The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/pci/if_wb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997, 1998
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  *
   32  * $FreeBSD$
   33  */
   34 
   35 /*
   36  * Winbond fast ethernet PCI NIC driver
   37  *
   38  * Supports various cheap network adapters based on the Winbond W89C840F
   39  * fast ethernet controller chip. This includes adapters manufactured by
   40  * Winbond itself and some made by Linksys.
   41  *
   42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   43  * Electrical Engineering Department
   44  * Columbia University, New York City
   45  */
   46 
   47 /*
   48  * The Winbond W89C840F chip is a bus master; in some ways it resembles
   49  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
   50  * one major difference which is that while the registers do many of
   51  * the same things as a tulip adapter, the offsets are different: where
   52  * tulip registers are typically spaced 8 bytes apart, the Winbond
   53  * registers are spaced 4 bytes apart. The receiver filter is also
   54  * programmed differently.
   55  * 
   56  * Like the tulip, the Winbond chip uses small descriptors containing
   57  * a status word, a control word and 32-bit areas that can either be used
   58  * to point to two external data blocks, or to point to a single block
   59  * and another descriptor in a linked list. Descriptors can be grouped
   60  * together in blocks to form fixed length rings or can be chained
   61  * together in linked lists. A single packet may be spread out over
   62  * several descriptors if necessary.
   63  *
   64  * For the receive ring, this driver uses a linked list of descriptors,
   65  * each pointing to a single mbuf cluster buffer, which us large enough
   66  * to hold an entire packet. The link list is looped back to created a
   67  * closed ring.
   68  *
   69  * For transmission, the driver creates a linked list of 'super descriptors'
   70  * which each contain several individual descriptors linked toghether.
   71  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
   72  * abuse as fragment pointers. This allows us to use a buffer managment
   73  * scheme very similar to that used in the ThunderLAN and Etherlink XL
   74  * drivers.
   75  *
   76  * Autonegotiation is performed using the external PHY via the MII bus.
   77  * The sample boards I have all use a Davicom PHY.
   78  *
   79  * Note: the author of the Linux driver for the Winbond chip alludes
   80  * to some sort of flaw in the chip's design that seems to mandate some
   81  * drastic workaround which signigicantly impairs transmit performance.
   82  * I have no idea what he's on about: transmit performance with all
   83  * three of my test boards seems fine.
   84  */
   85 
   86 #include "opt_bdg.h"
   87 
   88 #include <sys/param.h>
   89 #include <sys/systm.h>
   90 #include <sys/sockio.h>
   91 #include <sys/mbuf.h>
   92 #include <sys/malloc.h>
   93 #include <sys/kernel.h>
   94 #include <sys/socket.h>
   95 #include <sys/queue.h>
   96 
   97 #include <net/if.h>
   98 #include <net/if_arp.h>
   99 #include <net/ethernet.h>
  100 #include <net/if_dl.h>
  101 #include <net/if_media.h>
  102 
  103 #include <net/bpf.h>
  104 
  105 #include <vm/vm.h>              /* for vtophys */
  106 #include <vm/pmap.h>            /* for vtophys */
  107 #include <machine/clock.h>      /* for DELAY */
  108 #include <machine/bus_memio.h>
  109 #include <machine/bus_pio.h>
  110 #include <machine/bus.h>
  111 #include <machine/resource.h>
  112 #include <sys/bus.h>
  113 #include <sys/rman.h>
  114 
  115 #include <pci/pcireg.h>
  116 #include <pci/pcivar.h>
  117 
  118 #include <dev/mii/mii.h>
  119 #include <dev/mii/miivar.h>
  120 
  121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
  122 #include "miibus_if.h"
  123 
  124 #define WB_USEIOSPACE
  125 
  126 #include <pci/if_wbreg.h>
  127 
  128 #ifndef lint
  129 static const char rcsid[] =
  130   "$FreeBSD$";
  131 #endif
  132 
  133 /*
  134  * Various supported device vendors/types and their names.
  135  */
  136 static struct wb_type wb_devs[] = {
  137         { WB_VENDORID, WB_DEVICEID_840F,
  138                 "Winbond W89C840F 10/100BaseTX" },
  139         { CP_VENDORID, CP_DEVICEID_RL100,
  140                 "Compex RL100-ATX 10/100baseTX" },
  141         { 0, 0, NULL }
  142 };
  143 
  144 static int wb_probe             __P((device_t));
  145 static int wb_attach            __P((device_t));
  146 static int wb_detach            __P((device_t));
  147 
  148 static void wb_bfree            __P((caddr_t, u_int));
  149 static int wb_newbuf            __P((struct wb_softc *,
  150                                         struct wb_chain_onefrag *,
  151                                         struct mbuf *));
  152 static int wb_encap             __P((struct wb_softc *, struct wb_chain *,
  153                                         struct mbuf *));
  154 
  155 static void wb_rxeof            __P((struct wb_softc *));
  156 static void wb_rxeoc            __P((struct wb_softc *));
  157 static void wb_txeof            __P((struct wb_softc *));
  158 static void wb_txeoc            __P((struct wb_softc *));
  159 static void wb_intr             __P((void *));
  160 static void wb_tick             __P((void *));
  161 static void wb_start            __P((struct ifnet *));
  162 static int wb_ioctl             __P((struct ifnet *, u_long, caddr_t));
  163 static void wb_init             __P((void *));
  164 static void wb_stop             __P((struct wb_softc *));
  165 static void wb_watchdog         __P((struct ifnet *));
  166 static void wb_shutdown         __P((device_t));
  167 static int wb_ifmedia_upd       __P((struct ifnet *));
  168 static void wb_ifmedia_sts      __P((struct ifnet *, struct ifmediareq *));
  169 
  170 static void wb_eeprom_putbyte   __P((struct wb_softc *, int));
  171 static void wb_eeprom_getword   __P((struct wb_softc *, int, u_int16_t *));
  172 static void wb_read_eeprom      __P((struct wb_softc *, caddr_t, int,
  173                                                         int, int));
  174 static void wb_mii_sync         __P((struct wb_softc *));
  175 static void wb_mii_send         __P((struct wb_softc *, u_int32_t, int));
  176 static int wb_mii_readreg       __P((struct wb_softc *, struct wb_mii_frame *));
  177 static int wb_mii_writereg      __P((struct wb_softc *, struct wb_mii_frame *));
  178 
  179 static void wb_setcfg           __P((struct wb_softc *, u_int32_t));
  180 static u_int8_t wb_calchash     __P((caddr_t));
  181 static void wb_setmulti         __P((struct wb_softc *));
  182 static void wb_reset            __P((struct wb_softc *));
  183 static void wb_fixmedia         __P((struct wb_softc *));
  184 static int wb_list_rx_init      __P((struct wb_softc *));
  185 static int wb_list_tx_init      __P((struct wb_softc *));
  186 
  187 static int wb_miibus_readreg    __P((device_t, int, int));
  188 static int wb_miibus_writereg   __P((device_t, int, int, int));
  189 static void wb_miibus_statchg   __P((device_t));
  190 
  191 #ifdef WB_USEIOSPACE
  192 #define WB_RES                  SYS_RES_IOPORT
  193 #define WB_RID                  WB_PCI_LOIO
  194 #else
  195 #define WB_RES                  SYS_RES_MEMORY
  196 #define WB_RID                  WB_PCI_LOMEM
  197 #endif
  198 
  199 static device_method_t wb_methods[] = {
  200         /* Device interface */
  201         DEVMETHOD(device_probe,         wb_probe),
  202         DEVMETHOD(device_attach,        wb_attach),
  203         DEVMETHOD(device_detach,        wb_detach),
  204         DEVMETHOD(device_shutdown,      wb_shutdown),
  205 
  206         /* bus interface, for miibus */
  207         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  208         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  209 
  210         /* MII interface */
  211         DEVMETHOD(miibus_readreg,       wb_miibus_readreg),
  212         DEVMETHOD(miibus_writereg,      wb_miibus_writereg),
  213         DEVMETHOD(miibus_statchg,       wb_miibus_statchg),
  214         { 0, 0 }
  215 };
  216 
  217 static driver_t wb_driver = {
  218         "wb",
  219         wb_methods,
  220         sizeof(struct wb_softc)
  221 };
  222 
  223 static devclass_t wb_devclass;
  224 
  225 DRIVER_MODULE(if_wb, pci, wb_driver, wb_devclass, 0, 0);
  226 DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, 0, 0);
  227 
  228 #define WB_SETBIT(sc, reg, x)                           \
  229         CSR_WRITE_4(sc, reg,                            \
  230                 CSR_READ_4(sc, reg) | x)
  231 
  232 #define WB_CLRBIT(sc, reg, x)                           \
  233         CSR_WRITE_4(sc, reg,                            \
  234                 CSR_READ_4(sc, reg) & ~x)
  235 
  236 #define SIO_SET(x)                                      \
  237         CSR_WRITE_4(sc, WB_SIO,                         \
  238                 CSR_READ_4(sc, WB_SIO) | x)
  239 
  240 #define SIO_CLR(x)                                      \
  241         CSR_WRITE_4(sc, WB_SIO,                         \
  242                 CSR_READ_4(sc, WB_SIO) & ~x)
  243 
  244 /*
  245  * Send a read command and address to the EEPROM, check for ACK.
