1 /*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32 * VM layout notes:
33 *
34 * Kernel and user threads run within one common virtual address space
35 * defined by AS=0.
36 *
37 * Virtual address space layout:
38 * -----------------------------
39 * 0x0000_0000 - 0xafff_ffff : user process
40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved
42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
43 * 0xc100_0000 - 0xfeef_ffff : KVA
44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0
47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space
48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region
49 */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD: releng/11.0/sys/powerpc/booke/pmap.c 298642 2016-04-26 14:44:49Z pfg $");
53
54 #include "opt_kstack_pages.h"
55
56 #include <sys/param.h>
57 #include <sys/conf.h>
58 #include <sys/malloc.h>
59 #include <sys/ktr.h>
60 #include <sys/proc.h>
61 #include <sys/user.h>
62 #include <sys/queue.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/kerneldump.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/lock.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #include <sys/smp.h>
73 #include <sys/vmmeter.h>
74
75 #include <vm/vm.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/uma.h>
85
86 #include <machine/cpu.h>
87 #include <machine/pcb.h>
88 #include <machine/platform.h>
89
90 #include <machine/tlb.h>
91 #include <machine/spr.h>
92 #include <machine/md_var.h>
93 #include <machine/mmuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/pte.h>
96
97 #include "mmu_if.h"
98
99 #define SPARSE_MAPDEV
100 #ifdef DEBUG
101 #define debugf(fmt, args...) printf(fmt, ##args)
102 #else
103 #define debugf(fmt, args...)
104 #endif
105
106 #define TODO panic("%s: not implemented", __func__);
107
108 extern unsigned char _etext[];
109 extern unsigned char _end[];
110
111 extern uint32_t *bootinfo;
112
113 vm_paddr_t kernload;
114 vm_offset_t kernstart;
115 vm_size_t kernsize;
116
117 /* Message buffer and tables. */
118 static vm_offset_t data_start;
119 static vm_size_t data_end;
120
121 /* Phys/avail memory regions. */
122 static struct mem_region *availmem_regions;
123 static int availmem_regions_sz;
124 static struct mem_region *physmem_regions;
125 static int physmem_regions_sz;
126
127 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
128 static vm_offset_t zero_page_va;
129 static struct mtx zero_page_mutex;
130
131 static struct mtx tlbivax_mutex;
132
133 /*
134 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
135 * by idle thred only, no lock required.
136 */
137 static vm_offset_t zero_page_idle_va;
138
139 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
140 static vm_offset_t copy_page_src_va;
141 static vm_offset_t copy_page_dst_va;
142 static struct mtx copy_page_mutex;
143
144 /**************************************************************************/
145 /* PMAP */
146 /**************************************************************************/
147
148 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
149 vm_prot_t, u_int flags, int8_t psind);
150
151 unsigned int kptbl_min; /* Index of the first kernel ptbl. */
152 unsigned int kernel_ptbls; /* Number of KVA ptbls. */
153
154 /*
155 * If user pmap is processed with mmu_booke_remove and the resident count
156 * drops to 0, there are no more pages to remove, so we need not continue.
157 */
158 #define PMAP_REMOVE_DONE(pmap) \
159 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
160
161 extern int elf32_nxstack;
162
163 /**************************************************************************/
164 /* TLB and TID handling */
165 /**************************************************************************/
166
167 /* Translation ID busy table */
168 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
169
170 /*
171 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
172 * core revisions and should be read from h/w registers during early config.
173 */
174 uint32_t tlb0_entries;
175 uint32_t tlb0_ways;
176 uint32_t tlb0_entries_per_way;
177 uint32_t tlb1_entries;
178
179 #define TLB0_ENTRIES (tlb0_entries)
180 #define TLB0_WAYS (tlb0_ways)
181 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
182
183 #define TLB1_ENTRIES (tlb1_entries)
184 #define TLB1_MAXENTRIES 64
185
186 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE;
187
188 static tlbtid_t tid_alloc(struct pmap *);
189 static void tid_flush(tlbtid_t tid);
190
191 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
192
193 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
194 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
195 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
196 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
197
198 static vm_size_t tsize2size(unsigned int);
199 static unsigned int size2tsize(vm_size_t);
200 static unsigned int ilog2(unsigned int);
201
202 static void set_mas4_defaults(void);
203
204 static inline void tlb0_flush_entry(vm_offset_t);
205 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
206
207 /**************************************************************************/
208 /* Page table management */
209 /**************************************************************************/
210
211 static struct rwlock_padalign pvh_global_lock;
212
213 /* Data for the pv entry allocation mechanism */
214 static uma_zone_t pvzone;
215 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
216
217 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
218
219 #ifndef PMAP_SHPGPERPROC
220 #define PMAP_SHPGPERPROC 200
221 #endif
222
223 static void ptbl_init(void);
224 static struct ptbl_buf *ptbl_buf_alloc(void);
225 static void ptbl_buf_free(struct ptbl_buf *);
226 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
227
228 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
229 static void ptbl_free(mmu_t, pmap_t, unsigned int);
230 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
231 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
232
233 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
234 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
235 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
236 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
237 static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr,
238 vm_offset_t pdir);
239
240 static pv_entry_t pv_alloc(void);
241 static void pv_free(pv_entry_t);
242 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
243 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
244
245 static void booke_pmap_init_qpages(void);
246
247 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248 #define PTBL_BUFS (128 * 16)
249
250 struct ptbl_buf {
251 TAILQ_ENTRY(ptbl_buf) link; /* list link */
252 vm_offset_t kva; /* va of mapping */
253 };
254
255 /* ptbl free list and a lock used for access synchronization. */
256 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257 static struct mtx ptbl_buf_freelist_lock;
258
259 /* Base address of kva space allocated fot ptbl bufs. */
260 static vm_offset_t ptbl_buf_pool_vabase;
261
262 /* Pointer to ptbl_buf structures. */
263 static struct ptbl_buf *ptbl_bufs;
264
265 #ifdef SMP
266 extern tlb_entry_t __boot_tlb1[];
267 void pmap_bootstrap_ap(volatile uint32_t *);
268 #endif
269
270 /*
271 * Kernel MMU interface
272 */
273 static void mmu_booke_clear_modify(mmu_t, vm_page_t);
274 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275 vm_size_t, vm_offset_t);
276 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277 static void mmu_booke_copy_pages(mmu_t, vm_page_t *,
278 vm_offset_t, vm_page_t *, vm_offset_t, int);
279 static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280 vm_prot_t, u_int flags, int8_t psind);
281 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282 vm_page_t, vm_prot_t);
283 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284 vm_prot_t);
285 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287 vm_prot_t);
288 static void mmu_booke_init(mmu_t);
289 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
290 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
292 static int mmu_booke_ts_referenced(mmu_t, vm_page_t);
293 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
294 int);
295 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
296 vm_paddr_t *);
297 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
298 vm_object_t, vm_pindex_t, vm_size_t);
299 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
300 static void mmu_booke_page_init(mmu_t, vm_page_t);
301 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
302 static void mmu_booke_pinit(mmu_t, pmap_t);
303 static void mmu_booke_pinit0(mmu_t, pmap_t);
304 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
305 vm_prot_t);
306 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307 static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
308 static void mmu_booke_release(mmu_t, pmap_t);
309 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310 static void mmu_booke_remove_all(mmu_t, vm_page_t);
311 static void mmu_booke_remove_write(mmu_t, vm_page_t);
312 static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313 static void mmu_booke_zero_page(mmu_t, vm_page_t);
314 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
315 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
316 static void mmu_booke_activate(mmu_t, struct thread *);
317 static void mmu_booke_deactivate(mmu_t, struct thread *);
318 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
319 static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
320 static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
321 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
322 static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t);
323 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
324 static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
325 static void mmu_booke_kremove(mmu_t, vm_offset_t);
326 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
327 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
328 vm_size_t);
329 static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
330 void **);
331 static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
332 void *);
333 static void mmu_booke_scan_init(mmu_t);
334 static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
335 static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
336 static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr,
337 vm_size_t sz, vm_memattr_t mode);
338
339 static mmu_method_t mmu_booke_methods[] = {
340 /* pmap dispatcher interface */
341 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
342 MMUMETHOD(mmu_copy, mmu_booke_copy),
343 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
344 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages),
345 MMUMETHOD(mmu_enter, mmu_booke_enter),
346 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
347 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
348 MMUMETHOD(mmu_extract, mmu_booke_extract),
349 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
350 MMUMETHOD(mmu_init, mmu_booke_init),
351 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
352 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
353 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
354 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
355 MMUMETHOD(mmu_map, mmu_booke_map),
356 MMUMETHOD(mmu_mincore, mmu_booke_mincore),
357 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
358 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
359 MMUMETHOD(mmu_page_init, mmu_booke_page_init),
360 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
361 MMUMETHOD(mmu_pinit, mmu_booke_pinit),
362 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
363 MMUMETHOD(mmu_protect, mmu_booke_protect),
364 MMUMETHOD(mmu_qenter, mmu_booke_qenter),
365 MMUMETHOD(mmu_qremove, mmu_booke_qremove),
366 MMUMETHOD(mmu_release, mmu_booke_release),
367 MMUMETHOD(mmu_remove, mmu_booke_remove),
368 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
369 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
370 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
371 MMUMETHOD(mmu_unwire, mmu_booke_unwire),
372 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
373 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
374 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
375 MMUMETHOD(mmu_activate, mmu_booke_activate),
376 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
377 MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
378 MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
379
380 /* Internal interfaces */
381 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
382 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
383 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
384 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr),
385 MMUMETHOD(mmu_kenter, mmu_booke_kenter),
386 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr),
387 MMUMETHOD(mmu_kextract, mmu_booke_kextract),
388 /* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
389 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
390 MMUMETHOD(mmu_change_attr, mmu_booke_change_attr),
391
392 /* dumpsys() support */
393 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
394 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
395 MMUMETHOD(mmu_scan_init, mmu_booke_scan_init),
396
397 { 0, 0 }
398 };
399
400 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
401
402 static __inline uint32_t
403 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
404 {
405 uint32_t attrib;
406 int i;
407
408 if (ma != VM_MEMATTR_DEFAULT) {
409 switch (ma) {
410 case VM_MEMATTR_UNCACHEABLE:
411 return (MAS2_I | MAS2_G);
412 case VM_MEMATTR_WRITE_COMBINING:
413 case VM_MEMATTR_WRITE_BACK:
414 case VM_MEMATTR_PREFETCHABLE:
415 return (MAS2_I);
416 case VM_MEMATTR_WRITE_THROUGH:
417 return (MAS2_W | MAS2_M);
418 case VM_MEMATTR_CACHEABLE:
419 return (MAS2_M);
420 }
421 }
422
423 /*
424 * Assume the page is cache inhibited and access is guarded unless
425 * it's in our available memory array.
