The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/fpu/fpu_div.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
    2 
    3 /*-
    4  * SPDX-License-Identifier: BSD-3-Clause
    5  *
    6  * Copyright (c) 1992, 1993
    7  *      The Regents of the University of California.  All rights reserved.
    8  *
    9  * This software was developed by the Computer Systems Engineering group
   10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
   11  * contributed to Berkeley.
   12  *
   13  * All advertising materials mentioning features or use of this software
   14  * must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Lawrence Berkeley Laboratory.
   17  *
   18  * Redistribution and use in source and binary forms, with or without
   19  * modification, are permitted provided that the following conditions
   20  * are met:
   21  * 1. Redistributions of source code must retain the above copyright
   22  *    notice, this list of conditions and the following disclaimer.
   23  * 2. Redistributions in binary form must reproduce the above copyright
   24  *    notice, this list of conditions and the following disclaimer in the
   25  *    documentation and/or other materials provided with the distribution.
   26  * 3. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)fpu_div.c   8.1 (Berkeley) 6/11/93
   43  */
   44 
   45 /*
   46  * Perform an FPU divide (return x / y).
   47  */
   48 
   49 #include <sys/cdefs.h>
   50 __FBSDID("$FreeBSD$");
   51 
   52 #include <sys/types.h>
   53 #include <sys/systm.h>
   54 
   55 #include <machine/fpu.h>
   56 
   57 #include <powerpc/fpu/fpu_arith.h>
   58 #include <powerpc/fpu/fpu_emu.h>
   59 
   60 /*
   61  * Division of normal numbers is done as follows:
   62  *
   63  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
   64  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
   65  *
   66  *      q = (X / Y) * 2^((x exponent) - (y exponent))
   67  *
   68  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
   69  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
   70  * if X < Y.  In that case, it will have to be shifted left one bit to
   71  * become a normal number, and the exponent decremented.  Thus, the
   72  * desired exponent is:
   73  *
   74  *      left_shift = x->fp_mant < y->fp_mant;
   75  *      result_exp = x->fp_exp - y->fp_exp - left_shift;
   76  *
   77  * The quotient mantissa X/Y can then be computed one bit at a time
   78  * using the following algorithm:
   79  *
   80  *      Q = 0;                  -- Initial quotient.
   81  *      R = X;                  -- Initial remainder,
   82  *      if (left_shift)         --   but fixed up in advance.
   83  *              R *= 2;
   84  *      for (bit = FP_NMANT; --bit >= 0; R *= 2) {
   85  *              if (R >= Y) {
   86  *                      Q |= 1 << bit;
   87  *                      R -= Y;
   88  *              }
   89  *      }
   90  *
   91  * The subtraction R -= Y always removes the uppermost bit from R (and
   92  * can sometimes remove additional lower-order 1 bits); this proof is
   93  * left to the reader.
   94  *
   95  * This loop correctly calculates the guard and round bits since they are
   96  * included in the expanded internal representation.  The sticky bit
   97  * is to be set if and only if any other bits beyond guard and round
   98  * would be set.  From the above it is obvious that this is true if and
   99  * only if the remainder R is nonzero when the loop terminates.
  100  *
  101  * Examining the loop above, we can see that the quotient Q is built
  102  * one bit at a time ``from the top down''.  This means that we can
  103  * dispense with the multi-word arithmetic and just build it one word
  104  * at a time, writing each result word when it is done.
  105  *
  106  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
  107  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
  108  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
  109  * set, and R can be set initially to either X - Y (when X >= Y) or
  110  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
  111  * so we will simply calculate R - Y and see if that underflows.
  112  * This leads to the following revised version of the algorithm:
  113  *
  114  *      R = X;
  115  *      bit = FP_1;
  116  *      D = R - Y;
  117  *      if (D >= 0) {
  118  *              result_exp = x->fp_exp - y->fp_exp;
  119  *              R = D;
  120  *              q = bit;
  121  *              bit >>= 1;
  122  *      } else {
  123  *              result_exp = x->fp_exp - y->fp_exp - 1;
  124  *              q = 0;
  125  *      }
  126  *      R <<= 1;
  127  *      do  {
  128  *              D = R - Y;
  129  *              if (D >= 0) {
  130  *                      q |= bit;
  131  *                      R = D;
  132  *              }
  133  *              R <<= 1;
  134  *      } while ((bit >>= 1) != 0);
  135  *      Q[0] = q;
  136  *      for (i = 1; i < 4; i++) {
  137  *              q = 0, bit = 1 << 31;
  138  *              do {
  139  *                      D = R - Y;
  140  *                      if (D >= 0) {
  141  *                              q |= bit;
  142  *                              R = D;
  143  *                      }
  144  *                      R <<= 1;
  145  *              } while ((bit >>= 1) != 0);
  146  *              Q[i] = q;
  147  *      }
  148  *
  149  * This can be refined just a bit further by moving the `R <<= 1'
  150  * calculations to the front of the do-loops and eliding the first one.
  151  * The process can be terminated immediately whenever R becomes 0, but
  152  * this is relatively rare, and we do not bother.
