1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2018 Matthew Macy
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "opt_platform.h"
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/bitstring.h>
38 #include <sys/queue.h>
39 #include <sys/cpuset.h>
40 #include <sys/endian.h>
41 #include <sys/kerneldump.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/syslog.h>
45 #include <sys/msgbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmem.h>
55 #include <sys/vmmeter.h>
56 #include <sys/smp.h>
57
58 #include <sys/kdb.h>
59
60 #include <dev/ofw/openfirm.h>
61
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_reserv.h>
73 #include <vm/vm_dumpset.h>
74 #include <vm/uma.h>
75
76 #include <machine/_inttypes.h>
77 #include <machine/cpu.h>
78 #include <machine/platform.h>
79 #include <machine/frame.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/bat.h>
83 #include <machine/hid.h>
84 #include <machine/pte.h>
85 #include <machine/sr.h>
86 #include <machine/trap.h>
87 #include <machine/mmuvar.h>
88
89 /* For pseries bit. */
90 #include <powerpc/pseries/phyp-hvcall.h>
91
92 #ifdef INVARIANTS
93 #include <vm/uma_dbg.h>
94 #endif
95
96 #define PPC_BITLSHIFT(bit) (sizeof(long)*NBBY - 1 - (bit))
97 #define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit))
98 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
99
100 #include "opt_ddb.h"
101
102 #ifdef DDB
103 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
104 #endif
105
106 #define PG_W RPTE_WIRED
107 #define PG_V RPTE_VALID
108 #define PG_MANAGED RPTE_MANAGED
109 #define PG_PROMOTED RPTE_PROMOTED
110 #define PG_M RPTE_C
111 #define PG_A RPTE_R
112 #define PG_X RPTE_EAA_X
113 #define PG_RW RPTE_EAA_W
114 #define PG_PTE_CACHE RPTE_ATTR_MASK
115
116 #define RPTE_SHIFT 9
117 #define NLS_MASK ((1UL<<5)-1)
118 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
119 #define RPTE_MASK (RPTE_ENTRIES-1)
120
121 #define NLB_SHIFT 0
122 #define NLB_MASK (((1UL<<52)-1) << 8)
123
124 extern int nkpt;
125 extern caddr_t crashdumpmap;
126
127 #define RIC_FLUSH_TLB 0
128 #define RIC_FLUSH_PWC 1
129 #define RIC_FLUSH_ALL 2
130
131 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
132
133 #define PPC_INST_TLBIE 0x7c000264
134 #define PPC_INST_TLBIEL 0x7c000224
135 #define PPC_INST_SLBIA 0x7c0003e4
136
137 #define ___PPC_RA(a) (((a) & 0x1f) << 16)
138 #define ___PPC_RB(b) (((b) & 0x1f) << 11)
139 #define ___PPC_RS(s) (((s) & 0x1f) << 21)
140 #define ___PPC_RT(t) ___PPC_RS(t)
141 #define ___PPC_R(r) (((r) & 0x1) << 16)
142 #define ___PPC_PRS(prs) (((prs) & 0x1) << 17)
143 #define ___PPC_RIC(ric) (((ric) & 0x3) << 18)
144
145 #define PPC_SLBIA(IH) __XSTRING(.long PPC_INST_SLBIA | \
146 ((IH & 0x7) << 21))
147 #define PPC_TLBIE_5(rb,rs,ric,prs,r) \
148 __XSTRING(.long PPC_INST_TLBIE | \
149 ___PPC_RB(rb) | ___PPC_RS(rs) | \
150 ___PPC_RIC(ric) | ___PPC_PRS(prs) | \
151 ___PPC_R(r))
152
153 #define PPC_TLBIEL(rb,rs,ric,prs,r) \
154 __XSTRING(.long PPC_INST_TLBIEL | \
155 ___PPC_RB(rb) | ___PPC_RS(rs) | \
156 ___PPC_RIC(ric) | ___PPC_PRS(prs) | \
157 ___PPC_R(r))
158
159 #define PPC_INVALIDATE_ERAT PPC_SLBIA(7)
160
161 static __inline void
162 ttusync(void)
163 {
164 __asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
165 }
166
167 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
168 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
169 #define TLBIEL_INVAL_SET_PID 0x400 /* invalidate a set for the current PID */
170 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
171 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
172
173 #define TLBIE_ACTUAL_PAGE_MASK 0xe0
174 #define TLBIE_ACTUAL_PAGE_4K 0x00
175 #define TLBIE_ACTUAL_PAGE_64K 0xa0
176 #define TLBIE_ACTUAL_PAGE_2M 0x20
177 #define TLBIE_ACTUAL_PAGE_1G 0x40
178
179 #define TLBIE_PRS_PARTITION_SCOPE 0x0
180 #define TLBIE_PRS_PROCESS_SCOPE 0x1
181
182 #define TLBIE_RIC_INVALIDATE_TLB 0x0 /* Invalidate just TLB */
183 #define TLBIE_RIC_INVALIDATE_PWC 0x1 /* Invalidate just PWC */
184 #define TLBIE_RIC_INVALIDATE_ALL 0x2 /* Invalidate TLB, PWC,
185 * cached {proc, part}tab entries
186 */
187 #define TLBIE_RIC_INVALIDATE_SEQ 0x3 /* HPT - only:
188 * Invalidate a range of translations
189 */
190
191 static __always_inline void
192 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
193 vm_offset_t va, uint16_t ap)
194 {
195 uint64_t rb, rs;
196
197 MPASS((va & PAGE_MASK) == 0);
198
199 rs = ((uint64_t)pid << 32) | lpid;
200 rb = va | is | ap;
201 __asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
202 "r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
203 }
204
205 static __inline void
206 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
207 {
208
209 __asm __volatile("ptesync" ::: "memory");
210 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
211 TLBIEL_INVAL_PAGE, 0, 0, va, ap);
212 __asm __volatile("ptesync" ::: "memory");
213 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
214 TLBIEL_INVAL_PAGE, pid, 0, va, ap);
215 }
216
217 static __inline void
218 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
219 {
220
221 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
222 TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
223 radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
224 }
225
226 static __inline void
227 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
228 {
229
230 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
231 TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
232 radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
233 }
234
235 static __inline void
236 radix_tlbie_invlpwc_user(uint32_t pid)
237 {
238
239 radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
240 TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
241 }
242
243 static __inline void
244 radix_tlbie_flush_user(uint32_t pid)
245 {
246
247 radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
248 TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
249 }
250
251 static __inline void
252 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
253 {
254
255 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
256 TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
257 radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
258 }
259
260 static __inline void
261 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
262 {
263
264 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
265 TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
266 radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
267 }
268
269 /* 1GB pages aren't currently supported. */
270 static __inline __unused void
271 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
272 {
273
274 radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
275 TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
276 radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
277 }
278
279 static __inline void
280 radix_tlbie_invlpwc_kernel(void)
281 {
282
283 radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
284 TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
285 }
286
287 static __inline void
288 radix_tlbie_flush_kernel(void)
289 {
290
291 radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
292 TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
293 }
294
295 static __inline vm_pindex_t
296 pmap_l3e_pindex(vm_offset_t va)
297 {
298 return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
299 }
300
301 static __inline vm_pindex_t
302 pmap_pml3e_index(vm_offset_t va)
303 {
304
305 return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
306 }
307
308 static __inline vm_pindex_t
309 pmap_pml2e_index(vm_offset_t va)
310 {
311 return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
312 }
313
314 static __inline vm_pindex_t
315 pmap_pml1e_index(vm_offset_t va)
316 {
317 return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
318 }
319
320 /* Return various clipped indexes for a given VA */
321 static __inline vm_pindex_t
322 pmap_pte_index(vm_offset_t va)
323 {
324
325 return ((va >> PAGE_SHIFT) & RPTE_MASK);
326 }
327
328 /* Return a pointer to the PT slot that corresponds to a VA */
329 static __inline pt_entry_t *
330 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
331 {
332 pt_entry_t *pte;
333 vm_paddr_t ptepa;
334
335 ptepa = (be64toh(*l3e) & NLB_MASK);
336 pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
337 return (&pte[pmap_pte_index(va)]);
338 }
339
340 /* Return a pointer to the PD slot that corresponds to a VA */
341 static __inline pt_entry_t *
342 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
343 {
344 pt_entry_t *l3e;
345 vm_paddr_t l3pa;
346
347 l3pa = (be64toh(*l2e) & NLB_MASK);
348 l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
349 return (&l3e[pmap_pml3e_index(va)]);
350 }
351
352 /* Return a pointer to the PD slot that corresponds to a VA */
353 static __inline pt_entry_t *
354 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
355 {
356 pt_entry_t *l2e;
357 vm_paddr_t l2pa;
358
359 l2pa = (be64toh(*l1e) & NLB_MASK);
360
361 l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
362 return (&l2e[pmap_pml2e_index(va)]);
363 }
364
365 static __inline pml1_entry_t *
366 pmap_pml1e(pmap_t pmap, vm_offset_t va)
367 {
368
369 return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
370 }
371
372 static pt_entry_t *
373 pmap_pml2e(pmap_t pmap, vm_offset_t va)
374 {
375 pt_entry_t *l1e;
376
377 l1e = pmap_pml1e(pmap, va);
378 if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
379 return (NULL);
380 return (pmap_l1e_to_l2e(l1e, va));
381 }
382
383 static __inline pt_entry_t *
384 pmap_pml3e(pmap_t pmap, vm_offset_t va)
385 {
386 pt_entry_t *l2e;
387
388 l2e = pmap_pml2e(pmap, va);
389 if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
390 return (NULL);
391 return (pmap_l2e_to_l3e(l2e, va));
392 }
393
394 static __inline pt_entry_t *
395 pmap_pte(pmap_t pmap, vm_offset_t va)
396 {
397 pt_entry_t *l3e;
398
399 l3e = pmap_pml3e(pmap, va);
400 if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
401 return (NULL);
402 return (pmap_l3e_to_pte(l3e, va));
403 }
404
405 int nkpt = 64;
406 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
407 "Number of kernel page table pages allocated on bootup");
408
409 vm_paddr_t dmaplimit;
410
411 SYSCTL_DECL(_vm_pmap);
412
413 #ifdef INVARIANTS
414 #define VERBOSE_PMAP 0
415 #define VERBOSE_PROTECT 0
416 static int pmap_logging;
417 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
418 &pmap_logging, 0, "verbose debug logging");
419 #endif
420
421 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
422
423 //static vm_paddr_t KERNend; /* phys addr of end of bootstrap data */
424
425 static vm_offset_t qframe = 0;
426 static struct mtx qframe_mtx;
427
428 void mmu_radix_activate(struct thread *);
429 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
430 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
431 vm_size_t);
432 void mmu_radix_clear_modify(vm_page_t);
433 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
434 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
435 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
436 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
437 vm_prot_t);
438 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
439 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
440 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
441 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
442 vm_paddr_t mmu_radix_kextract(vm_offset_t);
443 void mmu_radix_kremove(vm_offset_t);
444 boolean_t mmu_radix_is_modified(vm_page_t);
445 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
446 boolean_t mmu_radix_is_referenced(vm_page_t);
447 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
448 vm_pindex_t, vm_size_t);
449 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
450 void mmu_radix_page_init(vm_page_t);
451 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
452 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
453 int mmu_radix_page_wired_mappings(vm_page_t);
454 int mmu_radix_pinit(pmap_t);
455 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
456 bool mmu_radix_ps_enabled(pmap_t);
457 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
458 void mmu_radix_qremove(vm_offset_t, int);
459 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
460 void mmu_radix_quick_remove_page(vm_offset_t);
461 boolean_t mmu_radix_ts_referenced(vm_page_t);
462 void mmu_radix_release(pmap_t);
463 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
464 void mmu_radix_remove_all(vm_page_t);
465 void mmu_radix_remove_pages(pmap_t);
466 void mmu_radix_remove_write(vm_page_t);
467 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
468 void mmu_radix_zero_page(vm_page_t);
469 void mmu_radix_zero_page_area(vm_page_t, int, int);
470 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
471 void mmu_radix_page_array_startup(long pages);
472
473 #include "mmu_oea64.h"
474
475 /*
476 * Kernel MMU interface
477 */
478
479 static void mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
480
481 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
482 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
483 vm_page_t *mb, vm_offset_t b_offset, int xfersize);
484 static void mmu_radix_growkernel(vm_offset_t);
485 static void mmu_radix_init(void);
486 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
487 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
488 static void mmu_radix_pinit0(pmap_t);
489
490 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
491 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
492 static void mmu_radix_unmapdev(void *, vm_size_t);
493 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
494 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
495 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
496 static void mmu_radix_scan_init(void);
497 static void mmu_radix_cpu_bootstrap(int ap);
498 static void mmu_radix_tlbie_all(void);
499
500 static struct pmap_funcs mmu_radix_methods = {
501 .bootstrap = mmu_radix_bootstrap,
502 .copy_page = mmu_radix_copy_page,
503 .copy_pages = mmu_radix_copy_pages,
504 .cpu_bootstrap = mmu_radix_cpu_bootstrap,
505 .growkernel = mmu_radix_growkernel,
506 .init = mmu_radix_init,
507 .map = mmu_radix_map,
508 .mincore = mmu_radix_mincore,
509 .pinit = mmu_radix_pinit,
510 .pinit0 = mmu_radix_pinit0,
511
512 .mapdev = mmu_radix_mapdev,
513 .mapdev_attr = mmu_radix_mapdev_attr,
514 .unmapdev = mmu_radix_unmapdev,
515 .kenter_attr = mmu_radix_kenter_attr,
516 .dev_direct_mapped = mmu_radix_dev_direct_mapped,
517 .dumpsys_pa_init = mmu_radix_scan_init,
518 .dumpsys_map_chunk = mmu_radix_dumpsys_map,
519 .page_is_mapped = mmu_radix_page_is_mapped,
520 .ps_enabled = mmu_radix_ps_enabled,
521 .align_superpage = mmu_radix_align_superpage,
522 .object_init_pt = mmu_radix_object_init_pt,
523 .protect = mmu_radix_protect,
524 /* pmap dispatcher interface */
525 .clear_modify = mmu_radix_clear_modify,
526 .copy = mmu_radix_copy,
527 .enter = mmu_radix_enter,
528 .enter_object = mmu_radix_enter_object,
529 .enter_quick = mmu_radix_enter_quick,
530 .extract = mmu_radix_extract,
531 .extract_and_hold = mmu_radix_extract_and_hold,
532 .is_modified = mmu_radix_is_modified,
533 .is_prefaultable = mmu_radix_is_prefaultable,
534 .is_referenced = mmu_radix_is_referenced,
535 .ts_referenced = mmu_radix_ts_referenced,
536 .page_exists_quick = mmu_radix_page_exists_quick,
537 .page_init = mmu_radix_page_init,
538 .page_wired_mappings = mmu_radix_page_wired_mappings,
539 .qenter = mmu_radix_qenter,
540 .qremove = mmu_radix_qremove,
541 .release = mmu_radix_release,
542 .remove = mmu_radix_remove,
543 .remove_all = mmu_radix_remove_all,
544 .remove_write = mmu_radix_remove_write,
545 .unwire = mmu_radix_unwire,
546 .zero_page = mmu_radix_zero_page,
547 .zero_page_area = mmu_radix_zero_page_area,
548 .activate = mmu_radix_activate,
549 .quick_enter_page = mmu_radix_quick_enter_page,
550 .quick_remove_page = mmu_radix_quick_remove_page,
551 .page_set_memattr = mmu_radix_page_set_memattr,
552 .page_array_startup = mmu_radix_page_array_startup,
553
554 /* Internal interfaces */
555 .kenter = mmu_radix_kenter,
556 .kextract = mmu_radix_kextract,
557 .kremove = mmu_radix_kremove,
558 .change_attr = mmu_radix_change_attr,
559 .decode_kernel_ptr = mmu_radix_decode_kernel_ptr,
560
561 .tlbie_all = mmu_radix_tlbie_all,
562 };
563
564 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565
566 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567 struct rwlock **lockp);
568 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571 struct spglist *free, struct rwlock **lockp);
572 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573 pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576 struct spglist *free);
577 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578 pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579
580 static bool pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581 u_int flags, struct rwlock **lockp);
582 #if VM_NRESERVLEVEL > 0
583 static void pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584 struct rwlock **lockp);
585 #endif
586 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590
591 static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592 vm_prot_t prot, struct rwlock **lockp);
593 static int pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594 u_int flags, vm_page_t m, struct rwlock **lockp);
595
596 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597 static void free_pv_chunk(struct pv_chunk *pc);
598 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600 struct rwlock **lockp);
601 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602 struct rwlock **lockp);
603 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604 struct spglist *free);
605 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606
607 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608 static void pmap_invalidate_all(pmap_t pmap);
609 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610
611 /*
612 * Internal flags for pmap_enter()'s helper functions.
613 */
614 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
615 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
616
617 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
618 #define UNTESTED() panic("%s not yet tested", __func__)
619
620 /* Number of supported PID bits */
621 static unsigned int isa3_pid_bits;
622
623 /* PID to start allocating from */
624 static unsigned int isa3_base_pid;
625
626 #define PROCTAB_SIZE_SHIFT (isa3_pid_bits + 4)
627 #define PROCTAB_ENTRIES (1ul << isa3_pid_bits)
628
629 /*
630 * Map of physical memory regions.
631 */
632 static struct mem_region *regions, *pregions;
633 static struct numa_mem_region *numa_pregions;
634 static u_int phys_avail_count;
635 static int regions_sz, pregions_sz, numa_pregions_sz;
636 static struct pate *isa3_parttab;
637 static struct prte *isa3_proctab;
638 static vmem_t *asid_arena;
639
640 extern void bs_remap_earlyboot(void);
641
642 #define RADIX_PGD_SIZE_SHIFT 16
643 #define RADIX_PGD_SIZE (1UL << RADIX_PGD_SIZE_SHIFT)
644
645 #define RADIX_PGD_INDEX_SHIFT (RADIX_PGD_SIZE_SHIFT-3)
646 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
647 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
648
649 #define NUPML1E (RADIX_PGD_SIZE/sizeof(uint64_t)) /* number of userland PML1 pages */
650 #define NUPDPE (NUPML1E * NL2EPG)/* number of userland PDP pages */
651 #define NUPDE (NUPDPE * NL3EPG) /* number of userland PD entries */
652
653 /* POWER9 only permits a 64k partition table size. */
654 #define PARTTAB_SIZE_SHIFT 16
655 #define PARTTAB_SIZE (1UL << PARTTAB_SIZE_SHIFT)
656
657 #define PARTTAB_HR (1UL << 63) /* host uses radix */
658 #define PARTTAB_GR (1UL << 63) /* guest uses radix must match host */
659
660 /* TLB flush actions. Used as argument to tlbiel_flush() */
661 enum {
662 TLB_INVAL_SCOPE_LPID = 2, /* invalidate TLBs for current LPID */
663 TLB_INVAL_SCOPE_GLOBAL = 3, /* invalidate all TLBs */
664 };
665
666 #define NPV_LIST_LOCKS MAXCPU
667 static int pmap_initialized;
668 static vm_paddr_t proctab0pa;
669 static vm_paddr_t parttab_phys;
670 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
671
672 /*
673 * Data for the pv entry allocation mechanism.
674 * Updates to pv_invl_gen are protected by the pv_list_locks[]
675 * elements, but reads are not.
676 */
677 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
678 static struct mtx __exclusive_cache_line pv_chunks_mutex;
679 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
680 static struct md_page *pv_table;
681 static struct md_page pv_dummy;
682
683 #ifdef PV_STATS
684 #define PV_STAT(x) do { x ; } while (0)
685 #else
686 #define PV_STAT(x) do { } while (0)
687 #endif
688
689 #define pa_radix_index(pa) ((pa) >> L3_PAGE_SIZE_SHIFT)
690 #define pa_to_pvh(pa) (&pv_table[pa_radix_index(pa)])
691
692 #define PHYS_TO_PV_LIST_LOCK(pa) \
693 (&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
694
695 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
696 struct rwlock **_lockp = (lockp); \
697 struct rwlock *_new_lock; \
698 \
699 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
700 if (_new_lock != *_lockp) { \
701 if (*_lockp != NULL) \
702 rw_wunlock(*_lockp); \
703 *_lockp = _new_lock; \
704 rw_wlock(*_lockp); \
705 } \
706 } while (0)
707
708 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
709 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
710
711 #define RELEASE_PV_LIST_LOCK(lockp) do { \
712 struct rwlock **_lockp = (lockp); \
713 \
714 if (*_lockp != NULL) { \
715 rw_wunlock(*_lockp); \
716 *_lockp = NULL; \
717 } \
718 } while (0)
719
720 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
721 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
722
723 /*
724 * We support 52 bits, hence:
725 * bits 52 - 31 = 21, 0b10101
726 * RTS encoding details
727 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
728 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
729 */
730 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
731
732 static int powernv_enabled = 1;
733
734 static __always_inline void
735 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
736 uint32_t pid, uint32_t ric, uint32_t prs)
737 {
738 uint64_t rb;
739 uint64_t rs;
740
741 rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
742 rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
743
744 __asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
745 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
746 : "memory");
747 }
748
749 static void
750 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
751 {
752 uint32_t set;
753
754 __asm __volatile("ptesync": : :"memory");
755
756 /*
757 * Flush the first set of the TLB, and the entire Page Walk Cache
758 * and partition table entries. Then flush the remaining sets of the
759 * TLB.
760 */
761 if (is == TLB_INVAL_SCOPE_GLOBAL) {
762 tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
763 for (set = 1; set < num_sets; set++)
764 tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
765 }
766
767 /* Do the same for process scoped entries. */
768 tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
769 for (set = 1; set < num_sets; set++)
770 tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
771
772 __asm __volatile("ptesync": : :"memory");
773 }
774
775 static void
776 mmu_radix_tlbiel_flush(int scope)
777 {
778 MPASS(scope == TLB_INVAL_SCOPE_LPID ||
779 scope == TLB_INVAL_SCOPE_GLOBAL);
780
781 tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
782 __asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
783 }
784
785 static void
786 mmu_radix_tlbie_all(void)
787 {
788 if (powernv_enabled)
789 mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
790 else
791 mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
792 }
793
794 static void
795 mmu_radix_init_amor(void)
796 {
797 /*
798 * In HV mode, we init AMOR (Authority Mask Override Register) so that
799 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
800 * Register), enable key 0 and set it to 1.
801 *
802 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
803 */
804 mtspr(SPR_AMOR, (3ul << 62));
805 }
806
807 static void
808 mmu_radix_init_iamr(void)
809 {
810 /*
811 * Radix always uses key0 of the IAMR to determine if an access is
812 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
813 * fetch.