426 */
427 attrib = _TLB_ENTRY_IO;
428 for (i = 0; i < physmem_regions_sz; i++) {
429 if ((pa >= physmem_regions[i].mr_start) &&
430 (pa < (physmem_regions[i].mr_start +
431 physmem_regions[i].mr_size))) {
432 attrib = _TLB_ENTRY_MEM;
433 break;
434 }
435 }
436
437 return (attrib);
438 }
439
440 static inline void
441 tlb_miss_lock(void)
442 {
443 #ifdef SMP
444 struct pcpu *pc;
445
446 if (!smp_started)
447 return;
448
449 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
450 if (pc != pcpup) {
451
452 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
453 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
454
455 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
456 ("tlb_miss_lock: tried to lock self"));
457
458 tlb_lock(pc->pc_booke_tlb_lock);
459
460 CTR1(KTR_PMAP, "%s: locked", __func__);
461 }
462 }
463 #endif
464 }
465
466 static inline void
467 tlb_miss_unlock(void)
468 {
469 #ifdef SMP
470 struct pcpu *pc;
471
472 if (!smp_started)
473 return;
474
475 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
476 if (pc != pcpup) {
477 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
478 __func__, pc->pc_cpuid);
479
480 tlb_unlock(pc->pc_booke_tlb_lock);
481
482 CTR1(KTR_PMAP, "%s: unlocked", __func__);
483 }
484 }
485 #endif
486 }
487
488 /* Return number of entries in TLB0. */
489 static __inline void
490 tlb0_get_tlbconf(void)
491 {
492 uint32_t tlb0_cfg;
493
494 tlb0_cfg = mfspr(SPR_TLB0CFG);
495 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
496 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
497 tlb0_entries_per_way = tlb0_entries / tlb0_ways;
498 }
499
500 /* Return number of entries in TLB1. */
501 static __inline void
502 tlb1_get_tlbconf(void)
503 {
504 uint32_t tlb1_cfg;
505
506 tlb1_cfg = mfspr(SPR_TLB1CFG);
507 tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
508 }
509
510 /**************************************************************************/
511 /* Page table related */
512 /**************************************************************************/
513
514 /* Initialize pool of kva ptbl buffers. */
515 static void
516 ptbl_init(void)
517 {
518 int i;
519
520 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
521 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
522 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
523 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
524
525 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
526 TAILQ_INIT(&ptbl_buf_freelist);
527
528 for (i = 0; i < PTBL_BUFS; i++) {
529 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
530 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
531 }
532 }
533
534 /* Get a ptbl_buf from the freelist. */
535 static struct ptbl_buf *
536 ptbl_buf_alloc(void)
537 {
538 struct ptbl_buf *buf;
539
540 mtx_lock(&ptbl_buf_freelist_lock);
541 buf = TAILQ_FIRST(&ptbl_buf_freelist);
542 if (buf != NULL)
543 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
544 mtx_unlock(&ptbl_buf_freelist_lock);
545
546 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
547
548 return (buf);
549 }
550
551 /* Return ptbl buff to free pool. */
552 static void
553 ptbl_buf_free(struct ptbl_buf *buf)
554 {
555
556 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
557
558 mtx_lock(&ptbl_buf_freelist_lock);
559 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
560 mtx_unlock(&ptbl_buf_freelist_lock);
561 }
562
563 /*
564 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
565 */
566 static void
567 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
568 {
569 struct ptbl_buf *pbuf;
570
571 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
572
573 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
574
575 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
576 if (pbuf->kva == (vm_offset_t)ptbl) {
577 /* Remove from pmap ptbl buf list. */
578 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
579
580 /* Free corresponding ptbl buf. */
581 ptbl_buf_free(pbuf);
582 break;
583 }
584 }
585
586 /* Allocate page table. */
587 static pte_t *
588 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
589 {
590 vm_page_t mtbl[PTBL_PAGES];
591 vm_page_t m;
592 struct ptbl_buf *pbuf;
593 unsigned int pidx;
594 pte_t *ptbl;
595 int i, j;
596
597 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
598 (pmap == kernel_pmap), pdir_idx);
599
600 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
601 ("ptbl_alloc: invalid pdir_idx"));
602 KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
603 ("pte_alloc: valid ptbl entry exists!"));
604
605 pbuf = ptbl_buf_alloc();
606 if (pbuf == NULL)
607 panic("pte_alloc: couldn't alloc kernel virtual memory");
608
609 ptbl = (pte_t *)pbuf->kva;
610
611 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
612
613 /* Allocate ptbl pages, this will sleep! */
614 for (i = 0; i < PTBL_PAGES; i++) {
615 pidx = (PTBL_PAGES * pdir_idx) + i;
616 while ((m = vm_page_alloc(NULL, pidx,
617 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
618 PMAP_UNLOCK(pmap);
619 rw_wunlock(&pvh_global_lock);
620 if (nosleep) {
621 ptbl_free_pmap_ptbl(pmap, ptbl);
622 for (j = 0; j < i; j++)
623 vm_page_free(mtbl[j]);
624 atomic_subtract_int(&vm_cnt.v_wire_count, i);
625 return (NULL);
626 }
627 VM_WAIT;
628 rw_wlock(&pvh_global_lock);
629 PMAP_LOCK(pmap);
630 }
631 mtbl[i] = m;
632 }
633
634 /* Map allocated pages into kernel_pmap. */
635 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
636
637 /* Zero whole ptbl. */
638 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
639
640 /* Add pbuf to the pmap ptbl bufs list. */
641 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
642
643 return (ptbl);
644 }
645
646 /* Free ptbl pages and invalidate pdir entry. */
647 static void
648 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
649 {
650 pte_t *ptbl;
651 vm_paddr_t pa;
652 vm_offset_t va;
653 vm_page_t m;
654 int i;
655
656 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
657 (pmap == kernel_pmap), pdir_idx);
658
659 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
660 ("ptbl_free: invalid pdir_idx"));
661
662 ptbl = pmap->pm_pdir[pdir_idx];
663
664 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
665
666 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
667
668 /*
669 * Invalidate the pdir entry as soon as possible, so that other CPUs
670 * don't attempt to look up the page tables we are releasing.
671 */
672 mtx_lock_spin(&tlbivax_mutex);
673 tlb_miss_lock();
674
675 pmap->pm_pdir[pdir_idx] = NULL;
676
677 tlb_miss_unlock();
678 mtx_unlock_spin(&tlbivax_mutex);
679
680 for (i = 0; i < PTBL_PAGES; i++) {
681 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
682 pa = pte_vatopa(mmu, kernel_pmap, va);
683 m = PHYS_TO_VM_PAGE(pa);
684 vm_page_free_zero(m);
685 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
686 mmu_booke_kremove(mmu, va);
687 }
688
689 ptbl_free_pmap_ptbl(pmap, ptbl);
690 }
691
692 /*
693 * Decrement ptbl pages hold count and attempt to free ptbl pages.
694 * Called when removing pte entry from ptbl.
695 *
696 * Return 1 if ptbl pages were freed.
697 */
698 static int
699 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
700 {
701 pte_t *ptbl;
702 vm_paddr_t pa;
703 vm_page_t m;
704 int i;
705
706 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
707 (pmap == kernel_pmap), pdir_idx);
708
709 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
710 ("ptbl_unhold: invalid pdir_idx"));
711 KASSERT((pmap != kernel_pmap),
712 ("ptbl_unhold: unholding kernel ptbl!"));
713
714 ptbl = pmap->pm_pdir[pdir_idx];
715
716 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
717 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
718 ("ptbl_unhold: non kva ptbl"));
719
720 /* decrement hold count */
721 for (i = 0; i < PTBL_PAGES; i++) {
722 pa = pte_vatopa(mmu, kernel_pmap,
723 (vm_offset_t)ptbl + (i * PAGE_SIZE));
724 m = PHYS_TO_VM_PAGE(pa);
725 m->wire_count--;
726 }
727
728 /*
729 * Free ptbl pages if there are no pte etries in this ptbl.
730 * wire_count has the same value for all ptbl pages, so check the last
731 * page.
732 */
733 if (m->wire_count == 0) {
734 ptbl_free(mmu, pmap, pdir_idx);
735
736 //debugf("ptbl_unhold: e (freed ptbl)\n");
737 return (1);
738 }
739
740 return (0);
741 }
742
743 /*
744 * Increment hold count for ptbl pages. This routine is used when a new pte
745 * entry is being inserted into the ptbl.
746 */
747 static void
748 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
749 {
750 vm_paddr_t pa;
751 pte_t *ptbl;
752 vm_page_t m;
753 int i;
754
755 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
756 pdir_idx);
757
758 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
759 ("ptbl_hold: invalid pdir_idx"));
760 KASSERT((pmap != kernel_pmap),
761 ("ptbl_hold: holding kernel ptbl!"));
762
763 ptbl = pmap->pm_pdir[pdir_idx];
764
765 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
766
767 for (i = 0; i < PTBL_PAGES; i++) {
768 pa = pte_vatopa(mmu, kernel_pmap,
769 (vm_offset_t)ptbl + (i * PAGE_SIZE));
770 m = PHYS_TO_VM_PAGE(pa);
771 m->wire_count++;
772 }
773 }
774
775 /* Allocate pv_entry structure. */
776 pv_entry_t
777 pv_alloc(void)
778 {
779 pv_entry_t pv;
780
781 pv_entry_count++;
782 if (pv_entry_count > pv_entry_high_water)
783 pagedaemon_wakeup();
784 pv = uma_zalloc(pvzone, M_NOWAIT);
785
786 return (pv);
787 }
788
789 /* Free pv_entry structure. */
790 static __inline void
791 pv_free(pv_entry_t pve)
792 {
793
794 pv_entry_count--;
795 uma_zfree(pvzone, pve);
796 }
797
798
799 /* Allocate and initialize pv_entry structure. */
800 static void
801 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
802 {
803 pv_entry_t pve;
804
805 //int su = (pmap == kernel_pmap);
806 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
807 // (u_int32_t)pmap, va, (u_int32_t)m);
808
809 pve = pv_alloc();
810 if (pve == NULL)
811 panic("pv_insert: no pv entries!");
812
813 pve->pv_pmap = pmap;
814 pve->pv_va = va;
815
816 /* add to pv_list */
817 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
818 rw_assert(&pvh_global_lock, RA_WLOCKED);
819
820 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
821
822 //debugf("pv_insert: e\n");
823 }
824
825 /* Destroy pv entry. */
826 static void
827 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
828 {
829 pv_entry_t pve;
830
831 //int su = (pmap == kernel_pmap);
832 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
833
834 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
835 rw_assert(&pvh_global_lock, RA_WLOCKED);
836
837 /* find pv entry */
838 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
839 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
840 /* remove from pv_list */
841 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
842 if (TAILQ_EMPTY(&m->md.pv_list))
843 vm_page_aflag_clear(m, PGA_WRITEABLE);
844
845 /* free pv entry struct */
846 pv_free(pve);
847 break;
848 }
849 }
850
851 //debugf("pv_remove: e\n");
852 }
853
854 /*
855 * Clean pte entry, try to free page table page if requested.
856 *
857 * Return 1 if ptbl pages were freed, otherwise return 0.
858 */
859 static int
860 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
861 {
862 unsigned int pdir_idx = PDIR_IDX(va);
863 unsigned int ptbl_idx = PTBL_IDX(va);
864 vm_page_t m;
865 pte_t *ptbl;
866 pte_t *pte;
867
868 //int su = (pmap == kernel_pmap);
869 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
870 // su, (u_int32_t)pmap, va, flags);
871
872 ptbl = pmap->pm_pdir[pdir_idx];
873 KASSERT(ptbl, ("pte_remove: null ptbl"));
874
875 pte = &ptbl[ptbl_idx];
876
877 if (pte == NULL || !PTE_ISVALID(pte))
878 return (0);
879
880 if (PTE_ISWIRED(pte))
881 pmap->pm_stats.wired_count--;
882
883 /* Handle managed entry. */
884 if (PTE_ISMANAGED(pte)) {
885 /* Get vm_page_t for mapped pte. */
886 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
887
888 if (PTE_ISMODIFIED(pte))
889 vm_page_dirty(m);
890
891 if (PTE_ISREFERENCED(pte))
892 vm_page_aflag_set(m, PGA_REFERENCED);
893
894 pv_remove(pmap, va, m);
895 }
896
897 mtx_lock_spin(&tlbivax_mutex);
898 tlb_miss_lock();
899
900 tlb0_flush_entry(va);
901 *pte = 0;
902
903 tlb_miss_unlock();
904 mtx_unlock_spin(&tlbivax_mutex);
905
906 pmap->pm_stats.resident_count--;
907
908 if (flags & PTBL_UNHOLD) {
909 //debugf("pte_remove: e (unhold)\n");
910 return (ptbl_unhold(mmu, pmap, pdir_idx));
911 }
912
913 //debugf("pte_remove: e\n");
914 return (0);
915 }
916
917 /*
918 * Insert PTE for a given page and virtual address.
919 */
920 static int
921 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
922 boolean_t nosleep)
923 {
924 unsigned int pdir_idx = PDIR_IDX(va);
925 unsigned int ptbl_idx = PTBL_IDX(va);
926 pte_t *ptbl, *pte;
927
928 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
929 pmap == kernel_pmap, pmap, va);
930
931 /* Get the page table pointer. */
932 ptbl = pmap->pm_pdir[pdir_idx];
933
934 if (ptbl == NULL) {
935 /* Allocate page table pages. */
936 ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
937 if (ptbl == NULL) {
938 KASSERT(nosleep, ("nosleep and NULL ptbl"));
939 return (ENOMEM);
940 }
941 } else {
942 /*
943 * Check if there is valid mapping for requested
944 * va, if there is, remove it.
945 */
946 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
947 if (PTE_ISVALID(pte)) {
948 pte_remove(mmu, pmap, va, PTBL_HOLD);
949 } else {
950 /*
951 * pte is not used, increment hold count
952 * for ptbl pages.
953 */
954 if (pmap != kernel_pmap)
955 ptbl_hold(mmu, pmap, pdir_idx);
956 }
957 }
958
959 /*
960 * Insert pv_entry into pv_list for mapped page if part of managed
961 * memory.
962 */
963 if ((m->oflags & VPO_UNMANAGED) == 0) {
964 flags |= PTE_MANAGED;
965
966 /* Create and insert pv entry. */
967 pv_insert(pmap, va, m);
968 }
969
970 pmap->pm_stats.resident_count++;
971
972 mtx_lock_spin(&tlbivax_mutex);
973 tlb_miss_lock();
974
975 tlb0_flush_entry(va);
976 if (pmap->pm_pdir[pdir_idx] == NULL) {
977 /*
978 * If we just allocated a new page table, hook it in
979 * the pdir.
