1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2009 Nathan Whitehorn
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/eventhandler.h>
36 #include <sys/systm.h>
37 #include <sys/module.h>
38 #include <sys/conf.h>
39 #include <sys/cpu.h>
40 #include <sys/clock.h>
41 #include <sys/ctype.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/reboot.h>
47 #include <sys/rman.h>
48 #include <sys/sysctl.h>
49 #include <sys/unistd.h>
50
51 #include <machine/bus.h>
52 #include <machine/intr_machdep.h>
53 #include <machine/md_var.h>
54
55 #include <dev/iicbus/iicbus.h>
56 #include <dev/iicbus/iiconf.h>
57 #include <dev/led/led.h>
58 #include <dev/ofw/openfirm.h>
59 #include <dev/ofw/ofw_bus.h>
60 #include <dev/ofw/ofw_bus_subr.h>
61 #include <powerpc/powermac/macgpiovar.h>
62 #include <powerpc/powermac/powermac_thermal.h>
63
64 #include "clock_if.h"
65 #include "iicbus_if.h"
66
67 struct smu_cmd {
68 volatile uint8_t cmd;
69 uint8_t len;
70 uint8_t data[254];
71
72 STAILQ_ENTRY(smu_cmd) cmd_q;
73 };
74
75 STAILQ_HEAD(smu_cmdq, smu_cmd);
76
77 struct smu_fan {
78 struct pmac_fan fan;
79 device_t dev;
80 cell_t reg;
81
82 enum {
83 SMU_FAN_RPM,
84 SMU_FAN_PWM
85 } type;
86 int setpoint;
87 int old_style;
88 int rpm;
89 };
90
91 /* We can read the PWM and the RPM from a PWM controlled fan.
92 * Offer both values via sysctl.
93 */
94 enum {
95 SMU_PWM_SYSCTL_PWM = 1 << 8,
96 SMU_PWM_SYSCTL_RPM = 2 << 8
97 };
98
99 struct smu_sensor {
100 struct pmac_therm therm;
101 device_t dev;
102
103 cell_t reg;
104 enum {
105 SMU_CURRENT_SENSOR,
106 SMU_VOLTAGE_SENSOR,
107 SMU_POWER_SENSOR,
108 SMU_TEMP_SENSOR
109 } type;
110 };
111
112 struct smu_softc {
113 device_t sc_dev;
114 struct mtx sc_mtx;
115
116 struct resource *sc_memr;
117 int sc_memrid;
118 int sc_u3;
119
120 bus_dma_tag_t sc_dmatag;
121 bus_space_tag_t sc_bt;
122 bus_space_handle_t sc_mailbox;
123
124 struct smu_cmd *sc_cmd, *sc_cur_cmd;
125 bus_addr_t sc_cmd_phys;
126 bus_dmamap_t sc_cmd_dmamap;
127 struct smu_cmdq sc_cmdq;
128
129 struct smu_fan *sc_fans;
130 int sc_nfans;
131 int old_style_fans;
132 struct smu_sensor *sc_sensors;
133 int sc_nsensors;
134
135 int sc_doorbellirqid;
136 struct resource *sc_doorbellirq;
137 void *sc_doorbellirqcookie;
138
139 struct proc *sc_fanmgt_proc;
140 time_t sc_lastuserchange;
141
142 /* Calibration data */
143 uint16_t sc_cpu_diode_scale;
144 int16_t sc_cpu_diode_offset;
145
146 uint16_t sc_cpu_volt_scale;
147 int16_t sc_cpu_volt_offset;
148 uint16_t sc_cpu_curr_scale;
149 int16_t sc_cpu_curr_offset;
150
151 uint16_t sc_slots_pow_scale;
152 int16_t sc_slots_pow_offset;
153
154 struct cdev *sc_leddev;
155 };
156
157 /* regular bus attachment functions */
158
159 static int smu_probe(device_t);
160 static int smu_attach(device_t);
161 static const struct ofw_bus_devinfo *
162 smu_get_devinfo(device_t bus, device_t dev);
163
164 /* cpufreq notification hooks */
165
166 static void smu_cpufreq_pre_change(device_t, const struct cf_level *level);
167 static void smu_cpufreq_post_change(device_t, const struct cf_level *level);
168
169 /* clock interface */
170 static int smu_gettime(device_t dev, struct timespec *ts);
171 static int smu_settime(device_t dev, struct timespec *ts);
172
173 /* utility functions */
174 static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
175 static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
176 size_t len);
177 static void smu_attach_i2c(device_t dev, phandle_t i2croot);
178 static void smu_attach_fans(device_t dev, phandle_t fanroot);
179 static void smu_attach_sensors(device_t dev, phandle_t sensroot);
180 static void smu_set_sleepled(void *xdev, int onoff);
181 static int smu_server_mode(SYSCTL_HANDLER_ARGS);
182 static void smu_doorbell_intr(void *xdev);
183 static void smu_shutdown(void *xdev, int howto);
184
185 /* where to find the doorbell GPIO */
186
187 static device_t smu_doorbell = NULL;
188
189 static device_method_t smu_methods[] = {
190 /* Device interface */
191 DEVMETHOD(device_probe, smu_probe),
192 DEVMETHOD(device_attach, smu_attach),
193
194 /* Clock interface */
195 DEVMETHOD(clock_gettime, smu_gettime),
196 DEVMETHOD(clock_settime, smu_settime),
197
198 /* ofw_bus interface */
199 DEVMETHOD(bus_child_pnpinfo, ofw_bus_gen_child_pnpinfo),
200 DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo),
201 DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
202 DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
203 DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
204 DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
205 DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
206
207 { 0, 0 },
208 };
209
210 static driver_t smu_driver = {
211 "smu",
212 smu_methods,
213 sizeof(struct smu_softc)
214 };
215
216 DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0);
217 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
218
219 #define SMU_MAILBOX 0x8000860c
220 #define SMU_FANMGT_INTERVAL 1000 /* ms */
221
222 /* Command types */
223 #define SMU_ADC 0xd8
224 #define SMU_FAN 0x4a
225 #define SMU_RPM_STATUS 0x01
226 #define SMU_RPM_SETPOINT 0x02
227 #define SMU_PWM_STATUS 0x11
