The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/powermac/smu.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2009 Nathan Whitehorn
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include <sys/param.h>
   32 #include <sys/bus.h>
   33 #include <sys/systm.h>
   34 #include <sys/module.h>
   35 #include <sys/conf.h>
   36 #include <sys/cpu.h>
   37 #include <sys/clock.h>
   38 #include <sys/ctype.h>
   39 #include <sys/kernel.h>
   40 #include <sys/kthread.h>
   41 #include <sys/reboot.h>
   42 #include <sys/rman.h>
   43 #include <sys/sysctl.h>
   44 #include <sys/unistd.h>
   45 
   46 #include <machine/bus.h>
   47 #include <machine/intr_machdep.h>
   48 #include <machine/md_var.h>
   49 
   50 #include <dev/iicbus/iicbus.h>
   51 #include <dev/iicbus/iiconf.h>
   52 #include <dev/led/led.h>
   53 #include <dev/ofw/openfirm.h>
   54 #include <dev/ofw/ofw_bus.h>
   55 #include <dev/ofw/ofw_bus_subr.h>
   56 #include <powerpc/powermac/macgpiovar.h>
   57 #include <powerpc/powermac/powermac_thermal.h>
   58 
   59 #include "clock_if.h"
   60 #include "iicbus_if.h"
   61 
   62 struct smu_cmd {
   63         volatile uint8_t cmd;
   64         uint8_t         len;
   65         uint8_t         data[254];
   66 
   67         STAILQ_ENTRY(smu_cmd) cmd_q;
   68 };
   69 
   70 STAILQ_HEAD(smu_cmdq, smu_cmd);
   71 
   72 struct smu_fan {
   73         struct pmac_fan fan;
   74         device_t dev;
   75         cell_t  reg;
   76 
   77         enum {
   78                 SMU_FAN_RPM,
   79                 SMU_FAN_PWM
   80         } type;
   81         int     setpoint;
   82         int     old_style;
   83         int     rpm;
   84 };
   85 
   86 /* We can read the PWM and the RPM from a PWM controlled fan.
   87  * Offer both values via sysctl.
   88  */
   89 enum {
   90         SMU_PWM_SYSCTL_PWM   = 1 << 8,
   91         SMU_PWM_SYSCTL_RPM   = 2 << 8
   92 };
   93 
   94 struct smu_sensor {
   95         struct pmac_therm therm;
   96         device_t dev;
   97 
   98         cell_t  reg;
   99         enum {
  100                 SMU_CURRENT_SENSOR,
  101                 SMU_VOLTAGE_SENSOR,
  102                 SMU_POWER_SENSOR,
  103                 SMU_TEMP_SENSOR
  104         } type;
  105 };
  106 
  107 struct smu_softc {
  108         device_t        sc_dev;
  109         struct mtx      sc_mtx;
  110 
  111         struct resource *sc_memr;
  112         int             sc_memrid;
  113         int             sc_u3;
  114 
  115         bus_dma_tag_t   sc_dmatag;
  116         bus_space_tag_t sc_bt;
  117         bus_space_handle_t sc_mailbox;
  118 
  119         struct smu_cmd  *sc_cmd, *sc_cur_cmd;
  120         bus_addr_t      sc_cmd_phys;
  121         bus_dmamap_t    sc_cmd_dmamap;
  122         struct smu_cmdq sc_cmdq;
  123 
  124         struct smu_fan  *sc_fans;
  125         int             sc_nfans;
  126         int             old_style_fans;
  127         struct smu_sensor *sc_sensors;
  128         int             sc_nsensors;
  129 
  130         int             sc_doorbellirqid;
  131         struct resource *sc_doorbellirq;
  132         void            *sc_doorbellirqcookie;
  133 
  134         struct proc     *sc_fanmgt_proc;
  135         time_t          sc_lastuserchange;
  136 
  137         /* Calibration data */
  138         uint16_t        sc_cpu_diode_scale;
  139         int16_t         sc_cpu_diode_offset;
  140 
  141         uint16_t        sc_cpu_volt_scale;
  142         int16_t         sc_cpu_volt_offset;
  143         uint16_t        sc_cpu_curr_scale;
  144         int16_t         sc_cpu_curr_offset;
  145 
  146         uint16_t        sc_slots_pow_scale;
  147         int16_t         sc_slots_pow_offset;
  148 
  149         struct cdev     *sc_leddev;
  150 };
  151 
  152 /* regular bus attachment functions */
  153 
  154 static int      smu_probe(device_t);
  155 static int      smu_attach(device_t);
  156 static const struct ofw_bus_devinfo *
  157     smu_get_devinfo(device_t bus, device_t dev);
  158 
  159 /* cpufreq notification hooks */
  160 
  161 static void     smu_cpufreq_pre_change(device_t, const struct cf_level *level);
  162 static void     smu_cpufreq_post_change(device_t, const struct cf_level *level);
  163 
  164 /* clock interface */