  246  */
  247 static void wb_eeprom_putbyte(sc, addr)
  248         struct wb_softc         *sc;
  249         int                     addr;
  250 {
  251         register int            d, i;
  252 
  253         d = addr | WB_EECMD_READ;
  254 
  255         /*
  256          * Feed in each bit and stobe the clock.
  257          */
  258         for (i = 0x400; i; i >>= 1) {
  259                 if (d & i) {
  260                         SIO_SET(WB_SIO_EE_DATAIN);
  261                 } else {
  262                         SIO_CLR(WB_SIO_EE_DATAIN);
  263                 }
  264                 DELAY(100);
  265                 SIO_SET(WB_SIO_EE_CLK);
  266                 DELAY(150);
  267                 SIO_CLR(WB_SIO_EE_CLK);
  268                 DELAY(100);
  269         }
  270 
  271         return;
  272 }
  273 
  274 /*
  275  * Read a word of data stored in the EEPROM at address 'addr.'
  276  */
  277 static void wb_eeprom_getword(sc, addr, dest)
  278         struct wb_softc         *sc;
  279         int                     addr;
  280         u_int16_t               *dest;
  281 {
  282         register int            i;
  283         u_int16_t               word = 0;
  284 
  285         /* Enter EEPROM access mode. */
  286         CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
  287 
  288         /*
  289          * Send address of word we want to read.
  290          */
  291         wb_eeprom_putbyte(sc, addr);
  292 
  293         CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
  294 
  295         /*
  296          * Start reading bits from EEPROM.
  297          */
  298         for (i = 0x8000; i; i >>= 1) {
  299                 SIO_SET(WB_SIO_EE_CLK);
  300                 DELAY(100);
  301                 if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
  302                         word |= i;
  303                 SIO_CLR(WB_SIO_EE_CLK);
  304                 DELAY(100);
  305         }
  306 
  307         /* Turn off EEPROM access mode. */
  308         CSR_WRITE_4(sc, WB_SIO, 0);
  309 
  310         *dest = word;
  311 
  312         return;
  313 }
  314 
  315 /*
  316  * Read a sequence of words from the EEPROM.
  317  */
  318 static void wb_read_eeprom(sc, dest, off, cnt, swap)
  319         struct wb_softc         *sc;
  320         caddr_t                 dest;
  321         int                     off;
  322         int                     cnt;
  323         int                     swap;
  324 {
  325         int                     i;
  326         u_int16_t               word = 0, *ptr;
  327 
  328         for (i = 0; i < cnt; i++) {
  329                 wb_eeprom_getword(sc, off + i, &word);
  330                 ptr = (u_int16_t *)(dest + (i * 2));
  331                 if (swap)
  332                         *ptr = ntohs(word);
  333                 else
  334                         *ptr = word;
  335         }
  336 
  337         return;
  338 }
  339 
  340 /*
  341  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  342  */
  343 static void wb_mii_sync(sc)
  344         struct wb_softc         *sc;
  345 {
  346         register int            i;
  347 
  348         SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
  349 
  350         for (i = 0; i < 32; i++) {
  351                 SIO_SET(WB_SIO_MII_CLK);
  352                 DELAY(1);
  353                 SIO_CLR(WB_SIO_MII_CLK);
  354                 DELAY(1);
  355         }
  356 
  357         return;
  358 }
  359 
  360 /*
  361  * Clock a series of bits through the MII.
  362  */
  363 static void wb_mii_send(sc, bits, cnt)
  364         struct wb_softc         *sc;
  365         u_int32_t               bits;
  366         int                     cnt;
  367 {
  368         int                     i;
  369 
  370         SIO_CLR(WB_SIO_MII_CLK);
  371 
  372         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  373                 if (bits & i) {
  374                         SIO_SET(WB_SIO_MII_DATAIN);
  375                 } else {
  376                         SIO_CLR(WB_SIO_MII_DATAIN);
  377                 }
  378                 DELAY(1);
  379                 SIO_CLR(WB_SIO_MII_CLK);
  380                 DELAY(1);
  381                 SIO_SET(WB_SIO_MII_CLK);
  382         }
  383 }
  384 
  385 /*
  386  * Read an PHY register through the MII.
  387  */
  388 static int wb_mii_readreg(sc, frame)
  389         struct wb_softc         *sc;
  390         struct wb_mii_frame     *frame;
  391         
  392 {
  393         int                     i, ack, s;
  394 
  395         s = splimp();
  396 
  397         /*
  398          * Set up frame for RX.
  399          */
  400         frame->mii_stdelim = WB_MII_STARTDELIM;
  401         frame->mii_opcode = WB_MII_READOP;
  402         frame->mii_turnaround = 0;
  403         frame->mii_data = 0;
  404         
  405         CSR_WRITE_4(sc, WB_SIO, 0);
  406 
  407         /*
  408          * Turn on data xmit.
  409          */
  410         SIO_SET(WB_SIO_MII_DIR);
  411 
  412         wb_mii_sync(sc);
  413 
  414         /*
  415          * Send command/address info.
  416          */
  417         wb_mii_send(sc, frame->mii_stdelim, 2);
  418         wb_mii_send(sc, frame->mii_opcode, 2);
  419         wb_mii_send(sc, frame->mii_phyaddr, 5);
  420         wb_mii_send(sc, frame->mii_regaddr, 5);
  421 
  422         /* Idle bit */
  423         SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
  424         DELAY(1);
  425         SIO_SET(WB_SIO_MII_CLK);
  426         DELAY(1);
  427 
  428         /* Turn off xmit. */
  429         SIO_CLR(WB_SIO_MII_DIR);
  430         /* Check for ack */
  431         SIO_CLR(WB_SIO_MII_CLK);
  432         DELAY(1);
  433         ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
  434         SIO_SET(WB_SIO_MII_CLK);
  435         DELAY(1);
  436         SIO_CLR(WB_SIO_MII_CLK);
  437         DELAY(1);
  438         SIO_SET(WB_SIO_MII_CLK);
  439         DELAY(1);
  440 
  441         /*
  442          * Now try reading data bits. If the ack failed, we still
  443          * need to clock through 16 cycles to keep the PHY(s) in sync.