228 #define SMU_PWM_SETPOINT 0x12
229 #define SMU_I2C 0x9a
230 #define SMU_I2C_SIMPLE 0x00
231 #define SMU_I2C_NORMAL 0x01
232 #define SMU_I2C_COMBINED 0x02
233 #define SMU_MISC 0xee
234 #define SMU_MISC_GET_DATA 0x02
235 #define SMU_MISC_LED_CTRL 0x04
236 #define SMU_POWER 0xaa
237 #define SMU_POWER_EVENTS 0x8f
238 #define SMU_PWR_GET_POWERUP 0x00
239 #define SMU_PWR_SET_POWERUP 0x01
240 #define SMU_PWR_CLR_POWERUP 0x02
241 #define SMU_RTC 0x8e
242 #define SMU_RTC_GET 0x81
243 #define SMU_RTC_SET 0x80
244
245 /* Power event types */
246 #define SMU_WAKEUP_KEYPRESS 0x01
247 #define SMU_WAKEUP_AC_INSERT 0x02
248 #define SMU_WAKEUP_AC_CHANGE 0x04
249 #define SMU_WAKEUP_RING 0x10
250
251 /* Data blocks */
252 #define SMU_CPUTEMP_CAL 0x18
253 #define SMU_CPUVOLT_CAL 0x21
254 #define SMU_SLOTPW_CAL 0x78
255
256 /* Partitions */
257 #define SMU_PARTITION 0x3e
258 #define SMU_PARTITION_LATEST 0x01
259 #define SMU_PARTITION_BASE 0x02
260 #define SMU_PARTITION_UPDATE 0x03
261
262 static int
263 smu_probe(device_t dev)
264 {
265 const char *name = ofw_bus_get_name(dev);
266
267 if (strcmp(name, "smu") != 0)
268 return (ENXIO);
269
270 device_set_desc(dev, "Apple System Management Unit");
271 return (0);
272 }
273
274 static void
275 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
276 {
277 struct smu_softc *sc = xsc;
278
279 sc->sc_cmd_phys = segs[0].ds_addr;
280 }
281
282 static int
283 smu_attach(device_t dev)
284 {
285 struct smu_softc *sc;
286 phandle_t node, child;
287 uint8_t data[12];
288
289 sc = device_get_softc(dev);
290
291 mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
292 sc->sc_cur_cmd = NULL;
293 sc->sc_doorbellirqid = -1;
294
295 sc->sc_u3 = 0;
296 if (OF_finddevice("/u3") != -1)
297 sc->sc_u3 = 1;
298
299 /*
300 * Map the mailbox area. This should be determined from firmware,
301 * but I have not found a simple way to do that.
302 */
303 bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
304 BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
305 NULL, &(sc->sc_dmatag));
306 sc->sc_bt = &bs_le_tag;
307 bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
308
309 /*
310 * Allocate the command buffer. This can be anywhere in the low 4 GB
311 * of memory.
312 */
313 bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
314 BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
315 bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
316 sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
317 STAILQ_INIT(&sc->sc_cmdq);
318
319 /*
320 * Set up handlers to change CPU voltage when CPU frequency is changed.
321 */
322 EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
323 EVENTHANDLER_PRI_ANY);
324 EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
325 EVENTHANDLER_PRI_ANY);
326
327 node = ofw_bus_get_node(dev);
328
329 /* Some SMUs have RPM and PWM controlled fans which do not sit
330 * under the same node. So we have to attach them separately.
331 */
332 smu_attach_fans(dev, node);
333
334 /*
335 * Now detect and attach the other child devices.
336 */
337 for (child = OF_child(node); child != 0; child = OF_peer(child)) {
338 char name[32];
339 memset(name, 0, sizeof(name));
340 OF_getprop(child, "name", name, sizeof(name));
341
342 if (strncmp(name, "sensors", 8) == 0)
343 smu_attach_sensors(dev, child);
344
345 if (strncmp(name, "smu-i2c-control", 15) == 0)
346 smu_attach_i2c(dev, child);
347 }
348
349 /* Some SMUs have the I2C children directly under the bus. */
350 smu_attach_i2c(dev, node);
351
352 /*
353 * Collect calibration constants.
354 */
355 smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
356 sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
357 sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
358
359 smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
360 sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
361 sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
362 sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
363 sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
364
365 smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
366 sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
367 sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
368
369 /*
370 * Set up LED interface
371 */
372 sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
373
374 /*
375 * Reset on power loss behavior
376 */
377
378 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
379 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
380 "server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev,
381 0, smu_server_mode, "I", "Enable reboot after power failure");
382
383 /*
384 * Set up doorbell interrupt.
385 */
386 sc->sc_doorbellirqid = 0;
387 sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
388 &sc->sc_doorbellirqid, RF_ACTIVE);
389 bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
390 INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
391 &sc->sc_doorbellirqcookie);
392 powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
393 INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
394
395 /*
396 * Connect RTC interface.