  153  */
  154 
  155 struct fpn *
  156 fpu_div(struct fpemu *fe)
  157 {
  158         struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
  159         u_int q, bit;
  160         u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
  161         FPU_DECL_CARRY
  162 
  163         /*
  164          * Since divide is not commutative, we cannot just use ORDER.
  165          * Check either operand for NaN first; if there is at least one,
  166          * order the signalling one (if only one) onto the right, then
  167          * return it.  Otherwise we have the following cases:
  168          *
  169          *      Inf / Inf = NaN, plus NV exception
  170          *      Inf / num = Inf [i.e., return x]
  171          *      Inf / 0   = Inf [i.e., return x]
  172          *      0 / Inf = 0 [i.e., return x]
  173          *      0 / num = 0 [i.e., return x]
  174          *      0 / 0   = NaN, plus NV exception
  175          *      num / Inf = 0
  176          *      num / num = num (do the divide)
  177          *      num / 0   = Inf, plus DZ exception
  178          */
  179         DPRINTF(FPE_REG, ("fpu_div:\n"));
  180         DUMPFPN(FPE_REG, x);
  181         DUMPFPN(FPE_REG, y);
  182         DPRINTF(FPE_REG, ("=>\n"));
  183         if (ISNAN(x) || ISNAN(y)) {
  184                 ORDER(x, y);
  185                 fe->fe_cx |= FPSCR_VXSNAN;
  186                 DUMPFPN(FPE_REG, y);
  187                 return (y);
  188         }
  189         /*
  190          * Need to split the following out cause they generate different
  191          * exceptions. 
  192          */
  193         if (ISINF(x)) {
  194                 if (x->fp_class == y->fp_class) {
  195                         fe->fe_cx |= FPSCR_VXIDI;
  196                         return (fpu_newnan(fe));
  197                 }
  198                 DUMPFPN(FPE_REG, x);
  199                 return (x);
  200         }
  201         if (ISZERO(x)) {
  202                 fe->fe_cx |= FPSCR_ZX;
  203                 if (x->fp_class == y->fp_class) {
  204                         fe->fe_cx |= FPSCR_VXZDZ;
  205                         return (fpu_newnan(fe));
  206                 }
  207                 DUMPFPN(FPE_REG, x);
  208                 return (x);
  209         }
  210 
  211         /* all results at this point use XOR of operand signs */
  212         x->fp_sign ^= y->fp_sign;
  213         if (ISINF(y)) {
  214                 x->fp_class = FPC_ZERO;
  215                 DUMPFPN(FPE_REG, x);
  216                 return (x);
  217         }
  218         if (ISZERO(y)) {
  219                 fe->fe_cx = FPSCR_ZX;
  220                 x->fp_class = FPC_INF;
  221                 DUMPFPN(FPE_REG, x);
  222                 return (x);
  223         }
  224 
  225         /*
  226          * Macros for the divide.  See comments at top for algorithm.
  227          * Note that we expand R, D, and Y here.
  228          */
  229 
  230 #define SUBTRACT                /* D = R - Y */ \
  231         FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
  232         FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
  233 
  234 #define NONNEGATIVE             /* D >= 0 */ \
  235         ((int)d0 >= 0)
  236 
  237 #ifdef FPU_SHL1_BY_ADD
  238 #define SHL1                    /* R <<= 1 */ \
  239         FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
  240         FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
  241 #else
  242 #define SHL1 \
  243         r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
  244         r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
  245 #endif
  246 
  247 #define LOOP                    /* do ... while (bit >>= 1) */ \
  248         do { \
  249                 SHL1; \
  250                 SUBTRACT; \
  251                 if (NONNEGATIVE) { \
  252                         q |= bit; \
  253                         r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
  254                 } \
  255         } while ((bit >>= 1) != 0)
  256 
  257 #define WORD(r, i)                      /* calculate r->fp_mant[i] */ \
  258         q = 0; \
  259         bit = 1 << 31; \
  260         LOOP; \
  261         (x)->fp_mant[i] = q
  262 
  263         /* Setup.  Note that we put our result in x. */
  264         r0 = x->fp_mant[0];
  265         r1 = x->fp_mant[1];
  266         r2 = x->fp_mant[2];
  267         r3 = x->fp_mant[3];
  268         y0 = y->fp_mant[0];
  269         y1 = y->fp_mant[1];
  270         y2 = y->fp_mant[2];
  271         y3 = y->fp_mant[3];
  272 
  273         bit = FP_1;
  274         SUBTRACT;
  275         if (NONNEGATIVE) {
  276                 x->fp_exp -= y->fp_exp;
  277                 r0 = d0, r1 = d1, r2 = d2, r3 = d3;
  278                 q = bit;
  279                 bit >>= 1;
  280         } else {
  281                 x->fp_exp -= y->fp_exp + 1;
  282                 q = 0;
  283         }
  284         LOOP;
  285         x->fp_mant[0] = q;
  286         WORD(x, 1);
  287         WORD(x, 2);
  288         WORD(x, 3);
  289         x->fp_sticky = r0 | r1 | r2 | r3;
  290 
  291         DUMPFPN(FPE_REG, x);
  292         return (x);
  293 }

Cache object: b9d61567c0bcbf62c356b1b1f83518fd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.