The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/booke/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
    5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
   20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  *
   28  * Some hw specific parts of this pmap were derived or influenced
   29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
   30  * a few other pmap modules from the FreeBSD tree.
   31  */
   32 
   33  /*
   34   * VM layout notes:
   35   *
   36   * Kernel and user threads run within one common virtual address space
   37   * defined by AS=0.
   38   *
   39   * 32-bit pmap:
   40   * Virtual address space layout:
   41   * -----------------------------
   42   * 0x0000_0000 - 0x7fff_ffff   : user process
   43   * 0x8000_0000 - 0xbfff_ffff   : pmap_mapdev()-ed area (PCI/PCIE etc.)
   44   * 0xc000_0000 - 0xc0ff_ffff   : kernel reserved
   45   *   0xc000_0000 - data_end    : kernel code+data, env, metadata etc.
   46   * 0xc100_0000 - 0xffff_ffff   : KVA
   47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
   48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
   49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
   50   *   0xc200_9000 - 0xfeef_ffff : actual free KVA space
   51   *
   52   * 64-bit pmap:
   53   * Virtual address space layout:
   54   * -----------------------------
   55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
   56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
   57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
   58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
   59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
   60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
   61   *               endkernel - msgbufp-1                : flat device tree
   62   *                 msgbufp - kernel_pdir-1            : message buffer
   63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
   64   *             kernel_pp2d - .                        : kernel pointers to page directory
   65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
   66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
   67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
   68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
   69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
   70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
   71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
   72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
   73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
   74   */
   75 
   76 #include <sys/cdefs.h>
   77 __FBSDID("$FreeBSD$");
   78 
   79 #include "opt_ddb.h"
   80 #include "opt_kstack_pages.h"
   81 
   82 #include <sys/param.h>
   83 #include <sys/conf.h>
   84 #include <sys/malloc.h>
   85 #include <sys/ktr.h>
   86 #include <sys/proc.h>
   87 #include <sys/user.h>
   88 #include <sys/queue.h>
   89 #include <sys/systm.h>
   90 #include <sys/kernel.h>
   91 #include <sys/kerneldump.h>
   92 #include <sys/linker.h>
   93 #include <sys/msgbuf.h>
   94 #include <sys/lock.h>
   95 #include <sys/mutex.h>
   96 #include <sys/rwlock.h>
   97 #include <sys/sched.h>
   98 #include <sys/smp.h>
   99 #include <sys/vmmeter.h>
  100 
  101 #include <vm/vm.h>
  102 #include <vm/vm_param.h>
  103 #include <vm/vm_page.h>
  104 #include <vm/vm_kern.h>
  105 #include <vm/vm_pageout.h>
  106 #include <vm/vm_extern.h>
  107 #include <vm/vm_object.h>
  108 #include <vm/vm_map.h>
  109 #include <vm/vm_pager.h>
  110 #include <vm/vm_phys.h>
  111 #include <vm/vm_pagequeue.h>
  112 #include <vm/vm_dumpset.h>
  113 #include <vm/uma.h>
  114 
  115 #include <machine/_inttypes.h>
  116 #include <machine/cpu.h>
  117 #include <machine/pcb.h>
  118 #include <machine/platform.h>
  119 
  120 #include <machine/tlb.h>
  121 #include <machine/spr.h>
  122 #include <machine/md_var.h>
  123 #include <machine/mmuvar.h>
  124 #include <machine/pmap.h>
  125 #include <machine/pte.h>
  126 
  127 #include <ddb/ddb.h>
  128 
  129 #define SPARSE_MAPDEV
  130 
  131 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
  132 #define POW2_MAPPINGS
  133 
  134 #ifdef  DEBUG
  135 #define debugf(fmt, args...) printf(fmt, ##args)
  136 #else
  137 #define debugf(fmt, args...)
  138 #endif
  139 
  140 #ifdef __powerpc64__
  141 #define PRI0ptrX        "016lx"
  142 #else
  143 #define PRI0ptrX        "08x"
  144 #endif
  145 
  146 #define TODO                    panic("%s: not implemented", __func__);
  147 
  148 extern unsigned char _etext[];
  149 extern unsigned char _end[];
  150 
  151 extern uint32_t *bootinfo;
  152 
  153 vm_paddr_t kernload;
  154 vm_offset_t kernstart;
  155 vm_size_t kernsize;
  156 
  157 /* Message buffer and tables. */
  158 static vm_offset_t data_start;
  159 static vm_size_t data_end;
  160 
  161 /* Phys/avail memory regions. */
  162 static struct mem_region *availmem_regions;
  163 static int availmem_regions_sz;
  164 static struct mem_region *physmem_regions;
  165 static int physmem_regions_sz;
  166 
  167 #ifndef __powerpc64__
  168 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
  169 static vm_offset_t zero_page_va;
  170 static struct mtx zero_page_mutex;
  171 
  172 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
  173 static vm_offset_t copy_page_src_va;
  174 static vm_offset_t copy_page_dst_va;
  175 static struct mtx copy_page_mutex;
  176 #endif
  177 
  178 static struct mtx tlbivax_mutex;
  179 
  180 /**************************************************************************/
  181 /* PMAP */
  182 /**************************************************************************/
  183 
  184 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
  185     vm_prot_t, u_int flags, int8_t psind);
  186 
  187 unsigned int kptbl_min;         /* Index of the first kernel ptbl. */
  188 static uma_zone_t ptbl_root_zone;
  189 
  190 /*
  191  * If user pmap is processed with mmu_booke_remove and the resident count
  192  * drops to 0, there are no more pages to remove, so we need not continue.
  193  */
  194 #define PMAP_REMOVE_DONE(pmap) \
  195         ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
  196 
  197 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
  198 extern int elf32_nxstack;
  199 #endif
  200 
  201 /**************************************************************************/
  202 /* TLB and TID handling */
  203 /**************************************************************************/
  204 
  205 /* Translation ID busy table */
  206 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
  207 
  208 /*
  209  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
  210  * core revisions and should be read from h/w registers during early config.
  211  */
  212 uint32_t tlb0_entries;
  213 uint32_t tlb0_ways;
  214 uint32_t tlb0_entries_per_way;
  215 uint32_t tlb1_entries;
  216 
  217 #define TLB0_ENTRIES            (tlb0_entries)
  218 #define TLB0_WAYS               (tlb0_ways)
  219 #define TLB0_ENTRIES_PER_WAY    (tlb0_entries_per_way)
  220 
  221 #define TLB1_ENTRIES (tlb1_entries)
  222 
  223 static tlbtid_t tid_alloc(struct pmap *);
  224 
  225 #ifdef DDB
  226 #ifdef __powerpc64__
  227 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
  228 #else
  229 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
  230 #endif
  231 #endif
  232 
  233 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
  234 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
  235 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
  236 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
  237 
  238 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
  239 
  240 static vm_size_t tsize2size(unsigned int);
  241 static unsigned int size2tsize(vm_size_t);
  242 static unsigned long ilog2(unsigned long);
  243 
  244 static void set_mas4_defaults(void);
  245 
  246 static inline void tlb0_flush_entry(vm_offset_t);
  247 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
  248 
  249 /**************************************************************************/
  250 /* Page table management */
  251 /**************************************************************************/
  252 
  253 static struct rwlock_padalign pvh_global_lock;
  254 
  255 /* Data for the pv entry allocation mechanism */
  256 static uma_zone_t pvzone;
  257 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
  258 
  259 #define PV_ENTRY_ZONE_MIN       2048    /* min pv entries in uma zone */
  260 
  261 #ifndef PMAP_SHPGPERPROC
  262 #define PMAP_SHPGPERPROC        200
  263 #endif
  264 
  265 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
  266 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
  267 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
  268 static pte_t *pte_find(pmap_t, vm_offset_t);
  269 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
  270 
  271 static pv_entry_t pv_alloc(void);
  272 static void pv_free(pv_entry_t);
  273 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
  274 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
  275 
  276 static void booke_pmap_init_qpages(void);
  277 
  278 static inline void tlb_miss_lock(void);
  279 static inline void tlb_miss_unlock(void);
  280 
  281 #ifdef SMP
  282 extern tlb_entry_t __boot_tlb1[];
  283 void pmap_bootstrap_ap(volatile uint32_t *);
  284 #endif
  285 
  286 /*
  287  * Kernel MMU interface
  288  */
  289 static void             mmu_booke_clear_modify(vm_page_t);
  290 static void             mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
  291     vm_size_t, vm_offset_t);
  292 static void             mmu_booke_copy_page(vm_page_t, vm_page_t);
  293 static void             mmu_booke_copy_pages(vm_page_t *,
  294     vm_offset_t, vm_page_t *, vm_offset_t, int);
  295 static int              mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
  296     vm_prot_t, u_int flags, int8_t psind);
  297 static void             mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
  298     vm_page_t, vm_prot_t);
  299 static void             mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
  300     vm_prot_t);
  301 static vm_paddr_t       mmu_booke_extract(pmap_t, vm_offset_t);
  302 static vm_page_t        mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
  303     vm_prot_t);
  304 static void             mmu_booke_init(void);
  305 static boolean_t        mmu_booke_is_modified(vm_page_t);
  306 static boolean_t        mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
  307 static boolean_t        mmu_booke_is_referenced(vm_page_t);
  308 static int              mmu_booke_ts_referenced(vm_page_t);
  309 static vm_offset_t      mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
  310     int);
  311 static int              mmu_booke_mincore(pmap_t, vm_offset_t,
  312     vm_paddr_t *);
  313 static void             mmu_booke_object_init_pt(pmap_t, vm_offset_t,
  314     vm_object_t, vm_pindex_t, vm_size_t);
  315 static boolean_t        mmu_booke_page_exists_quick(pmap_t, vm_page_t);
  316 static void             mmu_booke_page_init(vm_page_t);
  317 static int              mmu_booke_page_wired_mappings(vm_page_t);
  318 static int              mmu_booke_pinit(pmap_t);
  319 static void             mmu_booke_pinit0(pmap_t);
  320 static void             mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
  321     vm_prot_t);
  322 static void             mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
  323 static void             mmu_booke_qremove(vm_offset_t, int);
  324 static void             mmu_booke_release(pmap_t);
  325 static void             mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
  326 static void             mmu_booke_remove_all(vm_page_t);
  327 static void             mmu_booke_remove_write(vm_page_t);
  328 static void             mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
  329 static void             mmu_booke_zero_page(vm_page_t);
  330 static void             mmu_booke_zero_page_area(vm_page_t, int, int);
  331 static void             mmu_booke_activate(struct thread *);
  332 static void             mmu_booke_deactivate(struct thread *);
  333 static void             mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
  334 static void             *mmu_booke_mapdev(vm_paddr_t, vm_size_t);
  335 static void             *mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
  336 static void             mmu_booke_unmapdev(void *, vm_size_t);
  337 static vm_paddr_t       mmu_booke_kextract(vm_offset_t);
  338 static void             mmu_booke_kenter(vm_offset_t, vm_paddr_t);
  339 static void             mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
  340 static void             mmu_booke_kremove(vm_offset_t);
  341 static boolean_t        mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
  342 static void             mmu_booke_sync_icache(pmap_t, vm_offset_t,
  343     vm_size_t);
  344 static void             mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
  345     void **);
  346 static void             mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
  347     void *);
  348 static void             mmu_booke_scan_init(void);
  349 static vm_offset_t      mmu_booke_quick_enter_page(vm_page_t m);
  350 static void             mmu_booke_quick_remove_page(vm_offset_t addr);
  351 static int              mmu_booke_change_attr(vm_offset_t addr,
  352     vm_size_t sz, vm_memattr_t mode);
  353 static int              mmu_booke_decode_kernel_ptr(vm_offset_t addr,
  354     int *is_user, vm_offset_t *decoded_addr);
  355 static void             mmu_booke_page_array_startup(long);
  356 static boolean_t mmu_booke_page_is_mapped(vm_page_t m);
  357 static bool mmu_booke_ps_enabled(pmap_t pmap);
  358 
  359 static struct pmap_funcs mmu_booke_methods = {
  360         /* pmap dispatcher interface */
  361         .clear_modify = mmu_booke_clear_modify,
  362         .copy = mmu_booke_copy,
  363         .copy_page = mmu_booke_copy_page,
  364         .copy_pages = mmu_booke_copy_pages,
  365         .enter = mmu_booke_enter,
  366         .enter_object = mmu_booke_enter_object,
  367         .enter_quick = mmu_booke_enter_quick,
  368         .extract = mmu_booke_extract,
  369         .extract_and_hold = mmu_booke_extract_and_hold,
  370         .init = mmu_booke_init,
  371         .is_modified = mmu_booke_is_modified,
  372         .is_prefaultable = mmu_booke_is_prefaultable,
  373         .is_referenced = mmu_booke_is_referenced,
  374         .ts_referenced = mmu_booke_ts_referenced,
  375         .map = mmu_booke_map,
  376         .mincore = mmu_booke_mincore,
  377         .object_init_pt = mmu_booke_object_init_pt,
  378         .page_exists_quick = mmu_booke_page_exists_quick,
  379         .page_init = mmu_booke_page_init,
  380         .page_wired_mappings =  mmu_booke_page_wired_mappings,
  381         .pinit = mmu_booke_pinit,
  382         .pinit0 = mmu_booke_pinit0,
  383         .protect = mmu_booke_protect,
  384         .qenter = mmu_booke_qenter,
  385         .qremove = mmu_booke_qremove,
  386         .release = mmu_booke_release,
  387         .remove = mmu_booke_remove,
  388         .remove_all = mmu_booke_remove_all,
  389         .remove_write = mmu_booke_remove_write,
  390         .sync_icache = mmu_booke_sync_icache,
  391         .unwire = mmu_booke_unwire,
  392         .zero_page = mmu_booke_zero_page,
  393         .zero_page_area = mmu_booke_zero_page_area,
  394         .activate = mmu_booke_activate,
  395         .deactivate = mmu_booke_deactivate,
  396         .quick_enter_page =  mmu_booke_quick_enter_page,
  397         .quick_remove_page =  mmu_booke_quick_remove_page,
  398         .page_array_startup = mmu_booke_page_array_startup,
  399         .page_is_mapped = mmu_booke_page_is_mapped,
  400         .ps_enabled = mmu_booke_ps_enabled,
  401 
  402         /* Internal interfaces */
  403         .bootstrap = mmu_booke_bootstrap,
  404         .dev_direct_mapped = mmu_booke_dev_direct_mapped,
  405         .mapdev = mmu_booke_mapdev,
  406         .mapdev_attr = mmu_booke_mapdev_attr,
  407         .kenter = mmu_booke_kenter,
  408         .kenter_attr = mmu_booke_kenter_attr,
  409         .kextract = mmu_booke_kextract,
  410         .kremove = mmu_booke_kremove,
  411         .unmapdev = mmu_booke_unmapdev,
  412         .change_attr = mmu_booke_change_attr,
  413         .decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
  414 
  415         /* dumpsys() support */
  416         .dumpsys_map_chunk = mmu_booke_dumpsys_map,
  417         .dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
  418         .dumpsys_pa_init = mmu_booke_scan_init,
  419 };
  420 
  421 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
  422 
  423 #ifdef __powerpc64__
  424 #include "pmap_64.c"
  425 #else
  426 #include "pmap_32.c"
  427 #endif
  428 
  429 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
  430 
  431 static __inline uint32_t
  432 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
  433 {
  434         uint32_t attrib;
  435         int i;
  436 
  437         if (ma != VM_MEMATTR_DEFAULT) {
  438                 switch (ma) {
  439                 case VM_MEMATTR_UNCACHEABLE:
  440                         return (MAS2_I | MAS2_G);
  441                 case VM_MEMATTR_WRITE_COMBINING:
  442                 case VM_MEMATTR_WRITE_BACK:
  443                 case VM_MEMATTR_PREFETCHABLE:
  444                         return (MAS2_I);
  445                 case VM_MEMATTR_WRITE_THROUGH:
  446                         return (MAS2_W | MAS2_M);
  447                 case VM_MEMATTR_CACHEABLE:
  448                         return (MAS2_M);
  449                 }
  450         }
  451 
  452         /*
  453          * Assume the page is cache inhibited and access is guarded unless
  454          * it's in our available memory array.