397 */
398 clock_register(dev, 1000);
399
400 /*
401 * Learn about shutdown events
402 */
403 EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
404 SHUTDOWN_PRI_LAST);
405
406 return (bus_generic_attach(dev));
407 }
408
409 static const struct ofw_bus_devinfo *
410 smu_get_devinfo(device_t bus, device_t dev)
411 {
412
413 return (device_get_ivars(dev));
414 }
415
416 static void
417 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
418 {
419 struct smu_softc *sc;
420
421 sc = device_get_softc(dev);
422
423 mtx_assert(&sc->sc_mtx, MA_OWNED);
424
425 if (sc->sc_u3)
426 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
427
428 sc->sc_cur_cmd = cmd;
429
430 /* Copy the command to the mailbox */
431 sc->sc_cmd->cmd = cmd->cmd;
432 sc->sc_cmd->len = cmd->len;
433 memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
434 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
435 bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
436
437 /* Flush the cacheline it is in -- SMU bypasses the cache */
438 __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
439
440 /* Ring SMU doorbell */
441 macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
442 }
443
444 static void
445 smu_doorbell_intr(void *xdev)
446 {
447 device_t smu;
448 struct smu_softc *sc;
449 int doorbell_ack;
450
451 smu = xdev;
452 doorbell_ack = macgpio_read(smu_doorbell);
453 sc = device_get_softc(smu);
454
455 if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
456 return;
457
458 mtx_lock(&sc->sc_mtx);
459
460 if (sc->sc_cur_cmd == NULL) /* spurious */
461 goto done;
462
463 /* Check result. First invalidate the cache again... */
464 __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
465
466 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
467
468 sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
469 sc->sc_cur_cmd->len = sc->sc_cmd->len;
470 memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
471 sizeof(sc->sc_cmd->data));
472 wakeup(sc->sc_cur_cmd);
473 sc->sc_cur_cmd = NULL;
474 if (sc->sc_u3)
475 powerpc_pow_enabled = 1;
476
477 done:
478 /* Queue next command if one is pending */
479 if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
480 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
481 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
482 smu_send_cmd(smu, sc->sc_cur_cmd);
483 }
484
485 mtx_unlock(&sc->sc_mtx);
486 }
487
488 static int
489 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
490 {
491 struct smu_softc *sc;
492 uint8_t cmd_code;
493 int error;
494
495 sc = device_get_softc(dev);
496 cmd_code = cmd->cmd;
497
498 mtx_lock(&sc->sc_mtx);
499 if (sc->sc_cur_cmd != NULL) {
500 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
501 } else
502 smu_send_cmd(dev, cmd);
503 mtx_unlock(&sc->sc_mtx);
504
505 if (!wait)
506 return (0);
507
508 if (sc->sc_doorbellirqid < 0) {
509 /* Poll if the IRQ has not been set up yet */
510 do {
511 DELAY(50);
512 smu_doorbell_intr(dev);
513 } while (sc->sc_cur_cmd != NULL);
514 } else {
515 /* smu_doorbell_intr will wake us when the command is ACK'ed */
516 error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
517 if (error != 0)
518 smu_doorbell_intr(dev); /* One last chance */
519
520 if (error != 0) {
521 mtx_lock(&sc->sc_mtx);
522 if (cmd->cmd == cmd_code) { /* Never processed */
523 /* Abort this command if we timed out */
524 if (sc->sc_cur_cmd == cmd)
525 sc->sc_cur_cmd = NULL;
526 else
527 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
528 cmd_q);
529 mtx_unlock(&sc->sc_mtx);
530 return (error);
531 }
532 error = 0;
533 mtx_unlock(&sc->sc_mtx);
534 }
535 }
536
537 /* SMU acks the command by inverting the command bits */
538 if (cmd->cmd == ((~cmd_code) & 0xff))
539 error = 0;
540 else
541 error = EIO;
542
543 return (error);
544 }
545
546 static int
547 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
548 {
549 struct smu_cmd cmd;
550 uint8_t addr[4];
551
552 cmd.cmd = SMU_PARTITION;
553 cmd.len = 2;
554 cmd.data[0] = SMU_PARTITION_LATEST;
555 cmd.data[1] = id;
556
557 smu_run_cmd(dev, &cmd, 1);
558
559 addr[0] = addr[1] = 0;
560 addr[2] = cmd.data[0];
561 addr[3] = cmd.data[1];
562
563 cmd.cmd = SMU_MISC;
564 cmd.len = 7;
565 cmd.data[0] = SMU_MISC_GET_DATA;
566 cmd.data[1] = sizeof(addr);
567 memcpy(&cmd.data[2], addr, sizeof(addr));
568 cmd.data[6] = len;
569
570 smu_run_cmd(dev, &cmd, 1);
571 memcpy(buf, cmd.data, len);
572 return (0);
573 }
574
575 static void
576 smu_slew_cpu_voltage(device_t dev, int to)
577 {
578 struct smu_cmd cmd;
579
580 cmd.cmd = SMU_POWER;
581 cmd.len = 8;
582 cmd.data[0] = 'V';
583 cmd.data[1] = 'S';
584 cmd.data[2] = 'L';
585 cmd.data[3] = 'E';
586 cmd.data[4] = 'W';
587 cmd.data[5] = 0xff;
588 cmd.data[6] = 1;
589 cmd.data[7] = to;
590
591 smu_run_cmd(dev, &cmd, 1);
592 }
593
594 static void
595 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
596 {
597 /*
598 * Make sure the CPU voltage is raised before we raise
599 * the clock.
600 */
601
602 if (level->rel_set[0].freq == 10000 /* max */)
603 smu_slew_cpu_voltage(dev, 0);
604 }
605
606 static void
607 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
608 {
609 /* We are safe to reduce CPU voltage after a downward transition */
610
611 if (level->rel_set[0].freq < 10000 /* max */)
612 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
613 }
614
615 /* Routines for probing the SMU doorbell GPIO */
616 static int doorbell_probe(device_t dev);
617 static int doorbell_attach(device_t dev);
618
619 static device_method_t doorbell_methods[] = {
620 /* Device interface */
621 DEVMETHOD(device_probe, doorbell_probe),
622 DEVMETHOD(device_attach, doorbell_attach),
623 { 0, 0 },
624 };
625
626 static driver_t doorbell_driver = {
627 "smudoorbell",
628 doorbell_methods,
629 0
630 };
631
632 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0,
633 BUS_PASS_SUPPORTDEV);
634
635 static int
636 doorbell_probe(device_t dev)
637 {
638 const char *name = ofw_bus_get_name(dev);
639
640 if (strcmp(name, "smu-doorbell") != 0)
641 return (ENXIO);
642
643 device_set_desc(dev, "SMU Doorbell GPIO");
644 device_quiet(dev);
645 return (0);
646 }
647
648 static int
649 doorbell_attach(device_t dev)
650 {
651 smu_doorbell = dev;
652 return (0);
653 }
654
655 /*
656 * Sensor and fan management
657 */
658
659 static int
660 smu_fan_check_old_style(struct smu_fan *fan)
661 {
662 device_t smu = fan->dev;
663 struct smu_softc *sc = device_get_softc(smu);
664 struct smu_cmd cmd;
665 int error;
666
667 if (sc->old_style_fans != -1)
668 return (sc->old_style_fans);
669
670 /*
671 * Apple has two fan control mechanisms. We can't distinguish
672 * them except by seeing if the new one fails. If the new one
673 * fails, use the old one.
