The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/aim/slb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2010 Nathan Whitehorn
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  *
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  *
   26  * $FreeBSD$
   27  */
   28 
   29 #include <sys/param.h>
   30 #include <sys/kernel.h>
   31 #include <sys/lock.h>
   32 #include <sys/mutex.h>
   33 #include <sys/proc.h>
   34 #include <sys/systm.h>
   35 
   36 #include <vm/vm.h>
   37 #include <vm/pmap.h>
   38 #include <vm/uma.h>
   39 #include <vm/vm.h>
   40 #include <vm/vm_map.h>
   41 #include <vm/vm_page.h>
   42 #include <vm/vm_pageout.h>
   43 
   44 #include <machine/md_var.h>
   45 #include <machine/platform.h>
   46 #include <machine/pmap.h>
   47 #include <machine/vmparam.h>
   48 
   49 uintptr_t moea64_get_unique_vsid(void);
   50 void moea64_release_vsid(uint64_t vsid);
   51 static void slb_zone_init(void *);
   52 
   53 static uma_zone_t slbt_zone;
   54 static uma_zone_t slb_cache_zone;
   55 int n_slbs = 64;
   56 
   57 SYSINIT(slb_zone_init, SI_SUB_KMEM, SI_ORDER_ANY, slb_zone_init, NULL);
   58 
   59 struct slbtnode {
   60         uint16_t        ua_alloc;
   61         uint8_t         ua_level;
   62         /* Only 36 bits needed for full 64-bit address space. */
   63         uint64_t        ua_base;
   64         union {
   65                 struct slbtnode *ua_child[16];
   66                 struct slb      slb_entries[16];
   67         } u;
   68 };
   69 
   70 /*
   71  * For a full 64-bit address space, there are 36 bits in play in an
   72  * esid, so 8 levels, with the leaf being at level 0.
   73  *
   74  * |3333|3322|2222|2222|1111|1111|11  |    |    |  esid
   75  * |5432|1098|7654|3210|9876|5432|1098|7654|3210|  bits
   76  * +----+----+----+----+----+----+----+----+----+--------
   77  * | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | level
   78  */
   79 #define UAD_ROOT_LEVEL  8
   80 #define UAD_LEAF_LEVEL  0
   81 
   82 static inline int
   83 esid2idx(uint64_t esid, int level)
   84 {
   85         int shift;
   86 
   87         shift = level * 4;
   88         return ((esid >> shift) & 0xF);
   89 }
   90 
   91 /*
   92  * The ua_base field should have 0 bits after the first 4*(level+1)
   93  * bits; i.e. only
   94  */
   95 #define uad_baseok(ua)                          \
   96         (esid2base(ua->ua_base, ua->ua_level) == ua->ua_base)
   97 
   98 
   99 static inline uint64_t
  100 esid2base(uint64_t esid, int level)
  101 {
  102         uint64_t mask;
  103         int shift;
  104 
  105         shift = (level + 1) * 4;
  106         mask = ~((1ULL << shift) - 1);
  107         return (esid & mask);
  108 }
  109 
  110 /*
  111  * Allocate a new leaf node for the specified esid/vmhandle from the
  112  * parent node.
  113  */
  114 static struct slb *
  115 make_new_leaf(uint64_t esid, uint64_t slbv, struct slbtnode *parent)
  116 {
  117         struct slbtnode *child;
  118         struct slb *retval;
  119         int idx;
  120 
  121         idx = esid2idx(esid, parent->ua_level);
  122         KASSERT(parent->u.ua_child[idx] == NULL, ("Child already exists!"));
  123 
  124         /* unlock and M_WAITOK and loop? */
  125         child = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
  126         KASSERT(child != NULL, ("unhandled NULL case"));
  127 
  128         child->ua_level = UAD_LEAF_LEVEL;
  129         child->ua_base = esid2base(esid, child->ua_level);
  130         idx = esid2idx(esid, child->ua_level);
  131         child->u.slb_entries[idx].slbv = slbv;
  132         child->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
  133         setbit(&child->ua_alloc, idx);
  134 
  135         retval = &child->u.slb_entries[idx];
  136 
  137         /*
  138          * The above stores must be visible before the next one, so
  139          * that a lockless searcher always sees a valid path through
  140          * the tree.
  141          */
  142         powerpc_sync();
  143 
  144         idx = esid2idx(esid, parent->ua_level);
  145         parent->u.ua_child[idx] = child;
  146         setbit(&parent->ua_alloc, idx);
  147 
  148         return (retval);
  149 }
  150 
  151 /*
  152  * Allocate a new intermediate node to fit between the parent and
  153  * esid.