814 */
815 mtspr(SPR_IAMR, (1ul << 62));
816 }
817
818 static void
819 mmu_radix_pid_set(pmap_t pmap)
820 {
821
822 mtspr(SPR_PID, pmap->pm_pid);
823 isync();
824 }
825
826 /* Quick sort callout for comparing physical addresses. */
827 static int
828 pa_cmp(const void *a, const void *b)
829 {
830 const vm_paddr_t *pa = a, *pb = b;
831
832 if (*pa < *pb)
833 return (-1);
834 else if (*pa > *pb)
835 return (1);
836 else
837 return (0);
838 }
839
840 #define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte)
841 #define pte_load_clear(ptep) atomic_swap_long(ptep, 0)
842 #define pte_store(ptep, pte) do { \
843 MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X)); \
844 *(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
845 } while (0)
846 /*
847 * NB: should only be used for adding directories - not for direct mappings
848 */
849 #define pde_store(ptep, pa) do { \
850 *(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
851 } while (0)
852
853 #define pte_clear(ptep) do { \
854 *(u_long *)(ptep) = (u_long)(0); \
855 } while (0)
856
857 #define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */
858
859 /*
860 * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
861 * (PTE) page mappings have identical settings for the following fields:
862 */
863 #define PG_PTE_PROMOTE (PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
864 PG_M | PG_A | RPTE_EAA_MASK | PG_V)
865
866 static __inline void
867 pmap_resident_count_inc(pmap_t pmap, int count)
868 {
869
870 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
871 pmap->pm_stats.resident_count += count;
872 }
873
874 static __inline void
875 pmap_resident_count_dec(pmap_t pmap, int count)
876 {
877
878 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
879 KASSERT(pmap->pm_stats.resident_count >= count,
880 ("pmap %p resident count underflow %ld %d", pmap,
881 pmap->pm_stats.resident_count, count));
882 pmap->pm_stats.resident_count -= count;
883 }
884
885 static void
886 pagezero(vm_offset_t va)
887 {
888 va = trunc_page(va);
889
890 bzero((void *)va, PAGE_SIZE);
891 }
892
893 static uint64_t
894 allocpages(int n)
895 {
896 u_int64_t ret;
897
898 ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
899 for (int i = 0; i < n; i++)
900 pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
901 return (ret);
902 }
903
904 static pt_entry_t *
905 kvtopte(vm_offset_t va)
906 {
907 pt_entry_t *l3e;
908
909 l3e = pmap_pml3e(kernel_pmap, va);
910 if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
911 return (NULL);
912 return (pmap_l3e_to_pte(l3e, va));
913 }
914
915 void
916 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
917 {
918 pt_entry_t *pte;
919
920 pte = kvtopte(va);
921 MPASS(pte != NULL);
922 *pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
923 RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
924 }
925
926 bool
927 mmu_radix_ps_enabled(pmap_t pmap)
928 {
929 return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
930 }
931
932 static pt_entry_t *
933 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
934 {
935 pml3_entry_t *l3e;
936 pt_entry_t *pte;
937
938 va &= PG_PS_FRAME;
939 l3e = pmap_pml3e(pmap, va);
940 if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
941 return (NULL);
942
943 if (be64toh(*l3e) & RPTE_LEAF) {
944 *is_l3e = 1;
945 return (l3e);
946 }
947 *is_l3e = 0;
948 va &= PG_FRAME;
949 pte = pmap_l3e_to_pte(l3e, va);
950 if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
951 return (NULL);
952 return (pte);
953 }
954
955 int
956 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
957 {
958 pt_entry_t *pte;
959 pt_entry_t startpte, origpte, newpte;
960 vm_page_t m;
961 int is_l3e;
962
963 startpte = 0;
964 retry:
965 if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
966 return (KERN_INVALID_ADDRESS);
967 origpte = newpte = be64toh(*pte);
968 if (startpte == 0) {
969 startpte = origpte;
970 if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
971 ((flags & VM_PROT_READ) && (startpte & PG_A))) {
972 pmap_invalidate_all(pmap);
973 #ifdef INVARIANTS
974 if (VERBOSE_PMAP || pmap_logging)
975 printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
976 __func__, pmap, va, flags, origpte);
977 #endif
978 return (KERN_FAILURE);
979 }
980 }
981 #ifdef INVARIANTS
982 if (VERBOSE_PMAP || pmap_logging)
983 printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
984 flags, origpte);
985 #endif
986 PMAP_LOCK(pmap);
987 if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
988 be64toh(*pte) != origpte) {
989 PMAP_UNLOCK(pmap);
990 return (KERN_FAILURE);
991 }
992 m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
993 MPASS(m != NULL);
994 switch (flags) {
995 case VM_PROT_READ:
996 if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
997 goto protfail;
998 newpte |= PG_A;
999 vm_page_aflag_set(m, PGA_REFERENCED);
1000 break;
1001 case VM_PROT_WRITE:
1002 if ((newpte & RPTE_EAA_W) == 0)
1003 goto protfail;
1004 if (is_l3e)
1005 goto protfail;
1006 newpte |= PG_M;
1007 vm_page_dirty(m);
1008 break;
1009 case VM_PROT_EXECUTE:
1010 if ((newpte & RPTE_EAA_X) == 0)
1011 goto protfail;
1012 newpte |= PG_A;
1013 vm_page_aflag_set(m, PGA_REFERENCED);
1014 break;
1015 }
1016
1017 if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1018 goto retry;
1019 ptesync();
1020 PMAP_UNLOCK(pmap);
1021 if (startpte == newpte)
1022 return (KERN_FAILURE);
1023 return (0);
1024 protfail:
1025 PMAP_UNLOCK(pmap);
1026 return (KERN_PROTECTION_FAILURE);
1027 }
1028
1029 /*
1030 * Returns TRUE if the given page is mapped individually or as part of
1031 * a 2mpage. Otherwise, returns FALSE.
1032 */
1033 boolean_t
1034 mmu_radix_page_is_mapped(vm_page_t m)
1035 {
1036 struct rwlock *lock;
1037 boolean_t rv;
1038
1039 if ((m->oflags & VPO_UNMANAGED) != 0)
1040 return (FALSE);
1041 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1042 rw_rlock(lock);
1043 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1044 ((m->flags & PG_FICTITIOUS) == 0 &&
1045 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1046 rw_runlock(lock);
1047 return (rv);
1048 }
1049
1050 /*
1051 * Determine the appropriate bits to set in a PTE or PDE for a specified
1052 * caching mode.
1053 */
1054 static int
1055 pmap_cache_bits(vm_memattr_t ma)
1056 {
1057 if (ma != VM_MEMATTR_DEFAULT) {
1058 switch (ma) {
1059 case VM_MEMATTR_UNCACHEABLE:
1060 return (RPTE_ATTR_GUARDEDIO);
1061 case VM_MEMATTR_CACHEABLE:
1062 return (RPTE_ATTR_MEM);
1063 case VM_MEMATTR_WRITE_BACK:
1064 case VM_MEMATTR_PREFETCHABLE:
1065 case VM_MEMATTR_WRITE_COMBINING:
1066 return (RPTE_ATTR_UNGUARDEDIO);
1067 }
1068 }
1069 return (0);
1070 }
1071
1072 static void
1073 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1074 {
1075 ptesync();
1076 if (pmap == kernel_pmap)
1077 radix_tlbie_invlpg_kernel_4k(start);
1078 else
1079 radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1080 ttusync();
1081 }
1082
1083 static void
1084 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1085 {
1086 ptesync();
1087 if (pmap == kernel_pmap)
1088 radix_tlbie_invlpg_kernel_2m(start);
1089 else
1090 radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1091 ttusync();
1092 }
1093
1094 static void
1095 pmap_invalidate_pwc(pmap_t pmap)
1096 {
1097 ptesync();
1098 if (pmap == kernel_pmap)
1099 radix_tlbie_invlpwc_kernel();
1100 else
1101 radix_tlbie_invlpwc_user(pmap->pm_pid);
1102 ttusync();
1103 }
1104
1105 static void
1106 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1107 {
1108 if (((start - end) >> PAGE_SHIFT) > 8) {
1109 pmap_invalidate_all(pmap);
1110 return;
1111 }
1112 ptesync();
1113 if (pmap == kernel_pmap) {
1114 while (start < end) {
1115 radix_tlbie_invlpg_kernel_4k(start);
1116 start += PAGE_SIZE;
1117 }
1118 } else {
1119 while (start < end) {
1120 radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1121 start += PAGE_SIZE;
1122 }
1123 }
1124 ttusync();
1125 }
1126
1127 static void
1128 pmap_invalidate_all(pmap_t pmap)
1129 {
1130 ptesync();
1131 if (pmap == kernel_pmap)
1132 radix_tlbie_flush_kernel();
1133 else
1134 radix_tlbie_flush_user(pmap->pm_pid);
1135 ttusync();
1136 }
1137
1138 static void
1139 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1140 {
1141
1142 /*
1143 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1144 * by a promotion that did not invalidate the 512 4KB page mappings
1145 * that might exist in the TLB. Consequently, at this point, the TLB
1146 * may hold both 4KB and 2MB page mappings for the address range [va,
1147 * va + L3_PAGE_SIZE). Therefore, the entire range must be invalidated here.
1148 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1149 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1150 * single INVLPG suffices to invalidate the 2MB page mapping from the
1151 * TLB.
1152 */
1153 ptesync();
1154 if ((l3e & PG_PROMOTED) != 0)
1155 pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1156 else
1157 pmap_invalidate_page_2m(pmap, va);
1158
1159 pmap_invalidate_pwc(pmap);
1160 }
1161
1162 static __inline struct pv_chunk *
1163 pv_to_chunk(pv_entry_t pv)
1164 {
1165
1166 return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1167 }
1168
1169 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1170
1171 #define PC_FREE0 0xfffffffffffffffful
1172 #define PC_FREE1 ((1ul << (_NPCPV % 64)) - 1)
1173
1174 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1175
1176 /*
1177 * Ensure that the number of spare PV entries in the specified pmap meets or
1178 * exceeds the given count, "needed".
1179 *
1180 * The given PV list lock may be released.
1181 */
1182 static void
1183 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1184 {
1185 struct pch new_tail;
1186 struct pv_chunk *pc;
1187 vm_page_t m;
1188 int avail, free;
1189 bool reclaimed;
1190
1191 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1192 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1193
1194 /*
1195 * Newly allocated PV chunks must be stored in a private list until
1196 * the required number of PV chunks have been allocated. Otherwise,
1197 * reclaim_pv_chunk() could recycle one of these chunks. In
1198 * contrast, these chunks must be added to the pmap upon allocation.
1199 */
1200 TAILQ_INIT(&new_tail);
1201 retry:
1202 avail = 0;
1203 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1204 // if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1205 bit_count((bitstr_t *)pc->pc_map, 0,
1206 sizeof(pc->pc_map) * NBBY, &free);
1207 #if 0
1208 free = popcnt_pc_map_pq(pc->pc_map);
1209 #endif
1210 if (free == 0)
1211 break;
1212 avail += free;
1213 if (avail >= needed)
1214 break;
1215 }
1216 for (reclaimed = false; avail < needed; avail += _NPCPV) {
1217 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1218 if (m == NULL) {
1219 m = reclaim_pv_chunk(pmap, lockp);
1220 if (m == NULL)
1221 goto retry;
1222 reclaimed = true;
1223 }
1224 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1225 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1226 dump_add_page(m->phys_addr);
1227 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1228 pc->pc_pmap = pmap;
1229 pc->pc_map[0] = PC_FREE0;
1230 pc->pc_map[1] = PC_FREE1;
1231 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1232 TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1233 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1234
1235 /*
1236 * The reclaim might have freed a chunk from the current pmap.
1237 * If that chunk contained available entries, we need to
1238 * re-count the number of available entries.
1239 */
1240 if (reclaimed)
1241 goto retry;
1242 }
1243 if (!TAILQ_EMPTY(&new_tail)) {
1244 mtx_lock(&pv_chunks_mutex);
1245 TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1246 mtx_unlock(&pv_chunks_mutex);
1247 }
1248 }
1249
1250 /*
1251 * First find and then remove the pv entry for the specified pmap and virtual
1252 * address from the specified pv list. Returns the pv entry if found and NULL
1253 * otherwise. This operation can be performed on pv lists for either 4KB or
1254 * 2MB page mappings.
1255 */
1256 static __inline pv_entry_t
1257 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1258 {
1259 pv_entry_t pv;
1260
1261 TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1262 #ifdef INVARIANTS
1263 if (PV_PMAP(pv) == NULL) {
1264 printf("corrupted pv_chunk/pv %p\n", pv);
1265 printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1266 }
1267 MPASS(PV_PMAP(pv) != NULL);
1268 MPASS(pv->pv_va != 0);
1269 #endif
1270 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1271 TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1272 pvh->pv_gen++;
1273 break;
1274 }
1275 }
1276 return (pv);
1277 }
1278
1279 /*
1280 * After demotion from a 2MB page mapping to 512 4KB page mappings,
1281 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1282 * entries for each of the 4KB page mappings.
1283 */
1284 static void
1285 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1286 struct rwlock **lockp)
1287 {
1288 struct md_page *pvh;
1289 struct pv_chunk *pc;
1290 pv_entry_t pv;
1291 vm_offset_t va_last;
1292 vm_page_t m;
1293 int bit, field;
1294
1295 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1296 KASSERT((pa & L3_PAGE_MASK) == 0,
1297 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1298 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1299
1300 /*
1301 * Transfer the 2mpage's pv entry for this mapping to the first
1302 * page's pv list. Once this transfer begins, the pv list lock
1303 * must not be released until the last pv entry is reinstantiated.
1304 */
1305 pvh = pa_to_pvh(pa);
1306 va = trunc_2mpage(va);
1307 pv = pmap_pvh_remove(pvh, pmap, va);
1308 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1309 m = PHYS_TO_VM_PAGE(pa);
1310 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1311
1312 m->md.pv_gen++;
1313 /* Instantiate the remaining NPTEPG - 1 pv entries. */
1314 PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1315 va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1316 for (;;) {
1317 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1318 KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1319 , ("pmap_pv_demote_pde: missing spare"));
1320 for (field = 0; field < _NPCM; field++) {
1321 while (pc->pc_map[field]) {
1322 bit = cnttzd(pc->pc_map[field]);
1323 pc->pc_map[field] &= ~(1ul << bit);
1324 pv = &pc->pc_pventry[field * 64 + bit];
1325 va += PAGE_SIZE;
1326 pv->pv_va = va;
1327 m++;
1328 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1329 ("pmap_pv_demote_pde: page %p is not managed", m));
1330 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1331
1332 m->md.pv_gen++;
1333 if (va == va_last)
1334 goto out;
1335 }
1336 }
1337 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1338 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1339 }
1340 out:
1341 if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1342 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1343 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1344 }
1345 PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1346 PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1347 }
1348
1349 static void
1350 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1351 {
1352
1353 if (pmap == NULL)
1354 return;
1355 pmap_invalidate_all(pmap);
1356 if (pmap != locked_pmap)
1357 PMAP_UNLOCK(pmap);
1358 }
1359
1360 /*
1361 * We are in a serious low memory condition. Resort to
1362 * drastic measures to free some pages so we can allocate
1363 * another pv entry chunk.
1364 *
1365 * Returns NULL if PV entries were reclaimed from the specified pmap.
1366 *
1367 * We do not, however, unmap 2mpages because subsequent accesses will
1368 * allocate per-page pv entries until repromotion occurs, thereby
1369 * exacerbating the shortage of free pv entries.
1370 */
1371 static int active_reclaims = 0;
1372 static vm_page_t
1373 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1374 {
1375 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1376 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1377 struct md_page *pvh;
1378 pml3_entry_t *l3e;
1379 pmap_t next_pmap, pmap;
1380 pt_entry_t *pte, tpte;
1381 pv_entry_t pv;
1382 vm_offset_t va;
1383 vm_page_t m, m_pc;
1384 struct spglist free;
1385 uint64_t inuse;
1386 int bit, field, freed;
1387
1388 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1389 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1390 pmap = NULL;
1391 m_pc = NULL;
1392 SLIST_INIT(&free);
1393 bzero(&pc_marker_b, sizeof(pc_marker_b));
1394 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1395 pc_marker = (struct pv_chunk *)&pc_marker_b;
1396 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1397
1398 mtx_lock(&pv_chunks_mutex);
1399 active_reclaims++;
1400 TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1401 TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1402 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1403 SLIST_EMPTY(&free)) {
1404 next_pmap = pc->pc_pmap;
1405 if (next_pmap == NULL) {
1406 /*
1407 * The next chunk is a marker. However, it is
1408 * not our marker, so active_reclaims must be
1409 * > 1. Consequently, the next_chunk code
1410 * will not rotate the pv_chunks list.
1411 */
1412 goto next_chunk;
1413 }
1414 mtx_unlock(&pv_chunks_mutex);
1415
1416 /*
1417 * A pv_chunk can only be removed from the pc_lru list
1418 * when both pc_chunks_mutex is owned and the
1419 * corresponding pmap is locked.
1420 */
1421 if (pmap != next_pmap) {
1422 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1423 pmap = next_pmap;
1424 /* Avoid deadlock and lock recursion. */
1425 if (pmap > locked_pmap) {
1426 RELEASE_PV_LIST_LOCK(lockp);
1427 PMAP_LOCK(pmap);
1428 mtx_lock(&pv_chunks_mutex);
1429 continue;
1430 } else if (pmap != locked_pmap) {
1431 if (PMAP_TRYLOCK(pmap)) {
1432 mtx_lock(&pv_chunks_mutex);
1433 continue;
1434 } else {
1435 pmap = NULL; /* pmap is not locked */
1436 mtx_lock(&pv_chunks_mutex);
1437 pc = TAILQ_NEXT(pc_marker, pc_lru);
1438 if (pc == NULL ||
1439 pc->pc_pmap != next_pmap)
1440 continue;
1441 goto next_chunk;
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Destroy every non-wired, 4 KB page mapping in the chunk.
1448 */
1449 freed = 0;
1450 for (field = 0; field < _NPCM; field++) {
1451 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1452 inuse != 0; inuse &= ~(1UL << bit)) {
1453 bit = cnttzd(inuse);
1454 pv = &pc->pc_pventry[field * 64 + bit];
1455 va = pv->pv_va;
1456 l3e = pmap_pml3e(pmap, va);
1457 if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1458 continue;
1459 pte = pmap_l3e_to_pte(l3e, va);
1460 if ((be64toh(*pte) & PG_W) != 0)
1461 continue;
1462 tpte = be64toh(pte_load_clear(pte));
1463 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1464 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1465 vm_page_dirty(m);
1466 if ((tpte & PG_A) != 0)
1467 vm_page_aflag_set(m, PGA_REFERENCED);
1468 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1469 TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1470
1471 m->md.pv_gen++;
1472 if (TAILQ_EMPTY(&m->md.pv_list) &&
1473 (m->flags & PG_FICTITIOUS) == 0) {
1474 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1475 if (TAILQ_EMPTY(&pvh->pv_list)) {
1476 vm_page_aflag_clear(m,
1477 PGA_WRITEABLE);
1478 }
1479 }
1480 pc->pc_map[field] |= 1UL << bit;
1481 pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1482 freed++;
1483 }
1484 }
1485 if (freed == 0) {
1486 mtx_lock(&pv_chunks_mutex);
1487 goto next_chunk;
1488 }
1489 /* Every freed mapping is for a 4 KB page. */
1490 pmap_resident_count_dec(pmap, freed);
1491 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1492 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1493 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1494 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1495 if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1496 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1497 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1498 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1499 /* Entire chunk is free; return it. */
1500 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1501 dump_drop_page(m_pc->phys_addr);
1502 mtx_lock(&pv_chunks_mutex);
1503 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1504 break;
1505 }
1506 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1507 mtx_lock(&pv_chunks_mutex);
1508 /* One freed pv entry in locked_pmap is sufficient. */
1509 if (pmap == locked_pmap)
1510 break;
1511 next_chunk:
1512 TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1513 TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1514 if (active_reclaims == 1 && pmap != NULL) {
1515 /*
1516 * Rotate the pv chunks list so that we do not
1517 * scan the same pv chunks that could not be
1518 * freed (because they contained a wired
1519 * and/or superpage mapping) on every
1520 * invocation of reclaim_pv_chunk().
1521 */
1522 while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1523 MPASS(pc->pc_pmap != NULL);
1524 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1525 TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1526 }
1527 }
1528 }
1529 TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1530 TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1531 active_reclaims--;
1532 mtx_unlock(&pv_chunks_mutex);
1533 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1534 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1535 m_pc = SLIST_FIRST(&free);
1536 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1537 /* Recycle a freed page table page. */
1538 m_pc->ref_count = 1;
1539 }
1540 vm_page_free_pages_toq(&free, true);
1541 return (m_pc);
1542 }
1543
1544 /*
1545 * free the pv_entry back to the free list
1546 */
1547 static void
1548 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1549 {
1550 struct pv_chunk *pc;
1551 int idx, field, bit;
1552
1553 #ifdef VERBOSE_PV
1554 if (pmap != kernel_pmap)
1555 printf("%s(%p, %p)\n", __func__, pmap, pv);
1556 #endif
1557 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1558 PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1559 PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1560 PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1561 pc = pv_to_chunk(pv);
1562 idx = pv - &pc->pc_pventry[0];
1563 field = idx / 64;
1564 bit = idx % 64;
1565 pc->pc_map[field] |= 1ul << bit;
1566 if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1567 /* 98% of the time, pc is already at the head of the list. */
1568 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1569 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1570 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1571 }
1572 return;
1573 }
1574 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1575 free_pv_chunk(pc);
1576 }
1577
1578 static void
1579 free_pv_chunk(struct pv_chunk *pc)
1580 {
1581 vm_page_t m;
1582
1583 mtx_lock(&pv_chunks_mutex);
1584 TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1585 mtx_unlock(&pv_chunks_mutex);
1586 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1587 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1588 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1589 /* entire chunk is free, return it */
1590 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1591 dump_drop_page(m->phys_addr);
1592 vm_page_unwire_noq(m);
1593 vm_page_free(m);
1594 }
1595
1596 /*
1597 * Returns a new PV entry, allocating a new PV chunk from the system when
1598 * needed. If this PV chunk allocation fails and a PV list lock pointer was
1599 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
1600 * returned.
1601 *
1602 * The given PV list lock may be released.
1603 */
1604 static pv_entry_t
1605 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1606 {
1607 int bit, field;
1608 pv_entry_t pv;
1609 struct pv_chunk *pc;
1610 vm_page_t m;
1611
1612 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1613 PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1614 retry:
1615 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1616 if (pc != NULL) {
1617 for (field = 0; field < _NPCM; field++) {
1618 if (pc->pc_map[field]) {
1619 bit = cnttzd(pc->pc_map[field]);
1620 break;
1621 }
1622 }
1623 if (field < _NPCM) {
1624 pv = &pc->pc_pventry[field * 64 + bit];
1625 pc->pc_map[field] &= ~(1ul << bit);
1626 /* If this was the last item, move it to tail */
1627 if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1628 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1629 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1630 pc_list);
1631 }
1632 PV_STAT(atomic_add_long(&pv_entry_count, 1));
1633 PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1634 MPASS(PV_PMAP(pv) != NULL);
1635 return (pv);
1636 }
1637 }
1638 /* No free items, allocate another chunk */
1639 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1640 if (m == NULL) {
1641 if (lockp == NULL) {
1642 PV_STAT(pc_chunk_tryfail++);
1643 return (NULL);
1644 }
1645 m = reclaim_pv_chunk(pmap, lockp);
1646 if (m == NULL)
1647 goto retry;
1648 }
1649 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1650 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1651 dump_add_page(m->phys_addr);
1652 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1653 pc->pc_pmap = pmap;
1654 pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */
1655 pc->pc_map[1] = PC_FREE1;
1656 mtx_lock(&pv_chunks_mutex);
1657 TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1658 mtx_unlock(&pv_chunks_mutex);
1659 pv = &pc->pc_pventry[0];
1660 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1661 PV_STAT(atomic_add_long(&pv_entry_count, 1));
1662 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1663 MPASS(PV_PMAP(pv) != NULL);
1664 return (pv);
1665 }
1666
1667 #if VM_NRESERVLEVEL > 0
1668 /*
1669 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1670 * replace the many pv entries for the 4KB page mappings by a single pv entry
1671 * for the 2MB page mapping.
1672 */
1673 static void
1674 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1675 struct rwlock **lockp)
1676 {
1677 struct md_page *pvh;
1678 pv_entry_t pv;
1679 vm_offset_t va_last;
1680 vm_page_t m;
1681
1682 KASSERT((pa & L3_PAGE_MASK) == 0,
1683 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1684 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1685
1686 /*
1687 * Transfer the first page's pv entry for this mapping to the 2mpage's
1688 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
1689 * a transfer avoids the possibility that get_pv_entry() calls
1690 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1691 * mappings that is being promoted.
1692 */
1693 m = PHYS_TO_VM_PAGE(pa);
1694 va = trunc_2mpage(va);
1695 pv = pmap_pvh_remove(&m->md, pmap, va);
1696 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1697 pvh = pa_to_pvh(pa);
1698 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1699 pvh->pv_gen++;
1700 /* Free the remaining NPTEPG - 1 pv entries. */
1701 va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1702 do {
1703 m++;
1704 va += PAGE_SIZE;
1705 pmap_pvh_free(&m->md, pmap, va);
1706 } while (va < va_last);
1707 }
1708 #endif /* VM_NRESERVLEVEL > 0 */
1709
1710 /*
1711 * First find and then destroy the pv entry for the specified pmap and virtual
1712 * address. This operation can be performed on pv lists for either 4KB or 2MB
1713 * page mappings.
1714 */
1715 static void
1716 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1717 {
1718 pv_entry_t pv;
1719
1720 pv = pmap_pvh_remove(pvh, pmap, va);
1721 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1722 free_pv_entry(pmap, pv);
1723 }
1724
1725 /*
1726 * Conditionally create the PV entry for a 4KB page mapping if the required
1727 * memory can be allocated without resorting to reclamation.