  444          */
  445         if (ack) {
  446                 for(i = 0; i < 16; i++) {
  447                         SIO_CLR(WB_SIO_MII_CLK);
  448                         DELAY(1);
  449                         SIO_SET(WB_SIO_MII_CLK);
  450                         DELAY(1);
  451                 }
  452                 goto fail;
  453         }
  454 
  455         for (i = 0x8000; i; i >>= 1) {
  456                 SIO_CLR(WB_SIO_MII_CLK);
  457                 DELAY(1);
  458                 if (!ack) {
  459                         if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
  460                                 frame->mii_data |= i;
  461                         DELAY(1);
  462                 }
  463                 SIO_SET(WB_SIO_MII_CLK);
  464                 DELAY(1);
  465         }
  466 
  467 fail:
  468 
  469         SIO_CLR(WB_SIO_MII_CLK);
  470         DELAY(1);
  471         SIO_SET(WB_SIO_MII_CLK);
  472         DELAY(1);
  473 
  474         splx(s);
  475 
  476         if (ack)
  477                 return(1);
  478         return(0);
  479 }
  480 
  481 /*
  482  * Write to a PHY register through the MII.
  483  */
  484 static int wb_mii_writereg(sc, frame)
  485         struct wb_softc         *sc;
  486         struct wb_mii_frame     *frame;
  487         
  488 {
  489         int                     s;
  490 
  491         s = splimp();
  492         /*
  493          * Set up frame for TX.
  494          */
  495 
  496         frame->mii_stdelim = WB_MII_STARTDELIM;
  497         frame->mii_opcode = WB_MII_WRITEOP;
  498         frame->mii_turnaround = WB_MII_TURNAROUND;
  499         
  500         /*
  501          * Turn on data output.
  502          */
  503         SIO_SET(WB_SIO_MII_DIR);
  504 
  505         wb_mii_sync(sc);
  506 
  507         wb_mii_send(sc, frame->mii_stdelim, 2);
  508         wb_mii_send(sc, frame->mii_opcode, 2);
  509         wb_mii_send(sc, frame->mii_phyaddr, 5);
  510         wb_mii_send(sc, frame->mii_regaddr, 5);
  511         wb_mii_send(sc, frame->mii_turnaround, 2);
  512         wb_mii_send(sc, frame->mii_data, 16);
  513 
  514         /* Idle bit. */
  515         SIO_SET(WB_SIO_MII_CLK);
  516         DELAY(1);
  517         SIO_CLR(WB_SIO_MII_CLK);
  518         DELAY(1);
  519 
  520         /*
  521          * Turn off xmit.
  522          */
  523         SIO_CLR(WB_SIO_MII_DIR);
  524 
  525         splx(s);
  526 
  527         return(0);
  528 }
  529 
  530 static int wb_miibus_readreg(dev, phy, reg)
  531         device_t                dev;
  532         int                     phy, reg;
  533 {
  534         struct wb_softc         *sc;
  535         struct wb_mii_frame     frame;
  536 
  537         sc = device_get_softc(dev);
  538 
  539         bzero((char *)&frame, sizeof(frame));
  540 
  541         frame.mii_phyaddr = phy;
  542         frame.mii_regaddr = reg;
  543         wb_mii_readreg(sc, &frame);
  544 
  545         return(frame.mii_data);
  546 }
  547 
  548 static int wb_miibus_writereg(dev, phy, reg, data)
  549         device_t                dev;
  550         int                     phy, reg, data;
  551 {
  552         struct wb_softc         *sc;
  553         struct wb_mii_frame     frame;
  554 
  555         sc = device_get_softc(dev);
  556 
  557         bzero((char *)&frame, sizeof(frame));
  558 
  559         frame.mii_phyaddr = phy;
  560         frame.mii_regaddr = reg;
  561         frame.mii_data = data;
  562 
  563         wb_mii_writereg(sc, &frame);
  564 
  565         return(0);
  566 }
  567 
  568 static void wb_miibus_statchg(dev)
  569         device_t                dev;
  570 {
  571         struct wb_softc         *sc;
  572         struct mii_data         *mii;
  573 
  574         sc = device_get_softc(dev);
  575         mii = device_get_softc(sc->wb_miibus);
  576         wb_setcfg(sc, mii->mii_media_active);
  577 
  578         return;
  579 }
  580 
  581 static u_int8_t wb_calchash(addr)
  582         caddr_t                 addr;
  583 {
  584         u_int32_t               crc, carry;
  585         int                     i, j;
  586         u_int8_t                c;
  587 
  588         /* Compute CRC for the address value. */
  589         crc = 0xFFFFFFFF; /* initial value */
  590 
  591         for (i = 0; i < 6; i++) {
  592                 c = *(addr + i);
  593                 for (j = 0; j < 8; j++) {
  594                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
  595                         crc <<= 1;
  596                         c >>= 1;
  597                         if (carry)
  598                                 crc = (crc ^ 0x04c11db6) | carry;
  599                 }
  600         }
  601 
  602         /*
  603          * return the filter bit position
  604          * Note: I arrived at the following nonsense
  605          * through experimentation. It's not the usual way to
  606          * generate the bit position but it's the only thing
  607          * I could come up with that works.
  608          */
  609         return(~(crc >> 26) & 0x0000003F);
  610 }
  611 
  612 /*
  613  * Program the 64-bit multicast hash filter.
  614  */
  615 static void wb_setmulti(sc)
  616         struct wb_softc         *sc;
  617 {
  618         struct ifnet            *ifp;
  619         int                     h = 0;
  620         u_int32_t               hashes[2] = { 0, 0 };
  621         struct ifmultiaddr      *ifma;
  622         u_int32_t               rxfilt;
  623         int                     mcnt = 0;
  624 
  625         ifp = &sc->arpcom.ac_if;
  626 
  627         rxfilt = CSR_READ_4(sc, WB_NETCFG);
  628 
  629         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  630                 rxfilt |= WB_NETCFG_RX_MULTI;
  631                 CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
  632                 CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
  633                 CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
  634                 return;
  635         }
  636 
  637         /* first, zot all the existing hash bits */
  638         CSR_WRITE_4(sc, WB_MAR0, 0);
  639         CSR_WRITE_4(sc, WB_MAR1, 0);
  640 
  641         /* now program new ones */
  642         for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
  643                                 ifma = ifma->ifma_link.le_next) {
  644                 if (ifma->ifma_addr->sa_family != AF_LINK)
  645                         continue;
  646                 h = wb_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  647                 if (h < 32)
  648                         hashes[0] |= (1 << h);
  649                 else
  650                         hashes[1] |= (1 << (h - 32));
  651                 mcnt++;
  652         }
  653 
  654         if (mcnt)
  655                 rxfilt |= WB_NETCFG_RX_MULTI;
  656         else
  657                 rxfilt &= ~WB_NETCFG_RX_MULTI;
  658 
  659         CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
  660         CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
  661         CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
  662 
  663         return;
  664 }
  665 
  666 /*
  667  * The Winbond manual states that in order to fiddle with the
  668  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
  669  * first have to put the transmit and/or receive logic in the idle state.