  154  */
  155 static struct slbtnode*
  156 make_intermediate(uint64_t esid, struct slbtnode *parent)
  157 {
  158         struct slbtnode *child, *inter;
  159         int idx, level;
  160 
  161         idx = esid2idx(esid, parent->ua_level);
  162         child = parent->u.ua_child[idx];
  163         KASSERT(esid2base(esid, child->ua_level) != child->ua_base,
  164             ("No need for an intermediate node?"));
  165 
  166         /*
  167          * Find the level where the existing child and our new esid
  168          * meet.  It must be lower than parent->ua_level or we would
  169          * have chosen a different index in parent.
  170          */
  171         level = child->ua_level + 1;
  172         while (esid2base(esid, level) !=
  173             esid2base(child->ua_base, level))
  174                 level++;
  175         KASSERT(level < parent->ua_level,
  176             ("Found splitting level %d for %09jx and %09jx, "
  177             "but it's the same as %p's",
  178             level, esid, child->ua_base, parent));
  179 
  180         /* unlock and M_WAITOK and loop? */
  181         inter = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
  182         KASSERT(inter != NULL, ("unhandled NULL case"));
  183 
  184         /* Set up intermediate node to point to child ... */
  185         inter->ua_level = level;
  186         inter->ua_base = esid2base(esid, inter->ua_level);
  187         idx = esid2idx(child->ua_base, inter->ua_level);
  188         inter->u.ua_child[idx] = child;
  189         setbit(&inter->ua_alloc, idx);
  190         powerpc_sync();
  191 
  192         /* Set up parent to point to intermediate node ... */
  193         idx = esid2idx(inter->ua_base, parent->ua_level);
  194         parent->u.ua_child[idx] = inter;
  195         setbit(&parent->ua_alloc, idx);
  196 
  197         return (inter);
  198 }
  199 
  200 uint64_t
  201 kernel_va_to_slbv(vm_offset_t va)
  202 {
  203         uint64_t slbv;
  204 
  205         /* Set kernel VSID to deterministic value */
  206         slbv = (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)) << SLBV_VSID_SHIFT;
  207 
  208         /* Figure out if this is a large-page mapping */
  209         if (hw_direct_map && va < VM_MIN_KERNEL_ADDRESS) {
  210                 /*
  211                  * XXX: If we have set up a direct map, assumes
  212                  * all physical memory is mapped with large pages.
  213                  */
  214                 if (mem_valid(va, 0) == 0)
  215                         slbv |= SLBV_L;
  216         }
  217                 
  218         return (slbv);
  219 }
  220 
  221 struct slb *
  222 user_va_to_slb_entry(pmap_t pm, vm_offset_t va)
  223 {
  224         uint64_t esid = va >> ADDR_SR_SHFT;
  225         struct slbtnode *ua;
  226         int idx;
  227 
  228         ua = pm->pm_slb_tree_root;
  229 
  230         for (;;) {
  231                 KASSERT(uad_baseok(ua), ("uad base %016jx level %d bad!",
  232                     ua->ua_base, ua->ua_level));
  233                 idx = esid2idx(esid, ua->ua_level);
  234 
  235                 /*
  236                  * This code is specific to ppc64 where a load is
  237                  * atomic, so no need for atomic_load macro.
  238                  */
  239                 if (ua->ua_level == UAD_LEAF_LEVEL)
  240                         return ((ua->u.slb_entries[idx].slbe & SLBE_VALID) ?
  241                             &ua->u.slb_entries[idx] : NULL);
  242 
  243                 ua = ua->u.ua_child[idx];
  244                 if (ua == NULL ||
  245                     esid2base(esid, ua->ua_level) != ua->ua_base)
  246                         return (NULL);
  247         }
  248 
  249         return (NULL);
  250 }
  251 
  252 uint64_t
  253 va_to_vsid(pmap_t pm, vm_offset_t va)
  254 {
  255         struct slb *entry;
  256 
  257         /* Shortcut kernel case */
  258         if (pm == kernel_pmap)
  259                 return (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT));
  260 
  261         /*
  262          * If there is no vsid for this VA, we need to add a new entry
  263          * to the PMAP's segment table.