  455          */
  456         attrib = _TLB_ENTRY_IO;
  457         for (i = 0; i < physmem_regions_sz; i++) {
  458                 if ((pa >= physmem_regions[i].mr_start) &&
  459                     (pa < (physmem_regions[i].mr_start +
  460                      physmem_regions[i].mr_size))) {
  461                         attrib = _TLB_ENTRY_MEM;
  462                         break;
  463                 }
  464         }
  465 
  466         return (attrib);
  467 }
  468 
  469 static inline void
  470 tlb_miss_lock(void)
  471 {
  472 #ifdef SMP
  473         struct pcpu *pc;
  474 
  475         if (!smp_started)
  476                 return;
  477 
  478         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
  479                 if (pc != pcpup) {
  480                         CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
  481                             "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
  482 
  483                         KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
  484                             ("tlb_miss_lock: tried to lock self"));
  485 
  486                         tlb_lock(pc->pc_booke.tlb_lock);
  487 
  488                         CTR1(KTR_PMAP, "%s: locked", __func__);
  489                 }
  490         }
  491 #endif
  492 }
  493 
  494 static inline void
  495 tlb_miss_unlock(void)
  496 {
  497 #ifdef SMP
  498         struct pcpu *pc;
  499 
  500         if (!smp_started)
  501                 return;
  502 
  503         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
  504                 if (pc != pcpup) {
  505                         CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
  506                             __func__, pc->pc_cpuid);
  507 
  508                         tlb_unlock(pc->pc_booke.tlb_lock);
  509 
  510                         CTR1(KTR_PMAP, "%s: unlocked", __func__);
  511                 }
  512         }
  513 #endif
  514 }
  515 
  516 /* Return number of entries in TLB0. */
  517 static __inline void
  518 tlb0_get_tlbconf(void)
  519 {
  520         uint32_t tlb0_cfg;
  521 
  522         tlb0_cfg = mfspr(SPR_TLB0CFG);
  523         tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
  524         tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
  525         tlb0_entries_per_way = tlb0_entries / tlb0_ways;
  526 }
  527 
  528 /* Return number of entries in TLB1. */
  529 static __inline void
  530 tlb1_get_tlbconf(void)
  531 {
  532         uint32_t tlb1_cfg;
  533 
  534         tlb1_cfg = mfspr(SPR_TLB1CFG);
  535         tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
  536 }
  537 
  538 /**************************************************************************/
  539 /* Page table related */
  540 /**************************************************************************/
  541 
  542 /* Allocate pv_entry structure. */
  543 pv_entry_t
  544 pv_alloc(void)
  545 {
  546         pv_entry_t pv;
  547 
  548         pv_entry_count++;
  549         if (pv_entry_count > pv_entry_high_water)
  550                 pagedaemon_wakeup(0); /* XXX powerpc NUMA */
  551         pv = uma_zalloc(pvzone, M_NOWAIT);
  552 
  553         return (pv);
  554 }
  555 
  556 /* Free pv_entry structure. */
  557 static __inline void
  558 pv_free(pv_entry_t pve)
  559 {
  560 
  561         pv_entry_count--;
  562         uma_zfree(pvzone, pve);
  563 }
  564 
  565 /* Allocate and initialize pv_entry structure. */
  566 static void
  567 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
  568 {
  569         pv_entry_t pve;
  570 
  571         //int su = (pmap == kernel_pmap);
  572         //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
  573         //      (u_int32_t)pmap, va, (u_int32_t)m);
  574 
  575         pve = pv_alloc();
  576         if (pve == NULL)
  577                 panic("pv_insert: no pv entries!");
  578 
  579         pve->pv_pmap = pmap;
  580         pve->pv_va = va;
  581 
  582         /* add to pv_list */
  583         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  584         rw_assert(&pvh_global_lock, RA_WLOCKED);
  585 
  586         TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
  587 
  588         //debugf("pv_insert: e\n");
  589 }
  590 
  591 /* Destroy pv entry. */
  592 static void
  593 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
  594 {
  595         pv_entry_t pve;
  596 
  597         //int su = (pmap == kernel_pmap);
  598         //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
  599 
  600         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
  601         rw_assert(&pvh_global_lock, RA_WLOCKED);
  602 
  603         /* find pv entry */
  604         TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
  605                 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
  606                         /* remove from pv_list */
  607                         TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
  608                         if (TAILQ_EMPTY(&m->md.pv_list))
  609                                 vm_page_aflag_clear(m, PGA_WRITEABLE);
  610 
  611                         /* free pv entry struct */
  612                         pv_free(pve);
  613                         break;
  614                 }
  615         }
  616 
  617         //debugf("pv_remove: e\n");
  618 }
  619 
  620 /**************************************************************************/
  621 /* PMAP related */
  622 /**************************************************************************/
  623 
  624 /*
  625  * This is called during booke_init, before the system is really initialized.
  626  */
  627 static void
  628 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
  629 {
  630         vm_paddr_t phys_kernelend;
  631         struct mem_region *mp, *mp1;
  632         int cnt, i, j;
  633         vm_paddr_t s, e, sz;
  634         vm_paddr_t physsz, hwphyssz;
  635         u_int phys_avail_count;
  636         vm_size_t kstack0_sz;
  637         vm_paddr_t kstack0_phys;
  638         vm_offset_t kstack0;
  639         void *dpcpu;
  640 
  641         debugf("mmu_booke_bootstrap: entered\n");
  642 
  643         /* Set interesting system properties */
  644 #ifdef __powerpc64__
  645         hw_direct_map = 1;
  646 #else
  647         hw_direct_map = 0;
  648 #endif
  649 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
  650         elf32_nxstack = 1;
  651 #endif
  652 
  653         /* Initialize invalidation mutex */
  654         mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
  655 
  656         /* Read TLB0 size and associativity. */
  657         tlb0_get_tlbconf();
  658 
  659         /*
  660          * Align kernel start and end address (kernel image).
  661          * Note that kernel end does not necessarily relate to kernsize.
  662          * kernsize is the size of the kernel that is actually mapped.
  663          */
  664         data_start = round_page(kernelend);
  665         data_end = data_start;
  666 
  667         /* Allocate the dynamic per-cpu area. */
  668         dpcpu = (void *)data_end;
  669         data_end += DPCPU_SIZE;
  670 
  671         /* Allocate space for the message buffer. */
  672         msgbufp = (struct msgbuf *)data_end;
  673         data_end += msgbufsize;
  674         debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
  675             (uintptr_t)msgbufp, data_end);
  676 
  677         data_end = round_page(data_end);
  678         data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
  679 
  680         /* Retrieve phys/avail mem regions */
  681         mem_regions(&physmem_regions, &physmem_regions_sz,
  682             &availmem_regions, &availmem_regions_sz);
  683 
  684         if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
  685                 panic("mmu_booke_bootstrap: phys_avail too small");
  686 
  687         data_end = round_page(data_end);
  688         vm_page_array = (vm_page_t)data_end;
  689         /*
  690          * Get a rough idea (upper bound) on the size of the page array.  The
  691          * vm_page_array will not handle any more pages than we have in the
  692          * avail_regions array, and most likely much less.
  693          */
  694         sz = 0;
  695         for (mp = availmem_regions; mp->mr_size; mp++) {
  696                 sz += mp->mr_size;
  697         }
  698         sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
  699         data_end += round_page(sz * sizeof(struct vm_page));
  700 
  701         /* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
  702         data_end = roundup2(data_end, 1 << 20);
  703 
  704         debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
  705         debugf(" kernstart: %#zx\n", kernstart);
  706         debugf(" kernsize: %#zx\n", kernsize);
  707 
  708         if (data_end - kernstart > kernsize) {
  709                 kernsize += tlb1_mapin_region(kernstart + kernsize,
  710                     kernload + kernsize, (data_end - kernstart) - kernsize,
  711                     _TLB_ENTRY_MEM);
  712         }
  713         data_end = kernstart + kernsize;
  714         debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
  715 
  716         /*
  717          * Clear the structures - note we can only do it safely after the
  718          * possible additional TLB1 translations are in place (above) so that
  719          * all range up to the currently calculated 'data_end' is covered.
  720          */
  721         bzero((void *)data_start, data_end - data_start);
  722         dpcpu_init(dpcpu, 0);
  723 
  724         /*******************************************************/
  725         /* Set the start and end of kva. */
  726         /*******************************************************/
  727         virtual_avail = round_page(data_end);
  728         virtual_end = VM_MAX_KERNEL_ADDRESS;
  729 
  730 #ifndef __powerpc64__
  731         /* Allocate KVA space for page zero/copy operations. */
  732         zero_page_va = virtual_avail;
  733         virtual_avail += PAGE_SIZE;
  734         copy_page_src_va = virtual_avail;
  735         virtual_avail += PAGE_SIZE;
  736         copy_page_dst_va = virtual_avail;
  737         virtual_avail += PAGE_SIZE;
  738         debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
  739         debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
  740         debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
  741 
  742         /* Initialize page zero/copy mutexes. */
  743         mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
  744         mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
  745 
  746         /* Allocate KVA space for ptbl bufs. */
  747         ptbl_buf_pool_vabase = virtual_avail;
  748         virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
  749         debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
  750             ptbl_buf_pool_vabase, virtual_avail);
  751 #endif
  752 
  753         /* Calculate corresponding physical addresses for the kernel region. */
  754         phys_kernelend = kernload + kernsize;
  755         debugf("kernel image and allocated data:\n");
  756         debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
  757         debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
  758         debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
  759 
  760         /*
  761          * Remove kernel physical address range from avail regions list. Page
  762          * align all regions.  Non-page aligned memory isn't very interesting
  763          * to us.  Also, sort the entries for ascending addresses.