1728 */
1729 static boolean_t
1730 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1731 struct rwlock **lockp)
1732 {
1733 pv_entry_t pv;
1734
1735 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1736 /* Pass NULL instead of the lock pointer to disable reclamation. */
1737 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1738 pv->pv_va = va;
1739 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1740 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1741 m->md.pv_gen++;
1742 return (TRUE);
1743 } else
1744 return (FALSE);
1745 }
1746
1747 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1748 #ifdef INVARIANTS
1749 static void
1750 validate_addr(vm_paddr_t addr, vm_size_t size)
1751 {
1752 vm_paddr_t end = addr + size;
1753 bool found = false;
1754
1755 for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1756 if (addr >= phys_avail_debug[i] &&
1757 end <= phys_avail_debug[i + 1]) {
1758 found = true;
1759 break;
1760 }
1761 }
1762 KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1763 addr, end));
1764 }
1765 #else
1766 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1767 #endif
1768 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1769
1770 static vm_paddr_t
1771 alloc_pt_page(void)
1772 {
1773 vm_paddr_t page;
1774
1775 page = allocpages(1);
1776 pagezero(PHYS_TO_DMAP(page));
1777 return (page);
1778 }
1779
1780 static void
1781 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1782 {
1783 pt_entry_t *pte, pteval;
1784 vm_paddr_t page;
1785
1786 if (bootverbose)
1787 printf("%s %lx -> %lx\n", __func__, start, end);
1788 while (start < end) {
1789 pteval = start | DMAP_PAGE_BITS;
1790 pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1791 if ((be64toh(*pte) & RPTE_VALID) == 0) {
1792 page = alloc_pt_page();
1793 pde_store(pte, page);
1794 }
1795 pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1796 if ((start & L2_PAGE_MASK) == 0 &&
1797 end - start >= L2_PAGE_SIZE) {
1798 start += L2_PAGE_SIZE;
1799 goto done;
1800 } else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1801 page = alloc_pt_page();
1802 pde_store(pte, page);
1803 }
1804
1805 pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1806 if ((start & L3_PAGE_MASK) == 0 &&
1807 end - start >= L3_PAGE_SIZE) {
1808 start += L3_PAGE_SIZE;
1809 goto done;
1810 } else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1811 page = alloc_pt_page();
1812 pde_store(pte, page);
1813 }
1814 pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1815 start += PAGE_SIZE;
1816 done:
1817 pte_store(pte, pteval);
1818 }
1819 }
1820
1821 static void
1822 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1823 {
1824 vm_paddr_t start, end;
1825
1826 for (int i = 0; i < pregions_sz; i++) {
1827 start = pregions[i].mr_start;
1828 end = start + pregions[i].mr_size;
1829 if (hwphyssz && start >= hwphyssz)
1830 break;
1831 if (hwphyssz && hwphyssz < end)
1832 end = hwphyssz;
1833 mmu_radix_dmap_range(start, end);
1834 }
1835 }
1836
1837 static void
1838 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1839 {
1840 vm_paddr_t ptpages, pages;
1841 pt_entry_t *pte;
1842 vm_paddr_t l1phys;
1843
1844 bzero(kernel_pmap, sizeof(struct pmap));
1845 PMAP_LOCK_INIT(kernel_pmap);
1846
1847 ptpages = allocpages(3);
1848 l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1849 validate_addr(l1phys, RADIX_PGD_SIZE);
1850 if (bootverbose)
1851 printf("l1phys=%lx\n", l1phys);
1852 MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1853 for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1854 pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1855 kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1856
1857 mmu_radix_dmap_populate(hwphyssz);
1858
1859 /*
1860 * Create page tables for first 128MB of KVA
1861 */
1862 pages = ptpages;
1863 pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1864 *pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1865 pages += PAGE_SIZE;
1866 pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1867 *pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1868 pages += PAGE_SIZE;
1869 pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1870 /*
1871 * the kernel page table pages need to be preserved in
1872 * phys_avail and not overlap with previous allocations
1873 */
1874 pages = allocpages(nkpt);
1875 if (bootverbose) {
1876 printf("phys_avail after dmap populate and nkpt allocation\n");
1877 for (int j = 0; j < 2 * phys_avail_count; j+=2)
1878 printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1879 j, phys_avail[j], j + 1, phys_avail[j + 1]);
1880 }
1881 KPTphys = pages;
1882 for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1883 *pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1884 kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1885 if (bootverbose)
1886 printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1887 /*
1888 * Add a physical memory segment (vm_phys_seg) corresponding to the
1889 * preallocated kernel page table pages so that vm_page structures
1890 * representing these pages will be created. The vm_page structures
1891 * are required for promotion of the corresponding kernel virtual
1892 * addresses to superpage mappings.
1893 */
1894 vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1895 }
1896
1897 static void
1898 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1899 {
1900 vm_paddr_t kpstart, kpend;
1901 vm_size_t physsz, hwphyssz;
1902 //uint64_t l2virt;
1903 int rm_pavail, proctab_size;
1904 int i, j;
1905
1906 kpstart = start & ~DMAP_BASE_ADDRESS;
1907 kpend = end & ~DMAP_BASE_ADDRESS;
1908
1909 /* Get physical memory regions from firmware */
1910 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
1911 CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1912
1913 if (2 * VM_PHYSSEG_MAX < regions_sz)
1914 panic("mmu_radix_early_bootstrap: phys_avail too small");
1915
1916 if (bootverbose)
1917 for (int i = 0; i < regions_sz; i++)
1918 printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1919 i, regions[i].mr_start, i, regions[i].mr_size);
1920 /*
1921 * XXX workaround a simulator bug
1922 */
1923 for (int i = 0; i < regions_sz; i++)
1924 if (regions[i].mr_start & PAGE_MASK) {
1925 regions[i].mr_start += PAGE_MASK;
1926 regions[i].mr_start &= ~PAGE_MASK;
1927 regions[i].mr_size &= ~PAGE_MASK;
1928 }
1929 if (bootverbose)
1930 for (int i = 0; i < pregions_sz; i++)
1931 printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1932 i, pregions[i].mr_start, i, pregions[i].mr_size);
1933
1934 phys_avail_count = 0;
1935 physsz = 0;
1936 hwphyssz = 0;
1937 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1938 for (i = 0, j = 0; i < regions_sz; i++) {
1939 if (bootverbose)
1940 printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1941 i, regions[i].mr_start, i, regions[i].mr_size);
1942
1943 if (regions[i].mr_size < PAGE_SIZE)
1944 continue;
1945
1946 if (hwphyssz != 0 &&
1947 (physsz + regions[i].mr_size) >= hwphyssz) {
1948 if (physsz < hwphyssz) {
1949 phys_avail[j] = regions[i].mr_start;
1950 phys_avail[j + 1] = regions[i].mr_start +
1951 (hwphyssz - physsz);
1952 physsz = hwphyssz;
1953 phys_avail_count++;
1954 dump_avail[j] = phys_avail[j];
1955 dump_avail[j + 1] = phys_avail[j + 1];
1956 }
1957 break;
1958 }
1959 phys_avail[j] = regions[i].mr_start;
1960 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1961 dump_avail[j] = phys_avail[j];
1962 dump_avail[j + 1] = phys_avail[j + 1];
1963
1964 phys_avail_count++;
1965 physsz += regions[i].mr_size;
1966 j += 2;
1967 }
1968
1969 /* Check for overlap with the kernel and exception vectors */
1970 rm_pavail = 0;
1971 for (j = 0; j < 2 * phys_avail_count; j+=2) {
1972 if (phys_avail[j] < EXC_LAST)
1973 phys_avail[j] += EXC_LAST;
1974
1975 if (phys_avail[j] >= kpstart &&
1976 phys_avail[j + 1] <= kpend) {
1977 phys_avail[j] = phys_avail[j + 1] = ~0;
1978 rm_pavail++;
1979 continue;
1980 }
1981
1982 if (kpstart >= phys_avail[j] &&
1983 kpstart < phys_avail[j + 1]) {
1984 if (kpend < phys_avail[j + 1]) {
1985 phys_avail[2 * phys_avail_count] =
1986 (kpend & ~PAGE_MASK) + PAGE_SIZE;
1987 phys_avail[2 * phys_avail_count + 1] =
1988 phys_avail[j + 1];
1989 phys_avail_count++;
1990 }
1991
1992 phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1993 }
1994
1995 if (kpend >= phys_avail[j] &&
1996 kpend < phys_avail[j + 1]) {
1997 if (kpstart > phys_avail[j]) {
1998 phys_avail[2 * phys_avail_count] = phys_avail[j];
1999 phys_avail[2 * phys_avail_count + 1] =
2000 kpstart & ~PAGE_MASK;
2001 phys_avail_count++;
2002 }
2003
2004 phys_avail[j] = (kpend & ~PAGE_MASK) +
2005 PAGE_SIZE;
2006 }
2007 }
2008 qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2009 for (i = 0; i < 2 * phys_avail_count; i++)
2010 phys_avail_debug[i] = phys_avail[i];
2011
2012 /* Remove physical available regions marked for removal (~0) */
2013 if (rm_pavail) {
2014 phys_avail_count -= rm_pavail;
2015 for (i = 2 * phys_avail_count;
2016 i < 2*(phys_avail_count + rm_pavail); i+=2)
2017 phys_avail[i] = phys_avail[i + 1] = 0;
2018 }
2019 if (bootverbose) {
2020 printf("phys_avail ranges after filtering:\n");
2021 for (j = 0; j < 2 * phys_avail_count; j+=2)
2022 printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2023 j, phys_avail[j], j + 1, phys_avail[j + 1]);
2024 }
2025 physmem = btoc(physsz);
2026
2027 /* XXX assume we're running non-virtualized and
2028 * we don't support BHYVE
2029 */
2030 if (isa3_pid_bits == 0)
2031 isa3_pid_bits = 20;
2032 if (powernv_enabled) {
2033 parttab_phys =
2034 moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2035 validate_addr(parttab_phys, PARTTAB_SIZE);
2036 for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2037 pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2038
2039 }
2040 proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2041 proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2042 validate_addr(proctab0pa, proctab_size);
2043 for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2044 pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2045
2046 mmu_radix_setup_pagetables(hwphyssz);
2047 }
2048
2049 static void
2050 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2051 {
2052 int i;
2053 vm_paddr_t pa;
2054 void *dpcpu;
2055 vm_offset_t va;
2056
2057 /*
2058 * Set up the Open Firmware pmap and add its mappings if not in real
2059 * mode.
2060 */
2061 if (bootverbose)
2062 printf("%s enter\n", __func__);
2063
2064 /*
2065 * Calculate the last available physical address, and reserve the
2066 * vm_page_array (upper bound).
2067 */
2068 Maxmem = 0;
2069 for (i = 0; phys_avail[i + 1] != 0; i += 2)
2070 Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2071
2072 /*
2073 * Remap any early IO mappings (console framebuffer, etc.)
2074 */
2075 bs_remap_earlyboot();
2076
2077 /*
2078 * Allocate a kernel stack with a guard page for thread0 and map it
2079 * into the kernel page map.
2080 */
2081 pa = allocpages(kstack_pages);
2082 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2083 virtual_avail = va + kstack_pages * PAGE_SIZE;
2084 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2085 thread0.td_kstack = va;
2086 for (i = 0; i < kstack_pages; i++) {
2087 mmu_radix_kenter(va, pa);
2088 pa += PAGE_SIZE;
2089 va += PAGE_SIZE;
2090 }
2091 thread0.td_kstack_pages = kstack_pages;
2092
2093 /*
2094 * Allocate virtual address space for the message buffer.
2095 */
2096 pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK) >> PAGE_SHIFT);
2097 msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2098
2099 /*
2100 * Allocate virtual address space for the dynamic percpu area.
2101 */
2102 pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2103 dpcpu = (void *)PHYS_TO_DMAP(pa);
2104 dpcpu_init(dpcpu, curcpu);
2105
2106 crashdumpmap = (caddr_t)virtual_avail;
2107 virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2108
2109 /*
2110 * Reserve some special page table entries/VA space for temporary
2111 * mapping of pages.
2112 */
2113 }
2114
2115 static void
2116 mmu_parttab_init(void)
2117 {
2118 uint64_t ptcr;
2119
2120 isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2121
2122 if (bootverbose)
2123 printf("%s parttab: %p\n", __func__, isa3_parttab);
2124 ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2125 if (bootverbose)
2126 printf("setting ptcr %lx\n", ptcr);
2127 mtspr(SPR_PTCR, ptcr);
2128 }
2129
2130 static void
2131 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2132 {
2133 uint64_t prev;
2134
2135 if (bootverbose)
2136 printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2137 lpid, pagetab, proctab);
2138 prev = be64toh(isa3_parttab[lpid].pagetab);
2139 isa3_parttab[lpid].pagetab = htobe64(pagetab);
2140 isa3_parttab[lpid].proctab = htobe64(proctab);
2141
2142 if (prev & PARTTAB_HR) {
2143 __asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2144 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2145 __asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2146 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2147 } else {
2148 __asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2149 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2150 }
2151 ttusync();
2152 }
2153
2154 static void
2155 mmu_radix_parttab_init(void)
2156 {
2157 uint64_t pagetab;
2158
2159 mmu_parttab_init();
2160 pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2161 RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2162 mmu_parttab_update(0, pagetab, 0);
2163 }
2164
2165 static void
2166 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2167 {
2168 uint64_t pagetab, proctab;
2169
2170 pagetab = be64toh(isa3_parttab[0].pagetab);
2171 proctab = proctabpa | table_size | PARTTAB_GR;
2172 mmu_parttab_update(0, pagetab, proctab);
2173 }
2174
2175 static void
2176 mmu_radix_proctab_init(void)
2177 {
2178
2179 isa3_base_pid = 1;
2180
2181 isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2182 isa3_proctab->proctab0 =
2183 htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2184 RADIX_PGD_INDEX_SHIFT);
2185
2186 if (powernv_enabled) {
2187 mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2188 __asm __volatile("ptesync" : : : "memory");
2189 __asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2190 "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2191 __asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2192 #ifdef PSERIES
2193 } else {
2194 int64_t rc;
2195
2196 rc = phyp_hcall(H_REGISTER_PROC_TBL,
2197 PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2198 proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2199 if (rc != H_SUCCESS)
2200 panic("mmu_radix_proctab_init: "
2201 "failed to register process table: rc=%jd",
2202 (intmax_t)rc);
2203 #endif
2204 }
2205
2206 if (bootverbose)
2207 printf("process table %p and kernel radix PDE: %p\n",
2208 isa3_proctab, kernel_pmap->pm_pml1);
2209 mtmsr(mfmsr() | PSL_DR );
2210 mtmsr(mfmsr() & ~PSL_DR);
2211 kernel_pmap->pm_pid = isa3_base_pid;
2212 isa3_base_pid++;
2213 }
2214
2215 void
2216 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2217 int advice)
2218 {
2219 struct rwlock *lock;
2220 pml1_entry_t *l1e;
2221 pml2_entry_t *l2e;
2222 pml3_entry_t oldl3e, *l3e;
2223 pt_entry_t *pte;
2224 vm_offset_t va, va_next;
2225 vm_page_t m;
2226 bool anychanged;
2227
2228 if (advice != MADV_DONTNEED && advice != MADV_FREE)
2229 return;
2230 anychanged = false;
2231 PMAP_LOCK(pmap);
2232 for (; sva < eva; sva = va_next) {
2233 l1e = pmap_pml1e(pmap, sva);
2234 if ((be64toh(*l1e) & PG_V) == 0) {
2235 va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2236 if (va_next < sva)
2237 va_next = eva;
2238 continue;
2239 }
2240 l2e = pmap_l1e_to_l2e(l1e, sva);
2241 if ((be64toh(*l2e) & PG_V) == 0) {
2242 va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2243 if (va_next < sva)
2244 va_next = eva;
2245 continue;
2246 }
2247 va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2248 if (va_next < sva)
2249 va_next = eva;
2250 l3e = pmap_l2e_to_l3e(l2e, sva);
2251 oldl3e = be64toh(*l3e);
2252 if ((oldl3e & PG_V) == 0)
2253 continue;
2254 else if ((oldl3e & RPTE_LEAF) != 0) {
2255 if ((oldl3e & PG_MANAGED) == 0)
2256 continue;
2257 lock = NULL;
2258 if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2259 if (lock != NULL)
2260 rw_wunlock(lock);
2261
2262 /*
2263 * The large page mapping was destroyed.
2264 */
2265 continue;
2266 }
2267
2268 /*
2269 * Unless the page mappings are wired, remove the
2270 * mapping to a single page so that a subsequent
2271 * access may repromote. Choosing the last page
2272 * within the address range [sva, min(va_next, eva))
2273 * generally results in more repromotions. Since the
2274 * underlying page table page is fully populated, this
2275 * removal never frees a page table page.
2276 */
2277 if ((oldl3e & PG_W) == 0) {
2278 va = eva;
2279 if (va > va_next)
2280 va = va_next;
2281 va -= PAGE_SIZE;
2282 KASSERT(va >= sva,
2283 ("mmu_radix_advise: no address gap"));
2284 pte = pmap_l3e_to_pte(l3e, va);
2285 KASSERT((be64toh(*pte) & PG_V) != 0,
2286 ("pmap_advise: invalid PTE"));
2287 pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2288 &lock);
2289 anychanged = true;
2290 }
2291 if (lock != NULL)
2292 rw_wunlock(lock);
2293 }
2294 if (va_next > eva)
2295 va_next = eva;
2296 va = va_next;
2297 for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2298 pte++, sva += PAGE_SIZE) {
2299 MPASS(pte == pmap_pte(pmap, sva));
2300
2301 if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2302 goto maybe_invlrng;
2303 else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2304 if (advice == MADV_DONTNEED) {
2305 /*
2306 * Future calls to pmap_is_modified()
2307 * can be avoided by making the page
2308 * dirty now.
2309 */
2310 m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2311 vm_page_dirty(m);
2312 }
2313 atomic_clear_long(pte, htobe64(PG_M | PG_A));
2314 } else if ((be64toh(*pte) & PG_A) != 0)
2315 atomic_clear_long(pte, htobe64(PG_A));
2316 else
2317 goto maybe_invlrng;
2318 anychanged = true;
2319 continue;
2320 maybe_invlrng:
2321 if (va != va_next) {
2322 anychanged = true;
2323 va = va_next;
2324 }
2325 }
2326 if (va != va_next)
2327 anychanged = true;
2328 }
2329 if (anychanged)
2330 pmap_invalidate_all(pmap);
2331 PMAP_UNLOCK(pmap);
2332 }
2333
2334 /*
2335 * Routines used in machine-dependent code
2336 */
2337 static void
2338 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2339 {
2340 uint64_t lpcr;
2341
2342 if (bootverbose)
2343 printf("%s\n", __func__);
2344 hw_direct_map = 1;
2345 powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2346 mmu_radix_early_bootstrap(start, end);
2347 if (bootverbose)
2348 printf("early bootstrap complete\n");
2349 if (powernv_enabled) {
2350 lpcr = mfspr(SPR_LPCR);
2351 mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2352 mmu_radix_parttab_init();
2353 mmu_radix_init_amor();
2354 if (bootverbose)
2355 printf("powernv init complete\n");
2356 }
2357 mmu_radix_init_iamr();
2358 mmu_radix_proctab_init();
2359 mmu_radix_pid_set(kernel_pmap);
2360 if (powernv_enabled)
2361 mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2362 else
2363 mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2364
2365 mmu_radix_late_bootstrap(start, end);
2366 numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2367 if (bootverbose)
2368 printf("%s done\n", __func__);
2369 pmap_bootstrapped = 1;
2370 dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2371 PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2372 }
2373
2374 static void
2375 mmu_radix_cpu_bootstrap(int ap)
2376 {
2377 uint64_t lpcr;
2378 uint64_t ptcr;
2379
2380 if (powernv_enabled) {
2381 lpcr = mfspr(SPR_LPCR);
2382 mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2383
2384 ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2385 mtspr(SPR_PTCR, ptcr);
2386 mmu_radix_init_amor();
2387 }
2388 mmu_radix_init_iamr();
2389 mmu_radix_pid_set(kernel_pmap);
2390 if (powernv_enabled)
2391 mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2392 else
2393 mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2394 }
2395
2396 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2397 "2MB page mapping counters");
2398
2399 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2400 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2401 &pmap_l3e_demotions, "2MB page demotions");
2402
2403 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2404 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2405 &pmap_l3e_mappings, "2MB page mappings");
2406
2407 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2408 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2409 &pmap_l3e_p_failures, "2MB page promotion failures");
2410
2411 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2412 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2413 &pmap_l3e_promotions, "2MB page promotions");
2414
2415 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2416 "1GB page mapping counters");
2417
2418 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2419 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2420 &pmap_l2e_demotions, "1GB page demotions");
2421
2422 void
2423 mmu_radix_clear_modify(vm_page_t m)
2424 {
2425 struct md_page *pvh;
2426 pmap_t pmap;
2427 pv_entry_t next_pv, pv;
2428 pml3_entry_t oldl3e, *l3e;
2429 pt_entry_t oldpte, *pte;
2430 struct rwlock *lock;
2431 vm_offset_t va;
2432 int md_gen, pvh_gen;
2433
2434 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2435 ("pmap_clear_modify: page %p is not managed", m));
2436 vm_page_assert_busied(m);
2437 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2438
2439 /*
2440 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2441 * If the object containing the page is locked and the page is not
2442 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2443 */
2444 if ((m->a.flags & PGA_WRITEABLE) == 0)
2445 return;
2446 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2447 pa_to_pvh(VM_PAGE_TO_PHYS(m));
2448 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2449 rw_wlock(lock);
2450 restart:
2451 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2452 pmap = PV_PMAP(pv);
2453 if (!PMAP_TRYLOCK(pmap)) {
2454 pvh_gen = pvh->pv_gen;
2455 rw_wunlock(lock);
2456 PMAP_LOCK(pmap);
2457 rw_wlock(lock);
2458 if (pvh_gen != pvh->pv_gen) {
2459 PMAP_UNLOCK(pmap);
2460 goto restart;
2461 }
2462 }
2463 va = pv->pv_va;
2464 l3e = pmap_pml3e(pmap, va);
2465 oldl3e = be64toh(*l3e);
2466 if ((oldl3e & PG_RW) != 0 &&
2467 pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2468 (oldl3e & PG_W) == 0) {
2469 /*
2470 * Write protect the mapping to a
2471 * single page so that a subsequent
2472 * write access may repromote.
