The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/fpu/fpu_implode.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: fpu_implode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
    2 
    3 /*-
    4  * SPDX-License-Identifier: BSD-3-Clause
    5  *
    6  * Copyright (c) 1992, 1993
    7  *      The Regents of the University of California.  All rights reserved.
    8  *
    9  * This software was developed by the Computer Systems Engineering group
   10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
   11  * contributed to Berkeley.
   12  *
   13  * All advertising materials mentioning features or use of this software
   14  * must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Lawrence Berkeley Laboratory.
   17  *
   18  * Redistribution and use in source and binary forms, with or without
   19  * modification, are permitted provided that the following conditions
   20  * are met:
   21  * 1. Redistributions of source code must retain the above copyright
   22  *    notice, this list of conditions and the following disclaimer.
   23  * 2. Redistributions in binary form must reproduce the above copyright
   24  *    notice, this list of conditions and the following disclaimer in the
   25  *    documentation and/or other materials provided with the distribution.
   26  * 3. Neither the name of the University nor the names of its contributors
   27  *    may be used to endorse or promote products derived from this software
   28  *    without specific prior written permission.
   29  *
   30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   40  * SUCH DAMAGE.
   41  *
   42  *      @(#)fpu_implode.c       8.1 (Berkeley) 6/11/93
   43  */
   44 
   45 /*
   46  * FPU subroutines: `implode' internal format numbers into the machine's
   47  * `packed binary' format.
   48  */
   49 
   50 #include <sys/cdefs.h>
   51 __FBSDID("$FreeBSD$");
   52 
   53 #include <sys/types.h>
   54 #include <sys/systm.h>
   55 
   56 #include <machine/fpu.h>
   57 #include <machine/ieee.h>
   58 #include <machine/ieeefp.h>
   59 
   60 #include <powerpc/fpu/fpu_arith.h>
   61 #include <powerpc/fpu/fpu_emu.h>
   62 #include <powerpc/fpu/fpu_extern.h>
   63 #include <powerpc/fpu/fpu_instr.h>
   64 
   65 static int round(struct fpemu *, struct fpn *);
   66 static int toinf(struct fpemu *, int);
   67 
   68 /*
   69  * Round a number (algorithm from Motorola MC68882 manual, modified for
   70  * our internal format).  Set inexact exception if rounding is required.
   71  * Return true iff we rounded up.
   72  *
   73  * After rounding, we discard the guard and round bits by shifting right
   74  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
   75  * This saves effort later.
   76  *
   77  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
   78  * responsibility to fix this if necessary.
   79  */
   80 static int
   81 round(struct fpemu *fe, struct fpn *fp)
   82 {
   83         u_int m0, m1, m2, m3;
   84         int gr, s;
   85         FPU_DECL_CARRY;
   86 
   87         m0 = fp->fp_mant[0];
   88         m1 = fp->fp_mant[1];
   89         m2 = fp->fp_mant[2];
   90         m3 = fp->fp_mant[3];
   91         gr = m3 & 3;
   92         s = fp->fp_sticky;
   93 
   94         /* mant >>= FP_NG */
   95         m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
   96         m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
   97         m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
   98         m0 >>= FP_NG;
   99 
  100         if ((gr | s) == 0)      /* result is exact: no rounding needed */
  101                 goto rounddown;
  102 
  103         fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
  104 
  105         /* Go to rounddown to round down; break to round up. */
  106         switch ((fe->fe_fpscr) & FPSCR_RN) {
  107         case FP_RN:
  108         default:
  109                 /*
  110                  * Round only if guard is set (gr & 2).  If guard is set,
  111                  * but round & sticky both clear, then we want to round
  112                  * but have a tie, so round to even, i.e., add 1 iff odd.