980 */
981 pmap->pm_pdir[pdir_idx] = ptbl;
982 }
983 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
984 *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
985 *pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
986
987 tlb_miss_unlock();
988 mtx_unlock_spin(&tlbivax_mutex);
989 return (0);
990 }
991
992 /* Return the pa for the given pmap/va. */
993 static vm_paddr_t
994 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
995 {
996 vm_paddr_t pa = 0;
997 pte_t *pte;
998
999 pte = pte_find(mmu, pmap, va);
1000 if ((pte != NULL) && PTE_ISVALID(pte))
1001 pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1002 return (pa);
1003 }
1004
1005 /* Get a pointer to a PTE in a page table. */
1006 static pte_t *
1007 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1008 {
1009 unsigned int pdir_idx = PDIR_IDX(va);
1010 unsigned int ptbl_idx = PTBL_IDX(va);
1011
1012 KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1013
1014 if (pmap->pm_pdir[pdir_idx])
1015 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1016
1017 return (NULL);
1018 }
1019
1020 /* Set up kernel page tables. */
1021 static void
1022 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1023 {
1024 int i;
1025 vm_offset_t va;
1026 pte_t *pte;
1027
1028 /* Initialize kernel pdir */
1029 for (i = 0; i < kernel_ptbls; i++)
1030 kernel_pmap->pm_pdir[kptbl_min + i] =
1031 (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1032
1033 /*
1034 * Fill in PTEs covering kernel code and data. They are not required
1035 * for address translation, as this area is covered by static TLB1
1036 * entries, but for pte_vatopa() to work correctly with kernel area
1037 * addresses.
1038 */
1039 for (va = addr; va < data_end; va += PAGE_SIZE) {
1040 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1041 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1042 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1043 PTE_VALID | PTE_PS_4KB;
1044 }
1045 }
1046
1047 /**************************************************************************/
1048 /* PMAP related */
1049 /**************************************************************************/
1050
1051 /*
1052 * This is called during booke_init, before the system is really initialized.
1053 */
1054 static void
1055 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1056 {
1057 vm_paddr_t phys_kernelend;
1058 struct mem_region *mp, *mp1;
1059 int cnt, i, j;
1060 vm_paddr_t s, e, sz;
1061 vm_paddr_t physsz, hwphyssz;
1062 u_int phys_avail_count;
1063 vm_size_t kstack0_sz;
1064 vm_offset_t kernel_pdir, kstack0;
1065 vm_paddr_t kstack0_phys;
1066 void *dpcpu;
1067
1068 debugf("mmu_booke_bootstrap: entered\n");
1069
1070 /* Set interesting system properties */
1071 hw_direct_map = 0;
1072 elf32_nxstack = 1;
1073
1074 /* Initialize invalidation mutex */
1075 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1076
1077 /* Read TLB0 size and associativity. */
1078 tlb0_get_tlbconf();
1079
1080 /*
1081 * Align kernel start and end address (kernel image).
1082 * Note that kernel end does not necessarily relate to kernsize.
1083 * kernsize is the size of the kernel that is actually mapped.
1084 */
1085 kernstart = trunc_page(start);
1086 data_start = round_page(kernelend);
1087 data_end = data_start;
1088
1089 /*
1090 * Addresses of preloaded modules (like file systems) use
1091 * physical addresses. Make sure we relocate those into
1092 * virtual addresses.
1093 */
1094 preload_addr_relocate = kernstart - kernload;
1095
1096 /* Allocate the dynamic per-cpu area. */
1097 dpcpu = (void *)data_end;
1098 data_end += DPCPU_SIZE;
1099
1100 /* Allocate space for the message buffer. */
1101 msgbufp = (struct msgbuf *)data_end;
1102 data_end += msgbufsize;
1103 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1104 data_end);
1105
1106 data_end = round_page(data_end);
1107
1108 /* Allocate space for ptbl_bufs. */
1109 ptbl_bufs = (struct ptbl_buf *)data_end;
1110 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1111 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1112 data_end);
1113
1114 data_end = round_page(data_end);
1115
1116 /* Allocate PTE tables for kernel KVA. */
1117 kernel_pdir = data_end;
1118 kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
1119 PDIR_SIZE);
1120 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1121 debugf(" kernel ptbls: %d\n", kernel_ptbls);
1122 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1123
1124 debugf(" data_end: 0x%08x\n", data_end);
1125 if (data_end - kernstart > kernsize) {
1126 kernsize += tlb1_mapin_region(kernstart + kernsize,
1127 kernload + kernsize, (data_end - kernstart) - kernsize);
1128 }
1129 data_end = kernstart + kernsize;
1130 debugf(" updated data_end: 0x%08x\n", data_end);
1131
1132 /*
1133 * Clear the structures - note we can only do it safely after the
1134 * possible additional TLB1 translations are in place (above) so that
1135 * all range up to the currently calculated 'data_end' is covered.
1136 */
1137 dpcpu_init(dpcpu, 0);
1138 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1139 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1140
1141 /*******************************************************/
1142 /* Set the start and end of kva. */
1143 /*******************************************************/
1144 virtual_avail = round_page(data_end);
1145 virtual_end = VM_MAX_KERNEL_ADDRESS;
1146
1147 /* Allocate KVA space for page zero/copy operations. */
1148 zero_page_va = virtual_avail;
1149 virtual_avail += PAGE_SIZE;
1150 zero_page_idle_va = virtual_avail;
1151 virtual_avail += PAGE_SIZE;
1152 copy_page_src_va = virtual_avail;
1153 virtual_avail += PAGE_SIZE;
1154 copy_page_dst_va = virtual_avail;
1155 virtual_avail += PAGE_SIZE;
1156 debugf("zero_page_va = 0x%08x\n", zero_page_va);
1157 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1158 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1159 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1160
1161 /* Initialize page zero/copy mutexes. */
1162 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1163 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1164
1165 /* Allocate KVA space for ptbl bufs. */
1166 ptbl_buf_pool_vabase = virtual_avail;
1167 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1168 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1169 ptbl_buf_pool_vabase, virtual_avail);
1170
1171 /* Calculate corresponding physical addresses for the kernel region. */
1172 phys_kernelend = kernload + kernsize;
1173 debugf("kernel image and allocated data:\n");
1174 debugf(" kernload = 0x%09llx\n", (uint64_t)kernload);
1175 debugf(" kernstart = 0x%08x\n", kernstart);
1176 debugf(" kernsize = 0x%08x\n", kernsize);
1177
1178 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1179 panic("mmu_booke_bootstrap: phys_avail too small");
1180
1181 /*
1182 * Remove kernel physical address range from avail regions list. Page
1183 * align all regions. Non-page aligned memory isn't very interesting
1184 * to us. Also, sort the entries for ascending addresses.
1185 */
1186
1187 /* Retrieve phys/avail mem regions */
1188 mem_regions(&physmem_regions, &physmem_regions_sz,
1189 &availmem_regions, &availmem_regions_sz);
1190 sz = 0;
1191 cnt = availmem_regions_sz;
1192 debugf("processing avail regions:\n");
1193 for (mp = availmem_regions; mp->mr_size; mp++) {
1194 s = mp->mr_start;
1195 e = mp->mr_start + mp->mr_size;
1196 debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1197 /* Check whether this region holds all of the kernel. */
1198 if (s < kernload && e > phys_kernelend) {
1199 availmem_regions[cnt].mr_start = phys_kernelend;
1200 availmem_regions[cnt++].mr_size = e - phys_kernelend;
1201 e = kernload;
1202 }
1203 /* Look whether this regions starts within the kernel. */
1204 if (s >= kernload && s < phys_kernelend) {
1205 if (e <= phys_kernelend)
1206 goto empty;
1207 s = phys_kernelend;
1208 }
1209 /* Now look whether this region ends within the kernel. */
1210 if (e > kernload && e <= phys_kernelend) {
1211 if (s >= kernload)
1212 goto empty;
1213 e = kernload;
1214 }
1215 /* Now page align the start and size of the region. */
1216 s = round_page(s);
1217 e = trunc_page(e);
1218 if (e < s)
1219 e = s;
1220 sz = e - s;
1221 debugf("%09jx-%09jx = %jx\n",
1222 (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1223
1224 /* Check whether some memory is left here. */
1225 if (sz == 0) {
1226 empty:
1227 memmove(mp, mp + 1,
1228 (cnt - (mp - availmem_regions)) * sizeof(*mp));
1229 cnt--;
1230 mp--;
1231 continue;
1232 }
1233
1234 /* Do an insertion sort. */
1235 for (mp1 = availmem_regions; mp1 < mp; mp1++)
1236 if (s < mp1->mr_start)
1237 break;
1238 if (mp1 < mp) {
1239 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1240 mp1->mr_start = s;
1241 mp1->mr_size = sz;
1242 } else {
1243 mp->mr_start = s;
1244 mp->mr_size = sz;
1245 }
1246 }
1247 availmem_regions_sz = cnt;
1248
1249 /*******************************************************/
1250 /* Steal physical memory for kernel stack from the end */
1251 /* of the first avail region */
1252 /*******************************************************/
1253 kstack0_sz = kstack_pages * PAGE_SIZE;
1254 kstack0_phys = availmem_regions[0].mr_start +
1255 availmem_regions[0].mr_size;
1256 kstack0_phys -= kstack0_sz;
1257 availmem_regions[0].mr_size -= kstack0_sz;
1258
1259 /*******************************************************/
1260 /* Fill in phys_avail table, based on availmem_regions */
1261 /*******************************************************/
1262 phys_avail_count = 0;
1263 physsz = 0;
1264 hwphyssz = 0;
1265 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1266
1267 debugf("fill in phys_avail:\n");
1268 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1269
1270 debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1271 (uintmax_t)availmem_regions[i].mr_start,
1272 (uintmax_t)availmem_regions[i].mr_start +
1273 availmem_regions[i].mr_size,
1274 (uintmax_t)availmem_regions[i].mr_size);
1275
1276 if (hwphyssz != 0 &&
1277 (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1278 debugf(" hw.physmem adjust\n");
1279 if (physsz < hwphyssz) {
1280 phys_avail[j] = availmem_regions[i].mr_start;
1281 phys_avail[j + 1] =
1282 availmem_regions[i].mr_start +
1283 hwphyssz - physsz;
1284 physsz = hwphyssz;
1285 phys_avail_count++;
1286 }
1287 break;
1288 }
1289
1290 phys_avail[j] = availmem_regions[i].mr_start;
1291 phys_avail[j + 1] = availmem_regions[i].mr_start +
1292 availmem_regions[i].mr_size;
1293 phys_avail_count++;
1294 physsz += availmem_regions[i].mr_size;
1295 }
1296 physmem = btoc(physsz);
1297
1298 /* Calculate the last available physical address. */
1299 for (i = 0; phys_avail[i + 2] != 0; i += 2)
1300 ;
1301 Maxmem = powerpc_btop(phys_avail[i + 1]);
1302
1303 debugf("Maxmem = 0x%08lx\n", Maxmem);
1304 debugf("phys_avail_count = %d\n", phys_avail_count);
1305 debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
1306 (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
1307
1308 /*******************************************************/
1309 /* Initialize (statically allocated) kernel pmap. */
1310 /*******************************************************/
1311 PMAP_LOCK_INIT(kernel_pmap);
1312 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1313
1314 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1315 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1316 debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1317 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1318
1319 kernel_pte_alloc(data_end, kernstart, kernel_pdir);
1320 for (i = 0; i < MAXCPU; i++) {
1321 kernel_pmap->pm_tid[i] = TID_KERNEL;
1322
1323 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1324 tidbusy[i][TID_KERNEL] = kernel_pmap;
1325 }
1326
1327 /* Mark kernel_pmap active on all CPUs */
1328 CPU_FILL(&kernel_pmap->pm_active);
1329
1330 /*
1331 * Initialize the global pv list lock.
1332 */
1333 rw_init(&pvh_global_lock, "pmap pv global");
1334
1335 /*******************************************************/
1336 /* Final setup */
1337 /*******************************************************/
1338
1339 /* Enter kstack0 into kernel map, provide guard page */
1340 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1341 thread0.td_kstack = kstack0;
1342 thread0.td_kstack_pages = kstack_pages;
1343
1344 debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1345 debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1346 kstack0_phys, kstack0_phys + kstack0_sz);
1347 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1348
1349 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1350 for (i = 0; i < kstack_pages; i++) {
1351 mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1352 kstack0 += PAGE_SIZE;
1353 kstack0_phys += PAGE_SIZE;
1354 }
1355
1356 pmap_bootstrapped = 1;
1357
1358 debugf("virtual_avail = %08x\n", virtual_avail);
1359 debugf("virtual_end = %08x\n", virtual_end);
1360
1361 debugf("mmu_booke_bootstrap: exit\n");
1362 }
1363
1364 #ifdef SMP
1365 void
1366 tlb1_ap_prep(void)
1367 {
1368 tlb_entry_t *e, tmp;
1369 unsigned int i;
1370
1371 /* Prepare TLB1 image for AP processors */
1372 e = __boot_tlb1;
1373 for (i = 0; i < TLB1_ENTRIES; i++) {
1374 tlb1_read_entry(&tmp, i);
1375
1376 if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
1377 memcpy(e++, &tmp, sizeof(tmp));
1378 }
1379 }
1380
1381 void
1382 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1383 {
1384 int i;
1385
1386 /*
1387 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1388 * have the snapshot of its contents in the s/w __boot_tlb1[] table
1389 * created by tlb1_ap_prep(), so use these values directly to
1390 * (re)program AP's TLB1 hardware.
