio_read8(sc, TL_NETSIO));
  561                 return(1);
  562         }
  563 
  564         /*
  565          * Start reading bits from EEPROM.
  566          */
  567         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
  568         for (i = 0x80; i; i >>= 1) {
  569                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  570                 DELAY(1);
  571                 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
  572                         byte |= i;
  573                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
  574                 DELAY(1);
  575         }
  576 
  577         EEPROM_STOP;
  578 
  579         /*
  580          * No ACK generated for read, so just return byte.
  581          */
  582 
  583         *dest = byte;
  584 
  585         return(0);
  586 }
  587 
  588 /*
  589  * Read a sequence of bytes from the EEPROM.
  590  */
  591 static int
  592 tl_read_eeprom(sc, dest, off, cnt)
  593         struct tl_softc         *sc;
  594         caddr_t                 dest;
  595         int                     off;
  596         int                     cnt;
  597 {
  598         int                     err = 0, i;
  599         u_int8_t                byte = 0;
  600 
  601         for (i = 0; i < cnt; i++) {
  602                 err = tl_eeprom_getbyte(sc, off + i, &byte);
  603                 if (err)
  604                         break;
  605                 *(dest + i) = byte;
  606         }
  607 
  608         return(err ? 1 : 0);
  609 }
  610 
  611 static void
  612 tl_mii_sync(sc)
  613         struct tl_softc         *sc;
  614 {
  615         register int            i;
  616 
  617         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  618 
  619         for (i = 0; i < 32; i++) {
  620                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  621                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  622         }
  623 
  624         return;
  625 }
  626 
  627 static void
  628 tl_mii_send(sc, bits, cnt)
  629         struct tl_softc         *sc;
  630         u_int32_t               bits;
  631         int                     cnt;
  632 {
  633         int                     i;
  634 
  635         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  636                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  637                 if (bits & i) {
  638                         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
  639                 } else {
  640                         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
  641                 }
  642                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  643         }
  644 }
  645 
  646 static int
  647 tl_mii_readreg(sc, frame)
  648         struct tl_softc         *sc;
  649         struct tl_mii_frame     *frame;
  650         
  651 {
  652         int                     i, ack;
  653         int                     minten = 0;
  654 
  655         tl_mii_sync(sc);
  656 
  657         /*
  658          * Set up frame for RX.
  659          */
  660         frame->mii_stdelim = TL_MII_STARTDELIM;
  661         frame->mii_opcode = TL_MII_READOP;
  662         frame->mii_turnaround = 0;
  663         frame->mii_data = 0;
  664         
  665         /*
  666          * Turn off MII interrupt by forcing MINTEN low.
  667          */
  668         minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
  669         if (minten) {
  670                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  671         }
  672 
  673         /*
  674          * Turn on data xmit.
  675          */
  676         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  677 
  678         /*
  679          * Send command/address info.
  680          */
  681         tl_mii_send(sc, frame->mii_stdelim, 2);
  682         tl_mii_send(sc, frame->mii_opcode, 2);
  683         tl_mii_send(sc, frame->mii_phyaddr, 5);
  684         tl_mii_send(sc, frame->mii_regaddr, 5);
  685 
  686         /*
  687          * Turn off xmit.
  688          */
  689         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  690 
  691         /* Idle bit */
  692         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  693         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  694 
  695         /* Check for ack */
  696         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  697         ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
  698 
  699         /* Complete the cycle */
  700         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  701 
  702         /*
  703          * Now try reading data bits. If the ack failed, we still
  704          * need to clock through 16 cycles to keep the PHYs in sync.
  705          */
  706         if (ack) {
  707                 for(i = 0; i < 16; i++) {
  708                         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  709                         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  710                 }
  711                 goto fail;
  712         }
  713 
  714         for (i = 0x8000; i; i >>= 1) {
  715                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  716                 if (!ack) {
  717                         if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
  718                                 frame->mii_data |= i;
  719                 }
  720                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  721         }
  722 
  723 fail:
  724 
  725         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  726         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  727 
  728         /* Reenable interrupts */
  729         if (minten) {
  730                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  731         }
  732 
  733         if (ack)
  734                 return(1);
  735         return(0);
  736 }
  737 
  738 static int
  739 tl_mii_writereg(sc, frame)
  740         struct tl_softc         *sc;
  741         struct tl_mii_frame     *frame;
  742         
  743 {
  744         int                     minten;
  745 
  746         tl_mii_sync(sc);
  747 
  748         /*
  749          * Set up frame for TX.
  750          */
  751 
  752         frame->mii_stdelim = TL_MII_STARTDELIM;
  753         frame->mii_opcode = TL_MII_WRITEOP;
  754         frame->mii_turnaround = TL_MII_TURNAROUND;
  755         
  756         /*
  757          * Turn off MII interrupt by forcing MINTEN low.
  758          */
  759         minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
  760         if (minten) {
  761                 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  762         }
  763 
  764         /*
  765          * Turn on data output.
  766          */
  767         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  768 
  769         tl_mii_send(sc, frame->mii_stdelim, 2);
  770         tl_mii_send(sc, frame->mii_opcode, 2);
  771         tl_mii_send(sc, frame->mii_phyaddr, 5);
  772         tl_mii_send(sc, frame->mii_regaddr, 5);
  773         tl_mii_send(sc, frame->mii_turnaround, 2);
  774         tl_mii_send(sc, frame->mii_data, 16);
  775 
  776         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
  777         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
  778 
  779         /*
  780          * Turn off xmit.
  781          */
  782         tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
  783 
  784         /* Reenable interrupts */
  785         if (minten)
  786                 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
  787 
  788         return(0);
  789 }
  790 
  791 static int
  792 tl_miibus_readreg(dev, phy, reg)
  793         device_t                dev;
  794         int                     phy, reg;
  795 {
  796         struct tl_softc         *sc;
  797         struct tl_mii_frame     frame;
  798 
  799         sc = device_get_softc(dev);
  800         bzero((char *)&frame, sizeof(frame));
  801 
  802         frame.mii_phyaddr = phy;
  803         frame.mii_regaddr = reg;
  804         tl_mii_readreg(sc, &frame);
  805 
  806         return(frame.mii_data);
  807 }
  808 
  809 static int
  810 tl_miibus_writereg(dev, phy, reg, data)
  811         device_t                dev;
  812         int                     phy, reg, data;
  813 {
  814         struct tl_softc         *sc;
  815         struct tl_mii_frame     frame;
  816 
  817         sc = device_get_softc(dev);
  818         bzero((char *)&frame, sizeof(frame));
  819 
  820         frame.mii_phyaddr = phy;
  821         frame.mii_regaddr = reg;
  822         frame.mii_data = data;
  823 
  824         tl_mii_writereg(sc, &frame);
  825 
  826         return(0);
  827 }
  828 
  829 static void
  830 tl_miibus_statchg(dev)
  831         device_t                dev;
  832 {
  833         struct tl_softc         *sc;
  834         struct mii_data         *mii;
  835 
  836         sc = device_get_softc(dev);
  837         mii = device_get_softc(sc->tl_miibus);
  838 
  839         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  840                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  841         } else {
  842                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  843         }
  844 
  845         return;
  846 }
  847 
  848 /*
  849  * Set modes for bitrate devices.