  264          */
  265 
  266         entry = user_va_to_slb_entry(pm, va);
  267 
  268         if (entry == NULL)
  269                 return (allocate_user_vsid(pm,
  270                     (uintptr_t)va >> ADDR_SR_SHFT, 0));
  271 
  272         return ((entry->slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT);
  273 }
  274 
  275 uint64_t
  276 allocate_user_vsid(pmap_t pm, uint64_t esid, int large)
  277 {
  278         uint64_t vsid, slbv;
  279         struct slbtnode *ua, *next, *inter;
  280         struct slb *slb;
  281         int idx;
  282 
  283         KASSERT(pm != kernel_pmap, ("Attempting to allocate a kernel VSID"));
  284 
  285         PMAP_LOCK_ASSERT(pm, MA_OWNED);
  286         vsid = moea64_get_unique_vsid();
  287 
  288         slbv = vsid << SLBV_VSID_SHIFT;
  289         if (large)
  290                 slbv |= SLBV_L;
  291 
  292         ua = pm->pm_slb_tree_root;
  293 
  294         /* Descend to the correct leaf or NULL pointer. */
  295         for (;;) {
  296                 KASSERT(uad_baseok(ua),
  297                    ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
  298                 idx = esid2idx(esid, ua->ua_level);
  299 
  300                 if (ua->ua_level == UAD_LEAF_LEVEL) {
  301                         ua->u.slb_entries[idx].slbv = slbv;
  302                         eieio();
  303                         ua->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT)
  304                             | SLBE_VALID;
  305                         setbit(&ua->ua_alloc, idx);
  306                         slb = &ua->u.slb_entries[idx];
  307                         break;
  308                 }
  309 
  310                 next = ua->u.ua_child[idx];
  311                 if (next == NULL) {
  312                         slb = make_new_leaf(esid, slbv, ua);
  313                         break;
  314                 }
  315 
  316                 /*
  317                  * Check if the next item down has an okay ua_base.
  318                  * If not, we need to allocate an intermediate node.
  319                  */
  320                 if (esid2base(esid, next->ua_level) != next->ua_base) {
  321                         inter = make_intermediate(esid, ua);
  322                         slb = make_new_leaf(esid, slbv, inter);
  323                         break;
  324                 }
  325 
  326                 ua = next;
  327         }
  328 
  329         /*
  330          * Someone probably wants this soon, and it may be a wired
  331          * SLB mapping, so pre-spill this entry.
  332          */
  333         eieio();
  334         slb_insert_user(pm, slb);
  335 
  336         return (vsid);
  337 }
  338 
  339 void
  340 free_vsid(pmap_t pm, uint64_t esid, int large)
  341 {
  342         struct slbtnode *ua;
  343         int idx;
  344 
  345         PMAP_LOCK_ASSERT(pm, MA_OWNED);
  346 
  347         ua = pm->pm_slb_tree_root;
  348         /* Descend to the correct leaf. */
  349         for (;;) {
  350                 KASSERT(uad_baseok(ua),
  351                    ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
  352                 
  353                 idx = esid2idx(esid, ua->ua_level);
  354                 if (ua->ua_level == UAD_LEAF_LEVEL) {
  355                         ua->u.slb_entries[idx].slbv = 0;
  356                         eieio();
  357                         ua->u.slb_entries[idx].slbe = 0;
  358                         clrbit(&ua->ua_alloc, idx);
  359                         return;
  360                 }
  361 
  362                 ua = ua->u.ua_child[idx];
  363                 if (ua == NULL ||
  364                     esid2base(esid, ua->ua_level) != ua->ua_base) {
  365                         /* Perhaps just return instead of assert? */
  366                         KASSERT(0,
  367                             ("Asked to remove an entry that was never inserted!"));
  368                         return;
  369                 }
  370         }
  371 }
  372 
  373 static void
  374 free_slb_tree_node(struct slbtnode *ua)
  375 {
  376         int idx;
  377 
  378         for (idx = 0; idx < 16; idx++) {
  379                 if (ua->ua_level != UAD_LEAF_LEVEL) {
  380                         if (ua->u.ua_child[idx] != NULL)
  381                                 free_slb_tree_node(ua->u.ua_child[idx]);
  382                 } else {
  383                         if (ua->u.slb_entries[idx].slbv != 0)
  384                                 moea64_release_vsid(ua->u.slb_entries[idx].slbv
  385                                     >> SLBV_VSID_SHIFT);
  386                 }
  387         }
  388 
  389         uma_zfree(slbt_zone, ua);
  390 }
  391 
  392 void
  393 slb_free_tree(pmap_t pm)
  394 {
  395 
  396         free_slb_tree_node(pm->pm_slb_tree_root);
  397 }
  398 