674 */
675
676 cmd.cmd = SMU_FAN;
677 cmd.len = 2;
678 cmd.data[0] = 0x31;
679 cmd.data[1] = fan->reg;
680
681 do {
682 error = smu_run_cmd(smu, &cmd, 1);
683 } while (error == EWOULDBLOCK);
684
685 sc->old_style_fans = (error != 0);
686
687 return (sc->old_style_fans);
688 }
689
690 static int
691 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
692 {
693 device_t smu = fan->dev;
694 struct smu_cmd cmd;
695 int error;
696
697 cmd.cmd = SMU_FAN;
698 error = EIO;
699
700 /* Clamp to allowed range */
701 rpm = max(fan->fan.min_rpm, rpm);
702 rpm = min(fan->fan.max_rpm, rpm);
703
704 smu_fan_check_old_style(fan);
705
706 if (!fan->old_style) {
707 cmd.len = 4;
708 cmd.data[0] = 0x30;
709 cmd.data[1] = fan->reg;
710 cmd.data[2] = (rpm >> 8) & 0xff;
711 cmd.data[3] = rpm & 0xff;
712
713 error = smu_run_cmd(smu, &cmd, 1);
714 if (error && error != EWOULDBLOCK)
715 fan->old_style = 1;
716 } else {
717 cmd.len = 14;
718 cmd.data[0] = 0x00; /* RPM fan. */
719 cmd.data[1] = 1 << fan->reg;
720 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
721 cmd.data[3 + 2*fan->reg] = rpm & 0xff;
722 error = smu_run_cmd(smu, &cmd, 1);
723 }
724
725 if (error == 0)
726 fan->setpoint = rpm;
727
728 return (error);
729 }
730
731 static int
732 smu_fan_read_rpm(struct smu_fan *fan)
733 {
734 device_t smu = fan->dev;
735 struct smu_cmd cmd;
736 int rpm, error;
737
738 smu_fan_check_old_style(fan);
739
740 if (!fan->old_style) {
741 cmd.cmd = SMU_FAN;
742 cmd.len = 2;
743 cmd.data[0] = 0x31;
744 cmd.data[1] = fan->reg;
745
746 error = smu_run_cmd(smu, &cmd, 1);
747 if (error && error != EWOULDBLOCK)
748 fan->old_style = 1;
749
750 rpm = (cmd.data[0] << 8) | cmd.data[1];
751 }
752
753 if (fan->old_style) {
754 cmd.cmd = SMU_FAN;
755 cmd.len = 1;
756 cmd.data[0] = SMU_RPM_STATUS;
757
758 error = smu_run_cmd(smu, &cmd, 1);
759 if (error)
760 return (error);
761
762 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
763 }
764
765 return (rpm);
766 }
767 static int
768 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
769 {
770 device_t smu = fan->dev;
771 struct smu_cmd cmd;
772 int error;
773
774 cmd.cmd = SMU_FAN;
775 error = EIO;
776
777 /* Clamp to allowed range */
778 pwm = max(fan->fan.min_rpm, pwm);
779 pwm = min(fan->fan.max_rpm, pwm);
780
781 /*
782 * Apple has two fan control mechanisms. We can't distinguish
783 * them except by seeing if the new one fails. If the new one
784 * fails, use the old one.
785 */
786
787 if (!fan->old_style) {
788 cmd.len = 4;
789 cmd.data[0] = 0x30;
790 cmd.data[1] = fan->reg;
791 cmd.data[2] = (pwm >> 8) & 0xff;
792 cmd.data[3] = pwm & 0xff;
793
794 error = smu_run_cmd(smu, &cmd, 1);
795 if (error && error != EWOULDBLOCK)
796 fan->old_style = 1;
797 }
798
799 if (fan->old_style) {
800 cmd.len = 14;
801 cmd.data[0] = 0x10; /* PWM fan. */
802 cmd.data[1] = 1 << fan->reg;
803 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
804 cmd.data[3 + 2*fan->reg] = pwm & 0xff;
805 error = smu_run_cmd(smu, &cmd, 1);
806 }
807
808 if (error == 0)
809 fan->setpoint = pwm;
810
811 return (error);
812 }
813
814 static int
815 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
816 {
817 device_t smu = fan->dev;
818 struct smu_cmd cmd;
819 int error;
820
821 if (!fan->old_style) {
822 cmd.cmd = SMU_FAN;
823 cmd.len = 2;
824 cmd.data[0] = 0x31;
825 cmd.data[1] = fan->reg;
826
827 error = smu_run_cmd(smu, &cmd, 1);
828 if (error && error != EWOULDBLOCK)
829 fan->old_style = 1;
830
831 *rpm = (cmd.data[0] << 8) | cmd.data[1];
832 }
833
834 if (fan->old_style) {
835 cmd.cmd = SMU_FAN;
836 cmd.len = 1;
837 cmd.data[0] = SMU_PWM_STATUS;
838
839 error = smu_run_cmd(smu, &cmd, 1);
840 if (error)
841 return (error);
842
843 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
844 }
845 if (fan->old_style) {
846 cmd.cmd = SMU_FAN;
847 cmd.len = 14;
848 cmd.data[0] = SMU_PWM_SETPOINT;
849 cmd.data[1] = 1 << fan->reg;
850
851 error = smu_run_cmd(smu, &cmd, 1);
852 if (error)
853 return (error);
854
855 *pwm = cmd.data[fan->reg*2+2];
856 }
857 return (0);
858 }
859
860 static int
861 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
862 {
863 device_t smu;
864 struct smu_softc *sc;
865 struct smu_fan *fan;
866 int pwm = 0, rpm, error = 0;
867
868 smu = arg1;
869 sc = device_get_softc(smu);
870 fan = &sc->sc_fans[arg2 & 0xff];
871
872 if (fan->type == SMU_FAN_RPM) {
873 rpm = smu_fan_read_rpm(fan);
874 if (rpm < 0)
875 return (rpm);
876
877 error = sysctl_handle_int(oidp, &rpm, 0, req);
878 } else {
879 error = smu_fan_read_pwm(fan, &pwm, &rpm);
880 if (error < 0)
881 return (EIO);
882
883 switch (arg2 & 0xff00) {