  850  */
  851 static void
  852 tl_setmode(sc, media)
  853         struct tl_softc         *sc;
  854         int                     media;
  855 {
  856         if (IFM_SUBTYPE(media) == IFM_10_5)
  857                 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
  858         if (IFM_SUBTYPE(media) == IFM_10_T) {
  859                 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
  860                 if ((media & IFM_GMASK) == IFM_FDX) {
  861                         tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
  862                         tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  863                 } else {
  864                         tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
  865                         tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
  866                 }
  867         }
  868 
  869         return;
  870 }
  871 
  872 /*
  873  * Calculate the hash of a MAC address for programming the multicast hash
  874  * table.  This hash is simply the address split into 6-bit chunks
  875  * XOR'd, e.g.
  876  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
  877  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
  878  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
  879  * the folded 24-bit value is split into 6-bit portions and XOR'd.
  880  */
  881 static uint32_t
  882 tl_mchash(addr)
  883         const uint8_t *addr;
  884 {
  885         int t;
  886 
  887         t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
  888                 (addr[2] ^ addr[5]);
  889         return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
  890 }
  891 
  892 /*
  893  * The ThunderLAN has a perfect MAC address filter in addition to
  894  * the multicast hash filter. The perfect filter can be programmed
  895  * with up to four MAC addresses. The first one is always used to
  896  * hold the station address, which leaves us free to use the other
  897  * three for multicast addresses.
  898  */
  899 static void
  900 tl_setfilt(sc, addr, slot)
  901         struct tl_softc         *sc;
  902         caddr_t                 addr;
  903         int                     slot;
  904 {
  905         int                     i;
  906         u_int16_t               regaddr;
  907 
  908         regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
  909 
  910         for (i = 0; i < ETHER_ADDR_LEN; i++)
  911                 tl_dio_write8(sc, regaddr + i, *(addr + i));
  912 
  913         return;
  914 }
  915 
  916 /*
  917  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
  918  * linked list. This is fine, except addresses are added from the head
  919  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
  920  * group to always be in the perfect filter, but as more groups are added,
  921  * the 224.0.0.1 entry (which is always added first) gets pushed down
  922  * the list and ends up at the tail. So after 3 or 4 multicast groups
  923  * are added, the all-hosts entry gets pushed out of the perfect filter
  924  * and into the hash table.
  925  *
  926  * Because the multicast list is a doubly-linked list as opposed to a
  927  * circular queue, we don't have the ability to just grab the tail of
  928  * the list and traverse it backwards. Instead, we have to traverse
  929  * the list once to find the tail, then traverse it again backwards to
  930  * update the multicast filter.
  931  */
  932 static void
  933 tl_setmulti(sc)
  934         struct tl_softc         *sc;
  935 {
  936         struct ifnet            *ifp;
  937         u_int32_t               hashes[2] = { 0, 0 };
  938         int                     h, i;
  939         struct ifmultiaddr      *ifma;
  940         u_int8_t                dummy[] = { 0, 0, 0, 0, 0 ,0 };
  941         ifp = sc->tl_ifp;
  942 
  943         /* First, zot all the existing filters. */
  944         for (i = 1; i < 4; i++)
  945                 tl_setfilt(sc, (caddr_t)&dummy, i);
  946         tl_dio_write32(sc, TL_HASH1, 0);
  947         tl_dio_write32(sc, TL_HASH2, 0);
  948 
  949         /* Now program new ones. */
  950         if (ifp->if_flags & IFF_ALLMULTI) {
  951                 hashes[0] = 0xFFFFFFFF;
  952                 hashes[1] = 0xFFFFFFFF;
  953         } else {
  954                 i = 1;
  955                 IF_ADDR_LOCK(ifp);
  956                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
  957                         if (ifma->ifma_addr->sa_family != AF_LINK)
  958                                 continue;
  959                         /*
  960                          * Program the first three multicast groups
  961                          * into the perfect filter. For all others,
  962                          * use the hash table.
  963                          */
  964                         if (i < 4) {
  965                                 tl_setfilt(sc,
  966                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
  967                                 i++;
  968                                 continue;
  969                         }
  970 
  971                         h = tl_mchash(
  972                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  973                         if (h < 32)
  974                                 hashes[0] |= (1 << h);
  975                         else
  976                                 hashes[1] |= (1 << (h - 32));
  977                 }
  978                 IF_ADDR_UNLOCK(ifp);
  979         }
  980 
  981         tl_dio_write32(sc, TL_HASH1, hashes[0]);
  982         tl_dio_write32(sc, TL_HASH2, hashes[1]);
  983 
  984         return;
  985 }
  986 
  987 /*
  988  * This routine is recommended by the ThunderLAN manual to insure that
  989  * the internal PHY is powered up correctly. It also recommends a one
  990  * second pause at the end to 'wait for the clocks to start' but in my
  991  * experience this isn't necessary.
  992  */
  993 static void
  994 tl_hardreset(dev)
  995         device_t                dev;
  996 {
  997         struct tl_softc         *sc;
  998         int                     i;
  999         u_int16_t               flags;
 1000 
 1001         sc = device_get_softc(dev);
 1002 
 1003         tl_mii_sync(sc);
 1004 
 1005         flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
 1006 
 1007         for (i = 0; i < MII_NPHY; i++)
 1008                 tl_miibus_writereg(dev, i, MII_BMCR, flags);
 1009 
 1010         tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
 1011         DELAY(50000);
 1012         tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
 1013         tl_mii_sync(sc);
 1014         while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
 1015 
 1016         DELAY(50000);
 1017         return;
 1018 }
 1019 
 1020 static void
 1021 tl_softreset(sc, internal)
 1022         struct tl_softc         *sc;
 1023         int                     internal;
 1024 {
 1025         u_int32_t               cmd, dummy, i;
 1026 
 1027         /* Assert the adapter reset bit. */
 1028         CMD_SET(sc, TL_CMD_ADRST);
 1029 
 1030         /* Turn off interrupts */
 1031         CMD_SET(sc, TL_CMD_INTSOFF);
 1032 
 1033         /* First, clear the stats registers. */
 1034         for (i = 0; i < 5; i++)
 1035                 dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
 1036 
 1037         /* Clear Areg and Hash registers */
 1038         for (i = 0; i < 8; i++)
 1039                 tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
 1040 
 1041         /*
 1042          * Set up Netconfig register. Enable one channel and
 1043          * one fragment mode.
 1044          */
 1045         tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
 1046         if (internal && !sc->tl_bitrate) {
 1047                 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
 1048         } else {
 1049                 tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
 1050         }
 1051 
 1052         /* Handle cards with bitrate devices. */
 1053         if (sc->tl_bitrate)
 1054                 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
 1055 
 1056         /*
 1057          * Load adapter irq pacing timer and tx threshold.
 1058          * We make the transmit threshold 1 initially but we may
 1059          * change that later.
 1060          */
 1061         cmd = CSR_READ_4(sc, TL_HOSTCMD);
 1062         cmd |= TL_CMD_NES;
 1063         cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
 1064         CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
 1065         CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
 1066 
 1067         /* Unreset the MII */
 1068         tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
 1069 
 1070         /* Take the adapter out of reset */
 1071         tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
 1072 
 1073         /* Wait for things to settle down a little. */
 1074         DELAY(500);
 1075 
 1076         return;
 1077 }
 1078 
 1079 /*
 1080  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
 1081  * against our list and return its name if we find a match.