  399 struct slbtnode *
  400 slb_alloc_tree(void)
  401 {
  402         struct slbtnode *root;
  403 
  404         root = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
  405         root->ua_level = UAD_ROOT_LEVEL;
  406 
  407         return (root);
  408 }
  409 
  410 /* Lock entries mapping kernel text and stacks */
  411 
  412 void
  413 slb_insert_kernel(uint64_t slbe, uint64_t slbv)
  414 {
  415         struct slb *slbcache;
  416         int i;
  417 
  418         /* We don't want to be preempted while modifying the kernel map */
  419         critical_enter();
  420 
  421         slbcache = PCPU_GET(slb);
  422 
  423         /* Check for an unused slot, abusing the user slot as a full flag */
  424         if (slbcache[USER_SLB_SLOT].slbe == 0) {
  425                 for (i = 0; i < n_slbs; i++) {
  426                         if (i == USER_SLB_SLOT)
  427                                 continue;
  428                         if (!(slbcache[i].slbe & SLBE_VALID)) 
  429                                 goto fillkernslb;
  430                 }
  431 
  432                 if (i == n_slbs)
  433                         slbcache[USER_SLB_SLOT].slbe = 1;
  434         }
  435 
  436         i = mftb() % n_slbs;
  437         if (i == USER_SLB_SLOT)
  438                         i = (i+1) % n_slbs;
  439 
  440 fillkernslb:
  441         KASSERT(i != USER_SLB_SLOT,
  442             ("Filling user SLB slot with a kernel mapping"));
  443         slbcache[i].slbv = slbv;
  444         slbcache[i].slbe = slbe | (uint64_t)i;
  445 
  446         /* If it is for this CPU, put it in the SLB right away */
  447         if (pmap_bootstrapped) {
  448                 /* slbie not required */
  449                 __asm __volatile ("slbmte %0, %1" :: 
  450                     "r"(slbcache[i].slbv), "r"(slbcache[i].slbe)); 
  451         }
  452 
  453         critical_exit();
  454 }
  455 
  456 void
  457 slb_insert_user(pmap_t pm, struct slb *slb)
  458 {
  459         int i;
  460 
  461         PMAP_LOCK_ASSERT(pm, MA_OWNED);
  462 
  463         if (pm->pm_slb_len < n_slbs) {
  464                 i = pm->pm_slb_len;
  465                 pm->pm_slb_len++;
  466         } else {
  467                 i = mftb() % n_slbs;
  468         }
  469 
  470         /* Note that this replacement is atomic with respect to trap_subr */
  471         pm->pm_slb[i] = slb;
  472 }
  473 
  474 static void *
  475 slb_uma_real_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  476 {
  477         static vm_offset_t realmax = 0;
  478         void *va;
  479         vm_page_t m;
  480         int pflags;
  481 
  482         if (realmax == 0)
  483                 realmax = platform_real_maxaddr();
  484 
  485         *flags = UMA_SLAB_PRIV;
  486         if ((wait & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT)
  487                 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
  488         else
  489                 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
  490         if (wait & M_ZERO)
  491                 pflags |= VM_ALLOC_ZERO;
  492 
  493         for (;;) {
  494                 m = vm_page_alloc_contig(NULL, 0, pflags, 1, 0, realmax,
  495                     PAGE_SIZE, PAGE_SIZE, VM_MEMATTR_DEFAULT);
  496                 if (m == NULL) {
  497                         if (wait & M_NOWAIT)
  498                                 return (NULL);
  499                         VM_WAIT;
  500                 } else
  501                         break;
  502         }
  503 
  504         va = (void *) VM_PAGE_TO_PHYS(m);
  505 
  506         if (!hw_direct_map)
  507                 pmap_kenter((vm_offset_t)va, VM_PAGE_TO_PHYS(m));
  508 
  509         if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
  510                 bzero(va, PAGE_SIZE);
  511 
  512         return (va);
  513 }
  514 
  515 static void
  516 slb_zone_init(void *dummy)
  517 {
  518 
  519         slbt_zone = uma_zcreate("SLB tree node", sizeof(struct slbtnode),
  520             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
  521         slb_cache_zone = uma_zcreate("SLB cache",
  522             (n_slbs + 1)*sizeof(struct slb *), NULL, NULL, NULL, NULL,
  523             UMA_ALIGN_PTR, UMA_ZONE_VM);
  524 
  525         if (platform_real_maxaddr() != VM_MAX_ADDRESS) {
  526                 uma_zone_set_allocf(slb_cache_zone, slb_uma_real_alloc);
  527                 uma_zone_set_allocf(slbt_zone, slb_uma_real_alloc);
  528         }
  529 }
  530 
  531 struct slb **
  532 slb_alloc_user_cache(void)
  533 {
  534         return (uma_zalloc(slb_cache_zone, M_ZERO));
  535 }
  536 
  537 void
  538 slb_free_user_cache(struct slb **slb)
  539 {
  540         uma_zfree(slb_cache_zone, slb);
  541 }

Cache object: 2a56c8d06472e2d1cfccab87961ce03b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.