  165 static int      smu_gettime(device_t dev, struct timespec *ts);
  166 static int      smu_settime(device_t dev, struct timespec *ts);
  167 
  168 /* utility functions */
  169 static int      smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
  170 static int      smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
  171                     size_t len);
  172 static void     smu_attach_i2c(device_t dev, phandle_t i2croot);
  173 static void     smu_attach_fans(device_t dev, phandle_t fanroot);
  174 static void     smu_attach_sensors(device_t dev, phandle_t sensroot);
  175 static void     smu_set_sleepled(void *xdev, int onoff);
  176 static int      smu_server_mode(SYSCTL_HANDLER_ARGS);
  177 static void     smu_doorbell_intr(void *xdev);
  178 static void     smu_shutdown(void *xdev, int howto);
  179 
  180 /* where to find the doorbell GPIO */
  181 
  182 static device_t smu_doorbell = NULL;
  183 
  184 static device_method_t  smu_methods[] = {
  185         /* Device interface */
  186         DEVMETHOD(device_probe,         smu_probe),
  187         DEVMETHOD(device_attach,        smu_attach),
  188 
  189         /* Clock interface */
  190         DEVMETHOD(clock_gettime,        smu_gettime),
  191         DEVMETHOD(clock_settime,        smu_settime),
  192 
  193         /* ofw_bus interface */
  194         DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str),
  195         DEVMETHOD(ofw_bus_get_devinfo,  smu_get_devinfo),
  196         DEVMETHOD(ofw_bus_get_compat,   ofw_bus_gen_get_compat),
  197         DEVMETHOD(ofw_bus_get_model,    ofw_bus_gen_get_model),
  198         DEVMETHOD(ofw_bus_get_name,     ofw_bus_gen_get_name),
  199         DEVMETHOD(ofw_bus_get_node,     ofw_bus_gen_get_node),
  200         DEVMETHOD(ofw_bus_get_type,     ofw_bus_gen_get_type),
  201 
  202         { 0, 0 },
  203 };
  204 
  205 static driver_t smu_driver = {
  206         "smu",
  207         smu_methods,
  208         sizeof(struct smu_softc)
  209 };
  210 
  211 static devclass_t smu_devclass;
  212 
  213 DRIVER_MODULE(smu, nexus, smu_driver, smu_devclass, 0, 0);
  214 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
  215 
  216 #define SMU_MAILBOX             0x8000860c
  217 #define SMU_FANMGT_INTERVAL     1000 /* ms */
  218 
  219 /* Command types */
  220 #define SMU_ADC                 0xd8
  221 #define SMU_FAN                 0x4a
  222 #define SMU_RPM_STATUS          0x01
  223 #define SMU_RPM_SETPOINT        0x02
  224 #define SMU_PWM_STATUS          0x11
  225 #define SMU_PWM_SETPOINT        0x12
  226 #define SMU_I2C                 0x9a
  227 #define  SMU_I2C_SIMPLE         0x00
  228 #define  SMU_I2C_NORMAL         0x01
  229 #define  SMU_I2C_COMBINED       0x02
  230 #define SMU_MISC                0xee
  231 #define  SMU_MISC_GET_DATA      0x02
  232 #define  SMU_MISC_LED_CTRL      0x04
  233 #define SMU_POWER               0xaa
  234 #define SMU_POWER_EVENTS        0x8f
  235 #define  SMU_PWR_GET_POWERUP    0x00
  236 #define  SMU_PWR_SET_POWERUP    0x01
  237 #define  SMU_PWR_CLR_POWERUP    0x02
  238 #define SMU_RTC                 0x8e
  239 #define  SMU_RTC_GET            0x81
  240 #define  SMU_RTC_SET            0x80
  241 
  242 /* Power event types */
  243 #define SMU_WAKEUP_KEYPRESS     0x01
  244 #define SMU_WAKEUP_AC_INSERT    0x02
  245 #define SMU_WAKEUP_AC_CHANGE    0x04
  246 #define SMU_WAKEUP_RING         0x10
  247 
  248 /* Data blocks */
  249 #define SMU_CPUTEMP_CAL         0x18
  250 #define SMU_CPUVOLT_CAL         0x21
  251 #define SMU_SLOTPW_CAL          0x78
  252 
  253 /* Partitions */
  254 #define SMU_PARTITION           0x3e
  255 #define SMU_PARTITION_LATEST    0x01
  256 #define SMU_PARTITION_BASE      0x02
  257 #define SMU_PARTITION_UPDATE    0x03
  258 
  259 static int
  260 smu_probe(device_t dev)
  261 {
  262         const char *name = ofw_bus_get_name(dev);
  263 
  264         if (strcmp(name, "smu") != 0)
  265                 return (ENXIO);
  266 
  267         device_set_desc(dev, "Apple System Management Unit");
  268         return (0);
  269 }
  270 
  271 static void
  272 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
  273 {
  274         struct smu_softc *sc = xsc;
  275 
  276         sc->sc_cmd_phys = segs[0].ds_addr;