884 case SMU_PWM_SYSCTL_PWM:
885 error = sysctl_handle_int(oidp, &pwm, 0, req);
886 break;
887 case SMU_PWM_SYSCTL_RPM:
888 error = sysctl_handle_int(oidp, &rpm, 0, req);
889 break;
890 default:
891 /* This should never happen */
892 return (EINVAL);
893 }
894 }
895 /* We can only read the RPM from a PWM controlled fan, so return. */
896 if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
897 return (0);
898
899 if (error || !req->newptr)
900 return (error);
901
902 sc->sc_lastuserchange = time_uptime;
903
904 if (fan->type == SMU_FAN_RPM)
905 return (smu_fan_set_rpm(fan, rpm));
906 else
907 return (smu_fan_set_pwm(fan, pwm));
908 }
909
910 static void
911 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
912 {
913 struct smu_fan *fan;
914 struct smu_softc *sc;
915 char type[32];
916
917 sc = device_get_softc(dev);
918 fan = &sc->sc_fans[id];
919
920 OF_getprop(child, "device_type", type, sizeof(type));
921 /* We have either RPM or PWM controlled fans. */
922 if (strcmp(type, "fan-rpm-control") == 0)
923 fan->type = SMU_FAN_RPM;
924 else
925 fan->type = SMU_FAN_PWM;
926
927 fan->dev = dev;
928 fan->old_style = 0;
929 OF_getprop(child, "reg", &fan->reg,
930 sizeof(cell_t));
931 OF_getprop(child, "min-value", &fan->fan.min_rpm,
932 sizeof(int));
933 OF_getprop(child, "max-value", &fan->fan.max_rpm,
934 sizeof(int));
935 OF_getprop(child, "zone", &fan->fan.zone,
936 sizeof(int));
937
938 if (OF_getprop(child, "unmanaged-value",
939 &fan->fan.default_rpm,
940 sizeof(int)) != sizeof(int))
941 fan->fan.default_rpm = fan->fan.max_rpm;
942
943 OF_getprop(child, "location", fan->fan.name,
944 sizeof(fan->fan.name));
945
946 if (fan->type == SMU_FAN_RPM)
947 fan->setpoint = smu_fan_read_rpm(fan);
948 else
949 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
950 }
951
952 /* On the first call count the number of fans. In the second call,
953 * after allocating the fan struct, fill the properties of the fans.
954 */
955 static int
956 smu_count_fans(device_t dev)
957 {
958 struct smu_softc *sc;
959 phandle_t child, node, root;
960 int nfans = 0;
961
962 node = ofw_bus_get_node(dev);
963 sc = device_get_softc(dev);
964
965 /* First find the fanroots and count the number of fans. */
966 for (root = OF_child(node); root != 0; root = OF_peer(root)) {
967 char name[32];
968 memset(name, 0, sizeof(name));
969 OF_getprop(root, "name", name, sizeof(name));
970 if (strncmp(name, "rpm-fans", 9) == 0 ||
971 strncmp(name, "pwm-fans", 9) == 0 ||
972 strncmp(name, "fans", 5) == 0)
973 for (child = OF_child(root); child != 0;
974 child = OF_peer(child)) {
975 nfans++;
976 /* When allocated, fill the fan properties. */
977 if (sc->sc_fans != NULL) {
978 smu_fill_fan_prop(dev, child,
979 nfans - 1);
980 }
981 }
982 }
983 if (nfans == 0) {
984 device_printf(dev, "WARNING: No fans detected!\n");
985 return (0);
986 }
987 return (nfans);
988 }
989
990 static void
991 smu_attach_fans(device_t dev, phandle_t fanroot)
992 {
993 struct smu_fan *fan;
994 struct smu_softc *sc;
995 struct sysctl_oid *oid, *fanroot_oid;
996 struct sysctl_ctx_list *ctx;
997 char sysctl_name[32];
998 int i, j;
999
1000 sc = device_get_softc(dev);
1001
1002 /* Get the number of fans. */
1003 sc->sc_nfans = smu_count_fans(dev);
1004 if (sc->sc_nfans == 0)
1005 return;
1006
1007 /* Now we're able to allocate memory for the fans struct. */
1008 sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
1009 M_WAITOK | M_ZERO);
1010
1011 /* Now fill in the properties. */
1012 smu_count_fans(dev);
1013
1014 /* Register fans with pmac_thermal */
1015 for (i = 0; i < sc->sc_nfans; i++)
1016 pmac_thermal_fan_register(&sc->sc_fans[i].fan);
1017
1018 ctx = device_get_sysctl_ctx(dev);
1019 fanroot_oid = SYSCTL_ADD_NODE(ctx,
1020 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
1021 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information");
1022
1023 /* Add sysctls */
1024 for (i = 0; i < sc->sc_nfans; i++) {
1025 fan = &sc->sc_fans[i];
1026 for (j = 0; j < strlen(fan->fan.name); j++) {
1027 sysctl_name[j] = tolower(fan->fan.name[j]);
1028 if (isspace(sysctl_name[j]))
1029 sysctl_name[j] = '_';
1030 }
1031 sysctl_name[j] = 0;
1032 if (fan->type == SMU_FAN_RPM) {
1033 oid = SYSCTL_ADD_NODE(ctx,
1034 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1035 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1036 "Fan Information");
1037 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1038 "minrpm", CTLFLAG_RD,
1039 &fan->fan.min_rpm, 0,
1040 "Minimum allowed RPM");
1041 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1042 "maxrpm", CTLFLAG_RD,
1043 &fan->fan.max_rpm, 0,