  113                  */
  114                 if ((gr & 2) == 0)
  115                         goto rounddown;
  116                 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
  117                         break;
  118                 goto rounddown;
  119 
  120         case FP_RZ:
  121                 /* Round towards zero, i.e., down. */
  122                 goto rounddown;
  123 
  124         case FP_RM:
  125                 /* Round towards -Inf: up if negative, down if positive. */
  126                 if (fp->fp_sign)
  127                         break;
  128                 goto rounddown;
  129 
  130         case FP_RP:
  131                 /* Round towards +Inf: up if positive, down otherwise. */
  132                 if (!fp->fp_sign)
  133                         break;
  134                 goto rounddown;
  135         }
  136 
  137         /* Bump low bit of mantissa, with carry. */
  138         fe->fe_cx |= FPSCR_FR;
  139 
  140         FPU_ADDS(m3, m3, 1);
  141         FPU_ADDCS(m2, m2, 0);
  142         FPU_ADDCS(m1, m1, 0);
  143         FPU_ADDC(m0, m0, 0);
  144         fp->fp_mant[0] = m0;
  145         fp->fp_mant[1] = m1;
  146         fp->fp_mant[2] = m2;
  147         fp->fp_mant[3] = m3;
  148         return (1);
  149 
  150 rounddown:
  151         fp->fp_mant[0] = m0;
  152         fp->fp_mant[1] = m1;
  153         fp->fp_mant[2] = m2;
  154         fp->fp_mant[3] = m3;
  155         return (0);
  156 }
  157 
  158 /*
  159  * For overflow: return true if overflow is to go to +/-Inf, according
  160  * to the sign of the overflowing result.  If false, overflow is to go
  161  * to the largest magnitude value instead.
  162  */
  163 static int
  164 toinf(struct fpemu *fe, int sign)
  165 {
  166         int inf;
  167 
  168         /* look at rounding direction */
  169         switch ((fe->fe_fpscr) & FPSCR_RN) {
  170         default:
  171         case FP_RN:             /* the nearest value is always Inf */
  172                 inf = 1;
  173                 break;
  174 
  175         case FP_RZ:             /* toward 0 => never towards Inf */
  176                 inf = 0;
  177                 break;
  178 
  179         case FP_RP:             /* toward +Inf iff positive */
  180                 inf = sign == 0;
  181                 break;
  182 
  183         case FP_RM:             /* toward -Inf iff negative */
  184                 inf = sign;
  185                 break;
  186         }
  187         if (inf)
  188                 fe->fe_cx |= FPSCR_OX;
  189         return (inf);
  190 }
  191 
  192 /*
  193  * fpn -> int (int value returned as return value).
  194  *
  195  * N.B.: this conversion always rounds towards zero (this is a peculiarity
  196  * of the SPARC instruction set).
  197  */
  198 u_int
  199 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
  200 {
  201         u_int i;
  202         int sign, exp;
  203 
  204         sign = fp->fp_sign;
  205         switch (fp->fp_class) {
  206         case FPC_ZERO:
  207                 return (0);
  208 
  209         case FPC_NUM:
  210                 /*
  211                  * If exp >= 2^32, overflow.  Otherwise shift value right
  212                  * into last mantissa word (this will not exceed 0xffffffff),
  213                  * shifting any guard and round bits out into the sticky
  214                  * bit.  Then ``round'' towards zero, i.e., just set an
  215                  * inexact exception if sticky is set (see round()).
  216                  * If the result is > 0x80000000, or is positive and equals
  217                  * 0x80000000, overflow; otherwise the last fraction word
  218                  * is the result.
  219                  */
  220                 if ((exp = fp->fp_exp) >= 32)
  221                         break;
  222                 /* NB: the following includes exp < 0 cases */
  223                 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
  224                         fe->fe_cx |= FPSCR_UX;
  225                 i = fp->fp_mant[3];
  226                 if (i >= ((u_int)0x80000000 + sign))
  227                         break;
  228                 return (sign ? -i : i);
  229 
  230         default:                /* Inf, qNaN, sNaN */
  231                 break;
  232         }
  233         /* overflow: replace any inexact exception with invalid */
  234         fe->fe_cx |= FPSCR_VXCVI;
  235         return (0x7fffffff + sign);
  236 }
  237 
  238 /*
  239  * fpn -> extended int (high bits of int value returned as return value).