 1082  */
 1083 static int
 1084 tl_probe(dev)
 1085         device_t                dev;
 1086 {
 1087         struct tl_type          *t;
 1088 
 1089         t = tl_devs;
 1090 
 1091         while(t->tl_name != NULL) {
 1092                 if ((pci_get_vendor(dev) == t->tl_vid) &&
 1093                     (pci_get_device(dev) == t->tl_did)) {
 1094                         device_set_desc(dev, t->tl_name);
 1095                         return (BUS_PROBE_DEFAULT);
 1096                 }
 1097                 t++;
 1098         }
 1099 
 1100         return(ENXIO);
 1101 }
 1102 
 1103 static int
 1104 tl_attach(dev)
 1105         device_t                dev;
 1106 {
 1107         u_int16_t               did, vid;
 1108         struct tl_type          *t;
 1109         struct ifnet            *ifp;
 1110         struct tl_softc         *sc;
 1111         int                     error, flags, i, rid, unit;
 1112         u_char                  eaddr[6];
 1113 
 1114         vid = pci_get_vendor(dev);
 1115         did = pci_get_device(dev);
 1116         sc = device_get_softc(dev);
 1117         sc->tl_dev = dev;
 1118         unit = device_get_unit(dev);
 1119 
 1120         t = tl_devs;
 1121         while(t->tl_name != NULL) {
 1122                 if (vid == t->tl_vid && did == t->tl_did)
 1123                         break;
 1124                 t++;
 1125         }
 1126 
 1127         if (t->tl_name == NULL) {
 1128                 device_printf(dev, "unknown device!?\n");
 1129                 return (ENXIO);
 1130         }
 1131 
 1132         mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1133             MTX_DEF);
 1134 
 1135         /*
 1136          * Map control/status registers.
 1137          */
 1138         pci_enable_busmaster(dev);
 1139 
 1140 #ifdef TL_USEIOSPACE
 1141 
 1142         rid = TL_PCI_LOIO;
 1143         sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
 1144                 RF_ACTIVE);
 1145 
 1146         /*
 1147          * Some cards have the I/O and memory mapped address registers
 1148          * reversed. Try both combinations before giving up.
 1149          */
 1150         if (sc->tl_res == NULL) {
 1151                 rid = TL_PCI_LOMEM;
 1152                 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
 1153                     RF_ACTIVE);
 1154         }
 1155 #else
 1156         rid = TL_PCI_LOMEM;
 1157         sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 1158             RF_ACTIVE);
 1159         if (sc->tl_res == NULL) {
 1160                 rid = TL_PCI_LOIO;
 1161                 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 1162                     RF_ACTIVE);
 1163         }
 1164 #endif
 1165 
 1166         if (sc->tl_res == NULL) {
 1167                 device_printf(dev, "couldn't map ports/memory\n");
 1168                 error = ENXIO;
 1169                 goto fail;
 1170         }
 1171 
 1172         sc->tl_btag = rman_get_bustag(sc->tl_res);
 1173         sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
 1174 
 1175 #ifdef notdef
 1176         /*
 1177          * The ThunderLAN manual suggests jacking the PCI latency
 1178          * timer all the way up to its maximum value. I'm not sure
 1179          * if this is really necessary, but what the manual wants,
 1180          * the manual gets.
 1181          */
 1182         command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
 1183         command |= 0x0000FF00;
 1184         pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
 1185 #endif
 1186 
 1187         /* Allocate interrupt */
 1188         rid = 0;
 1189         sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1190             RF_SHAREABLE | RF_ACTIVE);
 1191 
 1192         if (sc->tl_irq == NULL) {
 1193                 device_printf(dev, "couldn't map interrupt\n");
 1194                 error = ENXIO;
 1195                 goto fail;
 1196         }
 1197 
 1198         /*
 1199          * Now allocate memory for the TX and RX lists.
 1200          */
 1201         sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
 1202             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
 1203 
 1204         if (sc->tl_ldata == NULL) {
 1205                 device_printf(dev, "no memory for list buffers!\n");
 1206                 error = ENXIO;
 1207                 goto fail;
 1208         }
 1209 
 1210         bzero(sc->tl_ldata, sizeof(struct tl_list_data));
 1211 
 1212         if (vid == COMPAQ_VENDORID || vid == TI_VENDORID)
 1213                 sc->tl_eeaddr = TL_EEPROM_EADDR;
 1214         if (vid == OLICOM_VENDORID)
 1215                 sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
 1216 
 1217         /* Reset the adapter. */
 1218         tl_softreset(sc, 1);
 1219         tl_hardreset(dev);
 1220         tl_softreset(sc, 1);
 1221 
 1222         /*
 1223          * Get station address from the EEPROM.
 1224          */
 1225         if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
 1226                 device_printf(dev, "failed to read station address\n");
 1227                 error = ENXIO;
 1228                 goto fail;
 1229         }
 1230 
 1231         /*
 1232          * XXX Olicom, in its desire to be different from the
 1233          * rest of the world, has done strange things with the
 1234          * encoding of the station address in the EEPROM. First
 1235          * of all, they store the address at offset 0xF8 rather
 1236          * than at 0x83 like the ThunderLAN manual suggests.
 1237          * Second, they store the address in three 16-bit words in
 1238          * network byte order, as opposed to storing it sequentially
 1239          * like all the other ThunderLAN cards. In order to get
 1240          * the station address in a form that matches what the Olicom
 1241          * diagnostic utility specifies, we have to byte-swap each
 1242          * word. To make things even more confusing, neither 00:00:28
 1243          * nor 00:00:24 appear in the IEEE OUI database.
 1244          */
 1245         if (vid == OLICOM_VENDORID) {
 1246                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1247                         u_int16_t               *p;
 1248                         p = (u_int16_t *)&eaddr[i];
 1249                         *p = ntohs(*p);
 1250                 }
 1251         }
 1252 
 1253         ifp = sc->tl_ifp = if_alloc(IFT_ETHER);
 1254         if (ifp == NULL) {
 1255                 device_printf(dev, "can not if_alloc()\n");
 1256                 error = ENOSPC;
 1257                 goto fail;
 1258         }
 1259         ifp->if_softc = sc;
 1260         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1261         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1262         ifp->if_ioctl = tl_ioctl;
 1263         ifp->if_start = tl_start;
 1264         ifp->if_watchdog = tl_watchdog;
 1265         ifp->if_init = tl_init;
 1266         ifp->if_mtu = ETHERMTU;
 1267         ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
 1268         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1269         ifp->if_capenable |= IFCAP_VLAN_MTU;
 1270         callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0);
 1271 
 1272         /* Reset the adapter again. */
 1273         tl_softreset(sc, 1);
 1274         tl_hardreset(dev);
 1275         tl_softreset(sc, 1);
 1276 
 1277         /*
 1278          * Do MII setup. If no PHYs are found, then this is a
 1279          * bitrate ThunderLAN chip that only supports 10baseT
 1280          * and AUI/BNC.
 1281          * XXX mii_attach() can fail for reason different than
 1282          * no PHYs found!
 1283          */
 1284         flags = 0;
 1285         if (vid == COMPAQ_VENDORID) {
 1286                 if (did == COMPAQ_DEVICEID_NETEL_10_100_PROLIANT ||
 1287                     did == COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED ||
 1288                     did == COMPAQ_DEVICEID_NETFLEX_3P_BNC ||
 1289                     did == COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX)
 1290                         flags |= MIIF_MACPRIV0;
 1291                 if (did == COMPAQ_DEVICEID_NETEL_10 ||
 1292                     did == COMPAQ_DEVICEID_NETEL_10_100_DUAL ||
 1293                     did == COMPAQ_DEVICEID_NETFLEX_3P ||
 1294                     did == COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED)
 1295                         flags |= MIIF_MACPRIV1;
 1296         } else if (vid == OLICOM_VENDORID && did == OLICOM_DEVICEID_OC2183)
 1297                         flags |= MIIF_MACPRIV0 | MIIF_MACPRIV1;
 1298         if (mii_attach(dev, &sc->tl_miibus, ifp, tl_ifmedia_upd,
 1299             tl_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0)) {
 1300                 struct ifmedia          *ifm;
 1301                 sc->tl_bitrate = 1;
 1302                 ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
 1303                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
 1304                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
 1305                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
 1306                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
 1307                 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
 1308                 /* Reset again, this time setting bitrate mode. */
 1309                 tl_softreset(sc, 1);
 1310                 ifm = &sc->ifmedia;
 1311                 ifm->ifm_media = ifm->ifm_cur->ifm_media;
 1312                 tl_ifmedia_upd(ifp);
 1313         }
 1314 
 1315         /*
 1316          * Call MI attach routine.