  670  */
  671 static void wb_setcfg(sc, media)
  672         struct wb_softc         *sc;
  673         u_int32_t               media;
  674 {
  675         int                     i, restart = 0;
  676 
  677         if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
  678                 restart = 1;
  679                 WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
  680 
  681                 for (i = 0; i < WB_TIMEOUT; i++) {
  682                         DELAY(10);
  683                         if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
  684                                 (CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
  685                                 break;
  686                 }
  687 
  688                 if (i == WB_TIMEOUT)
  689                         printf("wb%d: failed to force tx and "
  690                                 "rx to idle state\n", sc->wb_unit);
  691         }
  692 
  693         if (IFM_SUBTYPE(media) == IFM_10_T)
  694                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
  695         else
  696                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
  697 
  698         if ((media & IFM_GMASK) == IFM_FDX)
  699                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
  700         else
  701                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
  702 
  703         if (restart)
  704                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
  705 
  706         return;
  707 }
  708 
  709 static void wb_reset(sc)
  710         struct wb_softc         *sc;
  711 {
  712         register int            i;
  713         struct mii_data         *mii;
  714 
  715         CSR_WRITE_4(sc, WB_NETCFG, 0);
  716         CSR_WRITE_4(sc, WB_BUSCTL, 0);
  717         CSR_WRITE_4(sc, WB_TXADDR, 0);
  718         CSR_WRITE_4(sc, WB_RXADDR, 0);
  719 
  720         WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
  721         WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
  722 
  723         for (i = 0; i < WB_TIMEOUT; i++) {
  724                 DELAY(10);
  725                 if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
  726                         break;
  727         }
  728         if (i == WB_TIMEOUT)
  729                 printf("wb%d: reset never completed!\n", sc->wb_unit);
  730 
  731         /* Wait a little while for the chip to get its brains in order. */
  732         DELAY(1000);
  733 
  734         if (sc->wb_miibus == NULL)
  735                 return;
  736 
  737         mii = device_get_softc(sc->wb_miibus);
  738         if (mii == NULL)
  739                 return;
  740 
  741         if (mii->mii_instance) {
  742                 struct mii_softc        *miisc;
  743                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
  744                                 miisc = LIST_NEXT(miisc, mii_list))
  745                         mii_phy_reset(miisc);
  746         }
  747 
  748         return;
  749 }
  750 
  751 static void wb_fixmedia(sc)
  752         struct wb_softc         *sc;
  753 {
  754         struct mii_data         *mii = NULL;
  755         struct ifnet            *ifp;
  756         u_int32_t               media;
  757 
  758         if (sc->wb_miibus == NULL)
  759                 return;
  760 
  761         mii = device_get_softc(sc->wb_miibus);
  762         ifp = &sc->arpcom.ac_if;
  763 
  764         mii_pollstat(mii);
  765         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
  766                 media = mii->mii_media_active & ~IFM_10_T;
  767                 media |= IFM_100_TX;
  768         } else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
  769                 media = mii->mii_media_active & ~IFM_100_TX;
  770                 media |= IFM_10_T;
  771         } else
  772                 return;
  773 
  774         ifmedia_set(&mii->mii_media, media);
  775 
  776         return;
  777 }
  778 
  779 /*
  780  * Probe for a Winbond chip. Check the PCI vendor and device
  781  * IDs against our list and return a device name if we find a match.
  782  */
  783 static int wb_probe(dev)
  784         device_t                dev;
  785 {
  786         struct wb_type          *t;
  787 
  788         t = wb_devs;
  789 
  790         while(t->wb_name != NULL) {
  791                 if ((pci_get_vendor(dev) == t->wb_vid) &&
  792                     (pci_get_device(dev) == t->wb_did)) {
  793                         device_set_desc(dev, t->wb_name);
  794                         return(0);
  795                 }
  796                 t++;
  797         }
  798 
  799         return(ENXIO);
  800 }
  801 
  802 /*
  803  * Attach the interface. Allocate softc structures, do ifmedia
  804  * setup and ethernet/BPF attach.
  805  */
  806 static int wb_attach(dev)
  807         device_t                dev;
  808 {
  809         int                     s;
  810         u_char                  eaddr[ETHER_ADDR_LEN];
  811         u_int32_t               command;
  812         struct wb_softc         *sc;
  813         struct ifnet            *ifp;
  814         int                     unit, error = 0, rid;
  815 
  816         s = splimp();
  817 
  818         sc = device_get_softc(dev);
  819         unit = device_get_unit(dev);
  820 
  821         /*
  822          * Handle power management nonsense.
  823          */
  824 
  825         command = pci_read_config(dev, WB_PCI_CAPID, 4) & 0x000000FF;
  826         if (command == 0x01) {
  827 
  828                 command = pci_read_config(dev, WB_PCI_PWRMGMTCTRL, 4);
  829                 if (command & WB_PSTATE_MASK) {
  830                         u_int32_t               iobase, membase, irq;
  831 
  832                         /* Save important PCI config data. */
  833                         iobase = pci_read_config(dev, WB_PCI_LOIO, 4);
  834                         membase = pci_read_config(dev, WB_PCI_LOMEM, 4);
  835                         irq = pci_read_config(dev, WB_PCI_INTLINE, 4);
  836 
  837                         /* Reset the power state. */
  838                         printf("wb%d: chip is in D%d power mode "
  839                         "-- setting to D0\n", unit, command & WB_PSTATE_MASK);
  840                         command &= 0xFFFFFFFC;
  841                         pci_write_config(dev, WB_PCI_PWRMGMTCTRL, command, 4);
  842 
  843                         /* Restore PCI config data. */
  844                         pci_write_config(dev, WB_PCI_LOIO, iobase, 4);
  845                         pci_write_config(dev, WB_PCI_LOMEM, membase, 4);
  846                         pci_write_config(dev, WB_PCI_INTLINE, irq, 4);
  847                 }
  848         }
  849 
  850         /*
  851          * Map control/status registers.
  852          */
  853         command = pci_read_config(dev, PCIR_COMMAND, 4);
  854         command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
  855         pci_write_config(dev, PCIR_COMMAND, command, 4);
  856         command = pci_read_config(dev, PCIR_COMMAND, 4);
  857 
  858 #ifdef WB_USEIOSPACE
  859         if (!(command & PCIM_CMD_PORTEN)) {
  860                 printf("wb%d: failed to enable I/O ports!\n", unit);
  861                 error = ENXIO;
  862                 goto fail;
  863         }
  864 #else
  865         if (!(command & PCIM_CMD_MEMEN)) {
  866                 printf("wb%d: failed to enable memory mapping!\n", unit);
  867                 error = ENXIO;
  868                 goto fail;
  869         }
  870 #endif
  871 
  872         rid = WB_RID;
  873         sc->wb_res = bus_alloc_resource(dev, WB_RES, &rid,
  874             0, ~0, 1, RF_ACTIVE);
  875 
  876         if (sc->wb_res == NULL) {
  877                 printf("wb%d: couldn't map ports/memory\n", unit);
  878                 error = ENXIO;
  879                 goto fail;
  880         }
  881 
  882         sc->wb_btag = rman_get_bustag(sc->wb_res);
  883         sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
  884 
  885         /* Allocate interrupt */
  886         rid = 0;
  887         sc->wb_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
  888             RF_SHAREABLE | RF_ACTIVE);
  889 
  890         if (sc->wb_irq == NULL) {
  891                 printf("wb%d: couldn't map interrupt\n", unit);
  892                 bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
  893                 error = ENXIO;
  894                 goto fail;
  895         }
  896 
  897         error = bus_setup_intr(dev, sc->wb_irq, INTR_TYPE_NET,
  898             wb_intr, sc, &sc->wb_intrhand);
  899 
  900         if (error) {
  901                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
  902                 bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
  903                 printf("wb%d: couldn't set up irq\n", unit);
  904                 goto fail;
  905         }
  906 
  907         /* Save the cache line size. */
  908         sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
  909 
  910         /* Reset the adapter. */
  911         wb_reset(sc);
  912 
  913         /*
  914          * Get station address from the EEPROM.
  915          */
  916         wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
  917 
  918         /*
  919          * A Winbond chip was detected. Inform the world.