2473 */
2474 va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2475 PG_PS_FRAME);
2476 pte = pmap_l3e_to_pte(l3e, va);
2477 oldpte = be64toh(*pte);
2478 while (!atomic_cmpset_long(pte,
2479 htobe64(oldpte),
2480 htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2481 oldpte = be64toh(*pte);
2482 vm_page_dirty(m);
2483 pmap_invalidate_page(pmap, va);
2484 }
2485 PMAP_UNLOCK(pmap);
2486 }
2487 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2488 pmap = PV_PMAP(pv);
2489 if (!PMAP_TRYLOCK(pmap)) {
2490 md_gen = m->md.pv_gen;
2491 pvh_gen = pvh->pv_gen;
2492 rw_wunlock(lock);
2493 PMAP_LOCK(pmap);
2494 rw_wlock(lock);
2495 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2496 PMAP_UNLOCK(pmap);
2497 goto restart;
2498 }
2499 }
2500 l3e = pmap_pml3e(pmap, pv->pv_va);
2501 KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2502 " a 2mpage in page %p's pv list", m));
2503 pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2504 if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2505 atomic_clear_long(pte, htobe64(PG_M));
2506 pmap_invalidate_page(pmap, pv->pv_va);
2507 }
2508 PMAP_UNLOCK(pmap);
2509 }
2510 rw_wunlock(lock);
2511 }
2512
2513 void
2514 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2515 vm_size_t len, vm_offset_t src_addr)
2516 {
2517 struct rwlock *lock;
2518 struct spglist free;
2519 vm_offset_t addr;
2520 vm_offset_t end_addr = src_addr + len;
2521 vm_offset_t va_next;
2522 vm_page_t dst_pdpg, dstmpte, srcmpte;
2523 bool invalidate_all;
2524
2525 CTR6(KTR_PMAP,
2526 "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2527 __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2528
2529 if (dst_addr != src_addr)
2530 return;
2531 lock = NULL;
2532 invalidate_all = false;
2533 if (dst_pmap < src_pmap) {
2534 PMAP_LOCK(dst_pmap);
2535 PMAP_LOCK(src_pmap);
2536 } else {
2537 PMAP_LOCK(src_pmap);
2538 PMAP_LOCK(dst_pmap);
2539 }
2540
2541 for (addr = src_addr; addr < end_addr; addr = va_next) {
2542 pml1_entry_t *l1e;
2543 pml2_entry_t *l2e;
2544 pml3_entry_t srcptepaddr, *l3e;
2545 pt_entry_t *src_pte, *dst_pte;
2546
2547 l1e = pmap_pml1e(src_pmap, addr);
2548 if ((be64toh(*l1e) & PG_V) == 0) {
2549 va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2550 if (va_next < addr)
2551 va_next = end_addr;
2552 continue;
2553 }
2554
2555 l2e = pmap_l1e_to_l2e(l1e, addr);
2556 if ((be64toh(*l2e) & PG_V) == 0) {
2557 va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2558 if (va_next < addr)
2559 va_next = end_addr;
2560 continue;
2561 }
2562
2563 va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2564 if (va_next < addr)
2565 va_next = end_addr;
2566
2567 l3e = pmap_l2e_to_l3e(l2e, addr);
2568 srcptepaddr = be64toh(*l3e);
2569 if (srcptepaddr == 0)
2570 continue;
2571
2572 if (srcptepaddr & RPTE_LEAF) {
2573 if ((addr & L3_PAGE_MASK) != 0 ||
2574 addr + L3_PAGE_SIZE > end_addr)
2575 continue;
2576 dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2577 if (dst_pdpg == NULL)
2578 break;
2579 l3e = (pml3_entry_t *)
2580 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2581 l3e = &l3e[pmap_pml3e_index(addr)];
2582 if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2583 pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2584 PMAP_ENTER_NORECLAIM, &lock))) {
2585 *l3e = htobe64(srcptepaddr & ~PG_W);
2586 pmap_resident_count_inc(dst_pmap,
2587 L3_PAGE_SIZE / PAGE_SIZE);
2588 counter_u64_add(pmap_l3e_mappings, 1);
2589 } else
2590 dst_pdpg->ref_count--;
2591 continue;
2592 }
2593
2594 srcptepaddr &= PG_FRAME;
2595 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2596 KASSERT(srcmpte->ref_count > 0,
2597 ("pmap_copy: source page table page is unused"));
2598
2599 if (va_next > end_addr)
2600 va_next = end_addr;
2601
2602 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2603 src_pte = &src_pte[pmap_pte_index(addr)];
2604 dstmpte = NULL;
2605 while (addr < va_next) {
2606 pt_entry_t ptetemp;
2607 ptetemp = be64toh(*src_pte);
2608 /*
2609 * we only virtual copy managed pages
2610 */
2611 if ((ptetemp & PG_MANAGED) != 0) {
2612 if (dstmpte != NULL &&
2613 dstmpte->pindex == pmap_l3e_pindex(addr))
2614 dstmpte->ref_count++;
2615 else if ((dstmpte = pmap_allocpte(dst_pmap,
2616 addr, NULL)) == NULL)
2617 goto out;
2618 dst_pte = (pt_entry_t *)
2619 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2620 dst_pte = &dst_pte[pmap_pte_index(addr)];
2621 if (be64toh(*dst_pte) == 0 &&
2622 pmap_try_insert_pv_entry(dst_pmap, addr,
2623 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2624 &lock)) {
2625 /*
2626 * Clear the wired, modified, and
2627 * accessed (referenced) bits
2628 * during the copy.
2629 */
2630 *dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2631 PG_A));
2632 pmap_resident_count_inc(dst_pmap, 1);
2633 } else {
2634 SLIST_INIT(&free);
2635 if (pmap_unwire_ptp(dst_pmap, addr,
2636 dstmpte, &free)) {
2637 /*
2638 * Although "addr" is not
2639 * mapped, paging-structure
2640 * caches could nonetheless
2641 * have entries that refer to
2642 * the freed page table pages.
2643 * Invalidate those entries.
2644 */
2645 invalidate_all = true;
2646 vm_page_free_pages_toq(&free,
2647 true);
2648 }
2649 goto out;
2650 }
2651 if (dstmpte->ref_count >= srcmpte->ref_count)
2652 break;
2653 }
2654 addr += PAGE_SIZE;
2655 if (__predict_false((addr & L3_PAGE_MASK) == 0))
2656 src_pte = pmap_pte(src_pmap, addr);
2657 else
2658 src_pte++;
2659 }
2660 }
2661 out:
2662 if (invalidate_all)
2663 pmap_invalidate_all(dst_pmap);
2664 if (lock != NULL)
2665 rw_wunlock(lock);
2666 PMAP_UNLOCK(src_pmap);
2667 PMAP_UNLOCK(dst_pmap);
2668 }
2669
2670 static void
2671 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2672 {
2673 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2674 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2675
2676 CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2677 /*
2678 * XXX slow
2679 */
2680 bcopy((void *)src, (void *)dst, PAGE_SIZE);
2681 }
2682
2683 static void
2684 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2685 vm_offset_t b_offset, int xfersize)
2686 {
2687 void *a_cp, *b_cp;
2688 vm_offset_t a_pg_offset, b_pg_offset;
2689 int cnt;
2690
2691 CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2692 a_offset, mb, b_offset, xfersize);
2693
2694 while (xfersize > 0) {
2695 a_pg_offset = a_offset & PAGE_MASK;
2696 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2697 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2698 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2699 a_pg_offset;
2700 b_pg_offset = b_offset & PAGE_MASK;
2701 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2702 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2703 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2704 b_pg_offset;
2705 bcopy(a_cp, b_cp, cnt);
2706 a_offset += cnt;
2707 b_offset += cnt;
2708 xfersize -= cnt;
2709 }
2710 }
2711
2712 #if VM_NRESERVLEVEL > 0
2713 /*
2714 * Tries to promote the 512, contiguous 4KB page mappings that are within a
2715 * single page table page (PTP) to a single 2MB page mapping. For promotion
2716 * to occur, two conditions must be met: (1) the 4KB page mappings must map
2717 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2718 * identical characteristics.
2719 */
2720 static int
2721 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2722 struct rwlock **lockp)
2723 {
2724 pml3_entry_t newpde;
2725 pt_entry_t *firstpte, oldpte, pa, *pte;
2726 vm_page_t mpte;
2727
2728 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2729
2730 /*
2731 * Examine the first PTE in the specified PTP. Abort if this PTE is
2732 * either invalid, unused, or does not map the first 4KB physical page
2733 * within a 2MB page.
2734 */
2735 firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2736 setpde:
2737 newpde = be64toh(*firstpte);
2738 if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2739 CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2740 " in pmap %p", va, pmap);
2741 goto fail;
2742 }
2743 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2744 /*
2745 * When PG_M is already clear, PG_RW can be cleared without
2746 * a TLB invalidation.
2747 */
2748 if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2749 goto setpde;
2750 newpde &= ~RPTE_EAA_W;
2751 }
2752
2753 /*
2754 * Examine each of the other PTEs in the specified PTP. Abort if this
2755 * PTE maps an unexpected 4KB physical page or does not have identical
2756 * characteristics to the first PTE.
2757 */
2758 pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2759 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2760 setpte:
2761 oldpte = be64toh(*pte);
2762 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2763 CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2764 " in pmap %p", va, pmap);
2765 goto fail;
2766 }
2767 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2768 /*
2769 * When PG_M is already clear, PG_RW can be cleared
2770 * without a TLB invalidation.
2771 */
2772 if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2773 goto setpte;
2774 oldpte &= ~RPTE_EAA_W;
2775 CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2776 " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2777 (va & ~L3_PAGE_MASK), pmap);
2778 }
2779 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2780 CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2781 " in pmap %p", va, pmap);
2782 goto fail;
2783 }
2784 pa -= PAGE_SIZE;
2785 }
2786
2787 /*
2788 * Save the page table page in its current state until the PDE
2789 * mapping the superpage is demoted by pmap_demote_pde() or
2790 * destroyed by pmap_remove_pde().
2791 */
2792 mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2793 KASSERT(mpte >= vm_page_array &&
2794 mpte < &vm_page_array[vm_page_array_size],
2795 ("pmap_promote_l3e: page table page is out of range"));
2796 KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2797 ("pmap_promote_l3e: page table page's pindex is wrong"));
2798 if (pmap_insert_pt_page(pmap, mpte)) {
2799 CTR2(KTR_PMAP,
2800 "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2801 pmap);
2802 goto fail;
2803 }
2804
2805 /*
2806 * Promote the pv entries.
2807 */
2808 if ((newpde & PG_MANAGED) != 0)
2809 pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2810
2811 pte_store(pde, PG_PROMOTED | newpde);
2812 ptesync();
2813 counter_u64_add(pmap_l3e_promotions, 1);
2814 CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2815 " in pmap %p", va, pmap);
2816 return (0);
2817 fail:
2818 counter_u64_add(pmap_l3e_p_failures, 1);
2819 return (KERN_FAILURE);
2820 }
2821 #endif /* VM_NRESERVLEVEL > 0 */
2822
2823 int
2824 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2825 vm_prot_t prot, u_int flags, int8_t psind)
2826 {
2827 struct rwlock *lock;
2828 pml3_entry_t *l3e;
2829 pt_entry_t *pte;
2830 pt_entry_t newpte, origpte;
2831 pv_entry_t pv;
2832 vm_paddr_t opa, pa;
2833 vm_page_t mpte, om;
2834 int rv, retrycount;
2835 boolean_t nosleep, invalidate_all, invalidate_page;
2836
2837 va = trunc_page(va);
2838 retrycount = 0;
2839 invalidate_page = invalidate_all = false;
2840 CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2841 m, prot, flags, psind);
2842 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2843 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2844 ("pmap_enter: managed mapping within the clean submap"));
2845 if ((m->oflags & VPO_UNMANAGED) == 0)
2846 VM_PAGE_OBJECT_BUSY_ASSERT(m);
2847
2848 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2849 ("pmap_enter: flags %u has reserved bits set", flags));
2850 pa = VM_PAGE_TO_PHYS(m);
2851 newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2852 if ((flags & VM_PROT_WRITE) != 0)
2853 newpte |= PG_M;
2854 if ((flags & VM_PROT_READ) != 0)
2855 newpte |= PG_A;
2856 if (prot & VM_PROT_READ)
2857 newpte |= RPTE_EAA_R;
2858 if ((prot & VM_PROT_WRITE) != 0)
2859 newpte |= RPTE_EAA_W;
2860 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2861 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2862
2863 if (prot & VM_PROT_EXECUTE)
2864 newpte |= PG_X;
2865 if ((flags & PMAP_ENTER_WIRED) != 0)
2866 newpte |= PG_W;
2867 if (va >= DMAP_MIN_ADDRESS)
2868 newpte |= RPTE_EAA_P;
2869 newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2870 /*
2871 * Set modified bit gratuitously for writeable mappings if
2872 * the page is unmanaged. We do not want to take a fault
2873 * to do the dirty bit accounting for these mappings.
2874 */
2875 if ((m->oflags & VPO_UNMANAGED) != 0) {
2876 if ((newpte & PG_RW) != 0)
2877 newpte |= PG_M;
2878 } else
2879 newpte |= PG_MANAGED;
2880
2881 lock = NULL;
2882 PMAP_LOCK(pmap);
2883 if (psind == 1) {
2884 /* Assert the required virtual and physical alignment. */
2885 KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2886 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2887 rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2888 goto out;
2889 }
2890 mpte = NULL;
2891
2892 /*
2893 * In the case that a page table page is not
2894 * resident, we are creating it here.
2895 */
2896 retry:
2897 l3e = pmap_pml3e(pmap, va);
2898 if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2899 pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2900 pte = pmap_l3e_to_pte(l3e, va);
2901 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2902 mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2903 mpte->ref_count++;
2904 }
2905 } else if (va < VM_MAXUSER_ADDRESS) {
2906 /*
2907 * Here if the pte page isn't mapped, or if it has been
2908 * deallocated.
2909 */
2910 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2911 mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2912 nosleep ? NULL : &lock);
2913 if (mpte == NULL && nosleep) {
2914 rv = KERN_RESOURCE_SHORTAGE;
2915 goto out;
2916 }
2917 if (__predict_false(retrycount++ == 6))
2918 panic("too many retries");
2919 invalidate_all = true;
2920 goto retry;
2921 } else
2922 panic("pmap_enter: invalid page directory va=%#lx", va);
2923
2924 origpte = be64toh(*pte);
2925 pv = NULL;
2926
2927 /*
2928 * Is the specified virtual address already mapped?
2929 */
2930 if ((origpte & PG_V) != 0) {
2931 #ifdef INVARIANTS
2932 if (VERBOSE_PMAP || pmap_logging) {
2933 printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2934 " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2935 pmap, va, m, prot, flags, psind, pmap->pm_pid,
2936 curproc->p_pid, curproc->p_comm, origpte);
2937 #ifdef DDB
2938 pmap_pte_walk(pmap->pm_pml1, va);
2939 #endif
2940 }
2941 #endif
2942 /*
2943 * Wiring change, just update stats. We don't worry about
2944 * wiring PT pages as they remain resident as long as there
2945 * are valid mappings in them. Hence, if a user page is wired,
2946 * the PT page will be also.
2947 */
2948 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2949 pmap->pm_stats.wired_count++;
2950 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2951 pmap->pm_stats.wired_count--;
2952
2953 /*
2954 * Remove the extra PT page reference.
2955 */
2956 if (mpte != NULL) {
2957 mpte->ref_count--;
2958 KASSERT(mpte->ref_count > 0,
2959 ("pmap_enter: missing reference to page table page,"
2960 " va: 0x%lx", va));
2961 }
2962
2963 /*
2964 * Has the physical page changed?
2965 */
2966 opa = origpte & PG_FRAME;
2967 if (opa == pa) {
2968 /*
2969 * No, might be a protection or wiring change.
2970 */
2971 if ((origpte & PG_MANAGED) != 0 &&
2972 (newpte & PG_RW) != 0)
2973 vm_page_aflag_set(m, PGA_WRITEABLE);
2974 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2975 if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2976 if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2977 goto retry;
2978 if ((newpte & PG_M) != (origpte & PG_M))
2979 vm_page_dirty(m);
2980 if ((newpte & PG_A) != (origpte & PG_A))
2981 vm_page_aflag_set(m, PGA_REFERENCED);
2982 ptesync();
2983 } else
2984 invalidate_all = true;
2985 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2986 goto unchanged;
2987 }
2988 goto validate;
2989 }
2990
2991 /*
2992 * The physical page has changed. Temporarily invalidate
2993 * the mapping. This ensures that all threads sharing the
2994 * pmap keep a consistent view of the mapping, which is
2995 * necessary for the correct handling of COW faults. It
2996 * also permits reuse of the old mapping's PV entry,
2997 * avoiding an allocation.
2998 *
2999 * For consistency, handle unmanaged mappings the same way.
3000 */
3001 origpte = be64toh(pte_load_clear(pte));
3002 KASSERT((origpte & PG_FRAME) == opa,
3003 ("pmap_enter: unexpected pa update for %#lx", va));
3004 if ((origpte & PG_MANAGED) != 0) {
3005 om = PHYS_TO_VM_PAGE(opa);
3006
3007 /*
3008 * The pmap lock is sufficient to synchronize with
3009 * concurrent calls to pmap_page_test_mappings() and
3010 * pmap_ts_referenced().
3011 */
3012 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3013 vm_page_dirty(om);
3014 if ((origpte & PG_A) != 0)
3015 vm_page_aflag_set(om, PGA_REFERENCED);
3016 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3017 pv = pmap_pvh_remove(&om->md, pmap, va);
3018 if ((newpte & PG_MANAGED) == 0)
3019 free_pv_entry(pmap, pv);
3020 #ifdef INVARIANTS
3021 else if (origpte & PG_MANAGED) {
3022 if (pv == NULL) {
3023 #ifdef DDB
3024 pmap_page_print_mappings(om);
3025 #endif
3026 MPASS(pv != NULL);
3027 }
3028 }
3029 #endif
3030 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3031 TAILQ_EMPTY(&om->md.pv_list) &&
3032 ((om->flags & PG_FICTITIOUS) != 0 ||
3033 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3034 vm_page_aflag_clear(om, PGA_WRITEABLE);
3035 }
3036 if ((origpte & PG_A) != 0)
3037 invalidate_page = true;
3038 origpte = 0;
3039 } else {
3040 if (pmap != kernel_pmap) {
3041 #ifdef INVARIANTS
3042 if (VERBOSE_PMAP || pmap_logging)
3043 printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3044 pmap, va, m, prot, flags, psind,
3045 pmap->pm_pid, curproc->p_pid,
3046 curproc->p_comm);
3047 #endif
3048 }
3049
3050 /*
3051 * Increment the counters.
3052 */
3053 if ((newpte & PG_W) != 0)
3054 pmap->pm_stats.wired_count++;
3055 pmap_resident_count_inc(pmap, 1);
3056 }
3057
3058 /*
3059 * Enter on the PV list if part of our managed memory.
3060 */
3061 if ((newpte & PG_MANAGED) != 0) {
3062 if (pv == NULL) {
3063 pv = get_pv_entry(pmap, &lock);
3064 pv->pv_va = va;
3065 }
3066 #ifdef VERBOSE_PV
3067 else
3068 printf("reassigning pv: %p to pmap: %p\n",
3069 pv, pmap);
3070 #endif
3071 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3072 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3073 m->md.pv_gen++;
3074 if ((newpte & PG_RW) != 0)
3075 vm_page_aflag_set(m, PGA_WRITEABLE);
3076 }
3077
3078 /*
3079 * Update the PTE.
3080 */
3081 if ((origpte & PG_V) != 0) {
3082 validate:
3083 origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3084 KASSERT((origpte & PG_FRAME) == pa,
3085 ("pmap_enter: unexpected pa update for %#lx", va));
3086 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3087 (PG_M | PG_RW)) {
3088 if ((origpte & PG_MANAGED) != 0)
3089 vm_page_dirty(m);
3090 invalidate_page = true;
3091
3092 /*
3093 * Although the PTE may still have PG_RW set, TLB
3094 * invalidation may nonetheless be required because
3095 * the PTE no longer has PG_M set.
3096 */
3097 } else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3098 /*
3099 * Removing capabilities requires invalidation on POWER
3100 */
3101 invalidate_page = true;
3102 goto unchanged;
3103 }
3104 if ((origpte & PG_A) != 0)
3105 invalidate_page = true;
3106 } else {
3107 pte_store(pte, newpte);
3108 ptesync();
3109 }
3110 unchanged:
3111
3112 #if VM_NRESERVLEVEL > 0
3113 /*
3114 * If both the page table page and the reservation are fully
3115 * populated, then attempt promotion.
3116 */
3117 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3118 mmu_radix_ps_enabled(pmap) &&
3119 (m->flags & PG_FICTITIOUS) == 0 &&
3120 vm_reserv_level_iffullpop(m) == 0 &&
3121 pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3122 invalidate_all = true;
3123 #endif
3124 if (invalidate_all)
3125 pmap_invalidate_all(pmap);
3126 else if (invalidate_page)
3127 pmap_invalidate_page(pmap, va);
3128
3129 rv = KERN_SUCCESS;
3130 out:
3131 if (lock != NULL)
3132 rw_wunlock(lock);
3133 PMAP_UNLOCK(pmap);
3134
3135 return (rv);
3136 }
3137
3138 /*
3139 * Tries to create a read- and/or execute-only 2MB page mapping. Returns true
3140 * if successful. Returns false if (1) a page table page cannot be allocated
3141 * without sleeping, (2) a mapping already exists at the specified virtual
3142 * address, or (3) a PV entry cannot be allocated without reclaiming another
3143 * PV entry.
3144 */
3145 static bool
3146 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3147 struct rwlock **lockp)
3148 {
3149 pml3_entry_t newpde;
3150
3151 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3152 newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3153 RPTE_LEAF | PG_V;
3154 if ((m->oflags & VPO_UNMANAGED) == 0)
3155 newpde |= PG_MANAGED;
3156 if (prot & VM_PROT_EXECUTE)
3157 newpde |= PG_X;
3158 if (prot & VM_PROT_READ)
3159 newpde |= RPTE_EAA_R;
3160 if (va >= DMAP_MIN_ADDRESS)
3161 newpde |= RPTE_EAA_P;
3162 return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3163 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3164 KERN_SUCCESS);
3165 }
3166
3167 /*
3168 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
3169 * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3170 * otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3171 * a mapping already exists at the specified virtual address. Returns
3172 * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3173 * page allocation failed. Returns KERN_RESOURCE_SHORTAGE if
3174 * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3175 *
3176 * The parameter "m" is only used when creating a managed, writeable mapping.
3177 */
3178 static int
3179 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3180 vm_page_t m, struct rwlock **lockp)
3181 {
3182 struct spglist free;
3183 pml3_entry_t oldl3e, *l3e;
3184 vm_page_t mt, pdpg;
3185
3186 KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3187 ("pmap_enter_pde: newpde is missing PG_M"));
3188 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3189
3190 if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3191 NULL : lockp)) == NULL) {
3192 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3193 " in pmap %p", va, pmap);
3194 return (KERN_RESOURCE_SHORTAGE);
3195 }
3196 l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3197 l3e = &l3e[pmap_pml3e_index(va)];
3198 oldl3e = be64toh(*l3e);
3199 if ((oldl3e & PG_V) != 0) {
3200 KASSERT(pdpg->ref_count > 1,
3201 ("pmap_enter_pde: pdpg's wire count is too low"));
3202 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3203 pdpg->ref_count--;
3204 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3205 " in pmap %p", va, pmap);
3206 return (KERN_FAILURE);
3207 }
3208 /* Break the existing mapping(s). */
3209 SLIST_INIT(&free);
3210 if ((oldl3e & RPTE_LEAF) != 0) {
3211 /*
3212 * The reference to the PD page that was acquired by
3213 * pmap_allocl3e() ensures that it won't be freed.
3214 * However, if the PDE resulted from a promotion, then
3215 * a reserved PT page could be freed.
3216 */
3217 (void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3218 pmap_invalidate_l3e_page(pmap, va, oldl3e);
3219 } else {
3220 if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3221 &free, lockp))
3222 pmap_invalidate_all(pmap);
3223 }
3224 vm_page_free_pages_toq(&free, true);
3225 if (va >= VM_MAXUSER_ADDRESS) {
3226 mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3227 if (pmap_insert_pt_page(pmap, mt)) {
3228 /*
3229 * XXX Currently, this can't happen because
3230 * we do not perform pmap_enter(psind == 1)
3231 * on the kernel pmap.
3232 */
3233 panic("pmap_enter_pde: trie insert failed");
3234 }
3235 } else
3236 KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3237 l3e));
3238 }
3239 if ((newpde & PG_MANAGED) != 0) {
3240 /*
3241 * Abort this mapping if its PV entry could not be created.
3242 */
3243 if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3244 SLIST_INIT(&free);
3245 if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3246 /*
3247 * Although "va" is not mapped, paging-
3248 * structure caches could nonetheless have
3249 * entries that refer to the freed page table
3250 * pages. Invalidate those entries.
3251 */
3252 pmap_invalidate_page(pmap, va);
3253 vm_page_free_pages_toq(&free, true);
3254 }
3255 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3256 " in pmap %p", va, pmap);
3257 return (KERN_RESOURCE_SHORTAGE);
3258 }
3259 if ((newpde & PG_RW) != 0) {
3260 for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3261 vm_page_aflag_set(mt, PGA_WRITEABLE);
3262 }
3263 }
3264
3265 /*
3266 * Increment counters.
3267 */
3268 if ((newpde & PG_W) != 0)
3269 pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3270 pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3271
3272 /*
3273 * Map the superpage. (This is not a promoted mapping; there will not
3274 * be any lingering 4KB page mappings in the TLB.)