 1317          */
 1318         ether_ifattach(ifp, eaddr);
 1319 
 1320         /* Hook interrupt last to avoid having to lock softc */
 1321         error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1322             NULL, tl_intr, sc, &sc->tl_intrhand);
 1323 
 1324         if (error) {
 1325                 device_printf(dev, "couldn't set up irq\n");
 1326                 ether_ifdetach(ifp);
 1327                 goto fail;
 1328         }
 1329 
 1330 fail:
 1331         if (error)
 1332                 tl_detach(dev);
 1333 
 1334         return(error);
 1335 }
 1336 
 1337 /*
 1338  * Shutdown hardware and free up resources. This can be called any
 1339  * time after the mutex has been initialized. It is called in both
 1340  * the error case in attach and the normal detach case so it needs
 1341  * to be careful about only freeing resources that have actually been
 1342  * allocated.
 1343  */
 1344 static int
 1345 tl_detach(dev)
 1346         device_t                dev;
 1347 {
 1348         struct tl_softc         *sc;
 1349         struct ifnet            *ifp;
 1350 
 1351         sc = device_get_softc(dev);
 1352         KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
 1353         ifp = sc->tl_ifp;
 1354 
 1355         /* These should only be active if attach succeeded */
 1356         if (device_is_attached(dev)) {
 1357                 TL_LOCK(sc);
 1358                 tl_stop(sc);
 1359                 TL_UNLOCK(sc);
 1360                 callout_drain(&sc->tl_stat_callout);
 1361                 ether_ifdetach(ifp);
 1362         }
 1363         if (sc->tl_miibus)
 1364                 device_delete_child(dev, sc->tl_miibus);
 1365         bus_generic_detach(dev);
 1366 
 1367         if (sc->tl_ldata)
 1368                 contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
 1369         if (sc->tl_bitrate)
 1370                 ifmedia_removeall(&sc->ifmedia);
 1371 
 1372         if (sc->tl_intrhand)
 1373                 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
 1374         if (sc->tl_irq)
 1375                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
 1376         if (sc->tl_res)
 1377                 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
 1378 
 1379         if (ifp)
 1380                 if_free(ifp);
 1381 
 1382         mtx_destroy(&sc->tl_mtx);
 1383 
 1384         return(0);
 1385 }
 1386 
 1387 /*
 1388  * Initialize the transmit lists.
 1389  */
 1390 static int
 1391 tl_list_tx_init(sc)
 1392         struct tl_softc         *sc;
 1393 {
 1394         struct tl_chain_data    *cd;
 1395         struct tl_list_data     *ld;
 1396         int                     i;
 1397 
 1398         cd = &sc->tl_cdata;
 1399         ld = sc->tl_ldata;
 1400         for (i = 0; i < TL_TX_LIST_CNT; i++) {
 1401                 cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
 1402                 if (i == (TL_TX_LIST_CNT - 1))
 1403                         cd->tl_tx_chain[i].tl_next = NULL;
 1404                 else
 1405                         cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
 1406         }
 1407 
 1408         cd->tl_tx_free = &cd->tl_tx_chain[0];
 1409         cd->tl_tx_tail = cd->tl_tx_head = NULL;
 1410         sc->tl_txeoc = 1;
 1411 
 1412         return(0);
 1413 }
 1414 
 1415 /*
 1416  * Initialize the RX lists and allocate mbufs for them.
 1417  */
 1418 static int
 1419 tl_list_rx_init(sc)
 1420         struct tl_softc         *sc;
 1421 {
 1422         struct tl_chain_data    *cd;
 1423         struct tl_list_data     *ld;
 1424         int                     i;
 1425 
 1426         cd = &sc->tl_cdata;
 1427         ld = sc->tl_ldata;
 1428 
 1429         for (i = 0; i < TL_RX_LIST_CNT; i++) {
 1430                 cd->tl_rx_chain[i].tl_ptr =
 1431                         (struct tl_list_onefrag *)&ld->tl_rx_list[i];
 1432                 if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
 1433                         return(ENOBUFS);
 1434                 if (i == (TL_RX_LIST_CNT - 1)) {
 1435                         cd->tl_rx_chain[i].tl_next = NULL;
 1436                         ld->tl_rx_list[i].tlist_fptr = 0;
 1437                 } else {
 1438                         cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
 1439                         ld->tl_rx_list[i].tlist_fptr =
 1440                                         vtophys(&ld->tl_rx_list[i + 1]);
 1441                 }
 1442         }
 1443 
 1444         cd->tl_rx_head = &cd->tl_rx_chain[0];
 1445         cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
 1446 
 1447         return(0);
 1448 }
 1449 
 1450 static int
 1451 tl_newbuf(sc, c)
 1452         struct tl_softc         *sc;
 1453         struct tl_chain_onefrag *c;
 1454 {
 1455         struct mbuf             *m_new = NULL;
 1456 
 1457         m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1458         if (m_new == NULL)
 1459                 return(ENOBUFS);
 1460 
 1461         c->tl_mbuf = m_new;
 1462         c->tl_next = NULL;
 1463         c->tl_ptr->tlist_frsize = MCLBYTES;
 1464         c->tl_ptr->tlist_fptr = 0;
 1465         c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
 1466         c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
 1467         c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
 1468 
 1469         return(0);
 1470 }
 1471 /*
 1472  * Interrupt handler for RX 'end of frame' condition (EOF). This
 1473  * tells us that a full ethernet frame has been captured and we need
 1474  * to handle it.
 1475  *
 1476  * Reception is done using 'lists' which consist of a header and a
 1477  * series of 10 data count/data address pairs that point to buffers.
 1478  * Initially you're supposed to create a list, populate it with pointers
 1479  * to buffers, then load the physical address of the list into the
 1480  * ch_parm register. The adapter is then supposed to DMA the received
 1481  * frame into the buffers for you.
 1482  *
 1483  * To make things as fast as possible, we have the chip DMA directly
 1484  * into mbufs. This saves us from having to do a buffer copy: we can
 1485  * just hand the mbufs directly to ether_input(). Once the frame has
 1486  * been sent on its way, the 'list' structure is assigned a new buffer
 1487  * and moved to the end of the RX chain. As long we we stay ahead of
 1488  * the chip, it will always think it has an endless receive channel.
 1489  *
 1490  * If we happen to fall behind and the chip manages to fill up all of
 1491  * the buffers, it will generate an end of channel interrupt and wait
 1492  * for us to empty the chain and restart the receiver.