  920          */
  921         printf("wb%d: Ethernet address: %6D\n", unit, eaddr, ":");
  922 
  923         sc->wb_unit = unit;
  924         bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
  925 
  926         sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
  927             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
  928 
  929         if (sc->wb_ldata == NULL) {
  930                 printf("wb%d: no memory for list buffers!\n", unit);
  931                 bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
  932                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
  933                 bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
  934                 error = ENXIO;
  935                 goto fail;
  936         }
  937 
  938         bzero(sc->wb_ldata, sizeof(struct wb_list_data));
  939 
  940         ifp = &sc->arpcom.ac_if;
  941         ifp->if_softc = sc;
  942         ifp->if_unit = unit;
  943         ifp->if_name = "wb";
  944         ifp->if_mtu = ETHERMTU;
  945         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  946         ifp->if_ioctl = wb_ioctl;
  947         ifp->if_output = ether_output;
  948         ifp->if_start = wb_start;
  949         ifp->if_watchdog = wb_watchdog;
  950         ifp->if_init = wb_init;
  951         ifp->if_baudrate = 10000000;
  952         ifp->if_snd.ifq_maxlen = WB_TX_LIST_CNT - 1;
  953 
  954         /*
  955          * Do MII setup.
  956          */
  957         if (mii_phy_probe(dev, &sc->wb_miibus,
  958             wb_ifmedia_upd, wb_ifmedia_sts)) {
  959                 contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
  960                     M_DEVBUF);
  961                 bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
  962                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
  963                 bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
  964                 error = ENXIO;
  965                 goto fail;
  966         }
  967 
  968         /*
  969          * Call MI attach routine.
  970          */
  971         ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
  972 
  973 fail:
  974         if (error)
  975                 device_delete_child(dev, sc->wb_miibus);
  976         splx(s);
  977 
  978         return(error);
  979 }
  980 
  981 static int wb_detach(dev)
  982         device_t                dev;
  983 {
  984         struct wb_softc         *sc;
  985         struct ifnet            *ifp;
  986         int                     s;
  987 
  988         s = splimp();
  989 
  990         sc = device_get_softc(dev);
  991         ifp = &sc->arpcom.ac_if;
  992 
  993         wb_stop(sc);
  994         ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
  995 
  996         /* Delete any miibus and phy devices attached to this interface */
  997         bus_generic_detach(dev);
  998         device_delete_child(dev, sc->wb_miibus);
  999 
 1000         bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
 1001         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
 1002         bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
 1003 
 1004         contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
 1005             M_DEVBUF);
 1006 
 1007         splx(s);
 1008 
 1009         return(0);
 1010 }
 1011 
 1012 /*
 1013  * Initialize the transmit descriptors.
 1014  */
 1015 static int wb_list_tx_init(sc)
 1016         struct wb_softc         *sc;
 1017 {
 1018         struct wb_chain_data    *cd;
 1019         struct wb_list_data     *ld;
 1020         int                     i;
 1021 
 1022         cd = &sc->wb_cdata;
 1023         ld = sc->wb_ldata;
 1024 
 1025         for (i = 0; i < WB_TX_LIST_CNT; i++) {
 1026                 cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
 1027                 if (i == (WB_TX_LIST_CNT - 1)) {
 1028                         cd->wb_tx_chain[i].wb_nextdesc =
 1029                                 &cd->wb_tx_chain[0];
 1030                 } else {
 1031                         cd->wb_tx_chain[i].wb_nextdesc =
 1032                                 &cd->wb_tx_chain[i + 1];
 1033                 }
 1034         }
 1035 
 1036         cd->wb_tx_free = &cd->wb_tx_chain[0];
 1037         cd->wb_tx_tail = cd->wb_tx_head = NULL;
 1038 
 1039         return(0);
 1040 }
 1041 
 1042 
 1043 /*
 1044  * Initialize the RX descriptors and allocate mbufs for them. Note that
 1045  * we arrange the descriptors in a closed ring, so that the last descriptor
 1046  * points back to the first.
 1047  */
 1048 static int wb_list_rx_init(sc)
 1049         struct wb_softc         *sc;
 1050 {
 1051         struct wb_chain_data    *cd;
 1052         struct wb_list_data     *ld;
 1053         int                     i;
 1054 
 1055         cd = &sc->wb_cdata;
 1056         ld = sc->wb_ldata;
 1057 
 1058         for (i = 0; i < WB_RX_LIST_CNT; i++) {
 1059                 cd->wb_rx_chain[i].wb_ptr =
 1060                         (struct wb_desc *)&ld->wb_rx_list[i];
 1061                 cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i];
 1062                 if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
 1063                         return(ENOBUFS);
 1064                 if (i == (WB_RX_LIST_CNT - 1)) {
 1065                         cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
 1066                         ld->wb_rx_list[i].wb_next = 
 1067                                         vtophys(&ld->wb_rx_list[0]);
 1068                 } else {
 1069                         cd->wb_rx_chain[i].wb_nextdesc =
 1070                                         &cd->wb_rx_chain[i + 1];
 1071                         ld->wb_rx_list[i].wb_next =
 1072                                         vtophys(&ld->wb_rx_list[i + 1]);
 1073                 }
 1074         }
 1075 
 1076         cd->wb_rx_head = &cd->wb_rx_chain[0];
 1077 
 1078         return(0);
 1079 }
 1080 
 1081 static void wb_bfree(buf, size)
 1082         caddr_t                 buf;
 1083         u_int                   size;
 1084 {
 1085         return;
 1086 }
 1087 
 1088 /*
 1089  * Initialize an RX descriptor and attach an MBUF cluster.
 1090  */
 1091 static int wb_newbuf(sc, c, m)
 1092         struct wb_softc         *sc;
 1093         struct wb_chain_onefrag *c;
 1094         struct mbuf             *m;
 1095 {
 1096         struct mbuf             *m_new = NULL;
 1097 
 1098         if (m == NULL) {
 1099                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1100                 if (m_new == NULL)
 1101                         return(ENOBUFS);
 1102 
 1103                 m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
 1104                 m_new->m_flags |= M_EXT;
 1105                 m_new->m_ext.ext_size = m_new->m_pkthdr.len =
 1106                     m_new->m_len = WB_BUFBYTES;
 1107                 m_new->m_ext.ext_free = wb_bfree;
 1108                 m_new->m_ext.ext_ref = wb_bfree;
 1109         } else {
 1110                 m_new = m;
 1111                 m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
 1112                 m_new->m_data = m_new->m_ext.ext_buf;
 1113         }
 1114 
 1115         m_adj(m_new, sizeof(u_int64_t));
 1116 
 1117         c->wb_mbuf = m_new;
 1118         c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
 1119         c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
 1120         c->wb_ptr->wb_status = WB_RXSTAT;
 1121 
 1122         return(0);
 1123 }
 1124 
 1125 /*
 1126  * A frame has been uploaded: pass the resulting mbuf chain up to
 1127  * the higher level protocols.
 1128  */
 1129 static void wb_rxeof(sc)
 1130         struct wb_softc         *sc;
 1131 {
 1132         struct ether_header     *eh;
 1133         struct mbuf             *m = NULL;
 1134         struct ifnet            *ifp;
 1135         struct wb_chain_onefrag *cur_rx;
 1136         int                     total_len = 0;
 1137         u_int32_t               rxstat;
 1138 
 1139         ifp = &sc->arpcom.ac_if;
 1140 
 1141         while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
 1142                                                         WB_RXSTAT_OWN)) {
 1143                 struct mbuf             *m0 = NULL;
 1144 
 1145                 cur_rx = sc->wb_cdata.wb_rx_head;
 1146                 sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
 1147 
 1148                 m = cur_rx->wb_mbuf;
 1149 
 1150                 if ((rxstat & WB_RXSTAT_MIIERR) ||
 1151                     (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
 1152                     (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
 1153                     !(rxstat & WB_RXSTAT_LASTFRAG) ||
 1154                     !(rxstat & WB_RXSTAT_RXCMP)) {
 1155                         ifp->if_ierrors++;
 1156                         wb_newbuf(sc, cur_rx, m);
 1157                         printf("wb%x: receiver babbling: possible chip "
 1158                                 "bug, forcing reset\n", sc->wb_unit);
 1159                         wb_fixmedia(sc);
 1160                         wb_reset(sc);
 1161                         wb_init(sc);
 1162                         return;
 1163                 }
 1164 
 1165                 if (rxstat & WB_RXSTAT_RXERR) {
 1166                         ifp->if_ierrors++;
 1167                         wb_newbuf(sc, cur_rx, m);
 1168                         break;
 1169                 }
 1170 
 1171                 /* No errors; receive the packet. */    
 1172                 total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
 1173 
 1174                 /*
 1175                  * XXX The Winbond chip includes the CRC with every
 1176                  * received frame, and there's no way to turn this
 1177                  * behavior off (at least, I can't find anything in
 1178                  * the manual that explains how to do it) so we have
 1179                  * to trim off the CRC manually.