  277 }
  278 
  279 static int
  280 smu_attach(device_t dev)
  281 {
  282         struct smu_softc *sc;
  283         phandle_t       node, child;
  284         uint8_t         data[12];
  285 
  286         sc = device_get_softc(dev);
  287 
  288         mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
  289         sc->sc_cur_cmd = NULL;
  290         sc->sc_doorbellirqid = -1;
  291 
  292         sc->sc_u3 = 0;
  293         if (OF_finddevice("/u3") != -1)
  294                 sc->sc_u3 = 1;
  295 
  296         /*
  297          * Map the mailbox area. This should be determined from firmware,
  298          * but I have not found a simple way to do that.
  299          */
  300         bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
  301             BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
  302             NULL, &(sc->sc_dmatag));
  303         sc->sc_bt = &bs_le_tag;
  304         bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
  305 
  306         /*
  307          * Allocate the command buffer. This can be anywhere in the low 4 GB
  308          * of memory.
  309          */
  310         bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK | 
  311             BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
  312         bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
  313             sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
  314         STAILQ_INIT(&sc->sc_cmdq);
  315 
  316         /*
  317          * Set up handlers to change CPU voltage when CPU frequency is changed.
  318          */
  319         EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
  320             EVENTHANDLER_PRI_ANY);
  321         EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
  322             EVENTHANDLER_PRI_ANY);
  323 
  324         node = ofw_bus_get_node(dev);
  325 
  326         /* Some SMUs have RPM and PWM controlled fans which do not sit
  327          * under the same node. So we have to attach them separately.
  328          */
  329         smu_attach_fans(dev, node);
  330 
  331         /*
  332          * Now detect and attach the other child devices.
  333          */
  334         for (child = OF_child(node); child != 0; child = OF_peer(child)) {
  335                 char name[32];
  336                 memset(name, 0, sizeof(name));
  337                 OF_getprop(child, "name", name, sizeof(name));
  338 
  339                 if (strncmp(name, "sensors", 8) == 0)
  340                         smu_attach_sensors(dev, child);
  341 
  342                 if (strncmp(name, "smu-i2c-control", 15) == 0)
  343                         smu_attach_i2c(dev, child);
  344         }
  345 
  346         /* Some SMUs have the I2C children directly under the bus. */
  347         smu_attach_i2c(dev, node);
  348 
  349         /*
  350          * Collect calibration constants.
  351          */
  352         smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
  353         sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
  354         sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
  355 
  356         smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
  357         sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
  358         sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
  359         sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
  360         sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
  361 
  362         smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
  363         sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
  364         sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
  365 
  366         /*
  367          * Set up LED interface
  368          */
  369         sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
  370 
  371         /*
  372          * Reset on power loss behavior
  373          */
  374 
  375         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  376             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
  377             "server_mode", CTLTYPE_INT | CTLFLAG_RW, dev, 0,
  378             smu_server_mode, "I", "Enable reboot after power failure");
  379 
  380         /*
  381          * Set up doorbell interrupt.