 1493  */
 1494 static int
 1495 tl_intvec_rxeof(xsc, type)
 1496         void                    *xsc;
 1497         u_int32_t               type;
 1498 {
 1499         struct tl_softc         *sc;
 1500         int                     r = 0, total_len = 0;
 1501         struct ether_header     *eh;
 1502         struct mbuf             *m;
 1503         struct ifnet            *ifp;
 1504         struct tl_chain_onefrag *cur_rx;
 1505 
 1506         sc = xsc;
 1507         ifp = sc->tl_ifp;
 1508 
 1509         TL_LOCK_ASSERT(sc);
 1510 
 1511         while(sc->tl_cdata.tl_rx_head != NULL) {
 1512                 cur_rx = sc->tl_cdata.tl_rx_head;
 1513                 if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
 1514                         break;
 1515                 r++;
 1516                 sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
 1517                 m = cur_rx->tl_mbuf;
 1518                 total_len = cur_rx->tl_ptr->tlist_frsize;
 1519 
 1520                 if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
 1521                         ifp->if_ierrors++;
 1522                         cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
 1523                         cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
 1524                         cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
 1525                         continue;
 1526                 }
 1527 
 1528                 sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
 1529                                                 vtophys(cur_rx->tl_ptr);
 1530                 sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
 1531                 sc->tl_cdata.tl_rx_tail = cur_rx;
 1532 
 1533                 /*
 1534                  * Note: when the ThunderLAN chip is in 'capture all
 1535                  * frames' mode, it will receive its own transmissions.
 1536                  * We drop don't need to process our own transmissions,
 1537                  * so we drop them here and continue.
 1538                  */
 1539                 eh = mtod(m, struct ether_header *);
 1540                 /*if (ifp->if_flags & IFF_PROMISC && */
 1541                 if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp),
 1542                                                         ETHER_ADDR_LEN)) {
 1543                                 m_freem(m);
 1544                                 continue;
 1545                 }
 1546 
 1547                 m->m_pkthdr.rcvif = ifp;
 1548                 m->m_pkthdr.len = m->m_len = total_len;
 1549 
 1550                 TL_UNLOCK(sc);
 1551                 (*ifp->if_input)(ifp, m);
 1552                 TL_LOCK(sc);
 1553         }
 1554 
 1555         return(r);
 1556 }
 1557 
 1558 /*
 1559  * The RX-EOC condition hits when the ch_parm address hasn't been
 1560  * initialized or the adapter reached a list with a forward pointer
 1561  * of 0 (which indicates the end of the chain). In our case, this means
 1562  * the card has hit the end of the receive buffer chain and we need to
 1563  * empty out the buffers and shift the pointer back to the beginning again.
 1564  */
 1565 static int
 1566 tl_intvec_rxeoc(xsc, type)
 1567         void                    *xsc;
 1568         u_int32_t               type;
 1569 {
 1570         struct tl_softc         *sc;
 1571         int                     r;
 1572         struct tl_chain_data    *cd;
 1573 
 1574 
 1575         sc = xsc;
 1576         cd = &sc->tl_cdata;
 1577 
 1578         /* Flush out the receive queue and ack RXEOF interrupts. */
 1579         r = tl_intvec_rxeof(xsc, type);
 1580         CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
 1581         r = 1;
 1582         cd->tl_rx_head = &cd->tl_rx_chain[0];
 1583         cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
 1584         CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
 1585         r |= (TL_CMD_GO|TL_CMD_RT);
 1586         return(r);
 1587 }
 1588 
 1589 static int
 1590 tl_intvec_txeof(xsc, type)
 1591         void                    *xsc;
 1592         u_int32_t               type;
 1593 {
 1594         struct tl_softc         *sc;
 1595         int                     r = 0;
 1596         struct tl_chain         *cur_tx;
 1597 
 1598         sc = xsc;
 1599 
 1600         /*
 1601          * Go through our tx list and free mbufs for those
 1602          * frames that have been sent.
 1603          */
 1604         while (sc->tl_cdata.tl_tx_head != NULL) {
 1605                 cur_tx = sc->tl_cdata.tl_tx_head;
 1606                 if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
 1607                         break;
 1608                 sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
 1609 
 1610                 r++;
 1611                 m_freem(cur_tx->tl_mbuf);
 1612                 cur_tx->tl_mbuf = NULL;
 1613 
 1614                 cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
 1615                 sc->tl_cdata.tl_tx_free = cur_tx;
 1616                 if (!cur_tx->tl_ptr->tlist_fptr)
 1617                         break;
 1618         }
 1619 
 1620         return(r);
 1621 }
 1622 
 1623 /*
 1624  * The transmit end of channel interrupt. The adapter triggers this
 1625  * interrupt to tell us it hit the end of the current transmit list.
 1626  *
 1627  * A note about this: it's possible for a condition to arise where
 1628  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
 1629  * You have to avoid this since the chip expects things to go in a
 1630  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
 1631  * When the TXEOF handler is called, it will free all of the transmitted
 1632  * frames and reset the tx_head pointer to NULL. However, a TXEOC
 1633  * interrupt should be received and acknowledged before any more frames
 1634  * are queued for transmission. If tl_statrt() is called after TXEOF
 1635  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
 1636  * it could attempt to issue a transmit command prematurely.
 1637  *
 1638  * To guard against this, tl_start() will only issue transmit commands
 1639  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
 1640  * can set this flag once tl_start() has cleared it.
 1641  */
 1642 static int
 1643 tl_intvec_txeoc(xsc, type)
 1644         void                    *xsc;
 1645         u_int32_t               type;
 1646 {
 1647         struct tl_softc         *sc;
 1648         struct ifnet            *ifp;
 1649         u_int32_t               cmd;
 1650 
 1651         sc = xsc;
 1652         ifp = sc->tl_ifp;
 1653 
 1654         /* Clear the timeout timer. */
 1655         ifp->if_timer = 0;
 1656 
 1657         if (sc->tl_cdata.tl_tx_head == NULL) {
 1658                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1659                 sc->tl_cdata.tl_tx_tail = NULL;
 1660                 sc->tl_txeoc = 1;
 1661         } else {
 1662                 sc->tl_txeoc = 0;
 1663                 /* First we have to ack the EOC interrupt. */
 1664                 CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
 1665                 /* Then load the address of the next TX list. */
 1666                 CSR_WRITE_4(sc, TL_CH_PARM,
 1667                     vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
 1668                 /* Restart TX channel. */
 1669                 cmd = CSR_READ_4(sc, TL_HOSTCMD);
 1670                 cmd &= ~TL_CMD_RT;
 1671                 cmd |= TL_CMD_GO|TL_CMD_INTSON;
 1672                 CMD_PUT(sc, cmd);
 1673                 return(0);
 1674         }
 1675 
 1676         return(1);
 1677 }
 1678 
 1679 static int
 1680 tl_intvec_adchk(xsc, type)
 1681         void                    *xsc;
 1682         u_int32_t               type;
 1683 {
 1684         struct tl_softc         *sc;
 1685 
 1686         sc = xsc;
 1687 
 1688         if (type)
 1689                 device_printf(sc->tl_dev, "adapter check: %x\n",
 1690                         (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
 1691 
 1692         tl_softreset(sc, 1);
 1693         tl_stop(sc);
 1694         tl_init_locked(sc);
 1695         CMD_SET(sc, TL_CMD_INTSON);
 1696 
 1697         return(0);
 1698 }
 1699 
 1700 static int
 1701 tl_intvec_netsts(xsc, type)
 1702         void                    *xsc;
 1703         u_int32_t               type;
 1704 {
 1705         struct tl_softc         *sc;
 1706         u_int16_t               netsts;
 1707 
 1708         sc = xsc;
 1709 
 1710         netsts = tl_dio_read16(sc, TL_NETSTS);