 1180                  */
 1181                 total_len -= ETHER_CRC_LEN;
 1182 
 1183                 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
 1184                      total_len + ETHER_ALIGN, 0, ifp, NULL);
 1185                 wb_newbuf(sc, cur_rx, m);
 1186                 if (m0 == NULL) {
 1187                         ifp->if_ierrors++;
 1188                         break;
 1189                 }
 1190                 m_adj(m0, ETHER_ALIGN);
 1191                 m = m0;
 1192 
 1193                 ifp->if_ipackets++;
 1194                 eh = mtod(m, struct ether_header *);
 1195 
 1196                 /* Remove header from mbuf and pass it on. */
 1197                 m_adj(m, sizeof(struct ether_header));
 1198                 ether_input(ifp, eh, m);
 1199         }
 1200 }
 1201 
 1202 void wb_rxeoc(sc)
 1203         struct wb_softc         *sc;
 1204 {
 1205         wb_rxeof(sc);
 1206 
 1207         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1208         CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
 1209         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1210         if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
 1211                 CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
 1212 
 1213         return;
 1214 }
 1215 
 1216 /*
 1217  * A frame was downloaded to the chip. It's safe for us to clean up
 1218  * the list buffers.
 1219  */
 1220 static void wb_txeof(sc)
 1221         struct wb_softc         *sc;
 1222 {
 1223         struct wb_chain         *cur_tx;
 1224         struct ifnet            *ifp;
 1225 
 1226         ifp = &sc->arpcom.ac_if;
 1227 
 1228         /* Clear the timeout timer. */
 1229         ifp->if_timer = 0;
 1230 
 1231         if (sc->wb_cdata.wb_tx_head == NULL)
 1232                 return;
 1233 
 1234         /*
 1235          * Go through our tx list and free mbufs for those
 1236          * frames that have been transmitted.
 1237          */
 1238         while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
 1239                 u_int32_t               txstat;
 1240 
 1241                 cur_tx = sc->wb_cdata.wb_tx_head;
 1242                 txstat = WB_TXSTATUS(cur_tx);
 1243 
 1244                 if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
 1245                         break;
 1246 
 1247                 if (txstat & WB_TXSTAT_TXERR) {
 1248                         ifp->if_oerrors++;
 1249                         if (txstat & WB_TXSTAT_ABORT)
 1250                                 ifp->if_collisions++;
 1251                         if (txstat & WB_TXSTAT_LATECOLL)
 1252                                 ifp->if_collisions++;
 1253                 }
 1254 
 1255                 ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
 1256 
 1257                 ifp->if_opackets++;
 1258                 m_freem(cur_tx->wb_mbuf);
 1259                 cur_tx->wb_mbuf = NULL;
 1260 
 1261                 if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
 1262                         sc->wb_cdata.wb_tx_head = NULL;
 1263                         sc->wb_cdata.wb_tx_tail = NULL;
 1264                         break;
 1265                 }
 1266 
 1267                 sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
 1268         }
 1269 
 1270         return;
 1271 }
 1272 
 1273 /*
 1274  * TX 'end of channel' interrupt handler.
 1275  */
 1276 static void wb_txeoc(sc)
 1277         struct wb_softc         *sc;
 1278 {
 1279         struct ifnet            *ifp;
 1280 
 1281         ifp = &sc->arpcom.ac_if;
 1282 
 1283         ifp->if_timer = 0;
 1284 
 1285         if (sc->wb_cdata.wb_tx_head == NULL) {
 1286                 ifp->if_flags &= ~IFF_OACTIVE;
 1287                 sc->wb_cdata.wb_tx_tail = NULL;
 1288         } else {
 1289                 if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
 1290                         WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
 1291                         ifp->if_timer = 5;
 1292                         CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
 1293                 }
 1294         }
 1295 
 1296         return;
 1297 }
 1298 
 1299 static void wb_intr(arg)
 1300         void                    *arg;
 1301 {
 1302         struct wb_softc         *sc;
 1303         struct ifnet            *ifp;
 1304         u_int32_t               status;
 1305 
 1306         sc = arg;
 1307         ifp = &sc->arpcom.ac_if;
 1308 
 1309         if (!(ifp->if_flags & IFF_UP))
 1310                 return;
 1311 
 1312         /* Disable interrupts. */
 1313         CSR_WRITE_4(sc, WB_IMR, 0x00000000);
 1314 
 1315         for (;;) {
 1316 
 1317                 status = CSR_READ_4(sc, WB_ISR);
 1318                 if (status)
 1319                         CSR_WRITE_4(sc, WB_ISR, status);
 1320 
 1321                 if ((status & WB_INTRS) == 0)
 1322                         break;
 1323 
 1324                 if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
 1325                         ifp->if_ierrors++;
 1326                         wb_reset(sc);
 1327                         if (status & WB_ISR_RX_ERR)
 1328                                 wb_fixmedia(sc);
 1329                         wb_init(sc);
 1330                         continue;
 1331                 }
 1332 
 1333                 if (status & WB_ISR_RX_OK)
 1334                         wb_rxeof(sc);
 1335         
 1336                 if (status & WB_ISR_RX_IDLE)
 1337                         wb_rxeoc(sc);
 1338 
 1339                 if (status & WB_ISR_TX_OK)
 1340                         wb_txeof(sc);
 1341 
 1342                 if (status & WB_ISR_TX_NOBUF)
 1343                         wb_txeoc(sc);
 1344 
 1345                 if (status & WB_ISR_TX_IDLE) {
 1346                         wb_txeof(sc);
 1347                         if (sc->wb_cdata.wb_tx_head != NULL) {
 1348                                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1349                                 CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
 1350                         }
 1351                 }
 1352 
 1353                 if (status & WB_ISR_TX_UNDERRUN) {
 1354                         ifp->if_oerrors++;
 1355                         wb_txeof(sc);
 1356                         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1357                         /* Jack up TX threshold */
 1358                         sc->wb_txthresh += WB_TXTHRESH_CHUNK;
 1359                         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
 1360                         WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
 1361                         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1362                 }
 1363 
 1364                 if (status & WB_ISR_BUS_ERR) {
 1365                         wb_reset(sc);
 1366                         wb_init(sc);
 1367                 }
 1368 
 1369         }
 1370 
 1371         /* Re-enable interrupts. */
 1372         CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
 1373 
 1374         if (ifp->if_snd.ifq_head != NULL) {
 1375                 wb_start(ifp);
 1376         }
 1377 
 1378         return;
 1379 }
 1380 
 1381 static void wb_tick(xsc)
 1382         void                    *xsc;
 1383 {
 1384         struct wb_softc         *sc;
 1385         struct mii_data         *mii;
 1386         int                     s;
 1387 
 1388         s = splimp();
 1389 
 1390         sc = xsc;
 1391         mii = device_get_softc(sc->wb_miibus);
 1392 
 1393         mii_tick(mii);
 1394 
 1395         sc->wb_stat_ch = timeout(wb_tick, sc, hz);
 1396 
 1397         splx(s);
 1398 
 1399         return;
 1400 }
 1401 
 1402 /*
 1403  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1404  * pointers to the fragment pointers.