1391 *
1392 * Start at index 1 because index 0 has the kernel map.
1393 */
1394 for (i = 1; i < TLB1_ENTRIES; i++) {
1395 if (__boot_tlb1[i].mas1 & MAS1_VALID)
1396 tlb1_write_entry(&__boot_tlb1[i], i);
1397 }
1398
1399 set_mas4_defaults();
1400 }
1401 #endif
1402
1403 static void
1404 booke_pmap_init_qpages(void)
1405 {
1406 struct pcpu *pc;
1407 int i;
1408
1409 CPU_FOREACH(i) {
1410 pc = pcpu_find(i);
1411 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1412 if (pc->pc_qmap_addr == 0)
1413 panic("pmap_init_qpages: unable to allocate KVA");
1414 }
1415 }
1416
1417 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1418
1419 /*
1420 * Get the physical page address for the given pmap/virtual address.
1421 */
1422 static vm_paddr_t
1423 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1424 {
1425 vm_paddr_t pa;
1426
1427 PMAP_LOCK(pmap);
1428 pa = pte_vatopa(mmu, pmap, va);
1429 PMAP_UNLOCK(pmap);
1430
1431 return (pa);
1432 }
1433
1434 /*
1435 * Extract the physical page address associated with the given
1436 * kernel virtual address.
1437 */
1438 static vm_paddr_t
1439 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1440 {
1441 tlb_entry_t e;
1442 int i;
1443
1444 /* Check TLB1 mappings */
1445 for (i = 0; i < TLB1_ENTRIES; i++) {
1446 tlb1_read_entry(&e, i);
1447 if (!(e.mas1 & MAS1_VALID))
1448 continue;
1449 if (va >= e.virt && va < e.virt + e.size)
1450 return (e.phys + (va - e.virt));
1451 }
1452
1453 return (pte_vatopa(mmu, kernel_pmap, va));
1454 }
1455
1456 /*
1457 * Initialize the pmap module.
1458 * Called by vm_init, to initialize any structures that the pmap
1459 * system needs to map virtual memory.
1460 */
1461 static void
1462 mmu_booke_init(mmu_t mmu)
1463 {
1464 int shpgperproc = PMAP_SHPGPERPROC;
1465
1466 /*
1467 * Initialize the address space (zone) for the pv entries. Set a
1468 * high water mark so that the system can recover from excessive
1469 * numbers of pv entries.
1470 */
1471 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1472 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1473
1474 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1475 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1476
1477 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1478 pv_entry_high_water = 9 * (pv_entry_max / 10);
1479
1480 uma_zone_reserve_kva(pvzone, pv_entry_max);
1481
1482 /* Pre-fill pvzone with initial number of pv entries. */
1483 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1484
1485 /* Initialize ptbl allocation. */
1486 ptbl_init();
1487 }
1488
1489 /*
1490 * Map a list of wired pages into kernel virtual address space. This is
1491 * intended for temporary mappings which do not need page modification or
1492 * references recorded. Existing mappings in the region are overwritten.
1493 */
1494 static void
1495 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1496 {
1497 vm_offset_t va;
1498
1499 va = sva;
1500 while (count-- > 0) {
1501 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1502 va += PAGE_SIZE;
1503 m++;
1504 }
1505 }
1506
1507 /*
1508 * Remove page mappings from kernel virtual address space. Intended for
1509 * temporary mappings entered by mmu_booke_qenter.
1510 */
1511 static void
1512 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1513 {
1514 vm_offset_t va;
1515
1516 va = sva;
1517 while (count-- > 0) {
1518 mmu_booke_kremove(mmu, va);
1519 va += PAGE_SIZE;
1520 }
1521 }
1522
1523 /*
1524 * Map a wired page into kernel virtual address space.
1525 */
1526 static void
1527 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1528 {
1529
1530 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1531 }
1532
1533 static void
1534 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1535 {
1536 uint32_t flags;
1537 pte_t *pte;
1538
1539 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1540 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1541
1542 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1543 flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1544 flags |= PTE_PS_4KB;
1545
1546 pte = pte_find(mmu, kernel_pmap, va);
1547
1548 mtx_lock_spin(&tlbivax_mutex);
1549 tlb_miss_lock();
1550
1551 if (PTE_ISVALID(pte)) {
1552
1553 CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1554
1555 /* Flush entry from TLB0 */
1556 tlb0_flush_entry(va);
1557 }
1558
1559 *pte = PTE_RPN_FROM_PA(pa) | flags;
1560
1561 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1562 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1563 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1564
1565 /* Flush the real memory from the instruction cache. */
1566 if ((flags & (PTE_I | PTE_G)) == 0)
1567 __syncicache((void *)va, PAGE_SIZE);
1568
1569 tlb_miss_unlock();
1570 mtx_unlock_spin(&tlbivax_mutex);
1571 }
1572
1573 /*
1574 * Remove a page from kernel page table.
1575 */
1576 static void
1577 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1578 {
1579 pte_t *pte;
1580
1581 CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va);
1582
1583 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1584 (va <= VM_MAX_KERNEL_ADDRESS)),
1585 ("mmu_booke_kremove: invalid va"));
1586
1587 pte = pte_find(mmu, kernel_pmap, va);
1588
1589 if (!PTE_ISVALID(pte)) {
1590
1591 CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1592
1593 return;
1594 }
1595
1596 mtx_lock_spin(&tlbivax_mutex);
1597 tlb_miss_lock();
1598
1599 /* Invalidate entry in TLB0, update PTE. */
1600 tlb0_flush_entry(va);
1601 *pte = 0;
1602
1603 tlb_miss_unlock();
1604 mtx_unlock_spin(&tlbivax_mutex);
1605 }
1606
1607 /*
1608 * Initialize pmap associated with process 0.
1609 */
1610 static void
1611 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1612 {
1613
1614 PMAP_LOCK_INIT(pmap);
1615 mmu_booke_pinit(mmu, pmap);
1616 PCPU_SET(curpmap, pmap);
1617 }
1618
1619 /*
1620 * Initialize a preallocated and zeroed pmap structure,
1621 * such as one in a vmspace structure.
1622 */
1623 static void
1624 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1625 {
1626 int i;
1627
1628 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1629 curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1630
1631 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1632
1633 for (i = 0; i < MAXCPU; i++)
1634 pmap->pm_tid[i] = TID_NONE;
1635 CPU_ZERO(&kernel_pmap->pm_active);
1636 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1637 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1638 TAILQ_INIT(&pmap->pm_ptbl_list);
1639 }
1640
1641 /*
1642 * Release any resources held by the given physical map.
1643 * Called when a pmap initialized by mmu_booke_pinit is being released.
1644 * Should only be called if the map contains no valid mappings.
1645 */
1646 static void
1647 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1648 {
1649
1650 KASSERT(pmap->pm_stats.resident_count == 0,
1651 ("pmap_release: pmap resident count %ld != 0",
1652 pmap->pm_stats.resident_count));
1653 }
1654
1655 /*
1656 * Insert the given physical page at the specified virtual address in the
1657 * target physical map with the protection requested. If specified the page
1658 * will be wired down.
1659 */
1660 static int
1661 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1662 vm_prot_t prot, u_int flags, int8_t psind)
1663 {
1664 int error;
1665
1666 rw_wlock(&pvh_global_lock);
1667 PMAP_LOCK(pmap);
1668 error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1669 rw_wunlock(&pvh_global_lock);
1670 PMAP_UNLOCK(pmap);
1671 return (error);
1672 }
1673
1674 static int
1675 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1676 vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1677 {
1678 pte_t *pte;
1679 vm_paddr_t pa;
1680 uint32_t flags;
1681 int error, su, sync;
1682
1683 pa = VM_PAGE_TO_PHYS(m);
1684 su = (pmap == kernel_pmap);
1685 sync = 0;
1686
1687 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1688 // "pa=0x%08x prot=0x%08x flags=%#x)\n",
1689 // (u_int32_t)pmap, su, pmap->pm_tid,
1690 // (u_int32_t)m, va, pa, prot, flags);
1691
1692 if (su) {
1693 KASSERT(((va >= virtual_avail) &&
1694 (va <= VM_MAX_KERNEL_ADDRESS)),
1695 ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1696 } else {
1697 KASSERT((va <= VM_MAXUSER_ADDRESS),
1698 ("mmu_booke_enter_locked: user pmap, non user va"));
1699 }
1700 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1701 VM_OBJECT_ASSERT_LOCKED(m->object);
1702
1703 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1704
1705 /*
1706 * If there is an existing mapping, and the physical address has not
1707 * changed, must be protection or wiring change.
1708 */
1709 if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1710 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1711
1712 /*
1713 * Before actually updating pte->flags we calculate and
1714 * prepare its new value in a helper var.
1715 */
1716 flags = *pte;
1717 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1718
1719 /* Wiring change, just update stats. */
1720 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1721 if (!PTE_ISWIRED(pte)) {
1722 flags |= PTE_WIRED;
1723 pmap->pm_stats.wired_count++;
1724 }
1725 } else {
1726 if (PTE_ISWIRED(pte)) {
1727 flags &= ~PTE_WIRED;
1728 pmap->pm_stats.wired_count--;
1729 }
1730 }
1731
1732 if (prot & VM_PROT_WRITE) {
1733 /* Add write permissions. */
1734 flags |= PTE_SW;
1735 if (!su)
1736 flags |= PTE_UW;
1737
1738 if ((flags & PTE_MANAGED) != 0)
1739 vm_page_aflag_set(m, PGA_WRITEABLE);
1740 } else {
1741 /* Handle modified pages, sense modify status. */
1742
1743 /*
1744 * The PTE_MODIFIED flag could be set by underlying
1745 * TLB misses since we last read it (above), possibly
1746 * other CPUs could update it so we check in the PTE
1747 * directly rather than rely on that saved local flags
1748 * copy.
1749 */
1750 if (PTE_ISMODIFIED(pte))
1751 vm_page_dirty(m);
1752 }
1753
1754 if (prot & VM_PROT_EXECUTE) {
1755 flags |= PTE_SX;
1756 if (!su)
1757 flags |= PTE_UX;
1758
1759 /*
1760 * Check existing flags for execute permissions: if we
1761 * are turning execute permissions on, icache should
1762 * be flushed.
1763 */
1764 if ((*pte & (PTE_UX | PTE_SX)) == 0)
1765 sync++;
1766 }
1767
1768 flags &= ~PTE_REFERENCED;
1769
1770 /*
1771 * The new flags value is all calculated -- only now actually
1772 * update the PTE.
1773 */
1774 mtx_lock_spin(&tlbivax_mutex);
1775 tlb_miss_lock();
1776
1777 tlb0_flush_entry(va);
1778 *pte &= ~PTE_FLAGS_MASK;
1779 *pte |= flags;
1780
1781 tlb_miss_unlock();
1782 mtx_unlock_spin(&tlbivax_mutex);
1783
1784 } else {
1785 /*
1786 * If there is an existing mapping, but it's for a different
1787 * physical address, pte_enter() will delete the old mapping.
1788 */
1789 //if ((pte != NULL) && PTE_ISVALID(pte))
1790 // debugf("mmu_booke_enter_locked: replace\n");
1791 //else
1792 // debugf("mmu_booke_enter_locked: new\n");
1793
1794 /* Now set up the flags and install the new mapping. */
1795 flags = (PTE_SR | PTE_VALID);
1796 flags |= PTE_M;
1797
1798 if (!su)
1799 flags |= PTE_UR;
1800
1801 if (prot & VM_PROT_WRITE) {
1802 flags |= PTE_SW;
1803 if (!su)
1804 flags |= PTE_UW;
1805
1806 if ((m->oflags & VPO_UNMANAGED) == 0)
1807 vm_page_aflag_set(m, PGA_WRITEABLE);
1808 }
1809
1810 if (prot & VM_PROT_EXECUTE) {
1811 flags |= PTE_SX;
1812 if (!su)
1813 flags |= PTE_UX;
1814 }
1815
1816 /* If its wired update stats. */
1817 if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1818 flags |= PTE_WIRED;
1819
1820 error = pte_enter(mmu, pmap, m, va, flags,
1821 (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1822 if (error != 0)
1823 return (KERN_RESOURCE_SHORTAGE);
1824
1825 if ((flags & PMAP_ENTER_WIRED) != 0)
1826 pmap->pm_stats.wired_count++;
1827
1828 /* Flush the real memory from the instruction cache. */
1829 if (prot & VM_PROT_EXECUTE)
1830 sync++;
1831 }
1832
1833 if (sync && (su || pmap == PCPU_GET(curpmap))) {
1834 __syncicache((void *)va, PAGE_SIZE);
1835 sync = 0;
1836 }
1837
1838 return (KERN_SUCCESS);
1839 }
1840
1841 /*
1842 * Maps a sequence of resident pages belonging to the same object.