 1711         tl_dio_write16(sc, TL_NETSTS, netsts);
 1712 
 1713         device_printf(sc->tl_dev, "network status: %x\n", netsts);
 1714 
 1715         return(1);
 1716 }
 1717 
 1718 static void
 1719 tl_intr(xsc)
 1720         void                    *xsc;
 1721 {
 1722         struct tl_softc         *sc;
 1723         struct ifnet            *ifp;
 1724         int                     r = 0;
 1725         u_int32_t               type = 0;
 1726         u_int16_t               ints = 0;
 1727         u_int8_t                ivec = 0;
 1728 
 1729         sc = xsc;
 1730         TL_LOCK(sc);
 1731 
 1732         /* Disable interrupts */
 1733         ints = CSR_READ_2(sc, TL_HOST_INT);
 1734         CSR_WRITE_2(sc, TL_HOST_INT, ints);
 1735         type = (ints << 16) & 0xFFFF0000;
 1736         ivec = (ints & TL_VEC_MASK) >> 5;
 1737         ints = (ints & TL_INT_MASK) >> 2;
 1738 
 1739         ifp = sc->tl_ifp;
 1740 
 1741         switch(ints) {
 1742         case (TL_INTR_INVALID):
 1743 #ifdef DIAGNOSTIC
 1744                 device_printf(sc->tl_dev, "got an invalid interrupt!\n");
 1745 #endif
 1746                 /* Re-enable interrupts but don't ack this one. */
 1747                 CMD_PUT(sc, type);
 1748                 r = 0;
 1749                 break;
 1750         case (TL_INTR_TXEOF):
 1751                 r = tl_intvec_txeof((void *)sc, type);
 1752                 break;
 1753         case (TL_INTR_TXEOC):
 1754                 r = tl_intvec_txeoc((void *)sc, type);
 1755                 break;
 1756         case (TL_INTR_STATOFLOW):
 1757                 tl_stats_update(sc);
 1758                 r = 1;
 1759                 break;
 1760         case (TL_INTR_RXEOF):
 1761                 r = tl_intvec_rxeof((void *)sc, type);
 1762                 break;
 1763         case (TL_INTR_DUMMY):
 1764                 device_printf(sc->tl_dev, "got a dummy interrupt\n");
 1765                 r = 1;
 1766                 break;
 1767         case (TL_INTR_ADCHK):
 1768                 if (ivec)
 1769                         r = tl_intvec_adchk((void *)sc, type);
 1770                 else
 1771                         r = tl_intvec_netsts((void *)sc, type);
 1772                 break;
 1773         case (TL_INTR_RXEOC):
 1774                 r = tl_intvec_rxeoc((void *)sc, type);
 1775                 break;
 1776         default:
 1777                 device_printf(sc->tl_dev, "bogus interrupt type\n");
 1778                 break;
 1779         }
 1780 
 1781         /* Re-enable interrupts */
 1782         if (r) {
 1783                 CMD_PUT(sc, TL_CMD_ACK | r | type);
 1784         }
 1785 
 1786         if (ifp->if_snd.ifq_head != NULL)
 1787                 tl_start_locked(ifp);
 1788 
 1789         TL_UNLOCK(sc);
 1790 
 1791         return;
 1792 }
 1793 
 1794 static void
 1795 tl_stats_update(xsc)
 1796         void                    *xsc;
 1797 {
 1798         struct tl_softc         *sc;
 1799         struct ifnet            *ifp;
 1800         struct tl_stats         tl_stats;
 1801         struct mii_data         *mii;
 1802         u_int32_t               *p;
 1803 
 1804         bzero((char *)&tl_stats, sizeof(struct tl_stats));
 1805 
 1806         sc = xsc;
 1807         TL_LOCK_ASSERT(sc);
 1808         ifp = sc->tl_ifp;
 1809 
 1810         p = (u_int32_t *)&tl_stats;
 1811 
 1812         CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
 1813         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1814         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1815         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1816         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1817         *p++ = CSR_READ_4(sc, TL_DIO_DATA);
 1818 
 1819         ifp->if_opackets += tl_tx_goodframes(tl_stats);
 1820         ifp->if_collisions += tl_stats.tl_tx_single_collision +
 1821                                 tl_stats.tl_tx_multi_collision;
 1822         ifp->if_ipackets += tl_rx_goodframes(tl_stats);
 1823         ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
 1824                             tl_rx_overrun(tl_stats);
 1825         ifp->if_oerrors += tl_tx_underrun(tl_stats);
 1826 
 1827         if (tl_tx_underrun(tl_stats)) {
 1828                 u_int8_t                tx_thresh;
 1829                 tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
 1830                 if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
 1831                         tx_thresh >>= 4;
 1832                         tx_thresh++;
 1833                         device_printf(sc->tl_dev, "tx underrun -- increasing "
 1834                             "tx threshold to %d bytes\n",
 1835                             (64 * (tx_thresh * 4)));
 1836                         tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
 1837                         tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
 1838                 }
 1839         }
 1840 
 1841         callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
 1842 
 1843         if (!sc->tl_bitrate) {
 1844                 mii = device_get_softc(sc->tl_miibus);
 1845                 mii_tick(mii);
 1846         }
 1847 
 1848         return;
 1849 }
 1850 
 1851 /*
 1852  * Encapsulate an mbuf chain in a list by coupling the mbuf data
 1853  * pointers to the fragment pointers.
 1854  */
 1855 static int
 1856 tl_encap(sc, c, m_head)
 1857         struct tl_softc         *sc;
 1858         struct tl_chain         *c;
 1859         struct mbuf             *m_head;
 1860 {
 1861         int                     frag = 0;
 1862         struct tl_frag          *f = NULL;
 1863         int                     total_len;
 1864         struct mbuf             *m;
 1865         struct ifnet            *ifp = sc->tl_ifp;
 1866 
 1867         /*
 1868          * Start packing the mbufs in this chain into
 1869          * the fragment pointers. Stop when we run out
 1870          * of fragments or hit the end of the mbuf chain.
 1871          */
 1872         m = m_head;
 1873         total_len = 0;
 1874 
 1875         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1876                 if (m->m_len != 0) {
 1877                         if (frag == TL_MAXFRAGS)
 1878                                 break;
 1879                         total_len+= m->m_len;
 1880                         c->tl_ptr->tl_frag[frag].tlist_dadr =
 1881                                 vtophys(mtod(m, vm_offset_t));
 1882                         c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
 1883                         frag++;
 1884                 }
 1885         }
 1886 
 1887         /*
 1888          * Handle special cases.
 1889          * Special case #1: we used up all 10 fragments, but
 1890          * we have more mbufs left in the chain. Copy the
 1891          * data into an mbuf cluster. Note that we don't
 1892          * bother clearing the values in the other fragment
 1893          * pointers/counters; it wouldn't gain us anything,
 1894          * and would waste cycles.
 1895          */
 1896         if (m != NULL) {
 1897                 struct mbuf             *m_new = NULL;
 1898 
 1899                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1900                 if (m_new == NULL) {
 1901                         if_printf(ifp, "no memory for tx list\n");
 1902                         return(1);
 1903                 }
 1904                 if (m_head->m_pkthdr.len > MHLEN) {
 1905                         MCLGET(m_new, M_DONTWAIT);
 1906                         if (!(m_new->m_flags & M_EXT)) {
 1907                                 m_freem(m_new);
 1908                                 if_printf(ifp, "no memory for tx list\n");
 1909                                 return(1);
 1910                         }
 1911                 }
 1912                 m_copydata(m_head, 0, m_head->m_pkthdr.len,     
 1913                                         mtod(m_new, caddr_t));
 1914                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1915                 m_freem(m_head);
 1916                 m_head = m_new;
 1917                 f = &c->tl_ptr->tl_frag[0];
 1918                 f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
 1919                 f->tlist_dcnt = total_len = m_new->m_len;
 1920                 frag = 1;
 1921         }
 1922 
 1923         /*
 1924          * Special case #2: the frame is smaller than the minimum
 1925          * frame size. We have to pad it to make the chip happy.