 1405  */
 1406 static int wb_encap(sc, c, m_head)
 1407         struct wb_softc         *sc;
 1408         struct wb_chain         *c;
 1409         struct mbuf             *m_head;
 1410 {
 1411         int                     frag = 0;
 1412         struct wb_desc          *f = NULL;
 1413         int                     total_len;
 1414         struct mbuf             *m;
 1415 
 1416         /*
 1417          * Start packing the mbufs in this chain into
 1418          * the fragment pointers. Stop when we run out
 1419          * of fragments or hit the end of the mbuf chain.
 1420          */
 1421         m = m_head;
 1422         total_len = 0;
 1423 
 1424         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1425                 if (m->m_len != 0) {
 1426                         if (frag == WB_MAXFRAGS)
 1427                                 break;
 1428                         total_len += m->m_len;
 1429                         f = &c->wb_ptr->wb_frag[frag];
 1430                         f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
 1431                         if (frag == 0) {
 1432                                 f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
 1433                                 f->wb_status = 0;
 1434                         } else
 1435                                 f->wb_status = WB_TXSTAT_OWN;
 1436                         f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
 1437                         f->wb_data = vtophys(mtod(m, vm_offset_t));
 1438                         frag++;
 1439                 }
 1440         }
 1441 
 1442         /*
 1443          * Handle special case: we used up all 16 fragments,
 1444          * but we have more mbufs left in the chain. Copy the
 1445          * data into an mbuf cluster. Note that we don't
 1446          * bother clearing the values in the other fragment
 1447          * pointers/counters; it wouldn't gain us anything,
 1448          * and would waste cycles.
 1449          */
 1450         if (m != NULL) {
 1451                 struct mbuf             *m_new = NULL;
 1452 
 1453                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1454                 if (m_new == NULL)
 1455                         return(1);
 1456                 if (m_head->m_pkthdr.len > MHLEN) {
 1457                         MCLGET(m_new, M_DONTWAIT);
 1458                         if (!(m_new->m_flags & M_EXT)) {
 1459                                 m_freem(m_new);
 1460                                 return(1);
 1461                         }
 1462                 }
 1463                 m_copydata(m_head, 0, m_head->m_pkthdr.len,     
 1464                                         mtod(m_new, caddr_t));
 1465                 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
 1466                 m_freem(m_head);
 1467                 m_head = m_new;
 1468                 f = &c->wb_ptr->wb_frag[0];
 1469                 f->wb_status = 0;
 1470                 f->wb_data = vtophys(mtod(m_new, caddr_t));
 1471                 f->wb_ctl = total_len = m_new->m_len;
 1472                 f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
 1473                 frag = 1;
 1474         }
 1475 
 1476         if (total_len < WB_MIN_FRAMELEN) {
 1477                 f = &c->wb_ptr->wb_frag[frag];
 1478                 f->wb_ctl = WB_MIN_FRAMELEN - total_len;
 1479                 f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
 1480                 f->wb_ctl |= WB_TXCTL_TLINK;
 1481                 f->wb_status = WB_TXSTAT_OWN;
 1482                 frag++;
 1483         }
 1484 
 1485         c->wb_mbuf = m_head;
 1486         c->wb_lastdesc = frag - 1;
 1487         WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
 1488         WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
 1489 
 1490         return(0);
 1491 }
 1492 
 1493 /*
 1494  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 1495  * to the mbuf data regions directly in the transmit lists. We also save a
 1496  * copy of the pointers since the transmit list fragment pointers are
 1497  * physical addresses.
 1498  */
 1499 
 1500 static void wb_start(ifp)
 1501         struct ifnet            *ifp;
 1502 {
 1503         struct wb_softc         *sc;
 1504         struct mbuf             *m_head = NULL;
 1505         struct wb_chain         *cur_tx = NULL, *start_tx;
 1506 
 1507         sc = ifp->if_softc;
 1508 
 1509         /*
 1510          * Check for an available queue slot. If there are none,
 1511          * punt.
 1512          */
 1513         if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
 1514                 ifp->if_flags |= IFF_OACTIVE;
 1515                 return;
 1516         }
 1517 
 1518         start_tx = sc->wb_cdata.wb_tx_free;
 1519 
 1520         while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
 1521                 IF_DEQUEUE(&ifp->if_snd, m_head);
 1522                 if (m_head == NULL)
 1523                         break;
 1524 
 1525                 /* Pick a descriptor off the free list. */
 1526                 cur_tx = sc->wb_cdata.wb_tx_free;
 1527                 sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
 1528 
 1529                 /* Pack the data into the descriptor. */
 1530                 wb_encap(sc, cur_tx, m_head);
 1531 
 1532                 if (cur_tx != start_tx)
 1533                         WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
 1534 
 1535                 /*
 1536                  * If there's a BPF listener, bounce a copy of this frame
 1537                  * to him.
 1538                  */
 1539                 if (ifp->if_bpf)
 1540                         bpf_mtap(ifp, cur_tx->wb_mbuf);
 1541         }
 1542 
 1543         /*
 1544          * If there are no packets queued, bail.
 1545          */
 1546         if (cur_tx == NULL)
 1547                 return;
 1548 
 1549         /*
 1550          * Place the request for the upload interrupt
 1551          * in the last descriptor in the chain. This way, if
 1552          * we're chaining several packets at once, we'll only
 1553          * get an interupt once for the whole chain rather than
 1554          * once for each packet.
 1555          */
 1556         WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
 1557         cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
 1558         sc->wb_cdata.wb_tx_tail = cur_tx;
 1559 
 1560         if (sc->wb_cdata.wb_tx_head == NULL) {
 1561                 sc->wb_cdata.wb_tx_head = start_tx;
 1562                 WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
 1563                 CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
 1564         } else {
 1565                 /*
 1566                  * We need to distinguish between the case where
 1567                  * the own bit is clear because the chip cleared it
 1568                  * and where the own bit is clear because we haven't
 1569                  * set it yet. The magic value WB_UNSET is just some
 1570                  * ramdomly chosen number which doesn't have the own
 1571                  * bit set. When we actually transmit the frame, the
 1572                  * status word will have _only_ the own bit set, so
 1573                  * the txeoc handler will be able to tell if it needs
 1574                  * to initiate another transmission to flush out pending
 1575                  * frames.
 1576                  */
 1577                 WB_TXOWN(start_tx) = WB_UNSENT;
 1578         }
 1579 
 1580         /*
 1581          * Set a timeout in case the chip goes out to lunch.
 1582          */
 1583         ifp->if_timer = 5;
 1584 
 1585         return;
 1586 }
 1587 
 1588 static void wb_init(xsc)
 1589         void                    *xsc;
 1590 {
 1591         struct wb_softc         *sc = xsc;
 1592         struct ifnet            *ifp = &sc->arpcom.ac_if;
 1593         int                     s, i;
 1594         struct mii_data         *mii;
 1595 
 1596         s = splimp();
 1597 
 1598         mii = device_get_softc(sc->wb_miibus);
 1599 
 1600         /*
 1601          * Cancel pending I/O and free all RX/TX buffers.
 1602          */
 1603         wb_stop(sc);
 1604         wb_reset(sc);
 1605 
 1606         sc->wb_txthresh = WB_TXTHRESH_INIT;
 1607 
 1608         /*
 1609          * Set cache alignment and burst length.