1843 * The sequence begins with the given page m_start. This page is
1844 * mapped at the given virtual address start. Each subsequent page is
1845 * mapped at a virtual address that is offset from start by the same
1846 * amount as the page is offset from m_start within the object. The
1847 * last page in the sequence is the page with the largest offset from
1848 * m_start that can be mapped at a virtual address less than the given
1849 * virtual address end. Not every virtual page between start and end
1850 * is mapped; only those for which a resident page exists with the
1851 * corresponding offset from m_start are mapped.
1852 */
1853 static void
1854 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1855 vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1856 {
1857 vm_page_t m;
1858 vm_pindex_t diff, psize;
1859
1860 VM_OBJECT_ASSERT_LOCKED(m_start->object);
1861
1862 psize = atop(end - start);
1863 m = m_start;
1864 rw_wlock(&pvh_global_lock);
1865 PMAP_LOCK(pmap);
1866 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1867 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1868 prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1869 PMAP_ENTER_NOSLEEP, 0);
1870 m = TAILQ_NEXT(m, listq);
1871 }
1872 rw_wunlock(&pvh_global_lock);
1873 PMAP_UNLOCK(pmap);
1874 }
1875
1876 static void
1877 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1878 vm_prot_t prot)
1879 {
1880
1881 rw_wlock(&pvh_global_lock);
1882 PMAP_LOCK(pmap);
1883 mmu_booke_enter_locked(mmu, pmap, va, m,
1884 prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1885 0);
1886 rw_wunlock(&pvh_global_lock);
1887 PMAP_UNLOCK(pmap);
1888 }
1889
1890 /*
1891 * Remove the given range of addresses from the specified map.
1892 *
1893 * It is assumed that the start and end are properly rounded to the page size.
1894 */
1895 static void
1896 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1897 {
1898 pte_t *pte;
1899 uint8_t hold_flag;
1900
1901 int su = (pmap == kernel_pmap);
1902
1903 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1904 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1905
1906 if (su) {
1907 KASSERT(((va >= virtual_avail) &&
1908 (va <= VM_MAX_KERNEL_ADDRESS)),
1909 ("mmu_booke_remove: kernel pmap, non kernel va"));
1910 } else {
1911 KASSERT((va <= VM_MAXUSER_ADDRESS),
1912 ("mmu_booke_remove: user pmap, non user va"));
1913 }
1914
1915 if (PMAP_REMOVE_DONE(pmap)) {
1916 //debugf("mmu_booke_remove: e (empty)\n");
1917 return;
1918 }
1919
1920 hold_flag = PTBL_HOLD_FLAG(pmap);
1921 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1922
1923 rw_wlock(&pvh_global_lock);
1924 PMAP_LOCK(pmap);
1925 for (; va < endva; va += PAGE_SIZE) {
1926 pte = pte_find(mmu, pmap, va);
1927 if ((pte != NULL) && PTE_ISVALID(pte))
1928 pte_remove(mmu, pmap, va, hold_flag);
1929 }
1930 PMAP_UNLOCK(pmap);
1931 rw_wunlock(&pvh_global_lock);
1932
1933 //debugf("mmu_booke_remove: e\n");
1934 }
1935
1936 /*
1937 * Remove physical page from all pmaps in which it resides.
1938 */
1939 static void
1940 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1941 {
1942 pv_entry_t pv, pvn;
1943 uint8_t hold_flag;
1944
1945 rw_wlock(&pvh_global_lock);
1946 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1947 pvn = TAILQ_NEXT(pv, pv_link);
1948
1949 PMAP_LOCK(pv->pv_pmap);
1950 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1951 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1952 PMAP_UNLOCK(pv->pv_pmap);
1953 }
1954 vm_page_aflag_clear(m, PGA_WRITEABLE);
1955 rw_wunlock(&pvh_global_lock);
1956 }
1957
1958 /*
1959 * Map a range of physical addresses into kernel virtual address space.
1960 */
1961 static vm_offset_t
1962 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1963 vm_paddr_t pa_end, int prot)
1964 {
1965 vm_offset_t sva = *virt;
1966 vm_offset_t va = sva;
1967
1968 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1969 // sva, pa_start, pa_end);
1970
1971 while (pa_start < pa_end) {
1972 mmu_booke_kenter(mmu, va, pa_start);
1973 va += PAGE_SIZE;
1974 pa_start += PAGE_SIZE;
1975 }
1976 *virt = va;
1977
1978 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1979 return (sva);
1980 }
1981
1982 /*
1983 * The pmap must be activated before it's address space can be accessed in any
1984 * way.
1985 */
1986 static void
1987 mmu_booke_activate(mmu_t mmu, struct thread *td)
1988 {
1989 pmap_t pmap;
1990 u_int cpuid;
1991
1992 pmap = &td->td_proc->p_vmspace->vm_pmap;
1993
1994 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1995 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1996
1997 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1998
1999 sched_pin();
2000
2001 cpuid = PCPU_GET(cpuid);
2002 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2003 PCPU_SET(curpmap, pmap);
2004
2005 if (pmap->pm_tid[cpuid] == TID_NONE)
2006 tid_alloc(pmap);
2007
2008 /* Load PID0 register with pmap tid value. */
2009 mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
2010 __asm __volatile("isync");
2011
2012 mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
2013
2014 sched_unpin();
2015
2016 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2017 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2018 }
2019
2020 /*
2021 * Deactivate the specified process's address space.
2022 */
2023 static void
2024 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2025 {
2026 pmap_t pmap;
2027
2028 pmap = &td->td_proc->p_vmspace->vm_pmap;
2029
2030 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
2031 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2032
2033 td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2034
2035 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2036 PCPU_SET(curpmap, NULL);
2037 }
2038
2039 /*
2040 * Copy the range specified by src_addr/len
2041 * from the source map to the range dst_addr/len
2042 * in the destination map.
2043 *
2044 * This routine is only advisory and need not do anything.
2045 */
2046 static void
2047 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2048 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2049 {
2050
2051 }
2052
2053 /*
2054 * Set the physical protection on the specified range of this map as requested.
2055 */
2056 static void
2057 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2058 vm_prot_t prot)
2059 {
2060 vm_offset_t va;
2061 vm_page_t m;
2062 pte_t *pte;
2063
2064 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2065 mmu_booke_remove(mmu, pmap, sva, eva);
2066 return;
2067 }
2068
2069 if (prot & VM_PROT_WRITE)
2070 return;
2071
2072 PMAP_LOCK(pmap);
2073 for (va = sva; va < eva; va += PAGE_SIZE) {
2074 if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2075 if (PTE_ISVALID(pte)) {
2076 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2077
2078 mtx_lock_spin(&tlbivax_mutex);
2079 tlb_miss_lock();
2080
2081 /* Handle modified pages. */
2082 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2083 vm_page_dirty(m);
2084
2085 tlb0_flush_entry(va);
2086 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2087
2088 tlb_miss_unlock();
2089 mtx_unlock_spin(&tlbivax_mutex);
2090 }
2091 }
2092 }
2093 PMAP_UNLOCK(pmap);
2094 }
2095
2096 /*
2097 * Clear the write and modified bits in each of the given page's mappings.
2098 */
2099 static void
2100 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2101 {
2102 pv_entry_t pv;
2103 pte_t *pte;
2104
2105 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2106 ("mmu_booke_remove_write: page %p is not managed", m));
2107
2108 /*
2109 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2110 * set by another thread while the object is locked. Thus,
2111 * if PGA_WRITEABLE is clear, no page table entries need updating.
2112 */
2113 VM_OBJECT_ASSERT_WLOCKED(m->object);
2114 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2115 return;
2116 rw_wlock(&pvh_global_lock);
2117 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2118 PMAP_LOCK(pv->pv_pmap);
2119 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2120 if (PTE_ISVALID(pte)) {
2121 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2122
2123 mtx_lock_spin(&tlbivax_mutex);
2124 tlb_miss_lock();
2125
2126 /* Handle modified pages. */
2127 if (PTE_ISMODIFIED(pte))
2128 vm_page_dirty(m);
2129
2130 /* Flush mapping from TLB0. */
2131 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2132
2133 tlb_miss_unlock();
2134 mtx_unlock_spin(&tlbivax_mutex);
2135 }
2136 }
2137 PMAP_UNLOCK(pv->pv_pmap);
2138 }
2139 vm_page_aflag_clear(m, PGA_WRITEABLE);
2140 rw_wunlock(&pvh_global_lock);
2141 }
2142
2143 static void
2144 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2145 {
2146 pte_t *pte;
2147 pmap_t pmap;
2148 vm_page_t m;
2149 vm_offset_t addr;
2150 vm_paddr_t pa = 0;
2151 int active, valid;
2152
2153 va = trunc_page(va);
2154 sz = round_page(sz);
2155
2156 rw_wlock(&pvh_global_lock);
2157 pmap = PCPU_GET(curpmap);
2158 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2159 while (sz > 0) {
2160 PMAP_LOCK(pm);
2161 pte = pte_find(mmu, pm, va);
2162 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2163 if (valid)
2164 pa = PTE_PA(pte);
2165 PMAP_UNLOCK(pm);
2166 if (valid) {
2167 if (!active) {
2168 /* Create a mapping in the active pmap. */
2169 addr = 0;
2170 m = PHYS_TO_VM_PAGE(pa);
2171 PMAP_LOCK(pmap);
2172 pte_enter(mmu, pmap, m, addr,
2173 PTE_SR | PTE_VALID | PTE_UR, FALSE);
2174 __syncicache((void *)addr, PAGE_SIZE);
2175 pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2176 PMAP_UNLOCK(pmap);
2177 } else
2178 __syncicache((void *)va, PAGE_SIZE);
2179 }
2180 va += PAGE_SIZE;
2181 sz -= PAGE_SIZE;
2182 }
2183 rw_wunlock(&pvh_global_lock);
2184 }
2185
2186 /*
2187 * Atomically extract and hold the physical page with the given
2188 * pmap and virtual address pair if that mapping permits the given
2189 * protection.
2190 */
2191 static vm_page_t
2192 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2193 vm_prot_t prot)
2194 {
2195 pte_t *pte;
2196 vm_page_t m;
2197 uint32_t pte_wbit;
2198 vm_paddr_t pa;
2199
2200 m = NULL;
2201 pa = 0;
2202 PMAP_LOCK(pmap);
2203 retry:
2204 pte = pte_find(mmu, pmap, va);
2205 if ((pte != NULL) && PTE_ISVALID(pte)) {
2206 if (pmap == kernel_pmap)
2207 pte_wbit = PTE_SW;
2208 else
2209 pte_wbit = PTE_UW;
2210
2211 if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2212 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2213 goto retry;
2214 m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2215 vm_page_hold(m);
2216 }
2217 }
2218
2219 PA_UNLOCK_COND(pa);
2220 PMAP_UNLOCK(pmap);
2221 return (m);
2222 }
2223
2224 /*
2225 * Initialize a vm_page's machine-dependent fields.
2226 */
2227 static void
2228 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2229 {
2230
2231 TAILQ_INIT(&m->md.pv_list);
2232 }
2233
2234 /*
2235 * mmu_booke_zero_page_area zeros the specified hardware page by
2236 * mapping it into virtual memory and using bzero to clear
2237 * its contents.
2238 *
2239 * off and size must reside within a single page.
2240 */
2241 static void
2242 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2243 {
2244 vm_offset_t va;
2245
2246 /* XXX KASSERT off and size are within a single page? */
2247
2248 mtx_lock(&zero_page_mutex);
2249 va = zero_page_va;
2250
2251 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2252 bzero((caddr_t)va + off, size);
2253 mmu_booke_kremove(mmu, va);
2254
2255 mtx_unlock(&zero_page_mutex);
2256 }
2257
2258 /*
2259 * mmu_booke_zero_page zeros the specified hardware page.
2260 */
2261 static void
2262 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2263 {
2264 vm_offset_t off, va;
2265
2266 mtx_lock(&zero_page_mutex);
2267 va = zero_page_va;
2268
2269 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2270 for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2271 __asm __volatile("dcbz 0,%0" :: "r"(va + off));
2272 mmu_booke_kremove(mmu, va);
2273
2274 mtx_unlock(&zero_page_mutex);
2275 }
2276
2277 /*
2278 * mmu_booke_copy_page copies the specified (machine independent) page by
2279 * mapping the page into virtual memory and using memcopy to copy the page,
2280 * one machine dependent page at a time.