  764          */
  765 
  766         sz = 0;
  767         cnt = availmem_regions_sz;
  768         debugf("processing avail regions:\n");
  769         for (mp = availmem_regions; mp->mr_size; mp++) {
  770                 s = mp->mr_start;
  771                 e = mp->mr_start + mp->mr_size;
  772                 debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
  773                 /* Check whether this region holds all of the kernel. */
  774                 if (s < kernload && e > phys_kernelend) {
  775                         availmem_regions[cnt].mr_start = phys_kernelend;
  776                         availmem_regions[cnt++].mr_size = e - phys_kernelend;
  777                         e = kernload;
  778                 }
  779                 /* Look whether this regions starts within the kernel. */
  780                 if (s >= kernload && s < phys_kernelend) {
  781                         if (e <= phys_kernelend)
  782                                 goto empty;
  783                         s = phys_kernelend;
  784                 }
  785                 /* Now look whether this region ends within the kernel. */
  786                 if (e > kernload && e <= phys_kernelend) {
  787                         if (s >= kernload)
  788                                 goto empty;
  789                         e = kernload;
  790                 }
  791                 /* Now page align the start and size of the region. */
  792                 s = round_page(s);
  793                 e = trunc_page(e);
  794                 if (e < s)
  795                         e = s;
  796                 sz = e - s;
  797                 debugf("%09jx-%09jx = %jx\n",
  798                     (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
  799 
  800                 /* Check whether some memory is left here. */
  801                 if (sz == 0) {
  802                 empty:
  803                         memmove(mp, mp + 1,
  804                             (cnt - (mp - availmem_regions)) * sizeof(*mp));
  805                         cnt--;
  806                         mp--;
  807                         continue;
  808                 }
  809 
  810                 /* Do an insertion sort. */
  811                 for (mp1 = availmem_regions; mp1 < mp; mp1++)
  812                         if (s < mp1->mr_start)
  813                                 break;
  814                 if (mp1 < mp) {
  815                         memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
  816                         mp1->mr_start = s;
  817                         mp1->mr_size = sz;
  818                 } else {
  819                         mp->mr_start = s;
  820                         mp->mr_size = sz;
  821                 }
  822         }
  823         availmem_regions_sz = cnt;
  824 
  825         /*******************************************************/
  826         /* Steal physical memory for kernel stack from the end */
  827         /* of the first avail region                           */
  828         /*******************************************************/
  829         kstack0_sz = kstack_pages * PAGE_SIZE;
  830         kstack0_phys = availmem_regions[0].mr_start +
  831             availmem_regions[0].mr_size;
  832         kstack0_phys -= kstack0_sz;
  833         availmem_regions[0].mr_size -= kstack0_sz;
  834 
  835         /*******************************************************/
  836         /* Fill in phys_avail table, based on availmem_regions */
  837         /*******************************************************/
  838         phys_avail_count = 0;
  839         physsz = 0;
  840         hwphyssz = 0;
  841         TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
  842 
  843         debugf("fill in phys_avail:\n");
  844         for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
  845                 debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
  846                     (uintmax_t)availmem_regions[i].mr_start,
  847                     (uintmax_t)availmem_regions[i].mr_start +
  848                         availmem_regions[i].mr_size,
  849                     (uintmax_t)availmem_regions[i].mr_size);
  850 
  851                 if (hwphyssz != 0 &&
  852                     (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
  853                         debugf(" hw.physmem adjust\n");
  854                         if (physsz < hwphyssz) {
  855                                 phys_avail[j] = availmem_regions[i].mr_start;
  856                                 phys_avail[j + 1] =
  857                                     availmem_regions[i].mr_start +
  858                                     hwphyssz - physsz;
  859                                 physsz = hwphyssz;
  860                                 phys_avail_count++;
  861                                 dump_avail[j] = phys_avail[j];
  862                                 dump_avail[j + 1] = phys_avail[j + 1];
  863                         }
  864                         break;
  865                 }
  866 
  867                 phys_avail[j] = availmem_regions[i].mr_start;
  868                 phys_avail[j + 1] = availmem_regions[i].mr_start +
  869                     availmem_regions[i].mr_size;
  870                 phys_avail_count++;
  871                 physsz += availmem_regions[i].mr_size;
  872                 dump_avail[j] = phys_avail[j];
  873                 dump_avail[j + 1] = phys_avail[j + 1];
  874         }
  875         physmem = btoc(physsz);
  876 
  877         /* Calculate the last available physical address. */
  878         for (i = 0; phys_avail[i + 2] != 0; i += 2)
  879                 ;
  880         Maxmem = powerpc_btop(phys_avail[i + 1]);
  881 
  882         debugf("Maxmem = 0x%08lx\n", Maxmem);
  883         debugf("phys_avail_count = %d\n", phys_avail_count);
  884         debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
  885             (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
  886 
  887 #ifdef __powerpc64__
  888         /*
  889          * Map the physical memory contiguously in TLB1.
  890          * Round so it fits into a single mapping.
  891          */
  892         tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
  893             phys_avail[i + 1], _TLB_ENTRY_MEM);
  894 #endif
  895 
  896         /*******************************************************/
  897         /* Initialize (statically allocated) kernel pmap. */
  898         /*******************************************************/
  899         PMAP_LOCK_INIT(kernel_pmap);
  900 
  901         debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
  902         kernel_pte_alloc(virtual_avail, kernstart);
  903         for (i = 0; i < MAXCPU; i++) {
  904                 kernel_pmap->pm_tid[i] = TID_KERNEL;
  905                 
  906                 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
  907                 tidbusy[i][TID_KERNEL] = kernel_pmap;
  908         }
  909 
  910         /* Mark kernel_pmap active on all CPUs */
  911         CPU_FILL(&kernel_pmap->pm_active);
  912 
  913         /*
  914          * Initialize the global pv list lock.
  915          */
  916         rw_init(&pvh_global_lock, "pmap pv global");
  917 
  918         /*******************************************************/
  919         /* Final setup */
  920         /*******************************************************/
  921 
  922         /* Enter kstack0 into kernel map, provide guard page */
  923         kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
  924         thread0.td_kstack = kstack0;
  925         thread0.td_kstack_pages = kstack_pages;
  926 
  927         debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
  928         debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
  929             (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
  930         debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
  931             kstack0, kstack0 + kstack0_sz);
  932 
  933         virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
  934         for (i = 0; i < kstack_pages; i++) {
  935                 mmu_booke_kenter(kstack0, kstack0_phys);
  936                 kstack0 += PAGE_SIZE;
  937                 kstack0_phys += PAGE_SIZE;
  938         }
  939 
  940         pmap_bootstrapped = 1;
  941 
  942         debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
  943         debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
  944 
  945         debugf("mmu_booke_bootstrap: exit\n");
  946 }
  947 
  948 #ifdef SMP
  949 void
  950 tlb1_ap_prep(void)
  951 {
  952         tlb_entry_t *e, tmp;
  953         unsigned int i;
  954 
  955         /* Prepare TLB1 image for AP processors */
  956         e = __boot_tlb1;
  957         for (i = 0; i < TLB1_ENTRIES; i++) {
  958                 tlb1_read_entry(&tmp, i);
  959 
  960                 if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
  961                         memcpy(e++, &tmp, sizeof(tmp));
  962         }
  963 }
  964 
  965 void
  966 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
  967 {
  968         int i;
  969 
  970         /*
  971          * Finish TLB1 configuration: the BSP already set up its TLB1 and we
  972          * have the snapshot of its contents in the s/w __boot_tlb1[] table
  973          * created by tlb1_ap_prep(), so use these values directly to
  974          * (re)program AP's TLB1 hardware.
  975          *
  976          * Start at index 1 because index 0 has the kernel map.
  977          */
  978         for (i = 1; i < TLB1_ENTRIES; i++) {
  979                 if (__boot_tlb1[i].mas1 & MAS1_VALID)
  980                         tlb1_write_entry(&__boot_tlb1[i], i);
  981         }
  982 
  983         set_mas4_defaults();
  984 }
  985 #endif
  986 
  987 static void
  988 booke_pmap_init_qpages(void)
  989 {
  990         struct pcpu *pc;
  991         int i;
  992 
  993         CPU_FOREACH(i) {
  994                 pc = pcpu_find(i);
  995                 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
  996                 if (pc->pc_qmap_addr == 0)
  997                         panic("pmap_init_qpages: unable to allocate KVA");
  998         }
  999 }
 1000 
 1001 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
 1002 
 1003 /*
 1004  * Get the physical page address for the given pmap/virtual address.
 1005  */
 1006 static vm_paddr_t
 1007 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
 1008 {
 1009         vm_paddr_t pa;
 1010 
 1011         PMAP_LOCK(pmap);
 1012         pa = pte_vatopa(pmap, va);
 1013         PMAP_UNLOCK(pmap);
 1014 
 1015         return (pa);
 1016 }
 1017 
 1018 /*
 1019  * Extract the physical page address associated with the given
 1020  * kernel virtual address.
 1021  */
 1022 static vm_paddr_t
 1023 mmu_booke_kextract(vm_offset_t va)
 1024 {
 1025         tlb_entry_t e;
 1026         vm_paddr_t p = 0;
 1027         int i;
 1028 
 1029 #ifdef __powerpc64__
 1030         if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
 1031                 return (DMAP_TO_PHYS(va));
 1032 #endif
 1033 
 1034         if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
 1035                 p = pte_vatopa(kernel_pmap, va);
 1036 
 1037         if (p == 0) {
 1038                 /* Check TLB1 mappings */
 1039                 for (i = 0; i < TLB1_ENTRIES; i++) {
 1040                         tlb1_read_entry(&e, i);
 1041                         if (!(e.mas1 & MAS1_VALID))
 1042                                 continue;
 1043                         if (va >= e.virt && va < e.virt + e.size)
 1044                                 return (e.phys + (va - e.virt));
 1045                 }
 1046         }
 1047 
 1048         return (p);
 1049 }
 1050 
 1051 /*
 1052  * Initialize the pmap module.
 1053  * Called by vm_init, to initialize any structures that the pmap
 1054  * system needs to map virtual memory.
 1055  */
 1056 static void
 1057 mmu_booke_init()
 1058 {
 1059         int shpgperproc = PMAP_SHPGPERPROC;
 1060 
 1061         /*
 1062          * Initialize the address space (zone) for the pv entries.  Set a
 1063          * high water mark so that the system can recover from excessive
 1064          * numbers of pv entries.
 1065          */
 1066         pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
 1067             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1068 
 1069         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
 1070         pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
 1071 
 1072         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
 1073         pv_entry_high_water = 9 * (pv_entry_max / 10);
 1074 
 1075         uma_zone_reserve_kva(pvzone, pv_entry_max);
 1076 
 1077         /* Pre-fill pvzone with initial number of pv entries. */
 1078         uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
 1079 
 1080         /* Create a UMA zone for page table roots. */
 1081         ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
 1082             NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
 1083 
 1084         /* Initialize ptbl allocation. */
 1085         ptbl_init();
 1086 }
 1087 
 1088 /*
 1089  * Map a list of wired pages into kernel virtual address space.  This is
 1090  * intended for temporary mappings which do not need page modification or
 1091  * references recorded.  Existing mappings in the region are overwritten.
 1092  */
 1093 static void
 1094 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
 1095 {
 1096         vm_offset_t va;
 1097 
 1098         va = sva;
 1099         while (count-- > 0) {
 1100                 mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
 1101                 va += PAGE_SIZE;
 1102                 m++;
 1103         }
 1104 }
 1105 
 1106 /*
 1107  * Remove page mappings from kernel virtual address space.  Intended for
 1108  * temporary mappings entered by mmu_booke_qenter.
 1109  */
 1110 static void
 1111 mmu_booke_qremove(vm_offset_t sva, int count)
 1112 {
 1113         vm_offset_t va;
 1114 
 1115         va = sva;
 1116         while (count-- > 0) {
 1117                 mmu_booke_kremove(va);
 1118                 va += PAGE_SIZE;
 1119         }
 1120 }
 1121 
 1122 /*
 1123  * Map a wired page into kernel virtual address space.
 1124  */
 1125 static void
 1126 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
 1127 {
 1128 
 1129         mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
 1130 }
 1131 
 1132 static void
 1133 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
 1134 {
 1135         uint32_t flags;
 1136         pte_t *pte;
 1137 
 1138         KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
 1139             (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
 1140 
 1141         flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
 1142         flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
 1143         flags |= PTE_PS_4KB;
 1144 
 1145         pte = pte_find(kernel_pmap, va);
 1146         KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
 1147 
 1148         mtx_lock_spin(&tlbivax_mutex);
 1149         tlb_miss_lock();
 1150 
 1151         if (PTE_ISVALID(pte)) {
 1152                 CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
 1153 
 1154                 /* Flush entry from TLB0 */
 1155                 tlb0_flush_entry(va);
 1156         }
 1157 
 1158         *pte = PTE_RPN_FROM_PA(pa) | flags;
 1159 
 1160         //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
 1161         //              "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
 1162         //              pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
 1163 
 1164         /* Flush the real memory from the instruction cache. */
 1165         if ((flags & (PTE_I | PTE_G)) == 0)
 1166                 __syncicache((void *)va, PAGE_SIZE);
 1167 
 1168         tlb_miss_unlock();
 1169         mtx_unlock_spin(&tlbivax_mutex);
 1170 }
 1171 
 1172 /*
 1173  * Remove a page from kernel page table.