 1610          */
 1611 #ifdef foo
 1612         CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
 1613         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
 1614         WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
 1615 #endif
 1616 
 1617         CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION);
 1618         WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
 1619         switch(sc->wb_cachesize) {
 1620         case 32:
 1621                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
 1622                 break;
 1623         case 16:
 1624                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
 1625                 break;
 1626         case 8:
 1627                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
 1628                 break;
 1629         case 0:
 1630         default:
 1631                 WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
 1632                 break;
 1633         }
 1634 
 1635         /* This doesn't tend to work too well at 100Mbps. */
 1636         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
 1637 
 1638         /* Init our MAC address */
 1639         for (i = 0; i < ETHER_ADDR_LEN; i++) {
 1640                 CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
 1641         }
 1642 
 1643         /* Init circular RX list. */
 1644         if (wb_list_rx_init(sc) == ENOBUFS) {
 1645                 printf("wb%d: initialization failed: no "
 1646                         "memory for rx buffers\n", sc->wb_unit);
 1647                 wb_stop(sc);
 1648                 (void)splx(s);
 1649                 return;
 1650         }
 1651 
 1652         /* Init TX descriptors. */
 1653         wb_list_tx_init(sc);
 1654 
 1655         /* If we want promiscuous mode, set the allframes bit. */
 1656         if (ifp->if_flags & IFF_PROMISC) {
 1657                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
 1658         } else {
 1659                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
 1660         }
 1661 
 1662         /*
 1663          * Set capture broadcast bit to capture broadcast frames.
 1664          */
 1665         if (ifp->if_flags & IFF_BROADCAST) {
 1666                 WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
 1667         } else {
 1668                 WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
 1669         }
 1670 
 1671         /*
 1672          * Program the multicast filter, if necessary.
 1673          */
 1674         wb_setmulti(sc);
 1675 
 1676         /*
 1677          * Load the address of the RX list.
 1678          */
 1679         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1680         CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
 1681 
 1682         /*
 1683          * Enable interrupts.
 1684          */
 1685         CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
 1686         CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
 1687 
 1688         /* Enable receiver and transmitter. */
 1689         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
 1690         CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
 1691 
 1692         WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1693         CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
 1694         WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
 1695 
 1696         mii_mediachg(mii);
 1697 
 1698         ifp->if_flags |= IFF_RUNNING;
 1699         ifp->if_flags &= ~IFF_OACTIVE;
 1700 
 1701         (void)splx(s);
 1702 
 1703         sc->wb_stat_ch = timeout(wb_tick, sc, hz);
 1704 
 1705         return;
 1706 }
 1707 
 1708 /*
 1709  * Set media options.
 1710  */
 1711 static int wb_ifmedia_upd(ifp)
 1712         struct ifnet            *ifp;
 1713 {
 1714         struct wb_softc         *sc;
 1715 
 1716         sc = ifp->if_softc;
 1717 
 1718         if (ifp->if_flags & IFF_UP)
 1719                 wb_init(sc);
 1720 
 1721         return(0);
 1722 }
 1723 
 1724 /*
 1725  * Report current media status.
 1726  */
 1727 static void wb_ifmedia_sts(ifp, ifmr)
 1728         struct ifnet            *ifp;
 1729         struct ifmediareq       *ifmr;
 1730 {
 1731         struct wb_softc         *sc;
 1732         struct mii_data         *mii;
 1733 
 1734         sc = ifp->if_softc;
 1735 
 1736         mii = device_get_softc(sc->wb_miibus);
 1737 
 1738         mii_pollstat(mii);
 1739         ifmr->ifm_active = mii->mii_media_active;
 1740         ifmr->ifm_status = mii->mii_media_status;
 1741 
 1742         return;
 1743 }
 1744 
 1745 static int wb_ioctl(ifp, command, data)
 1746         struct ifnet            *ifp;
 1747         u_long                  command;
 1748         caddr_t                 data;
 1749 {
 1750         struct wb_softc         *sc = ifp->if_softc;
 1751         struct mii_data         *mii;
 1752         struct ifreq            *ifr = (struct ifreq *) data;
 1753         int                     s, error = 0;
 1754 
 1755         s = splimp();
 1756 
 1757         switch(command) {
 1758         case SIOCSIFADDR:
 1759         case SIOCGIFADDR:
 1760         case SIOCSIFMTU:
 1761                 error = ether_ioctl(ifp, command, data);
 1762                 break;
 1763         case SIOCSIFFLAGS:
 1764                 if (ifp->if_flags & IFF_UP) {
 1765                         wb_init(sc);
 1766                 } else {
 1767                         if (ifp->if_flags & IFF_RUNNING)
 1768                                 wb_stop(sc);
 1769                 }
 1770                 error = 0;
 1771                 break;
 1772         case SIOCADDMULTI:
 1773         case SIOCDELMULTI:
 1774                 wb_setmulti(sc);
 1775                 error = 0;
 1776                 break;
 1777         case SIOCGIFMEDIA:
 1778         case SIOCSIFMEDIA:
 1779                 mii = device_get_softc(sc->wb_miibus);
 1780                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1781                 break;
 1782         default:
 1783                 error = EINVAL;
 1784                 break;
 1785         }
 1786 
 1787         (void)splx(s);
 1788 
 1789         return(error);
 1790 }
 1791 
 1792 static void wb_watchdog(ifp)
 1793         struct ifnet            *ifp;
 1794 {
 1795         struct wb_softc         *sc;
 1796 
 1797         sc = ifp->if_softc;
 1798 
 1799         ifp->if_oerrors++;
 1800         printf("wb%d: watchdog timeout\n", sc->wb_unit);
 1801 #ifdef foo
 1802         if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
 1803                 printf("wb%d: no carrier - transceiver cable problem?\n",
 1804                                                                 sc->wb_unit);
 1805 #endif
 1806         wb_stop(sc);
 1807         wb_reset(sc);
 1808         wb_init(sc);
 1809 
 1810         if (ifp->if_snd.ifq_head != NULL)
 1811                 wb_start(ifp);
 1812 
 1813         return;
 1814 }
 1815 
 1816 /*
 1817  * Stop the adapter and free any mbufs allocated to the
 1818  * RX and TX lists.
 1819  */
 1820 static void wb_stop(sc)
 1821         struct wb_softc         *sc;
 1822 {
 1823         register int            i;
 1824         struct ifnet            *ifp;
 1825 
 1826         ifp = &sc->arpcom.ac_if;
 1827         ifp->if_timer = 0;
 1828 
 1829         untimeout(wb_tick, sc, sc->wb_stat_ch);
 1830 
 1831         WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
 1832         CSR_WRITE_4(sc, WB_IMR, 0x00000000);
 1833         CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
 1834         CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
 1835 
 1836         /*
 1837          * Free data in the RX lists.
 1838          */
 1839         for (i = 0; i < WB_RX_LIST_CNT; i++) {
 1840                 if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
 1841                         m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
 1842                         sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
 1843                 }
 1844         }
 1845         bzero((char *)&sc->wb_ldata->wb_rx_list,
 1846                 sizeof(sc->wb_ldata->wb_rx_list));
 1847 
 1848         /*
 1849          * Free the TX list buffers.
 1850          */
 1851         for (i = 0; i < WB_TX_LIST_CNT; i++) {
 1852                 if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
 1853                         m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
 1854                         sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
 1855                 }
 1856         }
 1857 
 1858         bzero((char *)&sc->wb_ldata->wb_tx_list,
 1859                 sizeof(sc->wb_ldata->wb_tx_list));
 1860 
 1861         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1862 
 1863         return;
 1864 }
 1865 
 1866 /*
 1867  * Stop all chip I/O so that the kernel's probe routines don't
 1868  * get confused by errant DMAs when rebooting.
 1869  */
 1870 static void wb_shutdown(dev)
 1871         device_t                dev;
 1872 {
 1873         struct wb_softc         *sc;
 1874 
 1875         sc = device_get_softc(dev);
 1876         wb_stop(sc);
 1877 
 1878         return;
 1879 }

Cache object: d670246de856f453f873347dd20a5004


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.