2281 */
2282 static void
2283 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2284 {
2285 vm_offset_t sva, dva;
2286
2287 sva = copy_page_src_va;
2288 dva = copy_page_dst_va;
2289
2290 mtx_lock(©_page_mutex);
2291 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2292 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2293 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2294 mmu_booke_kremove(mmu, dva);
2295 mmu_booke_kremove(mmu, sva);
2296 mtx_unlock(©_page_mutex);
2297 }
2298
2299 static inline void
2300 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2301 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2302 {
2303 void *a_cp, *b_cp;
2304 vm_offset_t a_pg_offset, b_pg_offset;
2305 int cnt;
2306
2307 mtx_lock(©_page_mutex);
2308 while (xfersize > 0) {
2309 a_pg_offset = a_offset & PAGE_MASK;
2310 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2311 mmu_booke_kenter(mmu, copy_page_src_va,
2312 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2313 a_cp = (char *)copy_page_src_va + a_pg_offset;
2314 b_pg_offset = b_offset & PAGE_MASK;
2315 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2316 mmu_booke_kenter(mmu, copy_page_dst_va,
2317 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2318 b_cp = (char *)copy_page_dst_va + b_pg_offset;
2319 bcopy(a_cp, b_cp, cnt);
2320 mmu_booke_kremove(mmu, copy_page_dst_va);
2321 mmu_booke_kremove(mmu, copy_page_src_va);
2322 a_offset += cnt;
2323 b_offset += cnt;
2324 xfersize -= cnt;
2325 }
2326 mtx_unlock(©_page_mutex);
2327 }
2328
2329 /*
2330 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2331 * into virtual memory and using bzero to clear its contents. This is intended
2332 * to be called from the vm_pagezero process only and outside of Giant. No
2333 * lock is required.
2334 */
2335 static void
2336 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2337 {
2338 vm_offset_t va;
2339
2340 va = zero_page_idle_va;
2341 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2342 bzero((caddr_t)va, PAGE_SIZE);
2343 mmu_booke_kremove(mmu, va);
2344 }
2345
2346 static vm_offset_t
2347 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2348 {
2349 vm_paddr_t paddr;
2350 vm_offset_t qaddr;
2351 uint32_t flags;
2352 pte_t *pte;
2353
2354 paddr = VM_PAGE_TO_PHYS(m);
2355
2356 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2357 flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
2358 flags |= PTE_PS_4KB;
2359
2360 critical_enter();
2361 qaddr = PCPU_GET(qmap_addr);
2362
2363 pte = pte_find(mmu, kernel_pmap, qaddr);
2364
2365 KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2366
2367 /*
2368 * XXX: tlbivax is broadcast to other cores, but qaddr should
2369 * not be present in other TLBs. Is there a better instruction
2370 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2371 */
2372 __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2373 __asm __volatile("isync; msync");
2374
2375 *pte = PTE_RPN_FROM_PA(paddr) | flags;
2376
2377 /* Flush the real memory from the instruction cache. */
2378 if ((flags & (PTE_I | PTE_G)) == 0)
2379 __syncicache((void *)qaddr, PAGE_SIZE);
2380
2381 return (qaddr);
2382 }
2383
2384 static void
2385 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
2386 {
2387 pte_t *pte;
2388
2389 pte = pte_find(mmu, kernel_pmap, addr);
2390
2391 KASSERT(PCPU_GET(qmap_addr) == addr,
2392 ("mmu_booke_quick_remove_page: invalid address"));
2393 KASSERT(*pte != 0,
2394 ("mmu_booke_quick_remove_page: PTE not in use"));
2395
2396 *pte = 0;
2397 critical_exit();
2398 }
2399
2400 /*
2401 * Return whether or not the specified physical page was modified
2402 * in any of physical maps.
2403 */
2404 static boolean_t
2405 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2406 {
2407 pte_t *pte;
2408 pv_entry_t pv;
2409 boolean_t rv;
2410
2411 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2412 ("mmu_booke_is_modified: page %p is not managed", m));
2413 rv = FALSE;
2414
2415 /*
2416 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2417 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
2418 * is clear, no PTEs can be modified.
2419 */
2420 VM_OBJECT_ASSERT_WLOCKED(m->object);
2421 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2422 return (rv);
2423 rw_wlock(&pvh_global_lock);
2424 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2425 PMAP_LOCK(pv->pv_pmap);
2426 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2427 PTE_ISVALID(pte)) {
2428 if (PTE_ISMODIFIED(pte))
2429 rv = TRUE;
2430 }
2431 PMAP_UNLOCK(pv->pv_pmap);
2432 if (rv)
2433 break;
2434 }
2435 rw_wunlock(&pvh_global_lock);
2436 return (rv);
2437 }
2438
2439 /*
2440 * Return whether or not the specified virtual address is eligible
2441 * for prefault.
2442 */
2443 static boolean_t
2444 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2445 {
2446
2447 return (FALSE);
2448 }
2449
2450 /*
2451 * Return whether or not the specified physical page was referenced
2452 * in any physical maps.
2453 */
2454 static boolean_t
2455 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2456 {
2457 pte_t *pte;
2458 pv_entry_t pv;
2459 boolean_t rv;
2460
2461 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2462 ("mmu_booke_is_referenced: page %p is not managed", m));
2463 rv = FALSE;
2464 rw_wlock(&pvh_global_lock);
2465 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2466 PMAP_LOCK(pv->pv_pmap);
2467 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2468 PTE_ISVALID(pte)) {
2469 if (PTE_ISREFERENCED(pte))
2470 rv = TRUE;
2471 }
2472 PMAP_UNLOCK(pv->pv_pmap);
2473 if (rv)
2474 break;
2475 }
2476 rw_wunlock(&pvh_global_lock);
2477 return (rv);
2478 }
2479
2480 /*
2481 * Clear the modify bits on the specified physical page.
2482 */
2483 static void
2484 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2485 {
2486 pte_t *pte;
2487 pv_entry_t pv;
2488
2489 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2490 ("mmu_booke_clear_modify: page %p is not managed", m));
2491 VM_OBJECT_ASSERT_WLOCKED(m->object);
2492 KASSERT(!vm_page_xbusied(m),
2493 ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2494
2495 /*
2496 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2497 * If the object containing the page is locked and the page is not
2498 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2499 */
2500 if ((m->aflags & PGA_WRITEABLE) == 0)
2501 return;
2502 rw_wlock(&pvh_global_lock);
2503 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2504 PMAP_LOCK(pv->pv_pmap);
2505 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2506 PTE_ISVALID(pte)) {
2507 mtx_lock_spin(&tlbivax_mutex);
2508 tlb_miss_lock();
2509
2510 if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2511 tlb0_flush_entry(pv->pv_va);
2512 *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2513 PTE_REFERENCED);
2514 }
2515
2516 tlb_miss_unlock();
2517 mtx_unlock_spin(&tlbivax_mutex);
2518 }
2519 PMAP_UNLOCK(pv->pv_pmap);
2520 }
2521 rw_wunlock(&pvh_global_lock);
2522 }
2523
2524 /*
2525 * Return a count of reference bits for a page, clearing those bits.
2526 * It is not necessary for every reference bit to be cleared, but it
2527 * is necessary that 0 only be returned when there are truly no
2528 * reference bits set.
2529 *
2530 * XXX: The exact number of bits to check and clear is a matter that
2531 * should be tested and standardized at some point in the future for
2532 * optimal aging of shared pages.
2533 */
2534 static int
2535 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2536 {
2537 pte_t *pte;
2538 pv_entry_t pv;
2539 int count;
2540
2541 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2542 ("mmu_booke_ts_referenced: page %p is not managed", m));
2543 count = 0;
2544 rw_wlock(&pvh_global_lock);
2545 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2546 PMAP_LOCK(pv->pv_pmap);
2547 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2548 PTE_ISVALID(pte)) {
2549 if (PTE_ISREFERENCED(pte)) {
2550 mtx_lock_spin(&tlbivax_mutex);
2551 tlb_miss_lock();
2552
2553 tlb0_flush_entry(pv->pv_va);
2554 *pte &= ~PTE_REFERENCED;
2555
2556 tlb_miss_unlock();
2557 mtx_unlock_spin(&tlbivax_mutex);
2558
2559 if (++count > 4) {
2560 PMAP_UNLOCK(pv->pv_pmap);
2561 break;
2562 }
2563 }
2564 }
2565 PMAP_UNLOCK(pv->pv_pmap);
2566 }
2567 rw_wunlock(&pvh_global_lock);
2568 return (count);
2569 }
2570
2571 /*
2572 * Clear the wired attribute from the mappings for the specified range of
2573 * addresses in the given pmap. Every valid mapping within that range must
2574 * have the wired attribute set. In contrast, invalid mappings cannot have
2575 * the wired attribute set, so they are ignored.
2576 *
2577 * The wired attribute of the page table entry is not a hardware feature, so
2578 * there is no need to invalidate any TLB entries.
2579 */
2580 static void
2581 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2582 {
2583 vm_offset_t va;
2584 pte_t *pte;
2585
2586 PMAP_LOCK(pmap);
2587 for (va = sva; va < eva; va += PAGE_SIZE) {
2588 if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2589 PTE_ISVALID(pte)) {
2590 if (!PTE_ISWIRED(pte))
2591 panic("mmu_booke_unwire: pte %p isn't wired",
2592 pte);
2593 *pte &= ~PTE_WIRED;
2594 pmap->pm_stats.wired_count--;
2595 }
2596 }
2597 PMAP_UNLOCK(pmap);
2598
2599 }
2600
2601 /*
2602 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2603 * page. This count may be changed upwards or downwards in the future; it is
2604 * only necessary that true be returned for a small subset of pmaps for proper
2605 * page aging.
2606 */
2607 static boolean_t
2608 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2609 {
2610 pv_entry_t pv;
2611 int loops;
2612 boolean_t rv;
2613
2614 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2615 ("mmu_booke_page_exists_quick: page %p is not managed", m));
2616 loops = 0;
2617 rv = FALSE;
2618 rw_wlock(&pvh_global_lock);
2619 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2620 if (pv->pv_pmap == pmap) {
2621 rv = TRUE;
2622 break;
2623 }
2624 if (++loops >= 16)
2625 break;
2626 }
2627 rw_wunlock(&pvh_global_lock);
2628 return (rv);
2629 }
2630
2631 /*
2632 * Return the number of managed mappings to the given physical page that are
2633 * wired.
2634 */
2635 static int
2636 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2637 {
2638 pv_entry_t pv;
2639 pte_t *pte;
2640 int count = 0;
2641
2642 if ((m->oflags & VPO_UNMANAGED) != 0)
2643 return (count);
2644 rw_wlock(&pvh_global_lock);
2645 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2646 PMAP_LOCK(pv->pv_pmap);
2647 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2648 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2649 count++;
2650 PMAP_UNLOCK(pv->pv_pmap);
2651 }
2652 rw_wunlock(&pvh_global_lock);
2653 return (count);
2654 }
2655
2656 static int
2657 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2658 {
2659 int i;
2660 vm_offset_t va;
2661
2662 /*
2663 * This currently does not work for entries that
2664 * overlap TLB1 entries.