 1174  */
 1175 static void
 1176 mmu_booke_kremove(vm_offset_t va)
 1177 {
 1178         pte_t *pte;
 1179 
 1180         CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
 1181 
 1182         KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
 1183             (va <= VM_MAX_KERNEL_ADDRESS)),
 1184             ("mmu_booke_kremove: invalid va"));
 1185 
 1186         pte = pte_find(kernel_pmap, va);
 1187 
 1188         if (!PTE_ISVALID(pte)) {
 1189                 CTR1(KTR_PMAP, "%s: invalid pte", __func__);
 1190 
 1191                 return;
 1192         }
 1193 
 1194         mtx_lock_spin(&tlbivax_mutex);
 1195         tlb_miss_lock();
 1196 
 1197         /* Invalidate entry in TLB0, update PTE. */
 1198         tlb0_flush_entry(va);
 1199         *pte = 0;
 1200 
 1201         tlb_miss_unlock();
 1202         mtx_unlock_spin(&tlbivax_mutex);
 1203 }
 1204 
 1205 /*
 1206  * Figure out where a given kernel pointer (usually in a fault) points
 1207  * to from the VM's perspective, potentially remapping into userland's
 1208  * address space.
 1209  */
 1210 static int
 1211 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
 1212     vm_offset_t *decoded_addr)
 1213 {
 1214 
 1215         if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
 1216                 *is_user = 1;
 1217         else
 1218                 *is_user = 0;
 1219 
 1220         *decoded_addr = addr;
 1221         return (0);
 1222 }
 1223 
 1224 static boolean_t
 1225 mmu_booke_page_is_mapped(vm_page_t m)
 1226 {
 1227 
 1228         return (!TAILQ_EMPTY(&(m)->md.pv_list));
 1229 }
 1230 
 1231 static bool
 1232 mmu_booke_ps_enabled(pmap_t pmap __unused)
 1233 {
 1234         return (false);
 1235 }
 1236 
 1237 /*
 1238  * Initialize pmap associated with process 0.
 1239  */
 1240 static void
 1241 mmu_booke_pinit0(pmap_t pmap)
 1242 {
 1243 
 1244         PMAP_LOCK_INIT(pmap);
 1245         mmu_booke_pinit(pmap);
 1246         PCPU_SET(curpmap, pmap);
 1247 }
 1248 
 1249 /*
 1250  * Insert the given physical page at the specified virtual address in the
 1251  * target physical map with the protection requested. If specified the page
 1252  * will be wired down.
 1253  */
 1254 static int
 1255 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
 1256     vm_prot_t prot, u_int flags, int8_t psind)
 1257 {
 1258         int error;
 1259 
 1260         rw_wlock(&pvh_global_lock);
 1261         PMAP_LOCK(pmap);
 1262         error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
 1263         PMAP_UNLOCK(pmap);
 1264         rw_wunlock(&pvh_global_lock);
 1265         return (error);
 1266 }
 1267 
 1268 static int
 1269 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
 1270     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
 1271 {
 1272         pte_t *pte;
 1273         vm_paddr_t pa;
 1274         pte_t flags;
 1275         int error, su, sync;
 1276 
 1277         pa = VM_PAGE_TO_PHYS(m);
 1278         su = (pmap == kernel_pmap);
 1279         sync = 0;
 1280 
 1281         //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
 1282         //              "pa=0x%08x prot=0x%08x flags=%#x)\n",
 1283         //              (u_int32_t)pmap, su, pmap->pm_tid,
 1284         //              (u_int32_t)m, va, pa, prot, flags);
 1285 
 1286         if (su) {
 1287                 KASSERT(((va >= virtual_avail) &&
 1288                     (va <= VM_MAX_KERNEL_ADDRESS)),
 1289                     ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
 1290         } else {
 1291                 KASSERT((va <= VM_MAXUSER_ADDRESS),
 1292                     ("mmu_booke_enter_locked: user pmap, non user va"));
 1293         }
 1294         if ((m->oflags & VPO_UNMANAGED) == 0) {
 1295                 if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
 1296                         VM_PAGE_OBJECT_BUSY_ASSERT(m);
 1297                 else
 1298                         VM_OBJECT_ASSERT_LOCKED(m->object);
 1299         }
 1300 
 1301         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1302 
 1303         /*
 1304          * If there is an existing mapping, and the physical address has not
 1305          * changed, must be protection or wiring change.
 1306          */
 1307         if (((pte = pte_find(pmap, va)) != NULL) &&
 1308             (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
 1309             
 1310                 /*
 1311                  * Before actually updating pte->flags we calculate and
 1312                  * prepare its new value in a helper var.
 1313                  */
 1314                 flags = *pte;
 1315                 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
 1316 
 1317                 /* Wiring change, just update stats. */
 1318                 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
 1319                         if (!PTE_ISWIRED(pte)) {
 1320                                 flags |= PTE_WIRED;
 1321                                 pmap->pm_stats.wired_count++;
 1322                         }
 1323                 } else {
 1324                         if (PTE_ISWIRED(pte)) {
 1325                                 flags &= ~PTE_WIRED;
 1326                                 pmap->pm_stats.wired_count--;
 1327                         }
 1328                 }
 1329 
 1330                 if (prot & VM_PROT_WRITE) {
 1331                         /* Add write permissions. */
 1332                         flags |= PTE_SW;
 1333                         if (!su)
 1334                                 flags |= PTE_UW;
 1335 
 1336                         if ((flags & PTE_MANAGED) != 0)
 1337                                 vm_page_aflag_set(m, PGA_WRITEABLE);
 1338                 } else {
 1339                         /* Handle modified pages, sense modify status. */
 1340 
 1341                         /*
 1342                          * The PTE_MODIFIED flag could be set by underlying
 1343                          * TLB misses since we last read it (above), possibly
 1344                          * other CPUs could update it so we check in the PTE
 1345                          * directly rather than rely on that saved local flags
 1346                          * copy.
 1347                          */
 1348                         if (PTE_ISMODIFIED(pte))
 1349                                 vm_page_dirty(m);
 1350                 }
 1351 
 1352                 if (prot & VM_PROT_EXECUTE) {
 1353                         flags |= PTE_SX;
 1354                         if (!su)
 1355                                 flags |= PTE_UX;
 1356 
 1357                         /*
 1358                          * Check existing flags for execute permissions: if we
 1359                          * are turning execute permissions on, icache should
 1360                          * be flushed.
 1361                          */
 1362                         if ((*pte & (PTE_UX | PTE_SX)) == 0)
 1363                                 sync++;
 1364                 }
 1365 
 1366                 flags &= ~PTE_REFERENCED;
 1367 
 1368                 /*
 1369                  * The new flags value is all calculated -- only now actually
 1370                  * update the PTE.
 1371                  */
 1372                 mtx_lock_spin(&tlbivax_mutex);
 1373                 tlb_miss_lock();
 1374 
 1375                 tlb0_flush_entry(va);
 1376                 *pte &= ~PTE_FLAGS_MASK;
 1377                 *pte |= flags;
 1378 
 1379                 tlb_miss_unlock();
 1380                 mtx_unlock_spin(&tlbivax_mutex);
 1381 
 1382         } else {
 1383                 /*
 1384                  * If there is an existing mapping, but it's for a different
 1385                  * physical address, pte_enter() will delete the old mapping.
 1386                  */
 1387                 //if ((pte != NULL) && PTE_ISVALID(pte))
 1388                 //      debugf("mmu_booke_enter_locked: replace\n");
 1389                 //else
 1390                 //      debugf("mmu_booke_enter_locked: new\n");
 1391 
 1392                 /* Now set up the flags and install the new mapping. */
 1393                 flags = (PTE_SR | PTE_VALID);
 1394                 flags |= PTE_M;
 1395 
 1396                 if (!su)
 1397                         flags |= PTE_UR;
 1398 
 1399                 if (prot & VM_PROT_WRITE) {
 1400                         flags |= PTE_SW;
 1401                         if (!su)
 1402                                 flags |= PTE_UW;
 1403 
 1404                         if ((m->oflags & VPO_UNMANAGED) == 0)
 1405                                 vm_page_aflag_set(m, PGA_WRITEABLE);
 1406                 }
 1407 
 1408                 if (prot & VM_PROT_EXECUTE) {
 1409                         flags |= PTE_SX;
 1410                         if (!su)
 1411                                 flags |= PTE_UX;
 1412                 }
 1413 
 1414                 /* If its wired update stats. */
 1415                 if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
 1416                         flags |= PTE_WIRED;
 1417 
 1418                 error = pte_enter(pmap, m, va, flags,
 1419                     (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
 1420                 if (error != 0)
 1421                         return (KERN_RESOURCE_SHORTAGE);
 1422 
 1423                 if ((flags & PMAP_ENTER_WIRED) != 0)
 1424                         pmap->pm_stats.wired_count++;
 1425 
 1426                 /* Flush the real memory from the instruction cache. */
 1427                 if (prot & VM_PROT_EXECUTE)
 1428                         sync++;
 1429         }
 1430 
 1431         if (sync && (su || pmap == PCPU_GET(curpmap))) {
 1432                 __syncicache((void *)va, PAGE_SIZE);
 1433                 sync = 0;
 1434         }
 1435 
 1436         return (KERN_SUCCESS);
 1437 }
 1438 
 1439 /*
 1440  * Maps a sequence of resident pages belonging to the same object.
 1441  * The sequence begins with the given page m_start.  This page is
 1442  * mapped at the given virtual address start.  Each subsequent page is
 1443  * mapped at a virtual address that is offset from start by the same
 1444  * amount as the page is offset from m_start within the object.  The
 1445  * last page in the sequence is the page with the largest offset from
 1446  * m_start that can be mapped at a virtual address less than the given
 1447  * virtual address end.  Not every virtual page between start and end
 1448  * is mapped; only those for which a resident page exists with the
 1449  * corresponding offset from m_start are mapped.
 1450  */
 1451 static void
 1452 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
 1453     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
 1454 {
 1455         vm_page_t m;
 1456         vm_pindex_t diff, psize;
 1457 
 1458         VM_OBJECT_ASSERT_LOCKED(m_start->object);
 1459 
 1460         psize = atop(end - start);
 1461         m = m_start;
 1462         rw_wlock(&pvh_global_lock);
 1463         PMAP_LOCK(pmap);
 1464         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 1465                 mmu_booke_enter_locked(pmap, start + ptoa(diff), m,
 1466                     prot & (VM_PROT_READ | VM_PROT_EXECUTE),
 1467                     PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
 1468                 m = TAILQ_NEXT(m, listq);
 1469         }
 1470         PMAP_UNLOCK(pmap);
 1471         rw_wunlock(&pvh_global_lock);
 1472 }
 1473 
 1474 static void
 1475 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
 1476     vm_prot_t prot)
 1477 {
 1478 
 1479         rw_wlock(&pvh_global_lock);
 1480         PMAP_LOCK(pmap);
 1481         mmu_booke_enter_locked(pmap, va, m,
 1482             prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
 1483             PMAP_ENTER_QUICK_LOCKED, 0);
 1484         PMAP_UNLOCK(pmap);
 1485         rw_wunlock(&pvh_global_lock);
 1486 }
 1487 
 1488 /*
 1489  * Remove the given range of addresses from the specified map.
 1490  *
 1491  * It is assumed that the start and end are properly rounded to the page size.
 1492  */
 1493 static void
 1494 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
 1495 {
 1496         pte_t *pte;
 1497         uint8_t hold_flag;
 1498 
 1499         int su = (pmap == kernel_pmap);
 1500 
 1501         //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
 1502         //              su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
 1503 
 1504         if (su) {
 1505                 KASSERT(((va >= virtual_avail) &&
 1506                     (va <= VM_MAX_KERNEL_ADDRESS)),
 1507                     ("mmu_booke_remove: kernel pmap, non kernel va"));
 1508         } else {
 1509                 KASSERT((va <= VM_MAXUSER_ADDRESS),
 1510                     ("mmu_booke_remove: user pmap, non user va"));
 1511         }
 1512 
 1513         if (PMAP_REMOVE_DONE(pmap)) {
 1514                 //debugf("mmu_booke_remove: e (empty)\n");
 1515                 return;
 1516         }
 1517 
 1518         hold_flag = PTBL_HOLD_FLAG(pmap);
 1519         //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
 1520 
 1521         rw_wlock(&pvh_global_lock);
 1522         PMAP_LOCK(pmap);
 1523         for (; va < endva; va += PAGE_SIZE) {
 1524                 pte = pte_find_next(pmap, &va);
 1525                 if ((pte == NULL) || !PTE_ISVALID(pte))
 1526                         break;
 1527                 if (va >= endva)
 1528                         break;
 1529                 pte_remove(pmap, va, hold_flag);
 1530         }
 1531         PMAP_UNLOCK(pmap);
 1532         rw_wunlock(&pvh_global_lock);
 1533 
 1534         //debugf("mmu_booke_remove: e\n");
 1535 }
 1536 
 1537 /*
 1538  * Remove physical page from all pmaps in which it resides.