3275 */
3276 pte_store(l3e, newpde);
3277 ptesync();
3278
3279 counter_u64_add(pmap_l3e_mappings, 1);
3280 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3281 " in pmap %p", va, pmap);
3282 return (KERN_SUCCESS);
3283 }
3284
3285 void
3286 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3287 vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3288 {
3289
3290 struct rwlock *lock;
3291 vm_offset_t va;
3292 vm_page_t m, mpte;
3293 vm_pindex_t diff, psize;
3294 bool invalidate;
3295 VM_OBJECT_ASSERT_LOCKED(m_start->object);
3296
3297 CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3298 end, m_start, prot);
3299
3300 invalidate = false;
3301 psize = atop(end - start);
3302 mpte = NULL;
3303 m = m_start;
3304 lock = NULL;
3305 PMAP_LOCK(pmap);
3306 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3307 va = start + ptoa(diff);
3308 if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3309 m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3310 pmap_enter_2mpage(pmap, va, m, prot, &lock))
3311 m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3312 else
3313 mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3314 mpte, &lock, &invalidate);
3315 m = TAILQ_NEXT(m, listq);
3316 }
3317 ptesync();
3318 if (lock != NULL)
3319 rw_wunlock(lock);
3320 if (invalidate)
3321 pmap_invalidate_all(pmap);
3322 PMAP_UNLOCK(pmap);
3323 }
3324
3325 static vm_page_t
3326 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3327 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3328 {
3329 struct spglist free;
3330 pt_entry_t *pte;
3331 vm_paddr_t pa;
3332
3333 KASSERT(!VA_IS_CLEANMAP(va) ||
3334 (m->oflags & VPO_UNMANAGED) != 0,
3335 ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3336 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3337
3338 /*
3339 * In the case that a page table page is not
3340 * resident, we are creating it here.
3341 */
3342 if (va < VM_MAXUSER_ADDRESS) {
3343 vm_pindex_t ptepindex;
3344 pml3_entry_t *ptepa;
3345
3346 /*
3347 * Calculate pagetable page index
3348 */
3349 ptepindex = pmap_l3e_pindex(va);
3350 if (mpte && (mpte->pindex == ptepindex)) {
3351 mpte->ref_count++;
3352 } else {
3353 /*
3354 * Get the page directory entry
3355 */
3356 ptepa = pmap_pml3e(pmap, va);
3357
3358 /*
3359 * If the page table page is mapped, we just increment
3360 * the hold count, and activate it. Otherwise, we
3361 * attempt to allocate a page table page. If this
3362 * attempt fails, we don't retry. Instead, we give up.
3363 */
3364 if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3365 if (be64toh(*ptepa) & RPTE_LEAF)
3366 return (NULL);
3367 mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3368 mpte->ref_count++;
3369 } else {
3370 /*
3371 * Pass NULL instead of the PV list lock
3372 * pointer, because we don't intend to sleep.
3373 */
3374 mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3375 if (mpte == NULL)
3376 return (mpte);
3377 }
3378 }
3379 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3380 pte = &pte[pmap_pte_index(va)];
3381 } else {
3382 mpte = NULL;
3383 pte = pmap_pte(pmap, va);
3384 }
3385 if (be64toh(*pte)) {
3386 if (mpte != NULL) {
3387 mpte->ref_count--;
3388 mpte = NULL;
3389 }
3390 return (mpte);
3391 }
3392
3393 /*
3394 * Enter on the PV list if part of our managed memory.
3395 */
3396 if ((m->oflags & VPO_UNMANAGED) == 0 &&
3397 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3398 if (mpte != NULL) {
3399 SLIST_INIT(&free);
3400 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3401 /*
3402 * Although "va" is not mapped, paging-
3403 * structure caches could nonetheless have
3404 * entries that refer to the freed page table
3405 * pages. Invalidate those entries.
3406 */
3407 *invalidate = true;
3408 vm_page_free_pages_toq(&free, true);
3409 }
3410 mpte = NULL;
3411 }
3412 return (mpte);
3413 }
3414
3415 /*
3416 * Increment counters
3417 */
3418 pmap_resident_count_inc(pmap, 1);
3419
3420 pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3421 if (prot & VM_PROT_EXECUTE)
3422 pa |= PG_X;
3423 else
3424 pa |= RPTE_EAA_R;
3425 if ((m->oflags & VPO_UNMANAGED) == 0)
3426 pa |= PG_MANAGED;
3427
3428 pte_store(pte, pa);
3429 return (mpte);
3430 }
3431
3432 void
3433 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3434 vm_prot_t prot)
3435 {
3436 struct rwlock *lock;
3437 bool invalidate;
3438
3439 lock = NULL;
3440 invalidate = false;
3441 PMAP_LOCK(pmap);
3442 mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3443 &invalidate);
3444 ptesync();
3445 if (lock != NULL)
3446 rw_wunlock(lock);
3447 if (invalidate)
3448 pmap_invalidate_all(pmap);
3449 PMAP_UNLOCK(pmap);
3450 }
3451
3452 vm_paddr_t
3453 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3454 {
3455 pml3_entry_t *l3e;
3456 pt_entry_t *pte;
3457 vm_paddr_t pa;
3458
3459 l3e = pmap_pml3e(pmap, va);
3460 if (__predict_false(l3e == NULL))
3461 return (0);
3462 if (be64toh(*l3e) & RPTE_LEAF) {
3463 pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3464 pa |= (va & L3_PAGE_MASK);
3465 } else {
3466 /*
3467 * Beware of a concurrent promotion that changes the
3468 * PDE at this point! For example, vtopte() must not
3469 * be used to access the PTE because it would use the
3470 * new PDE. It is, however, safe to use the old PDE
3471 * because the page table page is preserved by the
3472 * promotion.
3473 */
3474 pte = pmap_l3e_to_pte(l3e, va);
3475 if (__predict_false(pte == NULL))
3476 return (0);
3477 pa = be64toh(*pte);
3478 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3479 pa |= (va & PAGE_MASK);
3480 }
3481 return (pa);
3482 }
3483
3484 vm_page_t
3485 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3486 {
3487 pml3_entry_t l3e, *l3ep;
3488 pt_entry_t pte;
3489 vm_page_t m;
3490
3491 m = NULL;
3492 CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3493 PMAP_LOCK(pmap);
3494 l3ep = pmap_pml3e(pmap, va);
3495 if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3496 if (l3e & RPTE_LEAF) {
3497 if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3498 m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3499 (va & L3_PAGE_MASK));
3500 } else {
3501 /* Native endian PTE, do not pass to pmap functions */
3502 pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3503 if ((pte & PG_V) &&
3504 ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3505 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3506 }
3507 if (m != NULL && !vm_page_wire_mapped(m))
3508 m = NULL;
3509 }
3510 PMAP_UNLOCK(pmap);
3511 return (m);
3512 }
3513
3514 static void
3515 mmu_radix_growkernel(vm_offset_t addr)
3516 {
3517 vm_paddr_t paddr;
3518 vm_page_t nkpg;
3519 pml3_entry_t *l3e;
3520 pml2_entry_t *l2e;
3521
3522 CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3523 if (VM_MIN_KERNEL_ADDRESS < addr &&
3524 addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3525 return;
3526
3527 addr = roundup2(addr, L3_PAGE_SIZE);
3528 if (addr - 1 >= vm_map_max(kernel_map))
3529 addr = vm_map_max(kernel_map);
3530 while (kernel_vm_end < addr) {
3531 l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3532 if ((be64toh(*l2e) & PG_V) == 0) {
3533 /* We need a new PDP entry */
3534 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3535 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3536 if (nkpg == NULL)
3537 panic("pmap_growkernel: no memory to grow kernel");
3538 nkpg->pindex = kernel_vm_end >> L2_PAGE_SIZE_SHIFT;
3539 paddr = VM_PAGE_TO_PHYS(nkpg);
3540 pde_store(l2e, paddr);
3541 continue; /* try again */
3542 }
3543 l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3544 if ((be64toh(*l3e) & PG_V) != 0) {
3545 kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3546 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3547 kernel_vm_end = vm_map_max(kernel_map);
3548 break;
3549 }
3550 continue;
3551 }
3552
3553 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
3554 VM_ALLOC_ZERO);
3555 if (nkpg == NULL)
3556 panic("pmap_growkernel: no memory to grow kernel");
3557 nkpg->pindex = pmap_l3e_pindex(kernel_vm_end);
3558 paddr = VM_PAGE_TO_PHYS(nkpg);
3559 pde_store(l3e, paddr);
3560
3561 kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3562 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3563 kernel_vm_end = vm_map_max(kernel_map);
3564 break;
3565 }
3566 }
3567 ptesync();
3568 }
3569
3570 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3571 static uma_zone_t zone_radix_pgd;
3572
3573 static int
3574 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3575 int flags)
3576 {
3577 int req;
3578
3579 req = VM_ALLOC_WIRED | malloc2vm_flags(flags);
3580 for (int i = 0; i < count; i++) {
3581 vm_page_t m = vm_page_alloc_noobj_contig(req,
3582 RADIX_PGD_SIZE / PAGE_SIZE,
3583 0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3584 VM_MEMATTR_DEFAULT);
3585 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3586 }
3587 return (count);
3588 }
3589
3590 static void
3591 radix_pgd_release(void *arg __unused, void **store, int count)
3592 {
3593 vm_page_t m;
3594 struct spglist free;
3595 int page_count;
3596
3597 SLIST_INIT(&free);
3598 page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3599
3600 for (int i = 0; i < count; i++) {
3601 /*
3602 * XXX selectively remove dmap and KVA entries so we don't
3603 * need to bzero
3604 */
3605 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3606 for (int j = page_count-1; j >= 0; j--) {
3607 vm_page_unwire_noq(&m[j]);
3608 SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3609 }
3610 vm_page_free_pages_toq(&free, false);
3611 }
3612 }
3613
3614 static void
3615 mmu_radix_init(void)
3616 {
3617 vm_page_t mpte;
3618 vm_size_t s;
3619 int error, i, pv_npg;
3620
3621 /* XXX is this really needed for POWER? */
3622 /* L1TF, reserve page @0 unconditionally */
3623 vm_page_blacklist_add(0, bootverbose);
3624
3625 zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3626 RADIX_PGD_SIZE, NULL, NULL,
3627 #ifdef INVARIANTS
3628 trash_init, trash_fini,
3629 #else
3630 NULL, NULL,
3631 #endif
3632 radix_pgd_import, radix_pgd_release,
3633 NULL, UMA_ZONE_NOBUCKET);
3634
3635 /*
3636 * Initialize the vm page array entries for the kernel pmap's
3637 * page table pages.
3638 */
3639 PMAP_LOCK(kernel_pmap);
3640 for (i = 0; i < nkpt; i++) {
3641 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3642 KASSERT(mpte >= vm_page_array &&
3643 mpte < &vm_page_array[vm_page_array_size],
3644 ("pmap_init: page table page is out of range size: %lu",
3645 vm_page_array_size));
3646 mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3647 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3648 MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3649 //pmap_insert_pt_page(kernel_pmap, mpte);
3650 mpte->ref_count = 1;
3651 }
3652 PMAP_UNLOCK(kernel_pmap);
3653 vm_wire_add(nkpt);
3654
3655 CTR1(KTR_PMAP, "%s()", __func__);
3656 TAILQ_INIT(&pv_dummy.pv_list);
3657
3658 /*
3659 * Are large page mappings enabled?
3660 */
3661 TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3662 if (superpages_enabled) {
3663 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3664 ("pmap_init: can't assign to pagesizes[1]"));
3665 pagesizes[1] = L3_PAGE_SIZE;
3666 }
3667
3668 /*
3669 * Initialize the pv chunk list mutex.
3670 */
3671 mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3672
3673 /*
3674 * Initialize the pool of pv list locks.
3675 */
3676 for (i = 0; i < NPV_LIST_LOCKS; i++)
3677 rw_init(&pv_list_locks[i], "pmap pv list");
3678
3679 /*
3680 * Calculate the size of the pv head table for superpages.
3681 */
3682 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3683
3684 /*
3685 * Allocate memory for the pv head table for superpages.
3686 */
3687 s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3688 s = round_page(s);
3689 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
3690 for (i = 0; i < pv_npg; i++)
3691 TAILQ_INIT(&pv_table[i].pv_list);
3692 TAILQ_INIT(&pv_dummy.pv_list);
3693
3694 pmap_initialized = 1;
3695 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3696 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3697 (vmem_addr_t *)&qframe);
3698
3699 if (error != 0)
3700 panic("qframe allocation failed");
3701 asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3702 1, 1, M_WAITOK);
3703 }
3704
3705 static boolean_t
3706 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3707 {
3708 struct rwlock *lock;
3709 pv_entry_t pv;
3710 struct md_page *pvh;
3711 pt_entry_t *pte, mask;
3712 pmap_t pmap;
3713 int md_gen, pvh_gen;
3714 boolean_t rv;
3715
3716 rv = FALSE;
3717 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3718 rw_rlock(lock);
3719 restart:
3720 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3721 pmap = PV_PMAP(pv);
3722 if (!PMAP_TRYLOCK(pmap)) {
3723 md_gen = m->md.pv_gen;
3724 rw_runlock(lock);
3725 PMAP_LOCK(pmap);
3726 rw_rlock(lock);
3727 if (md_gen != m->md.pv_gen) {
3728 PMAP_UNLOCK(pmap);
3729 goto restart;
3730 }
3731 }
3732 pte = pmap_pte(pmap, pv->pv_va);
3733 mask = 0;
3734 if (modified)
3735 mask |= PG_RW | PG_M;
3736 if (accessed)
3737 mask |= PG_V | PG_A;
3738 rv = (be64toh(*pte) & mask) == mask;
3739 PMAP_UNLOCK(pmap);
3740 if (rv)
3741 goto out;
3742 }
3743 if ((m->flags & PG_FICTITIOUS) == 0) {
3744 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3745 TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3746 pmap = PV_PMAP(pv);
3747 if (!PMAP_TRYLOCK(pmap)) {
3748 md_gen = m->md.pv_gen;
3749 pvh_gen = pvh->pv_gen;
3750 rw_runlock(lock);
3751 PMAP_LOCK(pmap);
3752 rw_rlock(lock);
3753 if (md_gen != m->md.pv_gen ||
3754 pvh_gen != pvh->pv_gen) {
3755 PMAP_UNLOCK(pmap);
3756 goto restart;
3757 }
3758 }
3759 pte = pmap_pml3e(pmap, pv->pv_va);
3760 mask = 0;
3761 if (modified)
3762 mask |= PG_RW | PG_M;
3763 if (accessed)
3764 mask |= PG_V | PG_A;
3765 rv = (be64toh(*pte) & mask) == mask;
3766 PMAP_UNLOCK(pmap);
3767 if (rv)
3768 goto out;
3769 }
3770 }
3771 out:
3772 rw_runlock(lock);
3773 return (rv);
3774 }
3775
3776 /*
3777 * pmap_is_modified:
3778 *
3779 * Return whether or not the specified physical page was modified
3780 * in any physical maps.
3781 */
3782 boolean_t
3783 mmu_radix_is_modified(vm_page_t m)
3784 {
3785
3786 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3787 ("pmap_is_modified: page %p is not managed", m));
3788
3789 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3790 /*
3791 * If the page is not busied then this check is racy.
3792 */
3793 if (!pmap_page_is_write_mapped(m))
3794 return (FALSE);
3795 return (pmap_page_test_mappings(m, FALSE, TRUE));
3796 }
3797
3798 boolean_t
3799 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3800 {
3801 pml3_entry_t *l3e;
3802 pt_entry_t *pte;
3803 boolean_t rv;
3804
3805 CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3806 rv = FALSE;
3807 PMAP_LOCK(pmap);
3808 l3e = pmap_pml3e(pmap, addr);
3809 if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3810 pte = pmap_l3e_to_pte(l3e, addr);
3811 rv = (be64toh(*pte) & PG_V) == 0;
3812 }
3813 PMAP_UNLOCK(pmap);
3814 return (rv);
3815 }
3816
3817 boolean_t
3818 mmu_radix_is_referenced(vm_page_t m)
3819 {
3820 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3821 ("pmap_is_referenced: page %p is not managed", m));
3822 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3823 return (pmap_page_test_mappings(m, TRUE, FALSE));
3824 }
3825
3826 /*
3827 * pmap_ts_referenced:
3828 *
3829 * Return a count of reference bits for a page, clearing those bits.
3830 * It is not necessary for every reference bit to be cleared, but it
3831 * is necessary that 0 only be returned when there are truly no
3832 * reference bits set.
3833 *
3834 * As an optimization, update the page's dirty field if a modified bit is
3835 * found while counting reference bits. This opportunistic update can be
3836 * performed at low cost and can eliminate the need for some future calls
3837 * to pmap_is_modified(). However, since this function stops after
3838 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3839 * dirty pages. Those dirty pages will only be detected by a future call
3840 * to pmap_is_modified().
3841 *
3842 * A DI block is not needed within this function, because
3843 * invalidations are performed before the PV list lock is
3844 * released.
3845 */
3846 boolean_t
3847 mmu_radix_ts_referenced(vm_page_t m)
3848 {
3849 struct md_page *pvh;
3850 pv_entry_t pv, pvf;
3851 pmap_t pmap;
3852 struct rwlock *lock;
3853 pml3_entry_t oldl3e, *l3e;
3854 pt_entry_t *pte;
3855 vm_paddr_t pa;
3856 int cleared, md_gen, not_cleared, pvh_gen;
3857 struct spglist free;
3858
3859 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3860 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3861 ("pmap_ts_referenced: page %p is not managed", m));
3862 SLIST_INIT(&free);
3863 cleared = 0;
3864 pa = VM_PAGE_TO_PHYS(m);
3865 lock = PHYS_TO_PV_LIST_LOCK(pa);
3866 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3867 rw_wlock(lock);
3868 retry:
3869 not_cleared = 0;
3870 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3871 goto small_mappings;
3872 pv = pvf;
3873 do {
3874 if (pvf == NULL)
3875 pvf = pv;
3876 pmap = PV_PMAP(pv);
3877 if (!PMAP_TRYLOCK(pmap)) {
3878 pvh_gen = pvh->pv_gen;
3879 rw_wunlock(lock);
3880 PMAP_LOCK(pmap);
3881 rw_wlock(lock);
3882 if (pvh_gen != pvh->pv_gen) {
3883 PMAP_UNLOCK(pmap);
3884 goto retry;
3885 }
3886 }
3887 l3e = pmap_pml3e(pmap, pv->pv_va);
3888 oldl3e = be64toh(*l3e);
3889 if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3890 /*
3891 * Although "oldpde" is mapping a 2MB page, because
3892 * this function is called at a 4KB page granularity,
3893 * we only update the 4KB page under test.
3894 */
3895 vm_page_dirty(m);
3896 }
3897 if ((oldl3e & PG_A) != 0) {
3898 /*
3899 * Since this reference bit is shared by 512 4KB
3900 * pages, it should not be cleared every time it is
3901 * tested. Apply a simple "hash" function on the
3902 * physical page number, the virtual superpage number,
3903 * and the pmap address to select one 4KB page out of
3904 * the 512 on which testing the reference bit will
3905 * result in clearing that reference bit. This
3906 * function is designed to avoid the selection of the
3907 * same 4KB page for every 2MB page mapping.
3908 *
3909 * On demotion, a mapping that hasn't been referenced
3910 * is simply destroyed. To avoid the possibility of a
3911 * subsequent page fault on a demoted wired mapping,
3912 * always leave its reference bit set. Moreover,
3913 * since the superpage is wired, the current state of
3914 * its reference bit won't affect page replacement.
3915 */
3916 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3917 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3918 (oldl3e & PG_W) == 0) {
3919 atomic_clear_long(l3e, htobe64(PG_A));
3920 pmap_invalidate_page(pmap, pv->pv_va);
3921 cleared++;
3922 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3923 ("inconsistent pv lock %p %p for page %p",
3924 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3925 } else
3926 not_cleared++;
3927 }
3928 PMAP_UNLOCK(pmap);
3929 /* Rotate the PV list if it has more than one entry. */
3930 if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3931 TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3932 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3933 pvh->pv_gen++;
3934 }
3935 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3936 goto out;
3937 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3938 small_mappings:
3939 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3940 goto out;
3941 pv = pvf;
3942 do {
3943 if (pvf == NULL)
3944 pvf = pv;
3945 pmap = PV_PMAP(pv);
3946 if (!PMAP_TRYLOCK(pmap)) {
3947 pvh_gen = pvh->pv_gen;
3948 md_gen = m->md.pv_gen;
3949 rw_wunlock(lock);
3950 PMAP_LOCK(pmap);
3951 rw_wlock(lock);
3952 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3953 PMAP_UNLOCK(pmap);
3954 goto retry;
3955 }
3956 }
3957 l3e = pmap_pml3e(pmap, pv->pv_va);
3958 KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3959 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3960 m));
3961 pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3962 if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3963 vm_page_dirty(m);
3964 if ((be64toh(*pte) & PG_A) != 0) {
3965 atomic_clear_long(pte, htobe64(PG_A));
3966 pmap_invalidate_page(pmap, pv->pv_va);
3967 cleared++;
3968 }
3969 PMAP_UNLOCK(pmap);
3970 /* Rotate the PV list if it has more than one entry. */
3971 if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3972 TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3973 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3974 m->md.pv_gen++;
3975 }
3976 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3977 not_cleared < PMAP_TS_REFERENCED_MAX);
3978 out:
3979 rw_wunlock(lock);
3980 vm_page_free_pages_toq(&free, true);
3981 return (cleared + not_cleared);
3982 }
3983
3984 static vm_offset_t
3985 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3986 vm_paddr_t end, int prot __unused)
3987 {
3988
3989 CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3990 prot);
3991 return (PHYS_TO_DMAP(start));
3992 }
3993
3994 void
3995 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3996 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3997 {
3998 pml3_entry_t *l3e;
3999 vm_paddr_t pa, ptepa;
4000 vm_page_t p, pdpg;
4001 vm_memattr_t ma;
4002
4003 CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4004 object, pindex, size);
4005 VM_OBJECT_ASSERT_WLOCKED(object);
4006 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4007 ("pmap_object_init_pt: non-device object"));
4008 /* NB: size can be logically ored with addr here */
4009 if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4010 if (!mmu_radix_ps_enabled(pmap))
4011 return;
4012 if (!vm_object_populate(object, pindex, pindex + atop(size)))
4013 return;
4014 p = vm_page_lookup(object, pindex);
4015 KASSERT(p->valid == VM_PAGE_BITS_ALL,
4016 ("pmap_object_init_pt: invalid page %p", p));
4017 ma = p->md.mdpg_cache_attrs;
4018
4019 /*
4020 * Abort the mapping if the first page is not physically
4021 * aligned to a 2MB page boundary.
4022 */
4023 ptepa = VM_PAGE_TO_PHYS(p);
4024 if (ptepa & L3_PAGE_MASK)
4025 return;
4026
4027 /*
4028 * Skip the first page. Abort the mapping if the rest of
4029 * the pages are not physically contiguous or have differing
4030 * memory attributes.
4031 */
4032 p = TAILQ_NEXT(p, listq);
4033 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4034 pa += PAGE_SIZE) {
4035 KASSERT(p->valid == VM_PAGE_BITS_ALL,
4036 ("pmap_object_init_pt: invalid page %p", p));
4037 if (pa != VM_PAGE_TO_PHYS(p) ||
4038 ma != p->md.mdpg_cache_attrs)
4039 return;
4040 p = TAILQ_NEXT(p, listq);
4041 }
4042
4043 PMAP_LOCK(pmap);
4044 for (pa = ptepa | pmap_cache_bits(ma);
4045 pa < ptepa + size; pa += L3_PAGE_SIZE) {
4046 pdpg = pmap_allocl3e(pmap, addr, NULL);
4047 if (pdpg == NULL) {
4048 /*
4049 * The creation of mappings below is only an
4050 * optimization. If a page directory page
4051 * cannot be allocated without blocking,
4052 * continue on to the next mapping rather than
4053 * blocking.