2665 */
2666 for (i = 0; i < TLB1_ENTRIES; i ++) {
2667 if (tlb1_iomapped(i, pa, size, &va) == 0)
2668 return (0);
2669 }
2670
2671 return (EFAULT);
2672 }
2673
2674 void
2675 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2676 {
2677 vm_paddr_t ppa;
2678 vm_offset_t ofs;
2679 vm_size_t gran;
2680
2681 /* Minidumps are based on virtual memory addresses. */
2682 if (do_minidump) {
2683 *va = (void *)(vm_offset_t)pa;
2684 return;
2685 }
2686
2687 /* Raw physical memory dumps don't have a virtual address. */
2688 /* We always map a 256MB page at 256M. */
2689 gran = 256 * 1024 * 1024;
2690 ppa = rounddown2(pa, gran);
2691 ofs = pa - ppa;
2692 *va = (void *)gran;
2693 tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2694
2695 if (sz > (gran - ofs))
2696 tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2697 _TLB_ENTRY_IO);
2698 }
2699
2700 void
2701 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
2702 {
2703 vm_paddr_t ppa;
2704 vm_offset_t ofs;
2705 vm_size_t gran;
2706 tlb_entry_t e;
2707 int i;
2708
2709 /* Minidumps are based on virtual memory addresses. */
2710 /* Nothing to do... */
2711 if (do_minidump)
2712 return;
2713
2714 for (i = 0; i < TLB1_ENTRIES; i++) {
2715 tlb1_read_entry(&e, i);
2716 if (!(e.mas1 & MAS1_VALID))
2717 break;
2718 }
2719
2720 /* Raw physical memory dumps don't have a virtual address. */
2721 i--;
2722 e.mas1 = 0;
2723 e.mas2 = 0;
2724 e.mas3 = 0;
2725 tlb1_write_entry(&e, i);
2726
2727 gran = 256 * 1024 * 1024;
2728 ppa = rounddown2(pa, gran);
2729 ofs = pa - ppa;
2730 if (sz > (gran - ofs)) {
2731 i--;
2732 e.mas1 = 0;
2733 e.mas2 = 0;
2734 e.mas3 = 0;
2735 tlb1_write_entry(&e, i);
2736 }
2737 }
2738
2739 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2740
2741 void
2742 mmu_booke_scan_init(mmu_t mmu)
2743 {
2744 vm_offset_t va;
2745 pte_t *pte;
2746 int i;
2747
2748 if (!do_minidump) {
2749 /* Initialize phys. segments for dumpsys(). */
2750 memset(&dump_map, 0, sizeof(dump_map));
2751 mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2752 &availmem_regions_sz);
2753 for (i = 0; i < physmem_regions_sz; i++) {
2754 dump_map[i].pa_start = physmem_regions[i].mr_start;
2755 dump_map[i].pa_size = physmem_regions[i].mr_size;
2756 }
2757 return;
2758 }
2759
2760 /* Virtual segments for minidumps: */
2761 memset(&dump_map, 0, sizeof(dump_map));
2762
2763 /* 1st: kernel .data and .bss. */
2764 dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2765 dump_map[0].pa_size =
2766 round_page((uintptr_t)_end) - dump_map[0].pa_start;
2767
2768 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2769 dump_map[1].pa_start = data_start;
2770 dump_map[1].pa_size = data_end - data_start;
2771
2772 /* 3rd: kernel VM. */
2773 va = dump_map[1].pa_start + dump_map[1].pa_size;
2774 /* Find start of next chunk (from va). */
2775 while (va < virtual_end) {
2776 /* Don't dump the buffer cache. */
2777 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2778 va = kmi.buffer_eva;
2779 continue;
2780 }
2781 pte = pte_find(mmu, kernel_pmap, va);
2782 if (pte != NULL && PTE_ISVALID(pte))
2783 break;
2784 va += PAGE_SIZE;
2785 }
2786 if (va < virtual_end) {
2787 dump_map[2].pa_start = va;
2788 va += PAGE_SIZE;
2789 /* Find last page in chunk. */
2790 while (va < virtual_end) {
2791 /* Don't run into the buffer cache. */
2792 if (va == kmi.buffer_sva)
2793 break;
2794 pte = pte_find(mmu, kernel_pmap, va);
2795 if (pte == NULL || !PTE_ISVALID(pte))
2796 break;
2797 va += PAGE_SIZE;
2798 }
2799 dump_map[2].pa_size = va - dump_map[2].pa_start;
2800 }
2801 }
2802
2803 /*
2804 * Map a set of physical memory pages into the kernel virtual address space.
2805 * Return a pointer to where it is mapped. This routine is intended to be used
2806 * for mapping device memory, NOT real memory.
2807 */
2808 static void *
2809 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2810 {
2811
2812 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2813 }
2814
2815 static void *
2816 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2817 {
2818 tlb_entry_t e;
2819 void *res;
2820 uintptr_t va, tmpva;
2821 vm_size_t sz;
2822 int i;
2823
2824 /*
2825 * Check if this is premapped in TLB1. Note: this should probably also
2826 * check whether a sequence of TLB1 entries exist that match the
2827 * requirement, but now only checks the easy case.
2828 */
2829 if (ma == VM_MEMATTR_DEFAULT) {
2830 for (i = 0; i < TLB1_ENTRIES; i++) {
2831 tlb1_read_entry(&e, i);
2832 if (!(e.mas1 & MAS1_VALID))
2833 continue;
2834 if (pa >= e.phys &&
2835 (pa + size) <= (e.phys + e.size))
2836 return (void *)(e.virt +
2837 (vm_offset_t)(pa - e.phys));
2838 }
2839 }
2840
2841 size = roundup(size, PAGE_SIZE);
2842
2843 /*
2844 * The device mapping area is between VM_MAXUSER_ADDRESS and
2845 * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing.
2846 */
2847 #ifdef SPARSE_MAPDEV
2848 /*
2849 * With a sparse mapdev, align to the largest starting region. This
2850 * could feasibly be optimized for a 'best-fit' alignment, but that
2851 * calculation could be very costly.
2852 */
2853 do {
2854 tmpva = tlb1_map_base;
2855 va = roundup(tlb1_map_base, 1 << flsl(size));
2856 } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2857 #else
2858 va = atomic_fetchadd_int(&tlb1_map_base, size);
2859 #endif
2860 res = (void *)va;
2861
2862 do {
2863 sz = 1 << (ilog2(size) & ~1);
2864 if (va % sz != 0) {
2865 do {
2866 sz >>= 2;
2867 } while (va % sz != 0);
2868 }
2869 if (bootverbose)
2870 printf("Wiring VA=%x to PA=%jx (size=%x)\n",
2871 va, (uintmax_t)pa, sz);
2872 tlb1_set_entry(va, pa, sz,
2873 _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma));
2874 size -= sz;
2875 pa += sz;
2876 va += sz;
2877 } while (size > 0);
2878
2879 return (res);
2880 }
2881
2882 /*
2883 * 'Unmap' a range mapped by mmu_booke_mapdev().
2884 */
2885 static void
2886 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2887 {
2888 #ifdef SUPPORTS_SHRINKING_TLB1
2889 vm_offset_t base, offset;
2890
2891 /*
2892 * Unmap only if this is inside kernel virtual space.
2893 */
2894 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2895 base = trunc_page(va);
2896 offset = va & PAGE_MASK;
2897 size = roundup(offset + size, PAGE_SIZE);
2898 kva_free(base, size);
2899 }
2900 #endif
2901 }
2902
2903 /*
2904 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2905 * specified pmap. This eliminates the blast of soft faults on process startup
2906 * and immediately after an mmap.
2907 */
2908 static void
2909 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2910 vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2911 {
2912
2913 VM_OBJECT_ASSERT_WLOCKED(object);
2914 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2915 ("mmu_booke_object_init_pt: non-device object"));
2916 }
2917
2918 /*
2919 * Perform the pmap work for mincore.
2920 */
2921 static int
2922 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2923 vm_paddr_t *locked_pa)
2924 {
2925
2926 /* XXX: this should be implemented at some point */
2927 return (0);
2928 }
2929
2930 static int
2931 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz,
2932 vm_memattr_t mode)
2933 {
2934 vm_offset_t va;
2935 pte_t *pte;
2936 int i, j;
2937 tlb_entry_t e;
2938
2939 /* Check TLB1 mappings */
2940 for (i = 0; i < TLB1_ENTRIES; i++) {
2941 tlb1_read_entry(&e, i);
2942 if (!(e.mas1 & MAS1_VALID))
2943 continue;
2944 if (addr >= e.virt && addr < e.virt + e.size)
2945 break;
2946 }
2947 if (i < TLB1_ENTRIES) {
2948 /* Only allow full mappings to be modified for now. */
2949 /* Validate the range. */
2950 for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2951 tlb1_read_entry(&e, j);
2952 if (va != e.virt || (sz - (va - addr) < e.size))
2953 return (EINVAL);
2954 }
2955 for (va = addr; va < addr + sz; va += e.size, i++) {
2956 tlb1_read_entry(&e, i);
2957 e.mas2 &= ~MAS2_WIMGE_MASK;
2958 e.mas2 |= tlb_calc_wimg(e.phys, mode);
2959
2960 /*
2961 * Write it out to the TLB. Should really re-sync with other
2962 * cores.
2963 */
2964 tlb1_write_entry(&e, i);
2965 }
2966 return (0);
2967 }
2968
2969 /* Not in TLB1, try through pmap */
2970 /* First validate the range. */
2971 for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2972 pte = pte_find(mmu, kernel_pmap, va);
2973 if (pte == NULL || !PTE_ISVALID(pte))
2974 return (EINVAL);
2975 }
2976
2977 mtx_lock_spin(&tlbivax_mutex);
2978 tlb_miss_lock();
2979 for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2980 pte = pte_find(mmu, kernel_pmap, va);
2981 *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2982 *pte |= tlb_calc_wimg(PTE_PA(pte), mode << PTE_MAS2_SHIFT);
2983 tlb0_flush_entry(va);
2984 }
2985 tlb_miss_unlock();
2986 mtx_unlock_spin(&tlbivax_mutex);
2987
2988 return (pte_vatopa(mmu, kernel_pmap, va));
2989 }
2990
2991 /**************************************************************************/
2992 /* TID handling */
2993 /**************************************************************************/
2994
2995 /*
2996 * Allocate a TID. If necessary, steal one from someone else.
2997 * The new TID is flushed from the TLB before returning.
2998 */
2999 static tlbtid_t
3000 tid_alloc(pmap_t pmap)
3001 {
3002 tlbtid_t tid;
3003 int thiscpu;
3004
3005 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
3006
3007 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
3008
3009 thiscpu = PCPU_GET(cpuid);
3010
3011 tid = PCPU_GET(tid_next);
3012 if (tid > TID_MAX)
3013 tid = TID_MIN;
3014 PCPU_SET(tid_next, tid + 1);
3015
3016 /* If we are stealing TID then clear the relevant pmap's field */
3017 if (tidbusy[thiscpu][tid] != NULL) {
3018
3019 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
3020
3021 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
3022
3023 /* Flush all entries from TLB0 matching this TID. */
3024 tid_flush(tid);
3025 }
3026
3027 tidbusy[thiscpu][tid] = pmap;
3028 pmap->pm_tid[thiscpu] = tid;
3029 __asm __volatile("msync; isync");
3030
3031 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
3032 PCPU_GET(tid_next));
3033
3034 return (tid);
3035 }
3036
3037 /**************************************************************************/
3038 /* TLB0 handling */
3039 /**************************************************************************/
3040
3041 static void
3042 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3043 uint32_t mas7)
3044 {
3045 int as;
3046 char desc[3];
3047 tlbtid_t tid;
3048 vm_size_t size;
3049 unsigned int tsize;
3050
3051 desc[2] = '\0';
3052 if (mas1 & MAS1_VALID)
3053 desc[0] = 'V';
3054 else
3055 desc[0] = ' ';
3056
3057 if (mas1 & MAS1_IPROT)
3058 desc[1] = 'P';
3059 else
3060 desc[1] = ' ';
3061
3062 as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3063 tid = MAS1_GETTID(mas1);
3064
3065 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3066 size = 0;
3067 if (tsize)
3068 size = tsize2size(tsize);
3069
3070 debugf("%3d: (%s) [AS=%d] "
3071 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
3072 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3073 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
3074 }
3075
3076 /* Convert TLB0 va and way number to tlb0[] table index. */
3077 static inline unsigned int
3078 tlb0_tableidx(vm_offset_t va, unsigned int way)
3079 {
3080 unsigned int idx;
3081
3082 idx = (way * TLB0_ENTRIES_PER_WAY);
3083 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
3084 return (idx);
3085 }
3086
3087 /*
3088 * Invalidate TLB0 entry.
3089 */
3090 static inline void
3091 tlb0_flush_entry(vm_offset_t va)
3092 {
3093
3094 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3095
3096 mtx_assert(&tlbivax_mutex, MA_OWNED);
3097
3098 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3099 __asm __volatile("isync; msync");
3100 __asm __volatile("tlbsync; msync");
3101
3102 CTR1(KTR_PMAP, "%s: e", __func__);
3103 }
3104
3105 /* Print out contents of the MAS registers for each TLB0 entry */
3106 void
3107 tlb0_print_tlbentries(void)
3108 {
3109 uint32_t mas0, mas1, mas2, mas3, mas7;
3110 int entryidx, way, idx;
3111
3112 debugf("TLB0 entries:\n");
3113 for (way = 0; way < TLB0_WAYS; way ++)
3114 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3115
3116 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3117 mtspr(SPR_MAS0, mas0);
3118 __asm __volatile("isync");
3119
3120 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3121 mtspr(SPR_MAS2, mas2);
3122
3123 __asm __volatile("isync; tlbre");
3124
3125 mas1 = mfspr(SPR_MAS1);
3126 mas2 = mfspr(SPR_MAS2);
3127 mas3 = mfspr(SPR_MAS3);
3128 mas7 = mfspr(SPR_MAS7);
3129
3130 idx = tlb0_tableidx(mas2, way);
3131 tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3132 }
3133 }
3134
3135 /**************************************************************************/
3136 /* TLB1 handling */
3137 /**************************************************************************/
3138
3139 /*
3140 * TLB1 mapping notes:
3141 *
3142 * TLB1[0] Kernel text and data.
3143 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI
3144 * windows, other devices mappings.
3145 */
3146
3147 /*
3148 * Read an entry from given TLB1 slot.