 1539  */
 1540 static void
 1541 mmu_booke_remove_all(vm_page_t m)
 1542 {
 1543         pv_entry_t pv, pvn;
 1544         uint8_t hold_flag;
 1545 
 1546         rw_wlock(&pvh_global_lock);
 1547         TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
 1548                 PMAP_LOCK(pv->pv_pmap);
 1549                 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
 1550                 pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
 1551                 PMAP_UNLOCK(pv->pv_pmap);
 1552         }
 1553         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1554         rw_wunlock(&pvh_global_lock);
 1555 }
 1556 
 1557 /*
 1558  * Map a range of physical addresses into kernel virtual address space.
 1559  */
 1560 static vm_offset_t
 1561 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
 1562     vm_paddr_t pa_end, int prot)
 1563 {
 1564         vm_offset_t sva = *virt;
 1565         vm_offset_t va = sva;
 1566 
 1567 #ifdef __powerpc64__
 1568         /* XXX: Handle memory not starting at 0x0. */
 1569         if (pa_end < ctob(Maxmem))
 1570                 return (PHYS_TO_DMAP(pa_start));
 1571 #endif
 1572 
 1573         while (pa_start < pa_end) {
 1574                 mmu_booke_kenter(va, pa_start);
 1575                 va += PAGE_SIZE;
 1576                 pa_start += PAGE_SIZE;
 1577         }
 1578         *virt = va;
 1579 
 1580         return (sva);
 1581 }
 1582 
 1583 /*
 1584  * The pmap must be activated before it's address space can be accessed in any
 1585  * way.
 1586  */
 1587 static void
 1588 mmu_booke_activate(struct thread *td)
 1589 {
 1590         pmap_t pmap;
 1591         u_int cpuid;
 1592 
 1593         pmap = &td->td_proc->p_vmspace->vm_pmap;
 1594 
 1595         CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
 1596             __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
 1597 
 1598         KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
 1599 
 1600         sched_pin();
 1601 
 1602         cpuid = PCPU_GET(cpuid);
 1603         CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 1604         PCPU_SET(curpmap, pmap);
 1605 
 1606         if (pmap->pm_tid[cpuid] == TID_NONE)
 1607                 tid_alloc(pmap);
 1608 
 1609         /* Load PID0 register with pmap tid value. */
 1610         mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
 1611         __asm __volatile("isync");
 1612 
 1613         mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
 1614 
 1615         sched_unpin();
 1616 
 1617         CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
 1618             pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
 1619 }
 1620 
 1621 /*
 1622  * Deactivate the specified process's address space.
 1623  */
 1624 static void
 1625 mmu_booke_deactivate(struct thread *td)
 1626 {
 1627         pmap_t pmap;
 1628 
 1629         pmap = &td->td_proc->p_vmspace->vm_pmap;
 1630 
 1631         CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
 1632             __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
 1633 
 1634         td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
 1635 
 1636         CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
 1637         PCPU_SET(curpmap, NULL);
 1638 }
 1639 
 1640 /*
 1641  * Copy the range specified by src_addr/len
 1642  * from the source map to the range dst_addr/len
 1643  * in the destination map.
 1644  *
 1645  * This routine is only advisory and need not do anything.
 1646  */
 1647 static void
 1648 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
 1649     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
 1650 {
 1651 
 1652 }
 1653 
 1654 /*
 1655  * Set the physical protection on the specified range of this map as requested.
 1656  */
 1657 static void
 1658 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
 1659     vm_prot_t prot)
 1660 {
 1661         vm_offset_t va;
 1662         vm_page_t m;
 1663         pte_t *pte;
 1664 
 1665         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1666                 mmu_booke_remove(pmap, sva, eva);
 1667                 return;
 1668         }
 1669 
 1670         if (prot & VM_PROT_WRITE)
 1671                 return;
 1672 
 1673         PMAP_LOCK(pmap);
 1674         for (va = sva; va < eva; va += PAGE_SIZE) {
 1675                 if ((pte = pte_find(pmap, va)) != NULL) {
 1676                         if (PTE_ISVALID(pte)) {
 1677                                 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
 1678 
 1679                                 mtx_lock_spin(&tlbivax_mutex);
 1680                                 tlb_miss_lock();
 1681 
 1682                                 /* Handle modified pages. */
 1683                                 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
 1684                                         vm_page_dirty(m);
 1685 
 1686                                 tlb0_flush_entry(va);
 1687                                 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
 1688 
 1689                                 tlb_miss_unlock();
 1690                                 mtx_unlock_spin(&tlbivax_mutex);
 1691                         }
 1692                 }
 1693         }
 1694         PMAP_UNLOCK(pmap);
 1695 }
 1696 
 1697 /*
 1698  * Clear the write and modified bits in each of the given page's mappings.
 1699  */
 1700 static void
 1701 mmu_booke_remove_write(vm_page_t m)
 1702 {
 1703         pv_entry_t pv;
 1704         pte_t *pte;
 1705 
 1706         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1707             ("mmu_booke_remove_write: page %p is not managed", m));
 1708         vm_page_assert_busied(m);
 1709 
 1710         if (!pmap_page_is_write_mapped(m))
 1711                 return;
 1712         rw_wlock(&pvh_global_lock);
 1713         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 1714                 PMAP_LOCK(pv->pv_pmap);
 1715                 if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
 1716                         if (PTE_ISVALID(pte)) {
 1717                                 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
 1718 
 1719                                 mtx_lock_spin(&tlbivax_mutex);
 1720                                 tlb_miss_lock();
 1721 
 1722                                 /* Handle modified pages. */
 1723                                 if (PTE_ISMODIFIED(pte))
 1724                                         vm_page_dirty(m);
 1725 
 1726                                 /* Flush mapping from TLB0. */
 1727                                 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
 1728 
 1729                                 tlb_miss_unlock();
 1730                                 mtx_unlock_spin(&tlbivax_mutex);
 1731                         }
 1732                 }
 1733                 PMAP_UNLOCK(pv->pv_pmap);
 1734         }
 1735         vm_page_aflag_clear(m, PGA_WRITEABLE);
 1736         rw_wunlock(&pvh_global_lock);
 1737 }
 1738 
 1739 /*
 1740  * Atomically extract and hold the physical page with the given
 1741  * pmap and virtual address pair if that mapping permits the given
 1742  * protection.
 1743  */
 1744 static vm_page_t
 1745 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
 1746     vm_prot_t prot)
 1747 {
 1748         pte_t *pte;
 1749         vm_page_t m;
 1750         uint32_t pte_wbit;
 1751 
 1752         m = NULL;
 1753         PMAP_LOCK(pmap);
 1754         pte = pte_find(pmap, va);
 1755         if ((pte != NULL) && PTE_ISVALID(pte)) {
 1756                 if (pmap == kernel_pmap)
 1757                         pte_wbit = PTE_SW;
 1758                 else
 1759                         pte_wbit = PTE_UW;
 1760 
 1761                 if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
 1762                         m = PHYS_TO_VM_PAGE(PTE_PA(pte));
 1763                         if (!vm_page_wire_mapped(m))
 1764                                 m = NULL;
 1765                 }
 1766         }
 1767         PMAP_UNLOCK(pmap);
 1768         return (m);
 1769 }
 1770 
 1771 /*
 1772  * Initialize a vm_page's machine-dependent fields.
 1773  */
 1774 static void
 1775 mmu_booke_page_init(vm_page_t m)
 1776 {
 1777 
 1778         m->md.pv_tracked = 0;
 1779         TAILQ_INIT(&m->md.pv_list);
 1780 }
 1781 
 1782 /*
 1783  * Return whether or not the specified physical page was modified
 1784  * in any of physical maps.
 1785  */
 1786 static boolean_t
 1787 mmu_booke_is_modified(vm_page_t m)
 1788 {
 1789         pte_t *pte;
 1790         pv_entry_t pv;
 1791         boolean_t rv;
 1792 
 1793         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1794             ("mmu_booke_is_modified: page %p is not managed", m));
 1795         rv = FALSE;
 1796 
 1797         /*
 1798          * If the page is not busied then this check is racy.
 1799          */
 1800         if (!pmap_page_is_write_mapped(m))
 1801                 return (FALSE);
 1802 
 1803         rw_wlock(&pvh_global_lock);
 1804         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 1805                 PMAP_LOCK(pv->pv_pmap);
 1806                 if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
 1807                     PTE_ISVALID(pte)) {
 1808                         if (PTE_ISMODIFIED(pte))
 1809                                 rv = TRUE;
 1810                 }
 1811                 PMAP_UNLOCK(pv->pv_pmap);
 1812                 if (rv)
 1813                         break;
 1814         }
 1815         rw_wunlock(&pvh_global_lock);
 1816         return (rv);
 1817 }
 1818 
 1819 /*
 1820  * Return whether or not the specified virtual address is eligible
 1821  * for prefault.
 1822  */
 1823 static boolean_t
 1824 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 1825 {
 1826 
 1827         return (FALSE);
 1828 }
 1829 
 1830 /*
 1831  * Return whether or not the specified physical page was referenced
 1832  * in any physical maps.
 1833  */
 1834 static boolean_t
 1835 mmu_booke_is_referenced(vm_page_t m)
 1836 {
 1837         pte_t *pte;
 1838         pv_entry_t pv;
 1839         boolean_t rv;
 1840 
 1841         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1842             ("mmu_booke_is_referenced: page %p is not managed", m));
 1843         rv = FALSE;
 1844         rw_wlock(&pvh_global_lock);
 1845         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 1846                 PMAP_LOCK(pv->pv_pmap);
 1847                 if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
 1848                     PTE_ISVALID(pte)) {
 1849                         if (PTE_ISREFERENCED(pte))
 1850                                 rv = TRUE;
 1851                 }
 1852                 PMAP_UNLOCK(pv->pv_pmap);
 1853                 if (rv)
 1854                         break;
 1855         }
 1856         rw_wunlock(&pvh_global_lock);
 1857         return (rv);
 1858 }
 1859 
 1860 /*
 1861  * Clear the modify bits on the specified physical page.
 1862  */
 1863 static void
 1864 mmu_booke_clear_modify(vm_page_t m)
 1865 {
 1866         pte_t *pte;
 1867         pv_entry_t pv;
 1868 
 1869         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1870             ("mmu_booke_clear_modify: page %p is not managed", m));
 1871         vm_page_assert_busied(m);
 1872 
 1873         if (!pmap_page_is_write_mapped(m))
 1874                 return;
 1875 
 1876         rw_wlock(&pvh_global_lock);
 1877         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 1878                 PMAP_LOCK(pv->pv_pmap);
 1879                 if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
 1880                     PTE_ISVALID(pte)) {
 1881                         mtx_lock_spin(&tlbivax_mutex);
 1882                         tlb_miss_lock();
 1883                         
 1884                         if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
 1885                                 tlb0_flush_entry(pv->pv_va);
 1886                                 *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
 1887                                     PTE_REFERENCED);
 1888                         }
 1889 
 1890                         tlb_miss_unlock();
 1891                         mtx_unlock_spin(&tlbivax_mutex);
 1892                 }
 1893                 PMAP_UNLOCK(pv->pv_pmap);
 1894         }
 1895         rw_wunlock(&pvh_global_lock);
 1896 }
 1897 
 1898 /*
 1899  * Return a count of reference bits for a page, clearing those bits.
 1900  * It is not necessary for every reference bit to be cleared, but it
 1901  * is necessary that 0 only be returned when there are truly no
 1902  * reference bits set.
 1903  *
 1904  * As an optimization, update the page's dirty field if a modified bit is
 1905  * found while counting reference bits.  This opportunistic update can be
 1906  * performed at low cost and can eliminate the need for some future calls
 1907  * to pmap_is_modified().  However, since this function stops after
 1908  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
 1909  * dirty pages.  Those dirty pages will only be detected by a future call
 1910  * to pmap_is_modified().
 1911  */
 1912 static int
 1913 mmu_booke_ts_referenced(vm_page_t m)
 1914 {
 1915         pte_t *pte;
 1916         pv_entry_t pv;
 1917         int count;
 1918 
 1919         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1920             ("mmu_booke_ts_referenced: page %p is not managed", m));
 1921         count = 0;
 1922         rw_wlock(&pvh_global_lock);
 1923         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 1924                 PMAP_LOCK(pv->pv_pmap);
 1925                 if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
 1926                     PTE_ISVALID(pte)) {
 1927                         if (PTE_ISMODIFIED(pte))
 1928                                 vm_page_dirty(m);
 1929                         if (PTE_ISREFERENCED(pte)) {
 1930                                 mtx_lock_spin(&tlbivax_mutex);
 1931                                 tlb_miss_lock();
 1932 
 1933                                 tlb0_flush_entry(pv->pv_va);
 1934                                 *pte &= ~PTE_REFERENCED;
 1935 
 1936                                 tlb_miss_unlock();
 1937                                 mtx_unlock_spin(&tlbivax_mutex);
 1938 
 1939                                 if (++count >= PMAP_TS_REFERENCED_MAX) {
 1940                                         PMAP_UNLOCK(pv->pv_pmap);
 1941                                         break;
 1942                                 }
 1943                         }
 1944                 }
 1945                 PMAP_UNLOCK(pv->pv_pmap);
 1946         }
 1947         rw_wunlock(&pvh_global_lock);
 1948         return (count);
 1949 }
 1950 
 1951 /*
 1952  * Clear the wired attribute from the mappings for the specified range of
 1953  * addresses in the given pmap.  Every valid mapping within that range must
 1954  * have the wired attribute set.  In contrast, invalid mappings cannot have
 1955  * the wired attribute set, so they are ignored.