4054 */
4055 addr += L3_PAGE_SIZE;
4056 continue;
4057 }
4058 l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4059 l3e = &l3e[pmap_pml3e_index(addr)];
4060 if ((be64toh(*l3e) & PG_V) == 0) {
4061 pa |= PG_M | PG_A | PG_RW;
4062 pte_store(l3e, pa);
4063 pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4064 counter_u64_add(pmap_l3e_mappings, 1);
4065 } else {
4066 /* Continue on if the PDE is already valid. */
4067 pdpg->ref_count--;
4068 KASSERT(pdpg->ref_count > 0,
4069 ("pmap_object_init_pt: missing reference "
4070 "to page directory page, va: 0x%lx", addr));
4071 }
4072 addr += L3_PAGE_SIZE;
4073 }
4074 ptesync();
4075 PMAP_UNLOCK(pmap);
4076 }
4077 }
4078
4079 boolean_t
4080 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4081 {
4082 struct md_page *pvh;
4083 struct rwlock *lock;
4084 pv_entry_t pv;
4085 int loops = 0;
4086 boolean_t rv;
4087
4088 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4089 ("pmap_page_exists_quick: page %p is not managed", m));
4090 CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4091 rv = FALSE;
4092 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4093 rw_rlock(lock);
4094 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4095 if (PV_PMAP(pv) == pmap) {
4096 rv = TRUE;
4097 break;
4098 }
4099 loops++;
4100 if (loops >= 16)
4101 break;
4102 }
4103 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4104 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4105 TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4106 if (PV_PMAP(pv) == pmap) {
4107 rv = TRUE;
4108 break;
4109 }
4110 loops++;
4111 if (loops >= 16)
4112 break;
4113 }
4114 }
4115 rw_runlock(lock);
4116 return (rv);
4117 }
4118
4119 void
4120 mmu_radix_page_init(vm_page_t m)
4121 {
4122
4123 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4124 TAILQ_INIT(&m->md.pv_list);
4125 m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4126 }
4127
4128 int
4129 mmu_radix_page_wired_mappings(vm_page_t m)
4130 {
4131 struct rwlock *lock;
4132 struct md_page *pvh;
4133 pmap_t pmap;
4134 pt_entry_t *pte;
4135 pv_entry_t pv;
4136 int count, md_gen, pvh_gen;
4137
4138 if ((m->oflags & VPO_UNMANAGED) != 0)
4139 return (0);
4140 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4141 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4142 rw_rlock(lock);
4143 restart:
4144 count = 0;
4145 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4146 pmap = PV_PMAP(pv);
4147 if (!PMAP_TRYLOCK(pmap)) {
4148 md_gen = m->md.pv_gen;
4149 rw_runlock(lock);
4150 PMAP_LOCK(pmap);
4151 rw_rlock(lock);
4152 if (md_gen != m->md.pv_gen) {
4153 PMAP_UNLOCK(pmap);
4154 goto restart;
4155 }
4156 }
4157 pte = pmap_pte(pmap, pv->pv_va);
4158 if ((be64toh(*pte) & PG_W) != 0)
4159 count++;
4160 PMAP_UNLOCK(pmap);
4161 }
4162 if ((m->flags & PG_FICTITIOUS) == 0) {
4163 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4164 TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4165 pmap = PV_PMAP(pv);
4166 if (!PMAP_TRYLOCK(pmap)) {
4167 md_gen = m->md.pv_gen;
4168 pvh_gen = pvh->pv_gen;
4169 rw_runlock(lock);
4170 PMAP_LOCK(pmap);
4171 rw_rlock(lock);
4172 if (md_gen != m->md.pv_gen ||
4173 pvh_gen != pvh->pv_gen) {
4174 PMAP_UNLOCK(pmap);
4175 goto restart;
4176 }
4177 }
4178 pte = pmap_pml3e(pmap, pv->pv_va);
4179 if ((be64toh(*pte) & PG_W) != 0)
4180 count++;
4181 PMAP_UNLOCK(pmap);
4182 }
4183 }
4184 rw_runlock(lock);
4185 return (count);
4186 }
4187
4188 static void
4189 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4190 {
4191 isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE | l1pa | RADIX_PGD_INDEX_SHIFT);
4192 }
4193
4194 int
4195 mmu_radix_pinit(pmap_t pmap)
4196 {
4197 vmem_addr_t pid;
4198 vm_paddr_t l1pa;
4199
4200 CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4201
4202 /*
4203 * allocate the page directory page
4204 */
4205 pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4206
4207 for (int j = 0; j < RADIX_PGD_SIZE_SHIFT; j++)
4208 pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4209 vm_radix_init(&pmap->pm_radix);
4210 TAILQ_INIT(&pmap->pm_pvchunk);
4211 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4212 pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4213 vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4214
4215 pmap->pm_pid = pid;
4216 l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4217 mmu_radix_update_proctab(pid, l1pa);
4218 __asm __volatile("ptesync;isync" : : : "memory");
4219
4220 return (1);
4221 }
4222
4223 /*
4224 * This routine is called if the desired page table page does not exist.
4225 *
4226 * If page table page allocation fails, this routine may sleep before
4227 * returning NULL. It sleeps only if a lock pointer was given.
4228 *
4229 * Note: If a page allocation fails at page table level two or three,
4230 * one or two pages may be held during the wait, only to be released
4231 * afterwards. This conservative approach is easily argued to avoid
4232 * race conditions.
4233 */
4234 static vm_page_t
4235 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4236 {
4237 vm_page_t m, pdppg, pdpg;
4238
4239 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4240
4241 /*
4242 * Allocate a page table page.
4243 */
4244 if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4245 if (lockp != NULL) {
4246 RELEASE_PV_LIST_LOCK(lockp);
4247 PMAP_UNLOCK(pmap);
4248 vm_wait(NULL);
4249 PMAP_LOCK(pmap);
4250 }
4251 /*
4252 * Indicate the need to retry. While waiting, the page table
4253 * page may have been allocated.
4254 */
4255 return (NULL);
4256 }
4257 m->pindex = ptepindex;
4258
4259 /*
4260 * Map the pagetable page into the process address space, if
4261 * it isn't already there.
4262 */
4263
4264 if (ptepindex >= (NUPDE + NUPDPE)) {
4265 pml1_entry_t *l1e;
4266 vm_pindex_t pml1index;
4267
4268 /* Wire up a new PDPE page */
4269 pml1index = ptepindex - (NUPDE + NUPDPE);
4270 l1e = &pmap->pm_pml1[pml1index];
4271 KASSERT((be64toh(*l1e) & PG_V) == 0,
4272 ("%s: L1 entry %#lx is valid", __func__, *l1e));
4273 pde_store(l1e, VM_PAGE_TO_PHYS(m));
4274 } else if (ptepindex >= NUPDE) {
4275 vm_pindex_t pml1index;
4276 vm_pindex_t pdpindex;
4277 pml1_entry_t *l1e;
4278 pml2_entry_t *l2e;
4279
4280 /* Wire up a new l2e page */
4281 pdpindex = ptepindex - NUPDE;
4282 pml1index = pdpindex >> RPTE_SHIFT;
4283
4284 l1e = &pmap->pm_pml1[pml1index];
4285 if ((be64toh(*l1e) & PG_V) == 0) {
4286 /* Have to allocate a new pdp, recurse */
4287 if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4288 lockp) == NULL) {
4289 vm_page_unwire_noq(m);
4290 vm_page_free_zero(m);
4291 return (NULL);
4292 }
4293 } else {
4294 /* Add reference to l2e page */
4295 pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4296 pdppg->ref_count++;
4297 }
4298 l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4299
4300 /* Now find the pdp page */
4301 l2e = &l2e[pdpindex & RPTE_MASK];
4302 KASSERT((be64toh(*l2e) & PG_V) == 0,
4303 ("%s: L2 entry %#lx is valid", __func__, *l2e));
4304 pde_store(l2e, VM_PAGE_TO_PHYS(m));
4305 } else {
4306 vm_pindex_t pml1index;
4307 vm_pindex_t pdpindex;
4308 pml1_entry_t *l1e;
4309 pml2_entry_t *l2e;
4310 pml3_entry_t *l3e;
4311
4312 /* Wire up a new PTE page */
4313 pdpindex = ptepindex >> RPTE_SHIFT;
4314 pml1index = pdpindex >> RPTE_SHIFT;
4315
4316 /* First, find the pdp and check that its valid. */
4317 l1e = &pmap->pm_pml1[pml1index];
4318 if ((be64toh(*l1e) & PG_V) == 0) {
4319 /* Have to allocate a new pd, recurse */
4320 if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4321 lockp) == NULL) {
4322 vm_page_unwire_noq(m);
4323 vm_page_free_zero(m);
4324 return (NULL);
4325 }
4326 l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4327 l2e = &l2e[pdpindex & RPTE_MASK];
4328 } else {
4329 l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4330 l2e = &l2e[pdpindex & RPTE_MASK];
4331 if ((be64toh(*l2e) & PG_V) == 0) {
4332 /* Have to allocate a new pd, recurse */
4333 if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4334 lockp) == NULL) {
4335 vm_page_unwire_noq(m);
4336 vm_page_free_zero(m);
4337 return (NULL);
4338 }
4339 } else {
4340 /* Add reference to the pd page */
4341 pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4342 pdpg->ref_count++;
4343 }
4344 }
4345 l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4346
4347 /* Now we know where the page directory page is */
4348 l3e = &l3e[ptepindex & RPTE_MASK];
4349 KASSERT((be64toh(*l3e) & PG_V) == 0,
4350 ("%s: L3 entry %#lx is valid", __func__, *l3e));
4351 pde_store(l3e, VM_PAGE_TO_PHYS(m));
4352 }
4353
4354 pmap_resident_count_inc(pmap, 1);
4355 return (m);
4356 }
4357 static vm_page_t
4358 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4359 {
4360 vm_pindex_t pdpindex, ptepindex;
4361 pml2_entry_t *pdpe;
4362 vm_page_t pdpg;
4363
4364 retry:
4365 pdpe = pmap_pml2e(pmap, va);
4366 if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4367 /* Add a reference to the pd page. */
4368 pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4369 pdpg->ref_count++;
4370 } else {
4371 /* Allocate a pd page. */
4372 ptepindex = pmap_l3e_pindex(va);
4373 pdpindex = ptepindex >> RPTE_SHIFT;
4374 pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4375 if (pdpg == NULL && lockp != NULL)
4376 goto retry;
4377 }
4378 return (pdpg);
4379 }
4380
4381 static vm_page_t
4382 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4383 {
4384 vm_pindex_t ptepindex;
4385 pml3_entry_t *pd;
4386 vm_page_t m;
4387
4388 /*
4389 * Calculate pagetable page index
4390 */
4391 ptepindex = pmap_l3e_pindex(va);
4392 retry:
4393 /*
4394 * Get the page directory entry
4395 */
4396 pd = pmap_pml3e(pmap, va);
4397
4398 /*
4399 * This supports switching from a 2MB page to a
4400 * normal 4K page.
4401 */
4402 if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4403 if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4404 /*
4405 * Invalidation of the 2MB page mapping may have caused
4406 * the deallocation of the underlying PD page.
4407 */
4408 pd = NULL;
4409 }
4410 }
4411
4412 /*
4413 * If the page table page is mapped, we just increment the
4414 * hold count, and activate it.
4415 */
4416 if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4417 m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4418 m->ref_count++;
4419 } else {
4420 /*
4421 * Here if the pte page isn't mapped, or if it has been
4422 * deallocated.
4423 */
4424 m = _pmap_allocpte(pmap, ptepindex, lockp);
4425 if (m == NULL && lockp != NULL)
4426 goto retry;
4427 }
4428 return (m);
4429 }
4430
4431 static void
4432 mmu_radix_pinit0(pmap_t pmap)
4433 {
4434
4435 CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4436 PMAP_LOCK_INIT(pmap);
4437 pmap->pm_pml1 = kernel_pmap->pm_pml1;
4438 pmap->pm_pid = kernel_pmap->pm_pid;
4439
4440 vm_radix_init(&pmap->pm_radix);
4441 TAILQ_INIT(&pmap->pm_pvchunk);
4442 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4443 kernel_pmap->pm_flags =
4444 pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4445 }
4446 /*
4447 * pmap_protect_l3e: do the things to protect a 2mpage in a process
4448 */
4449 static boolean_t
4450 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4451 {
4452 pt_entry_t newpde, oldpde;
4453 vm_offset_t eva, va;
4454 vm_page_t m;
4455 boolean_t anychanged;
4456
4457 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4458 KASSERT((sva & L3_PAGE_MASK) == 0,
4459 ("pmap_protect_l3e: sva is not 2mpage aligned"));
4460 anychanged = FALSE;
4461 retry:
4462 oldpde = newpde = be64toh(*l3e);
4463 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4464 (PG_MANAGED | PG_M | PG_RW)) {
4465 eva = sva + L3_PAGE_SIZE;
4466 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4467 va < eva; va += PAGE_SIZE, m++)
4468 vm_page_dirty(m);
4469 }
4470 if ((prot & VM_PROT_WRITE) == 0) {
4471 newpde &= ~(PG_RW | PG_M);
4472 newpde |= RPTE_EAA_R;
4473 }
4474 if (prot & VM_PROT_EXECUTE)
4475 newpde |= PG_X;
4476 if (newpde != oldpde) {
4477 /*
4478 * As an optimization to future operations on this PDE, clear
4479 * PG_PROMOTED. The impending invalidation will remove any
4480 * lingering 4KB page mappings from the TLB.
4481 */
4482 if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4483 goto retry;
4484 anychanged = TRUE;
4485 }
4486 return (anychanged);
4487 }
4488
4489 void
4490 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4491 vm_prot_t prot)
4492 {
4493 vm_offset_t va_next;
4494 pml1_entry_t *l1e;
4495 pml2_entry_t *l2e;
4496 pml3_entry_t ptpaddr, *l3e;
4497 pt_entry_t *pte;
4498 boolean_t anychanged;
4499
4500 CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4501 prot);
4502
4503 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4504 if (prot == VM_PROT_NONE) {
4505 mmu_radix_remove(pmap, sva, eva);
4506 return;
4507 }
4508
4509 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4510 (VM_PROT_WRITE|VM_PROT_EXECUTE))
4511 return;
4512
4513 #ifdef INVARIANTS
4514 if (VERBOSE_PROTECT || pmap_logging)
4515 printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4516 pmap, sva, eva, prot, pmap->pm_pid);
4517 #endif
4518 anychanged = FALSE;
4519
4520 PMAP_LOCK(pmap);
4521 for (; sva < eva; sva = va_next) {
4522 l1e = pmap_pml1e(pmap, sva);
4523 if ((be64toh(*l1e) & PG_V) == 0) {
4524 va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4525 if (va_next < sva)
4526 va_next = eva;
4527 continue;
4528 }
4529
4530 l2e = pmap_l1e_to_l2e(l1e, sva);
4531 if ((be64toh(*l2e) & PG_V) == 0) {
4532 va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4533 if (va_next < sva)
4534 va_next = eva;
4535 continue;
4536 }
4537
4538 va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4539 if (va_next < sva)
4540 va_next = eva;
4541
4542 l3e = pmap_l2e_to_l3e(l2e, sva);
4543 ptpaddr = be64toh(*l3e);
4544
4545 /*
4546 * Weed out invalid mappings.
4547 */
4548 if (ptpaddr == 0)
4549 continue;
4550
4551 /*
4552 * Check for large page.
4553 */
4554 if ((ptpaddr & RPTE_LEAF) != 0) {
4555 /*
4556 * Are we protecting the entire large page? If not,
4557 * demote the mapping and fall through.
4558 */
4559 if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4560 if (pmap_protect_l3e(pmap, l3e, sva, prot))
4561 anychanged = TRUE;
4562 continue;
4563 } else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4564 /*
4565 * The large page mapping was destroyed.
4566 */
4567 continue;
4568 }
4569 }
4570
4571 if (va_next > eva)
4572 va_next = eva;
4573
4574 for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4575 sva += PAGE_SIZE) {
4576 pt_entry_t obits, pbits;
4577 vm_page_t m;
4578
4579 retry:
4580 MPASS(pte == pmap_pte(pmap, sva));
4581 obits = pbits = be64toh(*pte);
4582 if ((pbits & PG_V) == 0)
4583 continue;
4584
4585 if ((prot & VM_PROT_WRITE) == 0) {
4586 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4587 (PG_MANAGED | PG_M | PG_RW)) {
4588 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4589 vm_page_dirty(m);
4590 }
4591 pbits &= ~(PG_RW | PG_M);
4592 pbits |= RPTE_EAA_R;
4593 }
4594 if (prot & VM_PROT_EXECUTE)
4595 pbits |= PG_X;
4596
4597 if (pbits != obits) {
4598 if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4599 goto retry;
4600 if (obits & (PG_A|PG_M)) {
4601 anychanged = TRUE;
4602 #ifdef INVARIANTS
4603 if (VERBOSE_PROTECT || pmap_logging)
4604 printf("%#lx %#lx -> %#lx\n",
4605 sva, obits, pbits);
4606 #endif
4607 }
4608 }
4609 }
4610 }
4611 if (anychanged)
4612 pmap_invalidate_all(pmap);
4613 PMAP_UNLOCK(pmap);
4614 }
4615
4616 void
4617 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4618 {
4619
4620 CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4621 pt_entry_t oldpte, pa, *pte;
4622 vm_page_t m;
4623 uint64_t cache_bits, attr_bits;
4624 vm_offset_t va;
4625
4626 oldpte = 0;
4627 attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4628 va = sva;
4629 pte = kvtopte(va);
4630 while (va < sva + PAGE_SIZE * count) {
4631 if (__predict_false((va & L3_PAGE_MASK) == 0))
4632 pte = kvtopte(va);
4633 MPASS(pte == pmap_pte(kernel_pmap, va));
4634
4635 /*
4636 * XXX there has to be a more efficient way than traversing
4637 * the page table every time - but go for correctness for
4638 * today
4639 */
4640
4641 m = *ma++;
4642 cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4643 pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4644 if (be64toh(*pte) != pa) {
4645 oldpte |= be64toh(*pte);
4646 pte_store(pte, pa);
4647 }
4648 va += PAGE_SIZE;
4649 pte++;
4650 }
4651 if (__predict_false((oldpte & RPTE_VALID) != 0))
4652 pmap_invalidate_range(kernel_pmap, sva, sva + count *
4653 PAGE_SIZE);
4654 else
4655 ptesync();
4656 }
4657
4658 void
4659 mmu_radix_qremove(vm_offset_t sva, int count)
4660 {
4661 vm_offset_t va;
4662 pt_entry_t *pte;
4663
4664 CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4665 KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4666
4667 va = sva;
4668 pte = kvtopte(va);
4669 while (va < sva + PAGE_SIZE * count) {
4670 if (__predict_false((va & L3_PAGE_MASK) == 0))
4671 pte = kvtopte(va);
4672 pte_clear(pte);
4673 pte++;
4674 va += PAGE_SIZE;
4675 }
4676 pmap_invalidate_range(kernel_pmap, sva, va);
4677 }
4678
4679 /***************************************************
4680 * Page table page management routines.....
4681 ***************************************************/
4682 /*
4683 * Schedule the specified unused page table page to be freed. Specifically,
4684 * add the page to the specified list of pages that will be released to the
4685 * physical memory manager after the TLB has been updated.
4686 */
4687 static __inline void
4688 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4689 boolean_t set_PG_ZERO)
4690 {
4691
4692 if (set_PG_ZERO)
4693 m->flags |= PG_ZERO;
4694 else
4695 m->flags &= ~PG_ZERO;
4696 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4697 }
4698
4699 /*
4700 * Inserts the specified page table page into the specified pmap's collection
4701 * of idle page table pages. Each of a pmap's page table pages is responsible
4702 * for mapping a distinct range of virtual addresses. The pmap's collection is
4703 * ordered by this virtual address range.
4704 */
4705 static __inline int
4706 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4707 {
4708
4709 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4710 return (vm_radix_insert(&pmap->pm_radix, mpte));
4711 }
4712
4713 /*
4714 * Removes the page table page mapping the specified virtual address from the
4715 * specified pmap's collection of idle page table pages, and returns it.
4716 * Otherwise, returns NULL if there is no page table page corresponding to the
4717 * specified virtual address.
4718 */
4719 static __inline vm_page_t
4720 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4721 {
4722
4723 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4724 return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4725 }
4726
4727 /*
4728 * Decrements a page table page's wire count, which is used to record the
4729 * number of valid page table entries within the page. If the wire count
4730 * drops to zero, then the page table page is unmapped. Returns TRUE if the
4731 * page table page was unmapped and FALSE otherwise.
4732 */
4733 static inline boolean_t
4734 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4735 {
4736
4737 --m->ref_count;
4738 if (m->ref_count == 0) {
4739 _pmap_unwire_ptp(pmap, va, m, free);
4740 return (TRUE);
4741 } else
4742 return (FALSE);
4743 }
4744
4745 static void
4746 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4747 {
4748
4749 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4750 /*
4751 * unmap the page table page
4752 */
4753 if (m->pindex >= NUPDE + NUPDPE) {
4754 /* PDP page */
4755 pml1_entry_t *pml1;
4756 pml1 = pmap_pml1e(pmap, va);
4757 *pml1 = 0;
4758 } else if (m->pindex >= NUPDE) {
4759 /* PD page */
4760 pml2_entry_t *l2e;
4761 l2e = pmap_pml2e(pmap, va);
4762 *l2e = 0;
4763 } else {
4764 /* PTE page */
4765 pml3_entry_t *l3e;
4766 l3e = pmap_pml3e(pmap, va);
4767 *l3e = 0;
4768 }
4769 pmap_resident_count_dec(pmap, 1);
4770 if (m->pindex < NUPDE) {
4771 /* We just released a PT, unhold the matching PD */
4772 vm_page_t pdpg;
4773
4774 pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4775 pmap_unwire_ptp(pmap, va, pdpg, free);
4776 }
4777 else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4778 /* We just released a PD, unhold the matching PDP */
4779 vm_page_t pdppg;
4780
4781 pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4782 pmap_unwire_ptp(pmap, va, pdppg, free);
4783 }
4784
4785 /*
4786 * Put page on a list so that it is released after
4787 * *ALL* TLB shootdown is done
4788 */
4789 pmap_add_delayed_free_list(m, free, TRUE);
4790 }
4791
4792 /*
4793 * After removing a page table entry, this routine is used to
4794 * conditionally free the page, and manage the hold/wire counts.
4795 */
4796 static int
4797 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4798 struct spglist *free)
4799 {
4800 vm_page_t mpte;
4801
4802 if (va >= VM_MAXUSER_ADDRESS)
4803 return (0);
4804 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4805 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4806 return (pmap_unwire_ptp(pmap, va, mpte, free));
4807 }
4808
4809 void
4810 mmu_radix_release(pmap_t pmap)
4811 {
4812
4813 CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4814 KASSERT(pmap->pm_stats.resident_count == 0,
4815 ("pmap_release: pmap resident count %ld != 0",
4816 pmap->pm_stats.resident_count));
4817 KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4818 ("pmap_release: pmap has reserved page table page(s)"));
4819
4820 pmap_invalidate_all(pmap);
4821 isa3_proctab[pmap->pm_pid].proctab0 = 0;
4822 uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4823 vmem_free(asid_arena, pmap->pm_pid, 1);
4824 }
4825
4826 /*
4827 * Create the PV entry for a 2MB page mapping. Always returns true unless the
4828 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
4829 * false if the PV entry cannot be allocated without resorting to reclamation.
4830 */
4831 static bool
4832 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4833 struct rwlock **lockp)
4834 {
4835 struct md_page *pvh;
4836 pv_entry_t pv;
4837 vm_paddr_t pa;
4838
4839 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4840 /* Pass NULL instead of the lock pointer to disable reclamation. */
4841 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4842 NULL : lockp)) == NULL)
4843 return (false);
4844 pv->pv_va = va;
4845 pa = pde & PG_PS_FRAME;
4846 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4847 pvh = pa_to_pvh(pa);
4848 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4849 pvh->pv_gen++;
4850 return (true);
4851 }
4852
4853 /*
4854 * Fills a page table page with mappings to consecutive physical pages.
4855 */
4856 static void
4857 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4858 {
4859 pt_entry_t *pte;
4860
4861 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4862 *pte = htobe64(newpte);
4863 newpte += PAGE_SIZE;
4864 }
4865 }
4866
4867 static boolean_t
4868 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4869 {
4870 struct rwlock *lock;
4871 boolean_t rv;
4872
4873 lock = NULL;
4874 rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4875 if (lock != NULL)
4876 rw_wunlock(lock);
4877 return (rv);
4878 }
4879
4880 static boolean_t
4881 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4882 struct rwlock **lockp)
4883 {
4884 pml3_entry_t oldpde;
4885 pt_entry_t *firstpte;
4886 vm_paddr_t mptepa;
4887 vm_page_t mpte;
4888 struct spglist free;
4889 vm_offset_t sva;
4890
4891 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4892 oldpde = be64toh(*l3e);
4893 KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4894 ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4895 oldpde));
4896 if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4897 NULL) {
4898 KASSERT((oldpde & PG_W) == 0,
4899 ("pmap_demote_l3e: page table page for a wired mapping"
4900 " is missing"));
4901
4902 /*
4903 * Invalidate the 2MB page mapping and return "failure" if the
4904 * mapping was never accessed or the allocation of the new
4905 * page table page fails. If the 2MB page mapping belongs to
4906 * the direct map region of the kernel's address space, then
4907 * the page allocation request specifies the highest possible
4908 * priority (VM_ALLOC_INTERRUPT). Otherwise, the priority is
4909 * normal. Page table pages are preallocated for every other
4910 * part of the kernel address space, so the direct map region
4911 * is the only part of the kernel address space that must be
4912 * handled here.