3149 */
3150 void
3151 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
3152 {
3153 uint32_t mas0;
3154
3155 KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
3156
3157 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
3158 mtspr(SPR_MAS0, mas0);
3159 __asm __volatile("isync; tlbre");
3160
3161 entry->mas1 = mfspr(SPR_MAS1);
3162 entry->mas2 = mfspr(SPR_MAS2);
3163 entry->mas3 = mfspr(SPR_MAS3);
3164
3165 switch ((mfpvr() >> 16) & 0xFFFF) {
3166 case FSL_E500v2:
3167 case FSL_E500mc:
3168 case FSL_E5500:
3169 entry->mas7 = mfspr(SPR_MAS7);
3170 break;
3171 default:
3172 entry->mas7 = 0;
3173 break;
3174 }
3175
3176 entry->virt = entry->mas2 & MAS2_EPN_MASK;
3177 entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
3178 (entry->mas3 & MAS3_RPN);
3179 entry->size =
3180 tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
3181 }
3182
3183 /*
3184 * Write given entry to TLB1 hardware.
3185 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
3186 */
3187 static void
3188 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
3189 {
3190 uint32_t mas0;
3191
3192 //debugf("tlb1_write_entry: s\n");
3193
3194 /* Select entry */
3195 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
3196 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
3197
3198 mtspr(SPR_MAS0, mas0);
3199 __asm __volatile("isync");
3200 mtspr(SPR_MAS1, e->mas1);
3201 __asm __volatile("isync");
3202 mtspr(SPR_MAS2, e->mas2);
3203 __asm __volatile("isync");
3204 mtspr(SPR_MAS3, e->mas3);
3205 __asm __volatile("isync");
3206 switch ((mfpvr() >> 16) & 0xFFFF) {
3207 case FSL_E500mc:
3208 case FSL_E5500:
3209 mtspr(SPR_MAS8, 0);
3210 __asm __volatile("isync");
3211 /* FALLTHROUGH */
3212 case FSL_E500v2:
3213 mtspr(SPR_MAS7, e->mas7);
3214 __asm __volatile("isync");
3215 break;
3216 default:
3217 break;
3218 }
3219
3220 __asm __volatile("tlbwe; isync; msync");
3221
3222 //debugf("tlb1_write_entry: e\n");
3223 }
3224
3225 /*
3226 * Return the largest uint value log such that 2^log <= num.
3227 */
3228 static unsigned int
3229 ilog2(unsigned int num)
3230 {
3231 int lz;
3232
3233 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3234 return (31 - lz);
3235 }
3236
3237 /*
3238 * Convert TLB TSIZE value to mapped region size.
3239 */
3240 static vm_size_t
3241 tsize2size(unsigned int tsize)
3242 {
3243
3244 /*
3245 * size = 4^tsize KB
3246 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3247 */
3248
3249 return ((1 << (2 * tsize)) * 1024);
3250 }
3251
3252 /*
3253 * Convert region size (must be power of 4) to TLB TSIZE value.
3254 */
3255 static unsigned int
3256 size2tsize(vm_size_t size)
3257 {
3258
3259 return (ilog2(size) / 2 - 5);
3260 }
3261
3262 /*
3263 * Register permanent kernel mapping in TLB1.
3264 *
3265 * Entries are created starting from index 0 (current free entry is
3266 * kept in tlb1_idx) and are not supposed to be invalidated.
3267 */
3268 int
3269 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3270 uint32_t flags)
3271 {
3272 tlb_entry_t e;
3273 uint32_t ts, tid;
3274 int tsize, index;
3275
3276 for (index = 0; index < TLB1_ENTRIES; index++) {
3277 tlb1_read_entry(&e, index);
3278 if ((e.mas1 & MAS1_VALID) == 0)
3279 break;
3280 /* Check if we're just updating the flags, and update them. */
3281 if (e.phys == pa && e.virt == va && e.size == size) {
3282 e.mas2 = (va & MAS2_EPN_MASK) | flags;
3283 tlb1_write_entry(&e, index);
3284 return (0);
3285 }
3286 }
3287 if (index >= TLB1_ENTRIES) {
3288 printf("tlb1_set_entry: TLB1 full!\n");
3289 return (-1);
3290 }
3291
3292 /* Convert size to TSIZE */
3293 tsize = size2tsize(size);
3294
3295 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3296 /* XXX TS is hard coded to 0 for now as we only use single address space */
3297 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3298
3299 e.phys = pa;
3300 e.virt = va;
3301 e.size = size;
3302 e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3303 e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3304 e.mas2 = (va & MAS2_EPN_MASK) | flags;
3305
3306 /* Set supervisor RWX permission bits */
3307 e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3308 e.mas7 = (pa >> 32) & MAS7_RPN;
3309
3310 tlb1_write_entry(&e, index);
3311
3312 /*
3313 * XXX in general TLB1 updates should be propagated between CPUs,
3314 * since current design assumes to have the same TLB1 set-up on all
3315 * cores.
3316 */
3317 return (0);
3318 }
3319
3320 /*
3321 * Map in contiguous RAM region into the TLB1 using maximum of
3322 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3323 *
3324 * If necessary round up last entry size and return total size
3325 * used by all allocated entries.
3326 */
3327 vm_size_t
3328 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3329 {
3330 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3331 vm_size_t mapped, pgsz, base, mask;
3332 int idx, nents;
3333
3334 /* Round up to the next 1M */
3335 size = roundup2(size, 1 << 20);
3336
3337 mapped = 0;
3338 idx = 0;
3339 base = va;
3340 pgsz = 64*1024*1024;
3341 while (mapped < size) {
3342 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3343 while (pgsz > (size - mapped))
3344 pgsz >>= 2;
3345 pgs[idx++] = pgsz;
3346 mapped += pgsz;
3347 }
3348
3349 /* We under-map. Correct for this. */
3350 if (mapped < size) {
3351 while (pgs[idx - 1] == pgsz) {
3352 idx--;
3353 mapped -= pgsz;
3354 }
3355 /* XXX We may increase beyond out starting point. */
3356 pgsz <<= 2;
3357 pgs[idx++] = pgsz;
3358 mapped += pgsz;
3359 }
3360 }
3361
3362 nents = idx;
3363 mask = pgs[0] - 1;
3364 /* Align address to the boundary */
3365 if (va & mask) {
3366 va = (va + mask) & ~mask;
3367 pa = (pa + mask) & ~mask;
3368 }
3369
3370 for (idx = 0; idx < nents; idx++) {
3371 pgsz = pgs[idx];
3372 debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz);
3373 tlb1_set_entry(va, pa, pgsz,
3374 _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM);
3375 pa += pgsz;
3376 va += pgsz;
3377 }
3378
3379 mapped = (va - base);
3380 #ifdef __powerpc64__
3381 printf("mapped size 0x%016lx (wasted space 0x%16lx)\n",
3382 #else
3383 printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3384 #endif
3385 mapped, mapped - size);
3386 return (mapped);
3387 }
3388
3389 /*
3390 * TLB1 initialization routine, to be called after the very first
3391 * assembler level setup done in locore.S.
3392 */
3393 void
3394 tlb1_init()
3395 {
3396 uint32_t mas0, mas1, mas2, mas3, mas7;
3397 uint32_t tsz;
3398
3399 tlb1_get_tlbconf();
3400
3401 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
3402 mtspr(SPR_MAS0, mas0);
3403 __asm __volatile("isync; tlbre");
3404
3405 mas1 = mfspr(SPR_MAS1);
3406 mas2 = mfspr(SPR_MAS2);
3407 mas3 = mfspr(SPR_MAS3);
3408 mas7 = mfspr(SPR_MAS7);
3409
3410 kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
3411 (mas3 & MAS3_RPN);
3412
3413 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3414 kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3415
3416 /* Setup TLB miss defaults */
3417 set_mas4_defaults();
3418 }
3419
3420 vm_offset_t
3421 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3422 {
3423 vm_paddr_t pa_base;
3424 vm_offset_t va, sz;
3425 int i;
3426 tlb_entry_t e;
3427
3428 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3429
3430 for (i = 0; i < TLB1_ENTRIES; i++) {
3431 tlb1_read_entry(&e, i);
3432 if (!(e.mas1 & MAS1_VALID))
3433 continue;
3434 if (pa >= e.phys && (pa + size) <=
3435 (e.phys + e.size))
3436 return (e.virt + (pa - e.phys));
3437 }
3438
3439 pa_base = rounddown(pa, PAGE_SIZE);
3440 size = roundup(size + (pa - pa_base), PAGE_SIZE);
3441 tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3442 va = tlb1_map_base + (pa - pa_base);
3443
3444 do {
3445 sz = 1 << (ilog2(size) & ~1);
3446 tlb1_set_entry(tlb1_map_base, pa_base, sz,
3447 _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
3448 size -= sz;
3449 pa_base += sz;
3450 tlb1_map_base += sz;
3451 } while (size > 0);
3452
3453 return (va);
3454 }
3455
3456 /*
3457 * Setup MAS4 defaults.
3458 * These values are loaded to MAS0-2 on a TLB miss.
3459 */
3460 static void
3461 set_mas4_defaults(void)
3462 {
3463 uint32_t mas4;
3464
3465 /* Defaults: TLB0, PID0, TSIZED=4K */
3466 mas4 = MAS4_TLBSELD0;
3467 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3468 #ifdef SMP
3469 mas4 |= MAS4_MD;
3470 #endif
3471 mtspr(SPR_MAS4, mas4);
3472 __asm __volatile("isync");
3473 }
3474
3475 /*
3476 * Print out contents of the MAS registers for each TLB1 entry
3477 */
3478 void
3479 tlb1_print_tlbentries(void)
3480 {
3481 uint32_t mas0, mas1, mas2, mas3, mas7;
3482 int i;
3483
3484 debugf("TLB1 entries:\n");
3485 for (i = 0; i < TLB1_ENTRIES; i++) {
3486
3487 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3488 mtspr(SPR_MAS0, mas0);
3489
3490 __asm __volatile("isync; tlbre");
3491
3492 mas1 = mfspr(SPR_MAS1);
3493 mas2 = mfspr(SPR_MAS2);
3494 mas3 = mfspr(SPR_MAS3);
3495 mas7 = mfspr(SPR_MAS7);
3496
3497 tlb_print_entry(i, mas1, mas2, mas3, mas7);
3498 }
3499 }
3500
3501 /*
3502 * Return 0 if the physical IO range is encompassed by one of the
3503 * the TLB1 entries, otherwise return related error code.
3504 */
3505 static int
3506 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3507 {
3508 uint32_t prot;
3509 vm_paddr_t pa_start;
3510 vm_paddr_t pa_end;
3511 unsigned int entry_tsize;
3512 vm_size_t entry_size;
3513 tlb_entry_t e;
3514
3515 *va = (vm_offset_t)NULL;
3516
3517 tlb1_read_entry(&e, i);
3518 /* Skip invalid entries */
3519 if (!(e.mas1 & MAS1_VALID))
3520 return (EINVAL);
3521
3522 /*
3523 * The entry must be cache-inhibited, guarded, and r/w
3524 * so it can function as an i/o page
3525 */
3526 prot = e.mas2 & (MAS2_I | MAS2_G);
3527 if (prot != (MAS2_I | MAS2_G))
3528 return (EPERM);
3529
3530 prot = e.mas3 & (MAS3_SR | MAS3_SW);
3531 if (prot != (MAS3_SR | MAS3_SW))
3532 return (EPERM);
3533
3534 /* The address should be within the entry range. */
3535 entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3536 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3537
3538 entry_size = tsize2size(entry_tsize);
3539 pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3540 (e.mas3 & MAS3_RPN);
3541 pa_end = pa_start + entry_size;
3542
3543 if ((pa < pa_start) || ((pa + size) > pa_end))
3544 return (ERANGE);
3545
3546 /* Return virtual address of this mapping. */
3547 *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3548 return (0);
3549 }
3550
3551 /*
3552 * Invalidate all TLB0 entries which match the given TID. Note this is
3553 * dedicated for cases when invalidations should NOT be propagated to other
3554 * CPUs.
3555 */
3556 static void
3557 tid_flush(tlbtid_t tid)
3558 {
3559 register_t msr;
3560 uint32_t mas0, mas1, mas2;
3561 int entry, way;
3562
3563
3564 /* Don't evict kernel translations */
3565 if (tid == TID_KERNEL)
3566 return;
3567
3568 msr = mfmsr();
3569 __asm __volatile("wrteei 0");
3570
3571 for (way = 0; way < TLB0_WAYS; way++)
3572 for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
3573
3574 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3575 mtspr(SPR_MAS0, mas0);
3576 __asm __volatile("isync");
3577
3578 mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
3579 mtspr(SPR_MAS2, mas2);
3580
3581 __asm __volatile("isync; tlbre");
3582
3583 mas1 = mfspr(SPR_MAS1);
3584
3585 if (!(mas1 & MAS1_VALID))
3586 continue;
3587 if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
3588 continue;
3589 mas1 &= ~MAS1_VALID;
3590 mtspr(SPR_MAS1, mas1);
3591 __asm __volatile("isync; tlbwe; isync; msync");
3592 }
3593 mtmsr(msr);
3594 }
Cache object: 3638993c0a458c3d81cb0751456b344e
|