 1956  *
 1957  * The wired attribute of the page table entry is not a hardware feature, so
 1958  * there is no need to invalidate any TLB entries.
 1959  */
 1960 static void
 1961 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 1962 {
 1963         vm_offset_t va;
 1964         pte_t *pte;
 1965 
 1966         PMAP_LOCK(pmap);
 1967         for (va = sva; va < eva; va += PAGE_SIZE) {
 1968                 if ((pte = pte_find(pmap, va)) != NULL &&
 1969                     PTE_ISVALID(pte)) {
 1970                         if (!PTE_ISWIRED(pte))
 1971                                 panic("mmu_booke_unwire: pte %p isn't wired",
 1972                                     pte);
 1973                         *pte &= ~PTE_WIRED;
 1974                         pmap->pm_stats.wired_count--;
 1975                 }
 1976         }
 1977         PMAP_UNLOCK(pmap);
 1978 
 1979 }
 1980 
 1981 /*
 1982  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
 1983  * page.  This count may be changed upwards or downwards in the future; it is
 1984  * only necessary that true be returned for a small subset of pmaps for proper
 1985  * page aging.
 1986  */
 1987 static boolean_t
 1988 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
 1989 {
 1990         pv_entry_t pv;
 1991         int loops;
 1992         boolean_t rv;
 1993 
 1994         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 1995             ("mmu_booke_page_exists_quick: page %p is not managed", m));
 1996         loops = 0;
 1997         rv = FALSE;
 1998         rw_wlock(&pvh_global_lock);
 1999         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 2000                 if (pv->pv_pmap == pmap) {
 2001                         rv = TRUE;
 2002                         break;
 2003                 }
 2004                 if (++loops >= 16)
 2005                         break;
 2006         }
 2007         rw_wunlock(&pvh_global_lock);
 2008         return (rv);
 2009 }
 2010 
 2011 /*
 2012  * Return the number of managed mappings to the given physical page that are
 2013  * wired.
 2014  */
 2015 static int
 2016 mmu_booke_page_wired_mappings(vm_page_t m)
 2017 {
 2018         pv_entry_t pv;
 2019         pte_t *pte;
 2020         int count = 0;
 2021 
 2022         if ((m->oflags & VPO_UNMANAGED) != 0)
 2023                 return (count);
 2024         rw_wlock(&pvh_global_lock);
 2025         TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
 2026                 PMAP_LOCK(pv->pv_pmap);
 2027                 if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
 2028                         if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
 2029                                 count++;
 2030                 PMAP_UNLOCK(pv->pv_pmap);
 2031         }
 2032         rw_wunlock(&pvh_global_lock);
 2033         return (count);
 2034 }
 2035 
 2036 static int
 2037 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
 2038 {
 2039         int i;
 2040         vm_offset_t va;
 2041 
 2042         /*
 2043          * This currently does not work for entries that
 2044          * overlap TLB1 entries.
 2045          */
 2046         for (i = 0; i < TLB1_ENTRIES; i ++) {
 2047                 if (tlb1_iomapped(i, pa, size, &va) == 0)
 2048                         return (0);
 2049         }
 2050 
 2051         return (EFAULT);
 2052 }
 2053 
 2054 void
 2055 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
 2056 {
 2057         vm_paddr_t ppa;
 2058         vm_offset_t ofs;
 2059         vm_size_t gran;
 2060 
 2061         /* Minidumps are based on virtual memory addresses. */
 2062         if (do_minidump) {
 2063                 *va = (void *)(vm_offset_t)pa;
 2064                 return;
 2065         }
 2066 
 2067         /* Raw physical memory dumps don't have a virtual address. */
 2068         /* We always map a 256MB page at 256M. */
 2069         gran = 256 * 1024 * 1024;
 2070         ppa = rounddown2(pa, gran);
 2071         ofs = pa - ppa;
 2072         *va = (void *)gran;
 2073         tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
 2074 
 2075         if (sz > (gran - ofs))
 2076                 tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
 2077                     _TLB_ENTRY_IO);
 2078 }
 2079 
 2080 void
 2081 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
 2082 {
 2083         vm_paddr_t ppa;
 2084         vm_offset_t ofs;
 2085         vm_size_t gran;
 2086         tlb_entry_t e;
 2087         int i;
 2088 
 2089         /* Minidumps are based on virtual memory addresses. */
 2090         /* Nothing to do... */
 2091         if (do_minidump)
 2092                 return;
 2093 
 2094         for (i = 0; i < TLB1_ENTRIES; i++) {
 2095                 tlb1_read_entry(&e, i);
 2096                 if (!(e.mas1 & MAS1_VALID))
 2097                         break;
 2098         }
 2099 
 2100         /* Raw physical memory dumps don't have a virtual address. */
 2101         i--;
 2102         e.mas1 = 0;
 2103         e.mas2 = 0;
 2104         e.mas3 = 0;
 2105         tlb1_write_entry(&e, i);
 2106 
 2107         gran = 256 * 1024 * 1024;
 2108         ppa = rounddown2(pa, gran);
 2109         ofs = pa - ppa;
 2110         if (sz > (gran - ofs)) {
 2111                 i--;
 2112                 e.mas1 = 0;
 2113                 e.mas2 = 0;
 2114                 e.mas3 = 0;
 2115                 tlb1_write_entry(&e, i);
 2116         }
 2117 }
 2118 
 2119 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
 2120 
 2121 void
 2122 mmu_booke_scan_init()
 2123 {
 2124         vm_offset_t va;
 2125         pte_t *pte;
 2126         int i;
 2127 
 2128         if (!do_minidump) {
 2129                 /* Initialize phys. segments for dumpsys(). */
 2130                 memset(&dump_map, 0, sizeof(dump_map));
 2131                 mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
 2132                     &availmem_regions_sz);
 2133                 for (i = 0; i < physmem_regions_sz; i++) {
 2134                         dump_map[i].pa_start = physmem_regions[i].mr_start;
 2135                         dump_map[i].pa_size = physmem_regions[i].mr_size;
 2136                 }
 2137                 return;
 2138         }
 2139 
 2140         /* Virtual segments for minidumps: */
 2141         memset(&dump_map, 0, sizeof(dump_map));
 2142 
 2143         /* 1st: kernel .data and .bss. */
 2144         dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
 2145         dump_map[0].pa_size =
 2146             round_page((uintptr_t)_end) - dump_map[0].pa_start;
 2147 
 2148         /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
 2149         dump_map[1].pa_start = data_start;
 2150         dump_map[1].pa_size = data_end - data_start;
 2151 
 2152         /* 3rd: kernel VM. */
 2153         va = dump_map[1].pa_start + dump_map[1].pa_size;
 2154         /* Find start of next chunk (from va). */
 2155         while (va < virtual_end) {
 2156                 /* Don't dump the buffer cache. */
 2157                 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
 2158                         va = kmi.buffer_eva;
 2159                         continue;
 2160                 }
 2161                 pte = pte_find(kernel_pmap, va);
 2162                 if (pte != NULL && PTE_ISVALID(pte))
 2163                         break;
 2164                 va += PAGE_SIZE;
 2165         }
 2166         if (va < virtual_end) {
 2167                 dump_map[2].pa_start = va;
 2168                 va += PAGE_SIZE;
 2169                 /* Find last page in chunk. */
 2170                 while (va < virtual_end) {
 2171                         /* Don't run into the buffer cache. */
 2172                         if (va == kmi.buffer_sva)
 2173                                 break;
 2174                         pte = pte_find(kernel_pmap, va);
 2175                         if (pte == NULL || !PTE_ISVALID(pte))
 2176                                 break;
 2177                         va += PAGE_SIZE;
 2178                 }
 2179                 dump_map[2].pa_size = va - dump_map[2].pa_start;
 2180         }
 2181 }
 2182 
 2183 /*
 2184  * Map a set of physical memory pages into the kernel virtual address space.
 2185  * Return a pointer to where it is mapped. This routine is intended to be used
 2186  * for mapping device memory, NOT real memory.
 2187  */
 2188 static void *
 2189 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
 2190 {
 2191 
 2192         return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
 2193 }
 2194 
 2195 static int
 2196 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
 2197 {
 2198         int i;
 2199 
 2200         for (i = 0; i < TLB1_ENTRIES; i++) {
 2201                 tlb1_read_entry(e, i);
 2202                 if ((e->mas1 & MAS1_VALID) == 0)
 2203                         continue;
 2204                 if (e->phys == pa)
 2205                         return (i);
 2206         }
 2207         return (-1);
 2208 }
 2209 
 2210 static void *
 2211 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
 2212 {
 2213         tlb_entry_t e;
 2214         vm_paddr_t tmppa;
 2215 #ifndef __powerpc64__
 2216         uintptr_t tmpva;
 2217 #endif
 2218         uintptr_t va, retva;
 2219         vm_size_t sz;
 2220         int i;
 2221         int wimge;
 2222 
 2223         /*
 2224          * Check if this is premapped in TLB1.
 2225          */
 2226         sz = size;
 2227         tmppa = pa;
 2228         va = ~0;
 2229         wimge = tlb_calc_wimg(pa, ma);
 2230         for (i = 0; i < TLB1_ENTRIES; i++) {
 2231                 tlb1_read_entry(&e, i);
 2232                 if (!(e.mas1 & MAS1_VALID))
 2233                         continue;
 2234                 if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
 2235                         continue;
 2236                 if (tmppa >= e.phys && tmppa < e.phys + e.size) {
 2237                         va = e.virt + (pa - e.phys);
 2238                         tmppa = e.phys + e.size;
 2239                         sz -= MIN(sz, e.size - (pa - e.phys));
 2240                         while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
 2241                                 if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
 2242                                         break;
 2243                                 sz -= MIN(sz, e.size);
 2244                                 tmppa = e.phys + e.size;
 2245                         }
 2246                         if (sz != 0)
 2247                                 break;
 2248                         return ((void *)va);
 2249                 }
 2250         }
 2251 
 2252         size = roundup(size, PAGE_SIZE);
 2253 
 2254 #ifdef __powerpc64__
 2255         KASSERT(pa < VM_MAPDEV_PA_MAX,
 2256             ("Unsupported physical address! %lx", pa));
 2257         va = VM_MAPDEV_BASE + pa;
 2258         retva = va;
 2259 #ifdef POW2_MAPPINGS
 2260         /*
 2261          * Align the mapping to a power of 2 size, taking into account that we
 2262          * may need to increase the size multiple times to satisfy the size and
 2263          * alignment requirements.
 2264          *
 2265          * This works in the general case because it's very rare (near never?)
 2266          * to have different access properties (WIMG) within a single
 2267          * power-of-two region.  If a design does call for that, POW2_MAPPINGS
 2268          * can be undefined, and exact mappings will be used instead.
 2269          */
 2270         sz = size;
 2271         size = roundup2(size, 1 << ilog2(size));
 2272         while (rounddown2(va, size) + size < va + sz)
 2273                 size <<= 1;
 2274         va = rounddown2(va, size);
 2275         pa = rounddown2(pa, size);
 2276 #endif
 2277 #else
 2278         /*
 2279          * The device mapping area is between VM_MAXUSER_ADDRESS and
 2280          * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
 2281          */
 2282 #ifdef SPARSE_MAPDEV
 2283         /*
 2284          * With a sparse mapdev, align to the largest starting region.  This
 2285          * could feasibly be optimized for a 'best-fit' alignment, but that
 2286          * calculation could be very costly.
 2287          * Align to the smaller of:
 2288          * - first set bit in overlap of (pa & size mask)
 2289          * - largest size envelope
 2290          *
 2291          * It's possible the device mapping may start at a PA that's not larger
 2292          * than the size mask, so we need to offset in to maximize the TLB entry
 2293          * range and minimize the number of used TLB entries.
 2294          */
 2295         do {
 2296             tmpva = tlb1_map_base;
 2297             sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
 2298             sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
 2299             va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
 2300         } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
 2301 #endif
 2302         va = atomic_fetchadd_int(&tlb1_map_base, size);
 2303         retva = va;
 2304 #endif
 2305 
 2306         if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
 2307                 return (NULL);
 2308 
 2309         return ((void *)retva);
 2310 }
 2311 
 2312 /*
 2313  * 'Unmap' a range mapped by mmu_booke_mapdev().
 2314  */
 2315 static void
 2316 mmu_booke_unmapdev(void *p, vm_size_t size)
 2317 {
 2318 #ifdef SUPPORTS_SHRINKING_TLB1
 2319         vm_offset_t base, offset, va;
 2320 
 2321         /*
 2322          * Unmap only if this is inside kernel virtual space.