 1926          */
 1927         if (total_len < TL_MIN_FRAMELEN) {
 1928                 if (frag == TL_MAXFRAGS)
 1929                         if_printf(ifp,
 1930                             "all frags filled but frame still to small!\n");
 1931                 f = &c->tl_ptr->tl_frag[frag];
 1932                 f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
 1933                 f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
 1934                 total_len += f->tlist_dcnt;
 1935                 frag++;
 1936         }
 1937 
 1938         c->tl_mbuf = m_head;
 1939         c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
 1940         c->tl_ptr->tlist_frsize = total_len;
 1941         c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
 1942         c->tl_ptr->tlist_fptr = 0;
 1943 
 1944         return(0);
 1945 }
 1946 
 1947 /*
 1948  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 1949  * to the mbuf data regions directly in the transmit lists. We also save a
 1950  * copy of the pointers since the transmit list fragment pointers are
 1951  * physical addresses.
 1952  */
 1953 static void
 1954 tl_start(ifp)
 1955         struct ifnet            *ifp;
 1956 {
 1957         struct tl_softc         *sc;
 1958 
 1959         sc = ifp->if_softc;
 1960         TL_LOCK(sc);
 1961         tl_start_locked(ifp);
 1962         TL_UNLOCK(sc);
 1963 }
 1964 
 1965 static void
 1966 tl_start_locked(ifp)
 1967         struct ifnet            *ifp;
 1968 {
 1969         struct tl_softc         *sc;
 1970         struct mbuf             *m_head = NULL;
 1971         u_int32_t               cmd;
 1972         struct tl_chain         *prev = NULL, *cur_tx = NULL, *start_tx;
 1973 
 1974         sc = ifp->if_softc;
 1975         TL_LOCK_ASSERT(sc);
 1976 
 1977         /*
 1978          * Check for an available queue slot. If there are none,
 1979          * punt.
 1980          */
 1981         if (sc->tl_cdata.tl_tx_free == NULL) {
 1982                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1983                 return;
 1984         }
 1985 
 1986         start_tx = sc->tl_cdata.tl_tx_free;
 1987 
 1988         while(sc->tl_cdata.tl_tx_free != NULL) {
 1989                 IF_DEQUEUE(&ifp->if_snd, m_head);
 1990                 if (m_head == NULL)
 1991                         break;
 1992 
 1993                 /* Pick a chain member off the free list. */
 1994                 cur_tx = sc->tl_cdata.tl_tx_free;
 1995                 sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
 1996 
 1997                 cur_tx->tl_next = NULL;
 1998 
 1999                 /* Pack the data into the list. */
 2000                 tl_encap(sc, cur_tx, m_head);
 2001 
 2002                 /* Chain it together */
 2003                 if (prev != NULL) {
 2004                         prev->tl_next = cur_tx;
 2005                         prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
 2006                 }
 2007                 prev = cur_tx;
 2008 
 2009                 /*
 2010                  * If there's a BPF listener, bounce a copy of this frame
 2011                  * to him.
 2012                  */
 2013                 BPF_MTAP(ifp, cur_tx->tl_mbuf);
 2014         }
 2015 
 2016         /*
 2017          * If there are no packets queued, bail.
 2018          */
 2019         if (cur_tx == NULL)
 2020                 return;
 2021 
 2022         /*
 2023          * That's all we can stands, we can't stands no more.
 2024          * If there are no other transfers pending, then issue the
 2025          * TX GO command to the adapter to start things moving.
 2026          * Otherwise, just leave the data in the queue and let
 2027          * the EOF/EOC interrupt handler send.
 2028          */
 2029         if (sc->tl_cdata.tl_tx_head == NULL) {
 2030                 sc->tl_cdata.tl_tx_head = start_tx;
 2031                 sc->tl_cdata.tl_tx_tail = cur_tx;
 2032 
 2033                 if (sc->tl_txeoc) {
 2034                         sc->tl_txeoc = 0;
 2035                         CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
 2036                         cmd = CSR_READ_4(sc, TL_HOSTCMD);
 2037                         cmd &= ~TL_CMD_RT;
 2038                         cmd |= TL_CMD_GO|TL_CMD_INTSON;
 2039                         CMD_PUT(sc, cmd);
 2040                 }
 2041         } else {
 2042                 sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
 2043                 sc->tl_cdata.tl_tx_tail = cur_tx;
 2044         }
 2045 
 2046         /*
 2047          * Set a timeout in case the chip goes out to lunch.
 2048          */
 2049         ifp->if_timer = 5;
 2050 
 2051         return;
 2052 }
 2053 
 2054 static void
 2055 tl_init(xsc)
 2056         void                    *xsc;
 2057 {
 2058         struct tl_softc         *sc = xsc;
 2059 
 2060         TL_LOCK(sc);
 2061         tl_init_locked(sc);
 2062         TL_UNLOCK(sc);
 2063 }
 2064 
 2065 static void
 2066 tl_init_locked(sc)
 2067         struct tl_softc         *sc;
 2068 {
 2069         struct ifnet            *ifp = sc->tl_ifp;
 2070         struct mii_data         *mii;
 2071 
 2072         TL_LOCK_ASSERT(sc);
 2073 
 2074         ifp = sc->tl_ifp;
 2075 
 2076         /*
 2077          * Cancel pending I/O.
 2078          */
 2079         tl_stop(sc);
 2080 
 2081         /* Initialize TX FIFO threshold */
 2082         tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
 2083         tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
 2084 
 2085         /* Set PCI burst size */
 2086         tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
 2087 
 2088         /*
 2089          * Set 'capture all frames' bit for promiscuous mode.
 2090          */
 2091         if (ifp->if_flags & IFF_PROMISC)
 2092                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
 2093         else
 2094                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
 2095 
 2096         /*
 2097          * Set capture broadcast bit to capture broadcast frames.
 2098          */
 2099         if (ifp->if_flags & IFF_BROADCAST)
 2100                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
 2101         else
 2102                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
 2103 
 2104         tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
 2105 
 2106         /* Init our MAC address */
 2107         tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0);
 2108 
 2109         /* Init multicast filter, if needed. */
 2110         tl_setmulti(sc);
 2111 
 2112         /* Init circular RX list. */
 2113         if (tl_list_rx_init(sc) == ENOBUFS) {
 2114                 device_printf(sc->tl_dev,
 2115                     "initialization failed: no memory for rx buffers\n");
 2116                 tl_stop(sc);
 2117                 return;
 2118         }
 2119 
 2120         /* Init TX pointers. */
 2121         tl_list_tx_init(sc);
 2122 
 2123         /* Enable PCI interrupts. */
 2124         CMD_SET(sc, TL_CMD_INTSON);
 2125 
 2126         /* Load the address of the rx list */
 2127         CMD_SET(sc, TL_CMD_RT);
 2128         CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
 2129 
 2130         if (!sc->tl_bitrate) {
 2131                 if (sc->tl_miibus != NULL) {
 2132                         mii = device_get_softc(sc->tl_miibus);
 2133                         mii_mediachg(mii);
 2134                 }
 2135         } else {
 2136                 tl_ifmedia_upd(ifp);
 2137         }
 2138 
 2139         /* Send the RX go command */
 2140         CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
 2141 
 2142         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2143         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2144 
 2145         /* Start the stats update counter */
 2146         callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
 2147 
 2148         return;
 2149 }
 2150 
 2151 /*
 2152  * Set media options.