1044 "Maximum allowed RPM");
1045 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1046 "rpm",CTLTYPE_INT | CTLFLAG_RW |
1047 CTLFLAG_MPSAFE, dev, i,
1048 smu_fanrpm_sysctl, "I", "Fan RPM");
1049
1050 fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1051 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1052
1053 } else {
1054 oid = SYSCTL_ADD_NODE(ctx,
1055 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1056 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1057 "Fan Information");
1058 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1059 "minpwm", CTLFLAG_RD,
1060 &fan->fan.min_rpm, 0,
1061 "Minimum allowed PWM in %");
1062 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1063 "maxpwm", CTLFLAG_RD,
1064 &fan->fan.max_rpm, 0,
1065 "Maximum allowed PWM in %");
1066 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1067 "pwm",CTLTYPE_INT | CTLFLAG_RW |
1068 CTLFLAG_MPSAFE, dev,
1069 SMU_PWM_SYSCTL_PWM | i,
1070 smu_fanrpm_sysctl, "I", "Fan PWM in %");
1071 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1072 "rpm",CTLTYPE_INT | CTLFLAG_RD |
1073 CTLFLAG_MPSAFE, dev,
1074 SMU_PWM_SYSCTL_RPM | i,
1075 smu_fanrpm_sysctl, "I", "Fan RPM");
1076 fan->fan.read = NULL;
1077 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1078 }
1079 if (bootverbose)
1080 device_printf(dev, "Fan: %s type: %d\n",
1081 fan->fan.name, fan->type);
1082 }
1083 }
1084
1085 static int
1086 smu_sensor_read(struct smu_sensor *sens)
1087 {
1088 device_t smu = sens->dev;
1089 struct smu_cmd cmd;
1090 struct smu_softc *sc;
1091 int64_t value;
1092 int error;
1093
1094 cmd.cmd = SMU_ADC;
1095 cmd.len = 1;
1096 cmd.data[0] = sens->reg;
1097 error = 0;
1098
1099 error = smu_run_cmd(smu, &cmd, 1);
1100 if (error != 0)
1101 return (-1);
1102
1103 sc = device_get_softc(smu);
1104 value = (cmd.data[0] << 8) | cmd.data[1];
1105
1106 switch (sens->type) {
1107 case SMU_TEMP_SENSOR:
1108 value *= sc->sc_cpu_diode_scale;
1109 value >>= 3;
1110 value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1111 value <<= 1;
1112
1113 /* Convert from 16.16 fixed point degC into integer 0.1 K. */
1114 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731;
1115 break;
1116 case SMU_VOLTAGE_SENSOR:
1117 value *= sc->sc_cpu_volt_scale;
1118 value += sc->sc_cpu_volt_offset;
1119 value <<= 4;
1120
1121 /* Convert from 16.16 fixed point V into mV. */
1122 value *= 15625;
1123 value /= 1024;
1124 value /= 1000;
1125 break;
1126 case SMU_CURRENT_SENSOR:
1127 value *= sc->sc_cpu_curr_scale;
1128 value += sc->sc_cpu_curr_offset;
1129 value <<= 4;
1130
1131 /* Convert from 16.16 fixed point A into mA. */
1132 value *= 15625;
1133 value /= 1024;
1134 value /= 1000;
1135 break;
1136 case SMU_POWER_SENSOR:
1137 value *= sc->sc_slots_pow_scale;
1138 value += sc->sc_slots_pow_offset;
1139 value <<= 4;
1140
1141 /* Convert from 16.16 fixed point W into mW. */
1142 value *= 15625;
1143 value /= 1024;
1144 value /= 1000;
1145 break;
1146 }
1147
1148 return (value);
1149 }
1150
1151 static int
1152 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1153 {
1154 device_t smu;
1155 struct smu_softc *sc;
1156 struct smu_sensor *sens;
1157 int value, error;
1158
1159 smu = arg1;
1160 sc = device_get_softc(smu);
1161 sens = &sc->sc_sensors[arg2];
1162
1163 value = smu_sensor_read(sens);
1164 if (value < 0)
1165 return (EBUSY);
1166
1167 error = sysctl_handle_int(oidp, &value, 0, req);
1168
1169 return (error);
1170 }
1171
1172 static void
1173 smu_attach_sensors(device_t dev, phandle_t sensroot)
1174 {
1175 struct smu_sensor *sens;
1176 struct smu_softc *sc;
1177 struct sysctl_oid *sensroot_oid;
1178 struct sysctl_ctx_list *ctx;
1179 phandle_t child;
1180 char type[32];
1181 int i;
1182
1183 sc = device_get_softc(dev);
1184 sc->sc_nsensors = 0;
1185
1186 for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1187 sc->sc_nsensors++;
1188
1189 if (sc->sc_nsensors == 0) {
1190 device_printf(dev, "WARNING: No sensors detected!\n");
1191 return;
1192 }
1193
1194 sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1195 M_SMU, M_WAITOK | M_ZERO);
1196
1197 sens = sc->sc_sensors;
1198 sc->sc_nsensors = 0;
1199
1200 ctx = device_get_sysctl_ctx(dev);
1201 sensroot_oid = SYSCTL_ADD_NODE(ctx,
1202 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1203 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information");
1204
1205 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1206 char sysctl_name[40], sysctl_desc[40];
1207 const char *units;
1208
1209 sens->dev = dev;
1210 OF_getprop(child, "device_type", type, sizeof(type));
1211
1212 if (strcmp(type, "current-sensor") == 0) {