  240  *
  241  * N.B.: this conversion always rounds towards zero (this is a peculiarity
  242  * of the SPARC instruction set).
  243  */
  244 u_int
  245 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
  246 {
  247         u_int64_t i;
  248         int sign, exp;
  249 
  250         sign = fp->fp_sign;
  251         switch (fp->fp_class) {
  252         case FPC_ZERO:
  253                 res[1] = 0;
  254                 return (0);
  255 
  256         case FPC_NUM:
  257                 /*
  258                  * If exp >= 2^64, overflow.  Otherwise shift value right
  259                  * into last mantissa word (this will not exceed 0xffffffffffffffff),
  260                  * shifting any guard and round bits out into the sticky
  261                  * bit.  Then ``round'' towards zero, i.e., just set an
  262                  * inexact exception if sticky is set (see round()).
  263                  * If the result is > 0x8000000000000000, or is positive and equals
  264                  * 0x8000000000000000, overflow; otherwise the last fraction word
  265                  * is the result.
  266                  */
  267                 if ((exp = fp->fp_exp) >= 64)
  268                         break;
  269                 /* NB: the following includes exp < 0 cases */
  270                 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
  271                         fe->fe_cx |= FPSCR_UX;
  272                 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
  273                 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
  274                         break;
  275                 return (sign ? -i : i);
  276 
  277         default:                /* Inf, qNaN, sNaN */
  278                 break;
  279         }
  280         /* overflow: replace any inexact exception with invalid */
  281         fe->fe_cx |= FPSCR_VXCVI;
  282         return (0x7fffffffffffffffLL + sign);
  283 }
  284 
  285 /*
  286  * fpn -> single (32 bit single returned as return value).
  287  * We assume <= 29 bits in a single-precision fraction (1.f part).
  288  */
  289 u_int
  290 fpu_ftos(struct fpemu *fe, struct fpn *fp)
  291 {
  292         u_int sign = fp->fp_sign << 31;
  293         int exp;
  294 
  295 #define SNG_EXP(e)      ((e) << SNG_FRACBITS)   /* makes e an exponent */
  296 #define SNG_MASK        (SNG_EXP(1) - 1)        /* mask for fraction */
  297 
  298         /* Take care of non-numbers first. */
  299         if (ISNAN(fp)) {
  300                 /*
  301                  * Preserve upper bits of NaN, per SPARC V8 appendix N.
  302                  * Note that fp->fp_mant[0] has the quiet bit set,
  303                  * even if it is classified as a signalling NaN.
  304                  */
  305                 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
  306                 exp = SNG_EXP_INFNAN;
  307                 goto done;
  308         }
  309         if (ISINF(fp))
  310                 return (sign | SNG_EXP(SNG_EXP_INFNAN));
  311         if (ISZERO(fp))
  312                 return (sign);
  313 
  314         /*
  315          * Normals (including subnormals).  Drop all the fraction bits
  316          * (including the explicit ``implied'' 1 bit) down into the
  317          * single-precision range.  If the number is subnormal, move
  318          * the ``implied'' 1 into the explicit range as well, and shift
  319          * right to introduce leading zeroes.  Rounding then acts
  320          * differently for normals and subnormals: the largest subnormal
  321          * may round to the smallest normal (1.0 x 2^minexp), or may
  322          * remain subnormal.  In the latter case, signal an underflow
  323          * if the result was inexact or if underflow traps are enabled.
  324          *
  325          * Rounding a normal, on the other hand, always produces another
  326          * normal (although either way the result might be too big for
  327          * single precision, and cause an overflow).  If rounding a
  328          * normal produces 2.0 in the fraction, we need not adjust that
  329          * fraction at all, since both 1.0 and 2.0 are zero under the
  330          * fraction mask.