4913 */
4914 if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc_noobj(
4915 (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ?
4916 VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED)) == NULL) {
4917 SLIST_INIT(&free);
4918 sva = trunc_2mpage(va);
4919 pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4920 pmap_invalidate_l3e_page(pmap, sva, oldpde);
4921 vm_page_free_pages_toq(&free, true);
4922 CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4923 " in pmap %p", va, pmap);
4924 return (FALSE);
4925 }
4926 mpte->pindex = pmap_l3e_pindex(va);
4927 if (va < VM_MAXUSER_ADDRESS)
4928 pmap_resident_count_inc(pmap, 1);
4929 }
4930 mptepa = VM_PAGE_TO_PHYS(mpte);
4931 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4932 KASSERT((oldpde & PG_A) != 0,
4933 ("pmap_demote_l3e: oldpde is missing PG_A"));
4934 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4935 ("pmap_demote_l3e: oldpde is missing PG_M"));
4936
4937 /*
4938 * If the page table page is new, initialize it.
4939 */
4940 if (mpte->ref_count == 1) {
4941 mpte->ref_count = NPTEPG;
4942 pmap_fill_ptp(firstpte, oldpde);
4943 }
4944
4945 KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4946 ("pmap_demote_l3e: firstpte and newpte map different physical"
4947 " addresses"));
4948
4949 /*
4950 * If the mapping has changed attributes, update the page table
4951 * entries.
4952 */
4953 if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4954 pmap_fill_ptp(firstpte, oldpde);
4955
4956 /*
4957 * The spare PV entries must be reserved prior to demoting the
4958 * mapping, that is, prior to changing the PDE. Otherwise, the state
4959 * of the PDE and the PV lists will be inconsistent, which can result
4960 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4961 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4962 * PV entry for the 2MB page mapping that is being demoted.
4963 */
4964 if ((oldpde & PG_MANAGED) != 0)
4965 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4966
4967 /*
4968 * Demote the mapping. This pmap is locked. The old PDE has
4969 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
4970 * set. Thus, there is no danger of a race with another
4971 * processor changing the setting of PG_A and/or PG_M between
4972 * the read above and the store below.
4973 */
4974 pde_store(l3e, mptepa);
4975 pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
4976 /*
4977 * Demote the PV entry.
4978 */
4979 if ((oldpde & PG_MANAGED) != 0)
4980 pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4981
4982 counter_u64_add(pmap_l3e_demotions, 1);
4983 CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4984 " in pmap %p", va, pmap);
4985 return (TRUE);
4986 }
4987
4988 /*
4989 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4990 */
4991 static void
4992 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4993 {
4994 vm_paddr_t mptepa;
4995 vm_page_t mpte;
4996
4997 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
4998 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4999 mpte = pmap_remove_pt_page(pmap, va);
5000 if (mpte == NULL)
5001 panic("pmap_remove_kernel_pde: Missing pt page.");
5002
5003 mptepa = VM_PAGE_TO_PHYS(mpte);
5004
5005 /*
5006 * Initialize the page table page.
5007 */
5008 pagezero(PHYS_TO_DMAP(mptepa));
5009
5010 /*
5011 * Demote the mapping.
5012 */
5013 pde_store(l3e, mptepa);
5014 ptesync();
5015 }
5016
5017 /*
5018 * pmap_remove_l3e: do the things to unmap a superpage in a process
5019 */
5020 static int
5021 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5022 struct spglist *free, struct rwlock **lockp)
5023 {
5024 struct md_page *pvh;
5025 pml3_entry_t oldpde;
5026 vm_offset_t eva, va;
5027 vm_page_t m, mpte;
5028
5029 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5030 KASSERT((sva & L3_PAGE_MASK) == 0,
5031 ("pmap_remove_l3e: sva is not 2mpage aligned"));
5032 oldpde = be64toh(pte_load_clear(pdq));
5033 if (oldpde & PG_W)
5034 pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5035 pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5036 if (oldpde & PG_MANAGED) {
5037 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5038 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5039 pmap_pvh_free(pvh, pmap, sva);
5040 eva = sva + L3_PAGE_SIZE;
5041 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5042 va < eva; va += PAGE_SIZE, m++) {
5043 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5044 vm_page_dirty(m);
5045 if (oldpde & PG_A)
5046 vm_page_aflag_set(m, PGA_REFERENCED);
5047 if (TAILQ_EMPTY(&m->md.pv_list) &&
5048 TAILQ_EMPTY(&pvh->pv_list))
5049 vm_page_aflag_clear(m, PGA_WRITEABLE);
5050 }
5051 }
5052 if (pmap == kernel_pmap) {
5053 pmap_remove_kernel_l3e(pmap, pdq, sva);
5054 } else {
5055 mpte = pmap_remove_pt_page(pmap, sva);
5056 if (mpte != NULL) {
5057 pmap_resident_count_dec(pmap, 1);
5058 KASSERT(mpte->ref_count == NPTEPG,
5059 ("pmap_remove_l3e: pte page wire count error"));
5060 mpte->ref_count = 0;
5061 pmap_add_delayed_free_list(mpte, free, FALSE);
5062 }
5063 }
5064 return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5065 }
5066
5067 /*
5068 * pmap_remove_pte: do the things to unmap a page in a process
5069 */
5070 static int
5071 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5072 pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5073 {
5074 struct md_page *pvh;
5075 pt_entry_t oldpte;
5076 vm_page_t m;
5077
5078 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5079 oldpte = be64toh(pte_load_clear(ptq));
5080 if (oldpte & RPTE_WIRED)
5081 pmap->pm_stats.wired_count -= 1;
5082 pmap_resident_count_dec(pmap, 1);
5083 if (oldpte & RPTE_MANAGED) {
5084 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5085 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5086 vm_page_dirty(m);
5087 if (oldpte & PG_A)
5088 vm_page_aflag_set(m, PGA_REFERENCED);
5089 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5090 pmap_pvh_free(&m->md, pmap, va);
5091 if (TAILQ_EMPTY(&m->md.pv_list) &&
5092 (m->flags & PG_FICTITIOUS) == 0) {
5093 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5094 if (TAILQ_EMPTY(&pvh->pv_list))
5095 vm_page_aflag_clear(m, PGA_WRITEABLE);
5096 }
5097 }
5098 return (pmap_unuse_pt(pmap, va, ptepde, free));
5099 }
5100
5101 /*
5102 * Remove a single page from a process address space
5103 */
5104 static bool
5105 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5106 struct spglist *free)
5107 {
5108 struct rwlock *lock;
5109 pt_entry_t *pte;
5110 bool invalidate_all;
5111
5112 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5113 if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5114 return (false);
5115 }
5116 pte = pmap_l3e_to_pte(l3e, va);
5117 if ((be64toh(*pte) & RPTE_VALID) == 0) {
5118 return (false);
5119 }
5120 lock = NULL;
5121
5122 invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5123 if (lock != NULL)
5124 rw_wunlock(lock);
5125 if (!invalidate_all)
5126 pmap_invalidate_page(pmap, va);
5127 return (invalidate_all);
5128 }
5129
5130 /*
5131 * Removes the specified range of addresses from the page table page.
5132 */
5133 static bool
5134 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5135 pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5136 {
5137 pt_entry_t *pte;
5138 vm_offset_t va;
5139 bool anyvalid;
5140
5141 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5142 anyvalid = false;
5143 va = eva;
5144 for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5145 sva += PAGE_SIZE) {
5146 MPASS(pte == pmap_pte(pmap, sva));
5147 if (*pte == 0) {
5148 if (va != eva) {
5149 anyvalid = true;
5150 va = eva;
5151 }
5152 continue;
5153 }
5154 if (va == eva)
5155 va = sva;
5156 if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5157 anyvalid = true;
5158 sva += PAGE_SIZE;
5159 break;
5160 }
5161 }
5162 if (anyvalid)
5163 pmap_invalidate_all(pmap);
5164 else if (va != eva)
5165 pmap_invalidate_range(pmap, va, sva);
5166 return (anyvalid);
5167 }
5168
5169 void
5170 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5171 {
5172 struct rwlock *lock;
5173 vm_offset_t va_next;
5174 pml1_entry_t *l1e;
5175 pml2_entry_t *l2e;
5176 pml3_entry_t ptpaddr, *l3e;
5177 struct spglist free;
5178 bool anyvalid;
5179
5180 CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5181
5182 /*
5183 * Perform an unsynchronized read. This is, however, safe.
5184 */
5185 if (pmap->pm_stats.resident_count == 0)
5186 return;
5187
5188 anyvalid = false;
5189 SLIST_INIT(&free);
5190
5191 /* XXX something fishy here */
5192 sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5193 eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5194
5195 PMAP_LOCK(pmap);
5196
5197 /*
5198 * special handling of removing one page. a very
5199 * common operation and easy to short circuit some
5200 * code.
5201 */
5202 if (sva + PAGE_SIZE == eva) {
5203 l3e = pmap_pml3e(pmap, sva);
5204 if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5205 anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5206 goto out;
5207 }
5208 }
5209
5210 lock = NULL;
5211 for (; sva < eva; sva = va_next) {
5212 if (pmap->pm_stats.resident_count == 0)
5213 break;
5214 l1e = pmap_pml1e(pmap, sva);
5215 if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5216 va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5217 if (va_next < sva)
5218 va_next = eva;
5219 continue;
5220 }
5221
5222 l2e = pmap_l1e_to_l2e(l1e, sva);
5223 if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5224 va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5225 if (va_next < sva)
5226 va_next = eva;
5227 continue;
5228 }
5229
5230 /*
5231 * Calculate index for next page table.
5232 */
5233 va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5234 if (va_next < sva)
5235 va_next = eva;
5236
5237 l3e = pmap_l2e_to_l3e(l2e, sva);
5238 ptpaddr = be64toh(*l3e);
5239
5240 /*
5241 * Weed out invalid mappings.
5242 */
5243 if (ptpaddr == 0)
5244 continue;
5245
5246 /*
5247 * Check for large page.
5248 */
5249 if ((ptpaddr & RPTE_LEAF) != 0) {
5250 /*
5251 * Are we removing the entire large page? If not,
5252 * demote the mapping and fall through.
5253 */
5254 if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5255 pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5256 anyvalid = true;
5257 continue;
5258 } else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5259 &lock)) {
5260 /* The large page mapping was destroyed. */
5261 continue;
5262 } else
5263 ptpaddr = be64toh(*l3e);
5264 }
5265
5266 /*
5267 * Limit our scan to either the end of the va represented
5268 * by the current page table page, or to the end of the
5269 * range being removed.
5270 */
5271 if (va_next > eva)
5272 va_next = eva;
5273
5274 if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5275 anyvalid = true;
5276 }
5277 if (lock != NULL)
5278 rw_wunlock(lock);
5279 out:
5280 if (anyvalid)
5281 pmap_invalidate_all(pmap);
5282 PMAP_UNLOCK(pmap);
5283 vm_page_free_pages_toq(&free, true);
5284 }
5285
5286 void
5287 mmu_radix_remove_all(vm_page_t m)
5288 {
5289 struct md_page *pvh;
5290 pv_entry_t pv;
5291 pmap_t pmap;
5292 struct rwlock *lock;
5293 pt_entry_t *pte, tpte;
5294 pml3_entry_t *l3e;
5295 vm_offset_t va;
5296 struct spglist free;
5297 int pvh_gen, md_gen;
5298
5299 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5300 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5301 ("pmap_remove_all: page %p is not managed", m));
5302 SLIST_INIT(&free);
5303 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5304 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5305 pa_to_pvh(VM_PAGE_TO_PHYS(m));
5306 retry:
5307 rw_wlock(lock);
5308 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5309 pmap = PV_PMAP(pv);
5310 if (!PMAP_TRYLOCK(pmap)) {
5311 pvh_gen = pvh->pv_gen;
5312 rw_wunlock(lock);
5313 PMAP_LOCK(pmap);
5314 rw_wlock(lock);
5315 if (pvh_gen != pvh->pv_gen) {
5316 rw_wunlock(lock);
5317 PMAP_UNLOCK(pmap);
5318 goto retry;
5319 }
5320 }
5321 va = pv->pv_va;
5322 l3e = pmap_pml3e(pmap, va);
5323 (void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5324 PMAP_UNLOCK(pmap);
5325 }
5326 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5327 pmap = PV_PMAP(pv);
5328 if (!PMAP_TRYLOCK(pmap)) {
5329 pvh_gen = pvh->pv_gen;
5330 md_gen = m->md.pv_gen;
5331 rw_wunlock(lock);
5332 PMAP_LOCK(pmap);
5333 rw_wlock(lock);
5334 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5335 rw_wunlock(lock);
5336 PMAP_UNLOCK(pmap);
5337 goto retry;
5338 }
5339 }
5340 pmap_resident_count_dec(pmap, 1);
5341 l3e = pmap_pml3e(pmap, pv->pv_va);
5342 KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5343 " a 2mpage in page %p's pv list", m));
5344 pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5345 tpte = be64toh(pte_load_clear(pte));
5346 if (tpte & PG_W)
5347 pmap->pm_stats.wired_count--;
5348 if (tpte & PG_A)
5349 vm_page_aflag_set(m, PGA_REFERENCED);
5350
5351 /*
5352 * Update the vm_page_t clean and reference bits.
5353 */
5354 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5355 vm_page_dirty(m);
5356 pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5357 pmap_invalidate_page(pmap, pv->pv_va);
5358 TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5359 m->md.pv_gen++;
5360 free_pv_entry(pmap, pv);
5361 PMAP_UNLOCK(pmap);
5362 }
5363 vm_page_aflag_clear(m, PGA_WRITEABLE);
5364 rw_wunlock(lock);
5365 vm_page_free_pages_toq(&free, true);
5366 }
5367
5368 /*
5369 * Destroy all managed, non-wired mappings in the given user-space
5370 * pmap. This pmap cannot be active on any processor besides the
5371 * caller.
5372 *
5373 * This function cannot be applied to the kernel pmap. Moreover, it
5374 * is not intended for general use. It is only to be used during
5375 * process termination. Consequently, it can be implemented in ways
5376 * that make it faster than pmap_remove(). First, it can more quickly
5377 * destroy mappings by iterating over the pmap's collection of PV
5378 * entries, rather than searching the page table. Second, it doesn't
5379 * have to test and clear the page table entries atomically, because
5380 * no processor is currently accessing the user address space. In
5381 * particular, a page table entry's dirty bit won't change state once
5382 * this function starts.
5383 *
5384 * Although this function destroys all of the pmap's managed,
5385 * non-wired mappings, it can delay and batch the invalidation of TLB
5386 * entries without calling pmap_delayed_invl_started() and
5387 * pmap_delayed_invl_finished(). Because the pmap is not active on
5388 * any other processor, none of these TLB entries will ever be used
5389 * before their eventual invalidation. Consequently, there is no need
5390 * for either pmap_remove_all() or pmap_remove_write() to wait for
5391 * that eventual TLB invalidation.
5392 */
5393
5394 void
5395 mmu_radix_remove_pages(pmap_t pmap)
5396 {
5397
5398 CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5399 pml3_entry_t ptel3e;
5400 pt_entry_t *pte, tpte;
5401 struct spglist free;
5402 vm_page_t m, mpte, mt;
5403 pv_entry_t pv;
5404 struct md_page *pvh;
5405 struct pv_chunk *pc, *npc;
5406 struct rwlock *lock;
5407 int64_t bit;
5408 uint64_t inuse, bitmask;
5409 int allfree, field, idx;
5410 #ifdef PV_STATS
5411 int freed;
5412 #endif
5413 boolean_t superpage;
5414 vm_paddr_t pa;
5415
5416 /*
5417 * Assert that the given pmap is only active on the current
5418 * CPU. Unfortunately, we cannot block another CPU from
5419 * activating the pmap while this function is executing.
5420 */
5421 KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5422 ("non-current asid %lu - expected %lu", pmap->pm_pid,
5423 mfspr(SPR_PID)));
5424
5425 lock = NULL;
5426
5427 SLIST_INIT(&free);
5428 PMAP_LOCK(pmap);
5429 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5430 allfree = 1;
5431 #ifdef PV_STATS
5432 freed = 0;
5433 #endif
5434 for (field = 0; field < _NPCM; field++) {
5435 inuse = ~pc->pc_map[field] & pc_freemask[field];
5436 while (inuse != 0) {
5437 bit = cnttzd(inuse);
5438 bitmask = 1UL << bit;
5439 idx = field * 64 + bit;
5440 pv = &pc->pc_pventry[idx];
5441 inuse &= ~bitmask;
5442
5443 pte = pmap_pml2e(pmap, pv->pv_va);
5444 ptel3e = be64toh(*pte);
5445 pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5446 tpte = be64toh(*pte);
5447 if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5448 superpage = FALSE;
5449 ptel3e = tpte;
5450 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5451 PG_FRAME);
5452 pte = &pte[pmap_pte_index(pv->pv_va)];
5453 tpte = be64toh(*pte);
5454 } else {
5455 /*
5456 * Keep track whether 'tpte' is a
5457 * superpage explicitly instead of
5458 * relying on RPTE_LEAF being set.
5459 *
5460 * This is because RPTE_LEAF is numerically
5461 * identical to PG_PTE_PAT and thus a
5462 * regular page could be mistaken for
5463 * a superpage.
5464 */
5465 superpage = TRUE;
5466 }
5467
5468 if ((tpte & PG_V) == 0) {
5469 panic("bad pte va %lx pte %lx",
5470 pv->pv_va, tpte);
5471 }
5472
5473 /*
5474 * We cannot remove wired pages from a process' mapping at this time
5475 */
5476 if (tpte & PG_W) {
5477 allfree = 0;
5478 continue;
5479 }
5480
5481 if (superpage)
5482 pa = tpte & PG_PS_FRAME;
5483 else
5484 pa = tpte & PG_FRAME;
5485
5486 m = PHYS_TO_VM_PAGE(pa);
5487 KASSERT(m->phys_addr == pa,
5488 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5489 m, (uintmax_t)m->phys_addr,
5490 (uintmax_t)tpte));
5491
5492 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5493 m < &vm_page_array[vm_page_array_size],
5494 ("pmap_remove_pages: bad tpte %#jx",
5495 (uintmax_t)tpte));
5496
5497 pte_clear(pte);
5498
5499 /*
5500 * Update the vm_page_t clean/reference bits.
5501 */
5502 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5503 if (superpage) {
5504 for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5505 vm_page_dirty(mt);
5506 } else
5507 vm_page_dirty(m);
5508 }
5509
5510 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5511
5512 /* Mark free */
5513 pc->pc_map[field] |= bitmask;
5514 if (superpage) {
5515 pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5516 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5517 TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5518 pvh->pv_gen++;
5519 if (TAILQ_EMPTY(&pvh->pv_list)) {
5520 for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5521 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5522 TAILQ_EMPTY(&mt->md.pv_list))
5523 vm_page_aflag_clear(mt, PGA_WRITEABLE);
5524 }
5525 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5526 if (mpte != NULL) {
5527 pmap_resident_count_dec(pmap, 1);
5528 KASSERT(mpte->ref_count == NPTEPG,
5529 ("pmap_remove_pages: pte page wire count error"));
5530 mpte->ref_count = 0;
5531 pmap_add_delayed_free_list(mpte, &free, FALSE);
5532 }
5533 } else {
5534 pmap_resident_count_dec(pmap, 1);
5535 #ifdef VERBOSE_PV
5536 printf("freeing pv (%p, %p)\n",
5537 pmap, pv);
5538 #endif
5539 TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5540 m->md.pv_gen++;
5541 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5542 TAILQ_EMPTY(&m->md.pv_list) &&
5543 (m->flags & PG_FICTITIOUS) == 0) {
5544 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5545 if (TAILQ_EMPTY(&pvh->pv_list))
5546 vm_page_aflag_clear(m, PGA_WRITEABLE);
5547 }
5548 }
5549 pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5550 #ifdef PV_STATS
5551 freed++;
5552 #endif
5553 }
5554 }
5555 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5556 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5557 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5558 if (allfree) {
5559 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5560 free_pv_chunk(pc);
5561 }
5562 }
5563 if (lock != NULL)
5564 rw_wunlock(lock);
5565 pmap_invalidate_all(pmap);
5566 PMAP_UNLOCK(pmap);
5567 vm_page_free_pages_toq(&free, true);
5568 }
5569
5570 void
5571 mmu_radix_remove_write(vm_page_t m)
5572 {
5573 struct md_page *pvh;
5574 pmap_t pmap;
5575 struct rwlock *lock;
5576 pv_entry_t next_pv, pv;
5577 pml3_entry_t *l3e;
5578 pt_entry_t oldpte, *pte;
5579 int pvh_gen, md_gen;
5580
5581 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5582 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5583 ("pmap_remove_write: page %p is not managed", m));
5584 vm_page_assert_busied(m);
5585
5586 if (!pmap_page_is_write_mapped(m))
5587 return;
5588 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5589 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5590 pa_to_pvh(VM_PAGE_TO_PHYS(m));
5591 retry_pv_loop:
5592 rw_wlock(lock);
5593 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5594 pmap = PV_PMAP(pv);
5595 if (!PMAP_TRYLOCK(pmap)) {
5596 pvh_gen = pvh->pv_gen;
5597 rw_wunlock(lock);
5598 PMAP_LOCK(pmap);
5599 rw_wlock(lock);
5600 if (pvh_gen != pvh->pv_gen) {
5601 PMAP_UNLOCK(pmap);
5602 rw_wunlock(lock);
5603 goto retry_pv_loop;
5604 }
5605 }
5606 l3e = pmap_pml3e(pmap, pv->pv_va);
5607 if ((be64toh(*l3e) & PG_RW) != 0)
5608 (void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5609 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5610 ("inconsistent pv lock %p %p for page %p",
5611 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5612 PMAP_UNLOCK(pmap);
5613 }
5614 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5615 pmap = PV_PMAP(pv);
5616 if (!PMAP_TRYLOCK(pmap)) {
5617 pvh_gen = pvh->pv_gen;
5618 md_gen = m->md.pv_gen;
5619 rw_wunlock(lock);
5620 PMAP_LOCK(pmap);
5621 rw_wlock(lock);
5622 if (pvh_gen != pvh->pv_gen ||
5623 md_gen != m->md.pv_gen) {
5624 PMAP_UNLOCK(pmap);
5625 rw_wunlock(lock);
5626 goto retry_pv_loop;
5627 }
5628 }
5629 l3e = pmap_pml3e(pmap, pv->pv_va);
5630 KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5631 ("pmap_remove_write: found a 2mpage in page %p's pv list",
5632 m));
5633 pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5634 retry:
5635 oldpte = be64toh(*pte);
5636 if (oldpte & PG_RW) {
5637 if (!atomic_cmpset_long(pte, htobe64(oldpte),
5638 htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5639 goto retry;
5640 if ((oldpte & PG_M) != 0)
5641 vm_page_dirty(m);
5642 pmap_invalidate_page(pmap, pv->pv_va);
5643 }
5644 PMAP_UNLOCK(pmap);
5645 }
5646 rw_wunlock(lock);
5647 vm_page_aflag_clear(m, PGA_WRITEABLE);
5648 }
5649
5650 /*
5651 * Clear the wired attribute from the mappings for the specified range of
5652 * addresses in the given pmap. Every valid mapping within that range
5653 * must have the wired attribute set. In contrast, invalid mappings
5654 * cannot have the wired attribute set, so they are ignored.
5655 *
5656 * The wired attribute of the page table entry is not a hardware
5657 * feature, so there is no need to invalidate any TLB entries.
5658 * Since pmap_demote_l3e() for the wired entry must never fail,
5659 * pmap_delayed_invl_started()/finished() calls around the
5660 * function are not needed.