1213 sens->type = SMU_CURRENT_SENSOR;
1214 units = "mA";
1215 } else if (strcmp(type, "temp-sensor") == 0) {
1216 sens->type = SMU_TEMP_SENSOR;
1217 units = "C";
1218 } else if (strcmp(type, "voltage-sensor") == 0) {
1219 sens->type = SMU_VOLTAGE_SENSOR;
1220 units = "mV";
1221 } else if (strcmp(type, "power-sensor") == 0) {
1222 sens->type = SMU_POWER_SENSOR;
1223 units = "mW";
1224 } else {
1225 continue;
1226 }
1227
1228 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1229 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1230 OF_getprop(child, "location", sens->therm.name,
1231 sizeof(sens->therm.name));
1232
1233 for (i = 0; i < strlen(sens->therm.name); i++) {
1234 sysctl_name[i] = tolower(sens->therm.name[i]);
1235 if (isspace(sysctl_name[i]))
1236 sysctl_name[i] = '_';
1237 }
1238 sysctl_name[i] = 0;
1239
1240 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1241
1242 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1243 sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1244 dev, sc->sc_nsensors, smu_sensor_sysctl,
1245 (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1246
1247 if (sens->type == SMU_TEMP_SENSOR) {
1248 /* Make up some numbers */
1249 sens->therm.target_temp = 500 + 2731; /* 50 C */
1250 sens->therm.max_temp = 900 + 2731; /* 90 C */
1251
1252 sens->therm.read =
1253 (int (*)(struct pmac_therm *))smu_sensor_read;
1254 pmac_thermal_sensor_register(&sens->therm);
1255 }
1256
1257 sens++;
1258 sc->sc_nsensors++;
1259 }
1260 }
1261
1262 static void
1263 smu_set_sleepled(void *xdev, int onoff)
1264 {
1265 static struct smu_cmd cmd;
1266 device_t smu = xdev;
1267
1268 cmd.cmd = SMU_MISC;
1269 cmd.len = 3;
1270 cmd.data[0] = SMU_MISC_LED_CTRL;
1271 cmd.data[1] = 0;
1272 cmd.data[2] = onoff;
1273
1274 smu_run_cmd(smu, &cmd, 0);
1275 }
1276
1277 static int
1278 smu_server_mode(SYSCTL_HANDLER_ARGS)
1279 {
1280 struct smu_cmd cmd;
1281 u_int server_mode;
1282 device_t smu = arg1;
1283 int error;
1284
1285 cmd.cmd = SMU_POWER_EVENTS;
1286 cmd.len = 1;
1287 cmd.data[0] = SMU_PWR_GET_POWERUP;
1288
1289 error = smu_run_cmd(smu, &cmd, 1);
1290
1291 if (error)
1292 return (error);
1293
1294 server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1295
1296 error = sysctl_handle_int(oidp, &server_mode, 0, req);
1297
1298 if (error || !req->newptr)
1299 return (error);
1300
1301 if (server_mode == 1)
1302 cmd.data[0] = SMU_PWR_SET_POWERUP;
1303 else if (server_mode == 0)
1304 cmd.data[0] = SMU_PWR_CLR_POWERUP;
1305 else
1306 return (EINVAL);
1307
1308 cmd.len = 3;
1309 cmd.data[1] = 0;
1310 cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1311
1312 return (smu_run_cmd(smu, &cmd, 1));
1313 }
1314
1315 static void
1316 smu_shutdown(void *xdev, int howto)
1317 {
1318 device_t smu = xdev;
1319 struct smu_cmd cmd;
1320
1321 cmd.cmd = SMU_POWER;
1322 if (howto & RB_HALT)
1323 strcpy(cmd.data, "SHUTDOWN");
1324 else
1325 strcpy(cmd.data, "RESTART");
1326
1327 cmd.len = strlen(cmd.data);
1328
1329 smu_run_cmd(smu, &cmd, 1);
1330
1331 for (;;);
1332 }
1333
1334 static int
1335 smu_gettime(device_t dev, struct timespec *ts)
1336 {
1337 struct smu_cmd cmd;
1338 struct clocktime ct;
1339
1340 cmd.cmd = SMU_RTC;
1341 cmd.len = 1;
1342 cmd.data[0] = SMU_RTC_GET;
1343
1344 if (smu_run_cmd(dev, &cmd, 1) != 0)
1345 return (ENXIO);
1346
1347 ct.nsec = 0;
1348 ct.sec = bcd2bin(cmd.data[0]);
1349 ct.min = bcd2bin(cmd.data[1]);
1350 ct.hour = bcd2bin(cmd.data[2]);
1351 ct.dow = bcd2bin(cmd.data[3]);
1352 ct.day = bcd2bin(cmd.data[4]);
1353 ct.mon = bcd2bin(cmd.data[5]);
1354 ct.year = bcd2bin(cmd.data[6]) + 2000;
1355
1356 return (clock_ct_to_ts(&ct, ts));
1357 }
1358
1359 static int
1360 smu_settime(device_t dev, struct timespec *ts)
1361 {
1362 static struct smu_cmd cmd;
1363 struct clocktime ct;
1364
1365 cmd.cmd = SMU_RTC;
1366 cmd.len = 8;
1367 cmd.data[0] = SMU_RTC_SET;
1368
1369 clock_ts_to_ct(ts, &ct);
1370
1371 cmd.data[1] = bin2bcd(ct.sec);
1372 cmd.data[2] = bin2bcd(ct.min);
1373 cmd.data[3] = bin2bcd(ct.hour);
1374 cmd.data[4] = bin2bcd(ct.dow);
1375 cmd.data[5] = bin2bcd(ct.day);
1376 cmd.data[6] = bin2bcd(ct.mon);
1377 cmd.data[7] = bin2bcd(ct.year - 2000);
1378
1379 return (smu_run_cmd(dev, &cmd, 0));
1380 }
1381
1382 /* SMU I2C Interface */
1383
1384 static int smuiic_probe(device_t dev);
1385 static int smuiic_attach(device_t dev);
1386 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1387 static phandle_t smuiic_get_node(device_t bus, device_t dev);
1388
1389 static device_method_t smuiic_methods[] = {
1390 /* device interface */
1391 DEVMETHOD(device_probe, smuiic_probe),