  331          *
  332          * Note that the guard and round bits vanish from the number after
  333          * rounding.
  334          */
  335         if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {   /* subnormal */
  336                 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
  337                 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
  338                 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
  339                         return (sign | SNG_EXP(1) | 0);
  340                 if ((fe->fe_cx & FPSCR_FI) ||
  341                     (fe->fe_fpscr & FPSCR_UX))
  342                         fe->fe_cx |= FPSCR_UX;
  343                 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
  344         }
  345         /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
  346         (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
  347 #ifdef DIAGNOSTIC
  348         if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
  349                 panic("fpu_ftos");
  350 #endif
  351         if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
  352                 exp++;
  353         if (exp >= SNG_EXP_INFNAN) {
  354                 /* overflow to inf or to max single */
  355                 if (toinf(fe, sign))
  356                         return (sign | SNG_EXP(SNG_EXP_INFNAN));
  357                 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
  358         }
  359 done:
  360         /* phew, made it */
  361         return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
  362 }
  363 
  364 /*
  365  * fpn -> double (32 bit high-order result returned; 32-bit low order result
  366  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
  367  *
  368  * This code mimics fpu_ftos; see it for comments.
  369  */
  370 u_int
  371 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
  372 {
  373         u_int sign = fp->fp_sign << 31;
  374         int exp;
  375 
  376 #define DBL_EXP(e)      ((e) << (DBL_FRACBITS & 31))
  377 #define DBL_MASK        (DBL_EXP(1) - 1)
  378 
  379         if (ISNAN(fp)) {
  380                 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
  381                 exp = DBL_EXP_INFNAN;
  382                 goto done;
  383         }
  384         if (ISINF(fp)) {
  385                 sign |= DBL_EXP(DBL_EXP_INFNAN);
  386                 goto zero;
  387         }
  388         if (ISZERO(fp)) {
  389 zero:           res[1] = 0;
  390                 return (sign);
  391         }
  392 
  393         if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
  394                 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
  395                 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
  396                         res[1] = 0;
  397                         return (sign | DBL_EXP(1) | 0);
  398                 }
  399                 if ((fe->fe_cx & FPSCR_FI) ||
  400                     (fe->fe_fpscr & FPSCR_UX))
  401                         fe->fe_cx |= FPSCR_UX;
  402                 exp = 0;
  403                 goto done;
  404         }
  405         (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
  406         if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
  407                 exp++;
  408         if (exp >= DBL_EXP_INFNAN) {
  409                 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
  410                 if (toinf(fe, sign)) {
  411                         res[1] = 0;
  412                         return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
  413                 }
  414                 res[1] = ~0;
  415                 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
  416         }
  417 done:
  418         res[1] = fp->fp_mant[3];
  419         return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
  420 }
  421 
  422 /*
  423  * Implode an fpn, writing the result into the given space.
  424  */
  425 void
  426 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
  427 {
  428 
  429         switch (type) {
  430         case FTYPE_LNG:
  431                 space[0] = fpu_ftox(fe, fp, space);
  432                 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
  433                         space[0], space[1]));
  434                 break;
  435 
  436         case FTYPE_INT:
  437                 space[0] = 0;
  438                 space[1] = fpu_ftoi(fe, fp);
  439                 DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
  440                         space[1]));
  441                 break;
  442 
  443         case FTYPE_SNG:
  444                 space[0] = fpu_ftos(fe, fp);
  445                 DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
  446                         space[0]));
  447                 break;
  448 
  449         case FTYPE_DBL:
  450                 space[0] = fpu_ftod(fe, fp, space);
  451                 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
  452                         space[0], space[1]));
  453                 break;          break;
  454 
  455         default:
  456                 panic("fpu_implode: invalid type %d", type);
  457         }
  458 }

Cache object: 9482ef68a307eebecc65bb5fa46f58be


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.