5661 */
5662 void
5663 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5664 {
5665 vm_offset_t va_next;
5666 pml1_entry_t *l1e;
5667 pml2_entry_t *l2e;
5668 pml3_entry_t *l3e;
5669 pt_entry_t *pte;
5670
5671 CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5672 PMAP_LOCK(pmap);
5673 for (; sva < eva; sva = va_next) {
5674 l1e = pmap_pml1e(pmap, sva);
5675 if ((be64toh(*l1e) & PG_V) == 0) {
5676 va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5677 if (va_next < sva)
5678 va_next = eva;
5679 continue;
5680 }
5681 l2e = pmap_l1e_to_l2e(l1e, sva);
5682 if ((be64toh(*l2e) & PG_V) == 0) {
5683 va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5684 if (va_next < sva)
5685 va_next = eva;
5686 continue;
5687 }
5688 va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5689 if (va_next < sva)
5690 va_next = eva;
5691 l3e = pmap_l2e_to_l3e(l2e, sva);
5692 if ((be64toh(*l3e) & PG_V) == 0)
5693 continue;
5694 if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5695 if ((be64toh(*l3e) & PG_W) == 0)
5696 panic("pmap_unwire: pde %#jx is missing PG_W",
5697 (uintmax_t)(be64toh(*l3e)));
5698
5699 /*
5700 * Are we unwiring the entire large page? If not,
5701 * demote the mapping and fall through.
5702 */
5703 if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5704 atomic_clear_long(l3e, htobe64(PG_W));
5705 pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5706 PAGE_SIZE;
5707 continue;
5708 } else if (!pmap_demote_l3e(pmap, l3e, sva))
5709 panic("pmap_unwire: demotion failed");
5710 }
5711 if (va_next > eva)
5712 va_next = eva;
5713 for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5714 sva += PAGE_SIZE) {
5715 MPASS(pte == pmap_pte(pmap, sva));
5716 if ((be64toh(*pte) & PG_V) == 0)
5717 continue;
5718 if ((be64toh(*pte) & PG_W) == 0)
5719 panic("pmap_unwire: pte %#jx is missing PG_W",
5720 (uintmax_t)(be64toh(*pte)));
5721
5722 /*
5723 * PG_W must be cleared atomically. Although the pmap
5724 * lock synchronizes access to PG_W, another processor
5725 * could be setting PG_M and/or PG_A concurrently.
5726 */
5727 atomic_clear_long(pte, htobe64(PG_W));
5728 pmap->pm_stats.wired_count--;
5729 }
5730 }
5731 PMAP_UNLOCK(pmap);
5732 }
5733
5734 void
5735 mmu_radix_zero_page(vm_page_t m)
5736 {
5737 vm_offset_t addr;
5738
5739 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5740 addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5741 pagezero(addr);
5742 }
5743
5744 void
5745 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5746 {
5747 caddr_t addr;
5748
5749 CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5750 MPASS(off + size <= PAGE_SIZE);
5751 addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5752 memset(addr + off, 0, size);
5753 }
5754
5755 static int
5756 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5757 {
5758 pml3_entry_t *l3ep;
5759 pt_entry_t pte;
5760 vm_paddr_t pa;
5761 int val;
5762
5763 CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5764 PMAP_LOCK(pmap);
5765
5766 l3ep = pmap_pml3e(pmap, addr);
5767 if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5768 if (be64toh(*l3ep) & RPTE_LEAF) {
5769 pte = be64toh(*l3ep);
5770 /* Compute the physical address of the 4KB page. */
5771 pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5772 PG_FRAME;
5773 val = MINCORE_PSIND(1);
5774 } else {
5775 /* Native endian PTE, do not pass to functions */
5776 pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5777 pa = pte & PG_FRAME;
5778 val = 0;
5779 }
5780 } else {
5781 pte = 0;
5782 pa = 0;
5783 val = 0;
5784 }
5785 if ((pte & PG_V) != 0) {
5786 val |= MINCORE_INCORE;
5787 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5788 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5789 if ((pte & PG_A) != 0)
5790 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5791 }
5792 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5793 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5794 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5795 *locked_pa = pa;
5796 }
5797 PMAP_UNLOCK(pmap);
5798 return (val);
5799 }
5800
5801 void
5802 mmu_radix_activate(struct thread *td)
5803 {
5804 pmap_t pmap;
5805 uint32_t curpid;
5806
5807 CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5808 critical_enter();
5809 pmap = vmspace_pmap(td->td_proc->p_vmspace);
5810 curpid = mfspr(SPR_PID);
5811 if (pmap->pm_pid > isa3_base_pid &&
5812 curpid != pmap->pm_pid) {
5813 mmu_radix_pid_set(pmap);
5814 }
5815 critical_exit();
5816 }
5817
5818 /*
5819 * Increase the starting virtual address of the given mapping if a
5820 * different alignment might result in more superpage mappings.
5821 */
5822 void
5823 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5824 vm_offset_t *addr, vm_size_t size)
5825 {
5826
5827 CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5828 size);
5829 vm_offset_t superpage_offset;
5830
5831 if (size < L3_PAGE_SIZE)
5832 return;
5833 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5834 offset += ptoa(object->pg_color);
5835 superpage_offset = offset & L3_PAGE_MASK;
5836 if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5837 (*addr & L3_PAGE_MASK) == superpage_offset)
5838 return;
5839 if ((*addr & L3_PAGE_MASK) < superpage_offset)
5840 *addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5841 else
5842 *addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5843 }
5844
5845 static void *
5846 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5847 {
5848 vm_offset_t va, tmpva, ppa, offset;
5849
5850 ppa = trunc_page(pa);
5851 offset = pa & PAGE_MASK;
5852 size = roundup2(offset + size, PAGE_SIZE);
5853 if (pa < powerpc_ptob(Maxmem))
5854 panic("bad pa: %#lx less than Maxmem %#lx\n",
5855 pa, powerpc_ptob(Maxmem));
5856 va = kva_alloc(size);
5857 if (bootverbose)
5858 printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5859 KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5860
5861 if (!va)
5862 panic("%s: Couldn't alloc kernel virtual memory", __func__);
5863
5864 for (tmpva = va; size > 0;) {
5865 mmu_radix_kenter_attr(tmpva, ppa, attr);
5866 size -= PAGE_SIZE;
5867 tmpva += PAGE_SIZE;
5868 ppa += PAGE_SIZE;
5869 }
5870 ptesync();
5871
5872 return ((void *)(va + offset));
5873 }
5874
5875 static void *
5876 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5877 {
5878
5879 CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5880
5881 return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5882 }
5883
5884 void
5885 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5886 {
5887
5888 CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5889 m->md.mdpg_cache_attrs = ma;
5890
5891 /*
5892 * If "m" is a normal page, update its direct mapping. This update
5893 * can be relied upon to perform any cache operations that are
5894 * required for data coherence.
5895 */
5896 if ((m->flags & PG_FICTITIOUS) == 0 &&
5897 mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5898 PAGE_SIZE, m->md.mdpg_cache_attrs))
5899 panic("memory attribute change on the direct map failed");
5900 }
5901
5902 static void
5903 mmu_radix_unmapdev(void *p, vm_size_t size)
5904 {
5905 vm_offset_t offset, va;
5906
5907 CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, p, size);
5908
5909 /* If we gave a direct map region in pmap_mapdev, do nothing */
5910 va = (vm_offset_t)p;
5911 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5912 return;
5913
5914 offset = va & PAGE_MASK;
5915 size = round_page(offset + size);
5916 va = trunc_page(va);
5917
5918 if (pmap_initialized) {
5919 mmu_radix_qremove(va, atop(size));
5920 kva_free(va, size);
5921 }
5922 }
5923
5924 static __inline void
5925 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5926 {
5927 uint64_t opte, npte;
5928
5929 /*
5930 * The cache mode bits are all in the low 32-bits of the
5931 * PTE, so we can just spin on updating the low 32-bits.
5932 */
5933 do {
5934 opte = be64toh(*pte);
5935 npte = opte & ~mask;
5936 npte |= cache_bits;
5937 } while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5938 }
5939
5940 /*
5941 * Tries to demote a 1GB page mapping.
5942 */
5943 static boolean_t
5944 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5945 {
5946 pml2_entry_t oldpdpe;
5947 pml3_entry_t *firstpde, newpde, *pde;
5948 vm_paddr_t pdpgpa;
5949 vm_page_t pdpg;
5950
5951 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5952 oldpdpe = be64toh(*l2e);
5953 KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5954 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5955 pdpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
5956 if (pdpg == NULL) {
5957 CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5958 " in pmap %p", va, pmap);
5959 return (FALSE);
5960 }
5961 pdpg->pindex = va >> L2_PAGE_SIZE_SHIFT;
5962 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5963 firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5964 KASSERT((oldpdpe & PG_A) != 0,
5965 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5966 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5967 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5968 newpde = oldpdpe;
5969
5970 /*
5971 * Initialize the page directory page.
5972 */
5973 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5974 *pde = htobe64(newpde);
5975 newpde += L3_PAGE_SIZE;
5976 }
5977
5978 /*
5979 * Demote the mapping.
5980 */
5981 pde_store(l2e, pdpgpa);
5982
5983 /*
5984 * Flush PWC --- XXX revisit
5985 */
5986 pmap_invalidate_all(pmap);
5987
5988 counter_u64_add(pmap_l2e_demotions, 1);
5989 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5990 " in pmap %p", va, pmap);
5991 return (TRUE);
5992 }
5993
5994 vm_paddr_t
5995 mmu_radix_kextract(vm_offset_t va)
5996 {
5997 pml3_entry_t l3e;
5998 vm_paddr_t pa;
5999
6000 CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6001 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6002 pa = DMAP_TO_PHYS(va);
6003 } else {
6004 /* Big-endian PTE on stack */
6005 l3e = *pmap_pml3e(kernel_pmap, va);
6006 if (be64toh(l3e) & RPTE_LEAF) {
6007 pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6008 pa |= (va & L3_PAGE_MASK);
6009 } else {
6010 /*
6011 * Beware of a concurrent promotion that changes the
6012 * PDE at this point! For example, vtopte() must not
6013 * be used to access the PTE because it would use the
6014 * new PDE. It is, however, safe to use the old PDE
6015 * because the page table page is preserved by the
6016 * promotion.
6017 */
6018 pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6019 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6020 pa |= (va & PAGE_MASK);
6021 }
6022 }
6023 return (pa);
6024 }
6025
6026 static pt_entry_t
6027 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6028 {
6029
6030 if (ma != VM_MEMATTR_DEFAULT) {
6031 return pmap_cache_bits(ma);
6032 }
6033
6034 /*
6035 * Assume the page is cache inhibited and access is guarded unless
6036 * it's in our available memory array.
6037 */
6038 for (int i = 0; i < pregions_sz; i++) {
6039 if ((pa >= pregions[i].mr_start) &&
6040 (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6041 return (RPTE_ATTR_MEM);
6042 }
6043 return (RPTE_ATTR_GUARDEDIO);
6044 }
6045
6046 static void
6047 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6048 {
6049 pt_entry_t *pte, pteval;
6050 uint64_t cache_bits;
6051
6052 pte = kvtopte(va);
6053 MPASS(pte != NULL);
6054 pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6055 cache_bits = mmu_radix_calc_wimg(pa, ma);
6056 pte_store(pte, pteval | cache_bits);
6057 }
6058
6059 void
6060 mmu_radix_kremove(vm_offset_t va)
6061 {
6062 pt_entry_t *pte;
6063
6064 CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6065
6066 pte = kvtopte(va);
6067 pte_clear(pte);
6068 }
6069
6070 int
6071 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6072 int *is_user, vm_offset_t *decoded)
6073 {
6074
6075 CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6076 *decoded = addr;
6077 *is_user = (addr < VM_MAXUSER_ADDRESS);
6078 return (0);
6079 }
6080
6081 static boolean_t
6082 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6083 {
6084
6085 CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6086 return (mem_valid(pa, size));
6087 }
6088
6089 static void
6090 mmu_radix_scan_init(void)
6091 {
6092
6093 CTR1(KTR_PMAP, "%s()", __func__);
6094 UNIMPLEMENTED();
6095 }
6096
6097 static void
6098 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6099 void **va)
6100 {
6101 CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6102 UNIMPLEMENTED();
6103 }
6104
6105 vm_offset_t
6106 mmu_radix_quick_enter_page(vm_page_t m)
6107 {
6108 vm_paddr_t paddr;
6109
6110 CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6111 paddr = VM_PAGE_TO_PHYS(m);
6112 return (PHYS_TO_DMAP(paddr));
6113 }
6114
6115 void
6116 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6117 {
6118 /* no work to do here */
6119 CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6120 }
6121
6122 static void
6123 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6124 {
6125 cpu_flush_dcache((void *)sva, eva - sva);
6126 }
6127
6128 int
6129 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6130 vm_memattr_t mode)
6131 {
6132 int error;
6133
6134 CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6135 PMAP_LOCK(kernel_pmap);
6136 error = pmap_change_attr_locked(va, size, mode, true);
6137 PMAP_UNLOCK(kernel_pmap);
6138 return (error);
6139 }
6140
6141 static int
6142 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6143 {
6144 vm_offset_t base, offset, tmpva;
6145 vm_paddr_t pa_start, pa_end, pa_end1;
6146 pml2_entry_t *l2e;
6147 pml3_entry_t *l3e;
6148 pt_entry_t *pte;
6149 int cache_bits, error;
6150 boolean_t changed;
6151
6152 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6153 base = trunc_page(va);
6154 offset = va & PAGE_MASK;
6155 size = round_page(offset + size);
6156
6157 /*
6158 * Only supported on kernel virtual addresses, including the direct
6159 * map but excluding the recursive map.
6160 */
6161 if (base < DMAP_MIN_ADDRESS)
6162 return (EINVAL);
6163
6164 cache_bits = pmap_cache_bits(mode);
6165 changed = FALSE;
6166
6167 /*
6168 * Pages that aren't mapped aren't supported. Also break down 2MB pages
6169 * into 4KB pages if required.
6170 */
6171 for (tmpva = base; tmpva < base + size; ) {
6172 l2e = pmap_pml2e(kernel_pmap, tmpva);
6173 if (l2e == NULL || *l2e == 0)
6174 return (EINVAL);
6175 if (be64toh(*l2e) & RPTE_LEAF) {
6176 /*
6177 * If the current 1GB page already has the required
6178 * memory type, then we need not demote this page. Just
6179 * increment tmpva to the next 1GB page frame.
6180 */
6181 if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6182 tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6183 continue;
6184 }
6185
6186 /*
6187 * If the current offset aligns with a 1GB page frame
6188 * and there is at least 1GB left within the range, then
6189 * we need not break down this page into 2MB pages.
6190 */
6191 if ((tmpva & L2_PAGE_MASK) == 0 &&
6192 tmpva + L2_PAGE_MASK < base + size) {
6193 tmpva += L2_PAGE_MASK;
6194 continue;
6195 }
6196 if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6197 return (ENOMEM);
6198 }
6199 l3e = pmap_l2e_to_l3e(l2e, tmpva);
6200 KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6201 tmpva, l2e));
6202 if (*l3e == 0)
6203 return (EINVAL);
6204 if (be64toh(*l3e) & RPTE_LEAF) {
6205 /*
6206 * If the current 2MB page already has the required
6207 * memory type, then we need not demote this page. Just
6208 * increment tmpva to the next 2MB page frame.
6209 */
6210 if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6211 tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6212 continue;
6213 }
6214
6215 /*
6216 * If the current offset aligns with a 2MB page frame
6217 * and there is at least 2MB left within the range, then
6218 * we need not break down this page into 4KB pages.
6219 */
6220 if ((tmpva & L3_PAGE_MASK) == 0 &&
6221 tmpva + L3_PAGE_MASK < base + size) {
6222 tmpva += L3_PAGE_SIZE;
6223 continue;
6224 }
6225 if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6226 return (ENOMEM);
6227 }
6228 pte = pmap_l3e_to_pte(l3e, tmpva);
6229 if (*pte == 0)
6230 return (EINVAL);
6231 tmpva += PAGE_SIZE;
6232 }
6233 error = 0;
6234
6235 /*
6236 * Ok, all the pages exist, so run through them updating their
6237 * cache mode if required.
6238 */
6239 pa_start = pa_end = 0;
6240 for (tmpva = base; tmpva < base + size; ) {
6241 l2e = pmap_pml2e(kernel_pmap, tmpva);
6242 if (be64toh(*l2e) & RPTE_LEAF) {
6243 if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6244 pmap_pte_attr(l2e, cache_bits,
6245 RPTE_ATTR_MASK);
6246 changed = TRUE;
6247 }
6248 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6249 (*l2e & PG_PS_FRAME) < dmaplimit) {
6250 if (pa_start == pa_end) {
6251 /* Start physical address run. */
6252 pa_start = be64toh(*l2e) & PG_PS_FRAME;
6253 pa_end = pa_start + L2_PAGE_SIZE;
6254 } else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6255 pa_end += L2_PAGE_SIZE;
6256 else {
6257 /* Run ended, update direct map. */
6258 error = pmap_change_attr_locked(
6259 PHYS_TO_DMAP(pa_start),
6260 pa_end - pa_start, mode, flush);
6261 if (error != 0)
6262 break;
6263 /* Start physical address run. */
6264 pa_start = be64toh(*l2e) & PG_PS_FRAME;
6265 pa_end = pa_start + L2_PAGE_SIZE;
6266 }
6267 }
6268 tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6269 continue;
6270 }
6271 l3e = pmap_l2e_to_l3e(l2e, tmpva);
6272 if (be64toh(*l3e) & RPTE_LEAF) {
6273 if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6274 pmap_pte_attr(l3e, cache_bits,
6275 RPTE_ATTR_MASK);
6276 changed = TRUE;
6277 }
6278 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6279 (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6280 if (pa_start == pa_end) {
6281 /* Start physical address run. */
6282 pa_start = be64toh(*l3e) & PG_PS_FRAME;
6283 pa_end = pa_start + L3_PAGE_SIZE;
6284 } else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6285 pa_end += L3_PAGE_SIZE;
6286 else {
6287 /* Run ended, update direct map. */
6288 error = pmap_change_attr_locked(
6289 PHYS_TO_DMAP(pa_start),
6290 pa_end - pa_start, mode, flush);
6291 if (error != 0)
6292 break;
6293 /* Start physical address run. */
6294 pa_start = be64toh(*l3e) & PG_PS_FRAME;
6295 pa_end = pa_start + L3_PAGE_SIZE;
6296 }
6297 }
6298 tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6299 } else {
6300 pte = pmap_l3e_to_pte(l3e, tmpva);
6301 if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6302 pmap_pte_attr(pte, cache_bits,
6303 RPTE_ATTR_MASK);
6304 changed = TRUE;
6305 }
6306 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6307 (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6308 if (pa_start == pa_end) {
6309 /* Start physical address run. */
6310 pa_start = be64toh(*pte) & PG_FRAME;
6311 pa_end = pa_start + PAGE_SIZE;
6312 } else if (pa_end == (be64toh(*pte) & PG_FRAME))
6313 pa_end += PAGE_SIZE;
6314 else {
6315 /* Run ended, update direct map. */
6316 error = pmap_change_attr_locked(
6317 PHYS_TO_DMAP(pa_start),
6318 pa_end - pa_start, mode, flush);
6319 if (error != 0)
6320 break;
6321 /* Start physical address run. */
6322 pa_start = be64toh(*pte) & PG_FRAME;
6323 pa_end = pa_start + PAGE_SIZE;
6324 }
6325 }
6326 tmpva += PAGE_SIZE;
6327 }
6328 }
6329 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6330 pa_end1 = MIN(pa_end, dmaplimit);
6331 if (pa_start != pa_end1)
6332 error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6333 pa_end1 - pa_start, mode, flush);
6334 }
6335
6336 /*
6337 * Flush CPU caches if required to make sure any data isn't cached that
6338 * shouldn't be, etc.
6339 */
6340 if (changed) {
6341 pmap_invalidate_all(kernel_pmap);
6342
6343 if (flush)
6344 pmap_invalidate_cache_range(base, tmpva);
6345 }
6346 return (error);
6347 }
6348
6349 /*
6350 * Allocate physical memory for the vm_page array and map it into KVA,
6351 * attempting to back the vm_pages with domain-local memory.
6352 */
6353 void
6354 mmu_radix_page_array_startup(long pages)
6355 {
6356 #ifdef notyet
6357 pml2_entry_t *l2e;
6358 pml3_entry_t *pde;
6359 pml3_entry_t newl3;
6360 vm_offset_t va;
6361 long pfn;
6362 int domain, i;
6363 #endif
6364 vm_paddr_t pa;
6365 vm_offset_t start, end;
6366
6367 vm_page_array_size = pages;
6368
6369 start = VM_MIN_KERNEL_ADDRESS;
6370 end = start + pages * sizeof(struct vm_page);
6371
6372 pa = vm_phys_early_alloc(0, end - start);
6373
6374 start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6375 #ifdef notyet
6376 /* TODO: NUMA vm_page_array. Blocked out until then (copied from amd64). */
6377 for (va = start; va < end; va += L3_PAGE_SIZE) {
6378 pfn = first_page + (va - start) / sizeof(struct vm_page);
6379 domain = vm_phys_domain(ptoa(pfn));
6380 l2e = pmap_pml2e(kernel_pmap, va);
6381 if ((be64toh(*l2e) & PG_V) == 0) {
6382 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6383 dump_add_page(pa);
6384 pagezero(PHYS_TO_DMAP(pa));
6385 pde_store(l2e, (pml2_entry_t)pa);
6386 }
6387 pde = pmap_l2e_to_l3e(l2e, va);
6388 if ((be64toh(*pde) & PG_V) != 0)
6389 panic("Unexpected pde %p", pde);
6390 pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6391 for (i = 0; i < NPDEPG; i++)
6392 dump_add_page(pa + i * PAGE_SIZE);
6393 newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6394 pte_store(pde, newl3);
6395 }
6396 #endif
6397 vm_page_array = (vm_page_t)start;
6398 }
6399
6400 #ifdef DDB
6401 #include <sys/kdb.h>
6402 #include <ddb/ddb.h>
6403
6404 static void
6405 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6406 {
6407 pml1_entry_t *l1e;
6408 pml2_entry_t *l2e;
6409 pml3_entry_t *l3e;
6410 pt_entry_t *pte;
6411
6412 l1e = &l1[pmap_pml1e_index(va)];
6413 db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6414 if ((be64toh(*l1e) & PG_V) == 0) {
6415 db_printf("\n");
6416 return;
6417 }
6418 l2e = pmap_l1e_to_l2e(l1e, va);
6419 db_printf(" l2e %#016lx", be64toh(*l2e));
6420 if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6421 db_printf("\n");
6422 return;
6423 }
6424 l3e = pmap_l2e_to_l3e(l2e, va);
6425 db_printf(" l3e %#016lx", be64toh(*l3e));
6426 if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6427 db_printf("\n");
6428 return;
6429 }
6430 pte = pmap_l3e_to_pte(l3e, va);
6431 db_printf(" pte %#016lx\n", be64toh(*pte));
6432 }
6433
6434 void
6435 pmap_page_print_mappings(vm_page_t m)
6436 {
6437 pmap_t pmap;
6438 pv_entry_t pv;
6439
6440 db_printf("page %p(%lx)\n", m, m->phys_addr);
6441 /* need to elide locks if running in ddb */
6442 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6443 db_printf("pv: %p ", pv);
6444 db_printf("va: %#016lx ", pv->pv_va);
6445 pmap = PV_PMAP(pv);
6446 db_printf("pmap %p ", pmap);
6447 if (pmap != NULL) {
6448 db_printf("asid: %lu\n", pmap->pm_pid);
6449 pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6450 }
6451 }
6452 }
6453
6454 DB_SHOW_COMMAND(pte, pmap_print_pte)
6455 {
6456 vm_offset_t va;
6457 pmap_t pmap;
6458
6459 if (!have_addr) {
6460 db_printf("show pte addr\n");
6461 return;
6462 }
6463 va = (vm_offset_t)addr;
6464
6465 if (va >= DMAP_MIN_ADDRESS)
6466 pmap = kernel_pmap;
6467 else if (kdb_thread != NULL)
6468 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6469 else
6470 pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6471
6472 pmap_pte_walk(pmap->pm_pml1, va);
6473 }
6474
6475 #endif
Cache object: af8e0c182b88ad03311107bcf7839987
|