 2323          */
 2324         va = (vm_offset_t)p;
 2325         if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
 2326                 base = trunc_page(va);
 2327                 offset = va & PAGE_MASK;
 2328                 size = roundup(offset + size, PAGE_SIZE);
 2329                 mmu_booke_qremove(base, atop(size));
 2330                 kva_free(base, size);
 2331         }
 2332 #endif
 2333 }
 2334 
 2335 /*
 2336  * mmu_booke_object_init_pt preloads the ptes for a given object into the
 2337  * specified pmap. This eliminates the blast of soft faults on process startup
 2338  * and immediately after an mmap.
 2339  */
 2340 static void
 2341 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
 2342     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
 2343 {
 2344 
 2345         VM_OBJECT_ASSERT_WLOCKED(object);
 2346         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 2347             ("mmu_booke_object_init_pt: non-device object"));
 2348 }
 2349 
 2350 /*
 2351  * Perform the pmap work for mincore.
 2352  */
 2353 static int
 2354 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
 2355 {
 2356 
 2357         /* XXX: this should be implemented at some point */
 2358         return (0);
 2359 }
 2360 
 2361 static int
 2362 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
 2363 {
 2364         vm_offset_t va;
 2365         pte_t *pte;
 2366         int i, j;
 2367         tlb_entry_t e;
 2368 
 2369         addr = trunc_page(addr);
 2370 
 2371         /* Only allow changes to mapped kernel addresses.  This includes:
 2372          * - KVA
 2373          * - DMAP (powerpc64)
 2374          * - Device mappings
 2375          */
 2376         if (addr <= VM_MAXUSER_ADDRESS ||
 2377 #ifdef __powerpc64__
 2378             (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
 2379             (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
 2380 #else
 2381             (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
 2382 #endif
 2383             (addr > VM_MAX_KERNEL_ADDRESS))
 2384                 return (EINVAL);
 2385 
 2386         /* Check TLB1 mappings */
 2387         for (i = 0; i < TLB1_ENTRIES; i++) {
 2388                 tlb1_read_entry(&e, i);
 2389                 if (!(e.mas1 & MAS1_VALID))
 2390                         continue;
 2391                 if (addr >= e.virt && addr < e.virt + e.size)
 2392                         break;
 2393         }
 2394         if (i < TLB1_ENTRIES) {
 2395                 /* Only allow full mappings to be modified for now. */
 2396                 /* Validate the range. */
 2397                 for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
 2398                         tlb1_read_entry(&e, j);
 2399                         if (va != e.virt || (sz - (va - addr) < e.size))
 2400                                 return (EINVAL);
 2401                 }
 2402                 for (va = addr; va < addr + sz; va += e.size, i++) {
 2403                         tlb1_read_entry(&e, i);
 2404                         e.mas2 &= ~MAS2_WIMGE_MASK;
 2405                         e.mas2 |= tlb_calc_wimg(e.phys, mode);
 2406 
 2407                         /*
 2408                          * Write it out to the TLB.  Should really re-sync with other
 2409                          * cores.
 2410                          */
 2411                         tlb1_write_entry(&e, i);
 2412                 }
 2413                 return (0);
 2414         }
 2415 
 2416         /* Not in TLB1, try through pmap */
 2417         /* First validate the range. */
 2418         for (va = addr; va < addr + sz; va += PAGE_SIZE) {
 2419                 pte = pte_find(kernel_pmap, va);
 2420                 if (pte == NULL || !PTE_ISVALID(pte))
 2421                         return (EINVAL);
 2422         }
 2423 
 2424         mtx_lock_spin(&tlbivax_mutex);
 2425         tlb_miss_lock();
 2426         for (va = addr; va < addr + sz; va += PAGE_SIZE) {
 2427                 pte = pte_find(kernel_pmap, va);
 2428                 *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
 2429                 *pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
 2430                 tlb0_flush_entry(va);
 2431         }
 2432         tlb_miss_unlock();
 2433         mtx_unlock_spin(&tlbivax_mutex);
 2434 
 2435         return (0);
 2436 }
 2437 
 2438 static void
 2439 mmu_booke_page_array_startup(long pages)
 2440 {
 2441         vm_page_array_size = pages;
 2442 }
 2443 
 2444 /**************************************************************************/
 2445 /* TID handling */
 2446 /**************************************************************************/
 2447 
 2448 /*
 2449  * Allocate a TID. If necessary, steal one from someone else.
 2450  * The new TID is flushed from the TLB before returning.
 2451  */
 2452 static tlbtid_t
 2453 tid_alloc(pmap_t pmap)
 2454 {
 2455         tlbtid_t tid;
 2456         int thiscpu;
 2457 
 2458         KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
 2459 
 2460         CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
 2461 
 2462         thiscpu = PCPU_GET(cpuid);
 2463 
 2464         tid = PCPU_GET(booke.tid_next);
 2465         if (tid > TID_MAX)
 2466                 tid = TID_MIN;
 2467         PCPU_SET(booke.tid_next, tid + 1);
 2468 
 2469         /* If we are stealing TID then clear the relevant pmap's field */
 2470         if (tidbusy[thiscpu][tid] != NULL) {
 2471                 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
 2472                 
 2473                 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
 2474 
 2475                 /* Flush all entries from TLB0 matching this TID. */
 2476                 tid_flush(tid);
 2477         }
 2478 
 2479         tidbusy[thiscpu][tid] = pmap;
 2480         pmap->pm_tid[thiscpu] = tid;
 2481         __asm __volatile("msync; isync");
 2482 
 2483         CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
 2484             PCPU_GET(booke.tid_next));
 2485 
 2486         return (tid);
 2487 }
 2488 
 2489 /**************************************************************************/
 2490 /* TLB0 handling */
 2491 /**************************************************************************/
 2492 
 2493 /* Convert TLB0 va and way number to tlb0[] table index. */
 2494 static inline unsigned int
 2495 tlb0_tableidx(vm_offset_t va, unsigned int way)
 2496 {
 2497         unsigned int idx;
 2498 
 2499         idx = (way * TLB0_ENTRIES_PER_WAY);
 2500         idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
 2501         return (idx);
 2502 }
 2503 
 2504 /*
 2505  * Invalidate TLB0 entry.
 2506  */
 2507 static inline void
 2508 tlb0_flush_entry(vm_offset_t va)
 2509 {
 2510 
 2511         CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
 2512 
 2513         mtx_assert(&tlbivax_mutex, MA_OWNED);
 2514 
 2515         __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
 2516         __asm __volatile("isync; msync");
 2517         __asm __volatile("tlbsync; msync");
 2518 
 2519         CTR1(KTR_PMAP, "%s: e", __func__);
 2520 }
 2521 
 2522 /**************************************************************************/
 2523 /* TLB1 handling */
 2524 /**************************************************************************/
 2525 
 2526 /*
 2527  * TLB1 mapping notes:
 2528  *
 2529  * TLB1[0]      Kernel text and data.
 2530  * TLB1[1-15]   Additional kernel text and data mappings (if required), PCI
 2531  *              windows, other devices mappings.
 2532  */
 2533 
 2534  /*
 2535  * Read an entry from given TLB1 slot.
 2536  */
 2537 void
 2538 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
 2539 {
 2540         register_t msr;
 2541         uint32_t mas0;
 2542 
 2543         KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
 2544 
 2545         msr = mfmsr();
 2546         __asm __volatile("wrteei 0");
 2547 
 2548         mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
 2549         mtspr(SPR_MAS0, mas0);
 2550         __asm __volatile("isync; tlbre");
 2551 
 2552         entry->mas1 = mfspr(SPR_MAS1);
 2553         entry->mas2 = mfspr(SPR_MAS2);
 2554         entry->mas3 = mfspr(SPR_MAS3);
 2555 
 2556         switch ((mfpvr() >> 16) & 0xFFFF) {
 2557         case FSL_E500v2:
 2558         case FSL_E500mc:
 2559         case FSL_E5500:
 2560         case FSL_E6500:
 2561                 entry->mas7 = mfspr(SPR_MAS7);
 2562                 break;
 2563         default:
 2564                 entry->mas7 = 0;
 2565                 break;
 2566         }
 2567         __asm __volatile("wrtee %0" :: "r"(msr));
 2568 
 2569         entry->virt = entry->mas2 & MAS2_EPN_MASK;
 2570         entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
 2571             (entry->mas3 & MAS3_RPN);
 2572         entry->size =
 2573             tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
 2574 }
 2575 
 2576 struct tlbwrite_args {
 2577         tlb_entry_t *e;
 2578         unsigned int idx;
 2579 };
 2580 
 2581 static uint32_t
 2582 tlb1_find_free(void)
 2583 {
 2584         tlb_entry_t e;
 2585         int i;
 2586 
 2587         for (i = 0; i < TLB1_ENTRIES; i++) {
 2588                 tlb1_read_entry(&e, i);
 2589                 if ((e.mas1 & MAS1_VALID) == 0)
 2590                         return (i);
 2591         }
 2592         return (-1);
 2593 }
 2594 
 2595 static void
 2596 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
 2597 {
 2598         tlb_entry_t e;
 2599         int i;
 2600 
 2601         for (i = 0; i < TLB1_ENTRIES; i++) {
 2602                 tlb1_read_entry(&e, i);
 2603                 if ((e.mas1 & MAS1_VALID) == 0)
 2604                         continue;
 2605                 if ((e.mas2 & MAS2_EPN_MASK) >= va &&
 2606                     (e.mas2 & MAS2_EPN_MASK) < va + size) {
 2607                         mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
 2608                         __asm __volatile("isync; tlbwe; isync; msync");
 2609                 }
 2610         }
 2611 }
 2612 
 2613 static void
 2614 tlb1_write_entry_int(void *arg)
 2615 {
 2616         struct tlbwrite_args *args = arg;
 2617         uint32_t idx, mas0;
 2618 
 2619         idx = args->idx;
 2620         if (idx == -1) {
 2621                 tlb1_purge_va_range(args->e->virt, args->e->size);
 2622                 idx = tlb1_find_free();
 2623                 if (idx == -1)
 2624                         panic("No free TLB1 entries!\n");
 2625         }
 2626         /* Select entry */
 2627         mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
 2628 
 2629         mtspr(SPR_MAS0, mas0);
 2630         mtspr(SPR_MAS1, args->e->mas1);
 2631         mtspr(SPR_MAS2, args->e->mas2);
 2632         mtspr(SPR_MAS3, args->e->mas3);
 2633         switch ((mfpvr() >> 16) & 0xFFFF) {
 2634         case FSL_E500mc:
 2635         case FSL_E5500:
 2636         case FSL_E6500:
 2637                 mtspr(SPR_MAS8, 0);
 2638                 /* FALLTHROUGH */
 2639         case FSL_E500v2:
 2640                 mtspr(SPR_MAS7, args->e->mas7);
 2641                 break;
 2642         default:
 2643                 break;
 2644         }
 2645 
 2646         __asm __volatile("isync; tlbwe; isync; msync");
 2647 
 2648 }
 2649 
 2650 static void
 2651 tlb1_write_entry_sync(void *arg)
 2652 {
 2653         /* Empty synchronization point for smp_rendezvous(). */
 2654 }
 2655 
 2656 /*
 2657  * Write given entry to TLB1 hardware.
 2658  */
 2659 static void
 2660 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
 2661 {
 2662         struct tlbwrite_args args;
 2663 
 2664         args.e = e;
 2665         args.idx = idx;
 2666 
 2667 #ifdef SMP
 2668         if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
 2669                 mb();
 2670                 smp_rendezvous(tlb1_write_entry_sync,
 2671                     tlb1_write_entry_int,
 2672                     tlb1_write_entry_sync, &args);
 2673         } else
 2674 #endif
 2675         {
 2676                 register_t msr;
 2677 
 2678                 msr = mfmsr();
 2679                 __asm __volatile("wrteei 0");
 2680                 tlb1_write_entry_int(&args);
 2681                 __asm __volatile("wrtee %0" :: "r"(msr));
 2682         }
 2683 }
 2684 
 2685 /*
 2686  * Convert TLB TSIZE value to mapped region size.
 2687  */
 2688 static vm_size_t
 2689 tsize2size(unsigned int tsize)
 2690 {
 2691 
 2692         /*
 2693          * size = 4^tsize KB
 2694          * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
 2695          */
 2696 
 2697         return ((1 << (2 * tsize)) * 1024);
 2698 }
 2699 
 2700 /*
 2701  * Convert region size (must be power of 4) to TLB TSIZE value.
 2702  */
 2703 static unsigned int
 2704 size2tsize(vm_size_t size)
 2705 {
 2706 
 2707         return (ilog2(size) / 2 - 5);
 2708 }
 2709 
 2710 /*
 2711  * Register permanent kernel mapping in TLB1.
 2712  *
 2713  * Entries are created starting from index 0 (current free entry is
 2714  * kept in tlb1_idx) and are not supposed to be invalidated.