1392 DEVMETHOD(device_attach, smuiic_attach),
1393
1394 /* iicbus interface */
1395 DEVMETHOD(iicbus_callback, iicbus_null_callback),
1396 DEVMETHOD(iicbus_transfer, smuiic_transfer),
1397
1398 /* ofw_bus interface */
1399 DEVMETHOD(ofw_bus_get_node, smuiic_get_node),
1400 { 0, 0 }
1401 };
1402
1403 struct smuiic_softc {
1404 struct mtx sc_mtx;
1405 volatile int sc_iic_inuse;
1406 int sc_busno;
1407 };
1408
1409 static driver_t smuiic_driver = {
1410 "iichb",
1411 smuiic_methods,
1412 sizeof(struct smuiic_softc)
1413 };
1414
1415 DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0);
1416
1417 static void
1418 smu_attach_i2c(device_t smu, phandle_t i2croot)
1419 {
1420 phandle_t child;
1421 device_t cdev;
1422 struct ofw_bus_devinfo *dinfo;
1423 char name[32];
1424
1425 for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1426 if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1427 continue;
1428
1429 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1430 continue;
1431
1432 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1433 M_WAITOK | M_ZERO);
1434 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1435 free(dinfo, M_SMU);
1436 continue;
1437 }
1438
1439 cdev = device_add_child(smu, NULL, -1);
1440 if (cdev == NULL) {
1441 device_printf(smu, "<%s>: device_add_child failed\n",
1442 dinfo->obd_name);
1443 ofw_bus_gen_destroy_devinfo(dinfo);
1444 free(dinfo, M_SMU);
1445 continue;
1446 }
1447 device_set_ivars(cdev, dinfo);
1448 }
1449 }
1450
1451 static int
1452 smuiic_probe(device_t dev)
1453 {
1454 const char *name;
1455
1456 name = ofw_bus_get_name(dev);
1457 if (name == NULL)
1458 return (ENXIO);
1459
1460 if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1461 device_set_desc(dev, "SMU I2C controller");
1462 return (0);
1463 }
1464
1465 return (ENXIO);
1466 }
1467
1468 static int
1469 smuiic_attach(device_t dev)
1470 {
1471 struct smuiic_softc *sc = device_get_softc(dev);
1472 mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1473 sc->sc_iic_inuse = 0;
1474
1475 /* Get our bus number */
1476 OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1477 sizeof(sc->sc_busno));
1478
1479 /* Add the IIC bus layer */
1480 device_add_child(dev, "iicbus", -1);
1481
1482 return (bus_generic_attach(dev));
1483 }
1484
1485 static int
1486 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1487 {
1488 struct smuiic_softc *sc = device_get_softc(dev);
1489 struct smu_cmd cmd;
1490 int i, j, error;
1491
1492 mtx_lock(&sc->sc_mtx);
1493 while (sc->sc_iic_inuse)
1494 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1495
1496 sc->sc_iic_inuse = 1;
1497 error = 0;
1498
1499 for (i = 0; i < nmsgs; i++) {
1500 cmd.cmd = SMU_I2C;
1501 cmd.data[0] = sc->sc_busno;
1502 if (msgs[i].flags & IIC_M_NOSTOP)
1503 cmd.data[1] = SMU_I2C_COMBINED;
1504 else
1505 cmd.data[1] = SMU_I2C_SIMPLE;
1506
1507 cmd.data[2] = msgs[i].slave;
1508 if (msgs[i].flags & IIC_M_RD)
1509 cmd.data[2] |= 1;
1510
1511 if (msgs[i].flags & IIC_M_NOSTOP) {
1512 KASSERT(msgs[i].len < 4,
1513 ("oversize I2C combined message"));
1514
1515 cmd.data[3] = min(msgs[i].len, 3);
1516 memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1517 i++; /* Advance to next part of message */
1518 } else {
1519 cmd.data[3] = 0;
1520 memset(&cmd.data[4], 0, 3);
1521 }
1522
1523 cmd.data[7] = msgs[i].slave;
1524 if (msgs[i].flags & IIC_M_RD)
1525 cmd.data[7] |= 1;
1526
1527 cmd.data[8] = msgs[i].len;
1528 if (msgs[i].flags & IIC_M_RD) {
1529 memset(&cmd.data[9], 0xff, msgs[i].len);
1530 cmd.len = 9;
1531 } else {
1532 memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1533 cmd.len = 9 + msgs[i].len;
1534 }
1535
1536 mtx_unlock(&sc->sc_mtx);
1537 smu_run_cmd(device_get_parent(dev), &cmd, 1);
1538 mtx_lock(&sc->sc_mtx);
1539
1540 for (j = 0; j < 10; j++) {
1541 cmd.cmd = SMU_I2C;
1542 cmd.len = 1;
1543 cmd.data[0] = 0;
1544 memset(&cmd.data[1], 0xff, msgs[i].len);
1545
1546 mtx_unlock(&sc->sc_mtx);
1547 smu_run_cmd(device_get_parent(dev), &cmd, 1);
1548 mtx_lock(&sc->sc_mtx);
1549
1550 if (!(cmd.data[0] & 0x80))
1551 break;
1552
1553 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1554 }
1555
1556 if (cmd.data[0] & 0x80) {
1557 error = EIO;
1558 msgs[i].len = 0;
1559 goto exit;
1560 }
1561 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1562 msgs[i].len = cmd.len - 1;
1563 }
1564
1565 exit:
1566 sc->sc_iic_inuse = 0;
1567 mtx_unlock(&sc->sc_mtx);
1568 wakeup(sc);
1569 return (error);
1570 }
1571
1572 static phandle_t
1573 smuiic_get_node(device_t bus, device_t dev)
1574 {
1575
1576 return (ofw_bus_get_node(bus));
1577 }
Cache object: ed1237f78e520e117acfa5fa0f139a3a
|