 2153  */
 2154 static int
 2155 tl_ifmedia_upd(ifp)
 2156         struct ifnet            *ifp;
 2157 {
 2158         struct tl_softc         *sc;
 2159         struct mii_data         *mii = NULL;
 2160 
 2161         sc = ifp->if_softc;
 2162 
 2163         TL_LOCK(sc);
 2164         if (sc->tl_bitrate)
 2165                 tl_setmode(sc, sc->ifmedia.ifm_media);
 2166         else {
 2167                 mii = device_get_softc(sc->tl_miibus);
 2168                 mii_mediachg(mii);
 2169         }
 2170         TL_UNLOCK(sc);
 2171 
 2172         return(0);
 2173 }
 2174 
 2175 /*
 2176  * Report current media status.
 2177  */
 2178 static void
 2179 tl_ifmedia_sts(ifp, ifmr)
 2180         struct ifnet            *ifp;
 2181         struct ifmediareq       *ifmr;
 2182 {
 2183         struct tl_softc         *sc;
 2184         struct mii_data         *mii;
 2185 
 2186         sc = ifp->if_softc;
 2187 
 2188         TL_LOCK(sc);
 2189         ifmr->ifm_active = IFM_ETHER;
 2190 
 2191         if (sc->tl_bitrate) {
 2192                 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
 2193                         ifmr->ifm_active = IFM_ETHER|IFM_10_5;
 2194                 else
 2195                         ifmr->ifm_active = IFM_ETHER|IFM_10_T;
 2196                 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
 2197                         ifmr->ifm_active |= IFM_HDX;
 2198                 else
 2199                         ifmr->ifm_active |= IFM_FDX;
 2200                 return;
 2201         } else {
 2202                 mii = device_get_softc(sc->tl_miibus);
 2203                 mii_pollstat(mii);
 2204                 ifmr->ifm_active = mii->mii_media_active;
 2205                 ifmr->ifm_status = mii->mii_media_status;
 2206         }
 2207         TL_UNLOCK(sc);
 2208 
 2209         return;
 2210 }
 2211 
 2212 static int
 2213 tl_ioctl(ifp, command, data)
 2214         struct ifnet            *ifp;
 2215         u_long                  command;
 2216         caddr_t                 data;
 2217 {
 2218         struct tl_softc         *sc = ifp->if_softc;
 2219         struct ifreq            *ifr = (struct ifreq *) data;
 2220         int                     error = 0;
 2221 
 2222         switch(command) {
 2223         case SIOCSIFFLAGS:
 2224                 TL_LOCK(sc);
 2225                 if (ifp->if_flags & IFF_UP) {
 2226                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 2227                             ifp->if_flags & IFF_PROMISC &&
 2228                             !(sc->tl_if_flags & IFF_PROMISC)) {
 2229                                 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
 2230                                 tl_setmulti(sc);
 2231                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 2232                             !(ifp->if_flags & IFF_PROMISC) &&
 2233                             sc->tl_if_flags & IFF_PROMISC) {
 2234                                 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
 2235                                 tl_setmulti(sc);
 2236                         } else
 2237                                 tl_init_locked(sc);
 2238                 } else {
 2239                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 2240                                 tl_stop(sc);
 2241                         }
 2242                 }
 2243                 sc->tl_if_flags = ifp->if_flags;
 2244                 TL_UNLOCK(sc);
 2245                 error = 0;
 2246                 break;
 2247         case SIOCADDMULTI:
 2248         case SIOCDELMULTI:
 2249                 TL_LOCK(sc);
 2250                 tl_setmulti(sc);
 2251                 TL_UNLOCK(sc);
 2252                 error = 0;
 2253                 break;
 2254         case SIOCSIFMEDIA:
 2255         case SIOCGIFMEDIA:
 2256                 if (sc->tl_bitrate)
 2257                         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
 2258                 else {
 2259                         struct mii_data         *mii;
 2260                         mii = device_get_softc(sc->tl_miibus);
 2261                         error = ifmedia_ioctl(ifp, ifr,
 2262                             &mii->mii_media, command);
 2263                 }
 2264                 break;
 2265         default:
 2266                 error = ether_ioctl(ifp, command, data);
 2267                 break;
 2268         }
 2269 
 2270         return(error);
 2271 }
 2272 
 2273 static void
 2274 tl_watchdog(ifp)
 2275         struct ifnet            *ifp;
 2276 {
 2277         struct tl_softc         *sc;
 2278 
 2279         sc = ifp->if_softc;
 2280 
 2281         if_printf(ifp, "device timeout\n");
 2282 
 2283         TL_LOCK(sc);
 2284         ifp->if_oerrors++;
 2285 
 2286         tl_softreset(sc, 1);
 2287         tl_init_locked(sc);
 2288         TL_UNLOCK(sc);
 2289 
 2290         return;
 2291 }
 2292 
 2293 /*
 2294  * Stop the adapter and free any mbufs allocated to the
 2295  * RX and TX lists.
 2296  */
 2297 static void
 2298 tl_stop(sc)
 2299         struct tl_softc         *sc;
 2300 {
 2301         register int            i;
 2302         struct ifnet            *ifp;
 2303 
 2304         TL_LOCK_ASSERT(sc);
 2305 
 2306         ifp = sc->tl_ifp;
 2307 
 2308         /* Stop the stats updater. */
 2309         callout_stop(&sc->tl_stat_callout);
 2310 
 2311         /* Stop the transmitter */
 2312         CMD_CLR(sc, TL_CMD_RT);
 2313         CMD_SET(sc, TL_CMD_STOP);
 2314         CSR_WRITE_4(sc, TL_CH_PARM, 0);
 2315 
 2316         /* Stop the receiver */
 2317         CMD_SET(sc, TL_CMD_RT);
 2318         CMD_SET(sc, TL_CMD_STOP);
 2319         CSR_WRITE_4(sc, TL_CH_PARM, 0);
 2320 
 2321         /*
 2322          * Disable host interrupts.
 2323          */
 2324         CMD_SET(sc, TL_CMD_INTSOFF);
 2325 
 2326         /*
 2327          * Clear list pointer.
 2328          */
 2329         CSR_WRITE_4(sc, TL_CH_PARM, 0);
 2330 
 2331         /*
 2332          * Free the RX lists.
 2333          */
 2334         for (i = 0; i < TL_RX_LIST_CNT; i++) {
 2335                 if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
 2336                         m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
 2337                         sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
 2338                 }
 2339         }
 2340         bzero((char *)&sc->tl_ldata->tl_rx_list,
 2341                 sizeof(sc->tl_ldata->tl_rx_list));
 2342 
 2343         /*
 2344          * Free the TX list buffers.
 2345          */
 2346         for (i = 0; i < TL_TX_LIST_CNT; i++) {
 2347                 if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
 2348                         m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
 2349                         sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
 2350                 }
 2351         }
 2352         bzero((char *)&sc->tl_ldata->tl_tx_list,
 2353                 sizeof(sc->tl_ldata->tl_tx_list));
 2354 
 2355         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2356 
 2357         return;
 2358 }
 2359 
 2360 /*
 2361  * Stop all chip I/O so that the kernel's probe routines don't
 2362  * get confused by errant DMAs when rebooting.
 2363  */
 2364 static int
 2365 tl_shutdown(dev)
 2366         device_t                dev;
 2367 {
 2368         struct tl_softc         *sc;
 2369 
 2370         sc = device_get_softc(dev);
 2371 
 2372         TL_LOCK(sc);
 2373         tl_stop(sc);
 2374         TL_UNLOCK(sc);
 2375 
 2376         return (0);
 2377 }

Cache object: e8380b9ad669c02407385048bf2ed639


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.