 2715  */
 2716 int
 2717 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
 2718     uint32_t flags)
 2719 {
 2720         tlb_entry_t e;
 2721         uint32_t ts, tid;
 2722         int tsize, index;
 2723 
 2724         /* First try to update an existing entry. */
 2725         for (index = 0; index < TLB1_ENTRIES; index++) {
 2726                 tlb1_read_entry(&e, index);
 2727                 /* Check if we're just updating the flags, and update them. */
 2728                 if (e.phys == pa && e.virt == va && e.size == size) {
 2729                         e.mas2 = (va & MAS2_EPN_MASK) | flags;
 2730                         tlb1_write_entry(&e, index);
 2731                         return (0);
 2732                 }
 2733         }
 2734 
 2735         /* Convert size to TSIZE */
 2736         tsize = size2tsize(size);
 2737 
 2738         tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
 2739         /* XXX TS is hard coded to 0 for now as we only use single address space */
 2740         ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
 2741 
 2742         e.phys = pa;
 2743         e.virt = va;
 2744         e.size = size;
 2745         e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
 2746         e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
 2747         e.mas2 = (va & MAS2_EPN_MASK) | flags;
 2748 
 2749         /* Set supervisor RWX permission bits */
 2750         e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
 2751         e.mas7 = (pa >> 32) & MAS7_RPN;
 2752 
 2753         tlb1_write_entry(&e, -1);
 2754 
 2755         return (0);
 2756 }
 2757 
 2758 /*
 2759  * Map in contiguous RAM region into the TLB1.
 2760  */
 2761 static vm_size_t
 2762 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
 2763 {
 2764         vm_offset_t base;
 2765         vm_size_t mapped, sz, ssize;
 2766 
 2767         mapped = 0;
 2768         base = va;
 2769         ssize = size;
 2770 
 2771         while (size > 0) {
 2772                 sz = 1UL << (ilog2(size) & ~1);
 2773                 /* Align size to PA */
 2774                 if (pa % sz != 0) {
 2775                         do {
 2776                                 sz >>= 2;
 2777                         } while (pa % sz != 0);
 2778                 }
 2779                 /* Now align from there to VA */
 2780                 if (va % sz != 0) {
 2781                         do {
 2782                                 sz >>= 2;
 2783                         } while (va % sz != 0);
 2784                 }
 2785 #ifdef __powerpc64__
 2786                 /*
 2787                  * Clamp TLB1 entries to 4G.
 2788                  *
 2789                  * While the e6500 supports up to 1TB mappings, the e5500
 2790                  * only supports up to 4G mappings. (0b1011)
 2791                  *
 2792                  * If any e6500 machines capable of supporting a very
 2793                  * large amount of memory appear in the future, we can
 2794                  * revisit this.
 2795                  *
 2796                  * For now, though, since we have plenty of space in TLB1,
 2797                  * always avoid creating entries larger than 4GB.
 2798                  */
 2799                 sz = MIN(sz, 1UL << 32);
 2800 #endif
 2801                 if (bootverbose)
 2802                         printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
 2803                             (void *)va, (uintmax_t)pa, (long)sz);
 2804                 if (tlb1_set_entry(va, pa, sz,
 2805                     _TLB_ENTRY_SHARED | wimge) < 0)
 2806                         return (mapped);
 2807                 size -= sz;
 2808                 pa += sz;
 2809                 va += sz;
 2810         }
 2811 
 2812         mapped = (va - base);
 2813         if (bootverbose)
 2814                 printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
 2815                     mapped, mapped - ssize);
 2816 
 2817         return (mapped);
 2818 }
 2819 
 2820 /*
 2821  * TLB1 initialization routine, to be called after the very first
 2822  * assembler level setup done in locore.S.
 2823  */
 2824 void
 2825 tlb1_init()
 2826 {
 2827         vm_offset_t mas2;
 2828         uint32_t mas0, mas1, mas3, mas7;
 2829         uint32_t tsz;
 2830 
 2831         tlb1_get_tlbconf();
 2832 
 2833         mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
 2834         mtspr(SPR_MAS0, mas0);
 2835         __asm __volatile("isync; tlbre");
 2836 
 2837         mas1 = mfspr(SPR_MAS1);
 2838         mas2 = mfspr(SPR_MAS2);
 2839         mas3 = mfspr(SPR_MAS3);
 2840         mas7 = mfspr(SPR_MAS7);
 2841 
 2842         kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
 2843             (mas3 & MAS3_RPN);
 2844 
 2845         tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
 2846         kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
 2847         kernstart = trunc_page(mas2);
 2848 
 2849         /* Setup TLB miss defaults */
 2850         set_mas4_defaults();
 2851 }
 2852 
 2853 /*
 2854  * pmap_early_io_unmap() should be used in short conjunction with
 2855  * pmap_early_io_map(), as in the following snippet:
 2856  *
 2857  * x = pmap_early_io_map(...);
 2858  * <do something with x>
 2859  * pmap_early_io_unmap(x, size);
 2860  *
 2861  * And avoiding more allocations between.
 2862  */
 2863 void
 2864 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
 2865 {
 2866         int i;
 2867         tlb_entry_t e;
 2868         vm_size_t isize;
 2869 
 2870         size = roundup(size, PAGE_SIZE);
 2871         isize = size;
 2872         for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
 2873                 tlb1_read_entry(&e, i);
 2874                 if (!(e.mas1 & MAS1_VALID))
 2875                         continue;
 2876                 if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
 2877                         size -= e.size;
 2878                         e.mas1 &= ~MAS1_VALID;
 2879                         tlb1_write_entry(&e, i);
 2880                 }
 2881         }
 2882         if (tlb1_map_base == va + isize)
 2883                 tlb1_map_base -= isize;
 2884 }       
 2885                 
 2886 vm_offset_t 
 2887 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
 2888 {
 2889         vm_paddr_t pa_base;
 2890         vm_offset_t va, sz;
 2891         int i;
 2892         tlb_entry_t e;
 2893 
 2894         KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
 2895 
 2896         for (i = 0; i < TLB1_ENTRIES; i++) {
 2897                 tlb1_read_entry(&e, i);
 2898                 if (!(e.mas1 & MAS1_VALID))
 2899                         continue;
 2900                 if (pa >= e.phys && (pa + size) <=
 2901                     (e.phys + e.size))
 2902                         return (e.virt + (pa - e.phys));
 2903         }
 2904 
 2905         pa_base = rounddown(pa, PAGE_SIZE);
 2906         size = roundup(size + (pa - pa_base), PAGE_SIZE);
 2907         tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
 2908         va = tlb1_map_base + (pa - pa_base);
 2909 
 2910         do {
 2911                 sz = 1 << (ilog2(size) & ~1);
 2912                 tlb1_set_entry(tlb1_map_base, pa_base, sz,
 2913                     _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
 2914                 size -= sz;
 2915                 pa_base += sz;
 2916                 tlb1_map_base += sz;
 2917         } while (size > 0);
 2918 
 2919         return (va);
 2920 }
 2921 
 2922 void
 2923 pmap_track_page(pmap_t pmap, vm_offset_t va)
 2924 {
 2925         vm_paddr_t pa;
 2926         vm_page_t page;
 2927         struct pv_entry *pve;
 2928 
 2929         va = trunc_page(va);
 2930         pa = pmap_kextract(va);
 2931         page = PHYS_TO_VM_PAGE(pa);
 2932 
 2933         rw_wlock(&pvh_global_lock);
 2934         PMAP_LOCK(pmap);
 2935 
 2936         TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
 2937                 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
 2938                         goto out;
 2939                 }
 2940         }
 2941         page->md.pv_tracked = true;
 2942         pv_insert(pmap, va, page);
 2943 out:
 2944         PMAP_UNLOCK(pmap);
 2945         rw_wunlock(&pvh_global_lock);
 2946 }
 2947 
 2948 /*
 2949  * Setup MAS4 defaults.
 2950  * These values are loaded to MAS0-2 on a TLB miss.
 2951  */
 2952 static void
 2953 set_mas4_defaults(void)
 2954 {
 2955         uint32_t mas4;
 2956 
 2957         /* Defaults: TLB0, PID0, TSIZED=4K */
 2958         mas4 = MAS4_TLBSELD0;
 2959         mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
 2960 #ifdef SMP
 2961         mas4 |= MAS4_MD;
 2962 #endif
 2963         mtspr(SPR_MAS4, mas4);
 2964         __asm __volatile("isync");
 2965 }
 2966 
 2967 /*
 2968  * Return 0 if the physical IO range is encompassed by one of the
 2969  * the TLB1 entries, otherwise return related error code.
 2970  */
 2971 static int
 2972 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
 2973 {
 2974         uint32_t prot;
 2975         vm_paddr_t pa_start;
 2976         vm_paddr_t pa_end;
 2977         unsigned int entry_tsize;
 2978         vm_size_t entry_size;
 2979         tlb_entry_t e;
 2980 
 2981         *va = (vm_offset_t)NULL;
 2982 
 2983         tlb1_read_entry(&e, i);
 2984         /* Skip invalid entries */
 2985         if (!(e.mas1 & MAS1_VALID))
 2986                 return (EINVAL);
 2987 
 2988         /*
 2989          * The entry must be cache-inhibited, guarded, and r/w
 2990          * so it can function as an i/o page
 2991          */
 2992         prot = e.mas2 & (MAS2_I | MAS2_G);
 2993         if (prot != (MAS2_I | MAS2_G))
 2994                 return (EPERM);
 2995 
 2996         prot = e.mas3 & (MAS3_SR | MAS3_SW);
 2997         if (prot != (MAS3_SR | MAS3_SW))
 2998                 return (EPERM);
 2999 
 3000         /* The address should be within the entry range. */
 3001         entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
 3002         KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
 3003 
 3004         entry_size = tsize2size(entry_tsize);
 3005         pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | 
 3006             (e.mas3 & MAS3_RPN);
 3007         pa_end = pa_start + entry_size;
 3008 
 3009         if ((pa < pa_start) || ((pa + size) > pa_end))
 3010                 return (ERANGE);
 3011 
 3012         /* Return virtual address of this mapping. */
 3013         *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
 3014         return (0);
 3015 }
 3016 
 3017 #ifdef DDB
 3018 /* Print out contents of the MAS registers for each TLB0 entry */
 3019 static void
 3020 #ifdef __powerpc64__
 3021 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
 3022 #else
 3023 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
 3024 #endif
 3025     uint32_t mas7)
 3026 {
 3027         int as;
 3028         char desc[3];
 3029         tlbtid_t tid;
 3030         vm_size_t size;
 3031         unsigned int tsize;
 3032 
 3033         desc[2] = '\0';
 3034         if (mas1 & MAS1_VALID)
 3035                 desc[0] = 'V';
 3036         else
 3037                 desc[0] = ' ';
 3038 
 3039         if (mas1 & MAS1_IPROT)
 3040                 desc[1] = 'P';
 3041         else
 3042                 desc[1] = ' ';
 3043 
 3044         as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
 3045         tid = MAS1_GETTID(mas1);
 3046 
 3047         tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
 3048         size = 0;
 3049         if (tsize)
 3050                 size = tsize2size(tsize);
 3051 
 3052         printf("%3d: (%s) [AS=%d] "
 3053             "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
 3054             "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
 3055             i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
 3056 }
 3057 
 3058 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
 3059 {
 3060         uint32_t mas0, mas1, mas3, mas7;
 3061 #ifdef __powerpc64__
 3062         uint64_t mas2;
 3063 #else
 3064         uint32_t mas2;
 3065 #endif
 3066         int entryidx, way, idx;
 3067 
 3068         printf("TLB0 entries:\n");
 3069         for (way = 0; way < TLB0_WAYS; way ++)
 3070                 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
 3071                         mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
 3072                         mtspr(SPR_MAS0, mas0);
 3073 
 3074                         mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
 3075                         mtspr(SPR_MAS2, mas2);
 3076 
 3077                         __asm __volatile("isync; tlbre");
 3078 
 3079                         mas1 = mfspr(SPR_MAS1);
 3080                         mas2 = mfspr(SPR_MAS2);
 3081                         mas3 = mfspr(SPR_MAS3);
 3082                         mas7 = mfspr(SPR_MAS7);
 3083 
 3084                         idx = tlb0_tableidx(mas2, way);
 3085                         tlb_print_entry(idx, mas1, mas2, mas3, mas7);
 3086                 }
 3087 }
 3088 
 3089 /*
 3090  * Print out contents of the MAS registers for each TLB1 entry
 3091  */
 3092 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
 3093 {
 3094         uint32_t mas0, mas1, mas3, mas7;
 3095 #ifdef __powerpc64__
 3096         uint64_t mas2;
 3097 #else
 3098         uint32_t mas2;
 3099 #endif
 3100         int i;
 3101 
 3102         printf("TLB1 entries:\n");
 3103         for (i = 0; i < TLB1_ENTRIES; i++) {
 3104                 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
 3105                 mtspr(SPR_MAS0, mas0);
 3106 
 3107                 __asm __volatile("isync; tlbre");
 3108 
 3109                 mas1 = mfspr(SPR_MAS1);
 3110                 mas2 = mfspr(SPR_MAS2);
 3111                 mas3 = mfspr(SPR_MAS3);
 3112                 mas7 = mfspr(SPR_MAS7);
 3113 
 3114                 tlb_print_entry(i, mas1, mas2, mas3, mas7);
 3115         }
 3116 }
 3117 #endif

Cache object: 5944eeba460ce0cc0d51872da064851c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.