  382          */
  383         sc->sc_doorbellirqid = 0;
  384         sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
  385             &sc->sc_doorbellirqid, RF_ACTIVE);
  386         bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
  387             INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
  388             &sc->sc_doorbellirqcookie);
  389         powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
  390             INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
  391 
  392         /*
  393          * Connect RTC interface.
  394          */
  395         clock_register(dev, 1000);
  396 
  397         /*
  398          * Learn about shutdown events
  399          */
  400         EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
  401             SHUTDOWN_PRI_LAST);
  402 
  403         return (bus_generic_attach(dev));
  404 }
  405 
  406 static const struct ofw_bus_devinfo *
  407 smu_get_devinfo(device_t bus, device_t dev)
  408 {
  409 
  410         return (device_get_ivars(dev));
  411 }
  412 
  413 static void
  414 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
  415 {
  416         struct smu_softc *sc;
  417 
  418         sc = device_get_softc(dev);
  419 
  420         mtx_assert(&sc->sc_mtx, MA_OWNED);
  421 
  422         if (sc->sc_u3)
  423                 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
  424 
  425         sc->sc_cur_cmd = cmd;
  426 
  427         /* Copy the command to the mailbox */
  428         sc->sc_cmd->cmd = cmd->cmd;
  429         sc->sc_cmd->len = cmd->len;
  430         memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
  431         bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
  432         bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
  433 
  434         /* Flush the cacheline it is in -- SMU bypasses the cache */
  435         __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
  436 
  437         /* Ring SMU doorbell */
  438         macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
  439 }
  440 
  441 static void
  442 smu_doorbell_intr(void *xdev)
  443 {
  444         device_t smu;
  445         struct smu_softc *sc;
  446         int doorbell_ack;
  447 
  448         smu = xdev;
  449         doorbell_ack = macgpio_read(smu_doorbell);
  450         sc = device_get_softc(smu);
  451 
  452         if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA)) 
  453                 return;
  454 
  455         mtx_lock(&sc->sc_mtx);
  456 
  457         if (sc->sc_cur_cmd == NULL)     /* spurious */
  458                 goto done;
  459 
  460         /* Check result. First invalidate the cache again... */
  461         __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
  462         
  463         bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
  464 
  465         sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
  466         sc->sc_cur_cmd->len = sc->sc_cmd->len;
  467         memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
  468             sizeof(sc->sc_cmd->data));
  469         wakeup(sc->sc_cur_cmd);
  470         sc->sc_cur_cmd = NULL;
  471         if (sc->sc_u3)
  472                 powerpc_pow_enabled = 1;
  473 
  474     done:
  475         /* Queue next command if one is pending */
  476         if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
  477                 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
  478                 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
  479                 smu_send_cmd(smu, sc->sc_cur_cmd);
  480         }
  481 
  482         mtx_unlock(&sc->sc_mtx);
  483 }
  484 
  485 static int
  486 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
  487 {
  488         struct smu_softc *sc;
  489         uint8_t cmd_code;
  490         int error;
  491 
  492         sc = device_get_softc(dev);
  493         cmd_code = cmd->cmd;
  494 
  495         mtx_lock(&sc->sc_mtx);
  496         if (sc->sc_cur_cmd != NULL) {
  497                 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
  498         } else
  499                 smu_send_cmd(dev, cmd);
  500         mtx_unlock(&sc->sc_mtx);
  501 
  502         if (!wait)
  503                 return (0);
  504 
  505         if (sc->sc_doorbellirqid < 0) {
  506                 /* Poll if the IRQ has not been set up yet */
  507                 do {
  508                         DELAY(50);
  509                         smu_doorbell_intr(dev);
  510                 } while (sc->sc_cur_cmd != NULL);
  511         } else {
  512                 /* smu_doorbell_intr will wake us when the command is ACK'ed */
  513                 error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
  514                 if (error != 0)
  515                         smu_doorbell_intr(dev); /* One last chance */
  516                 
  517                 if (error != 0) {
  518                     mtx_lock(&sc->sc_mtx);
  519                     if (cmd->cmd == cmd_code) { /* Never processed */
  520                         /* Abort this command if we timed out */
  521                         if (sc->sc_cur_cmd == cmd)
  522                                 sc->sc_cur_cmd = NULL;
  523                         else
  524                                 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
  525                                     cmd_q);
  526                         mtx_unlock(&sc->sc_mtx);
  527                         return (error);
  528                     }
  529                     error = 0;
  530                     mtx_unlock(&sc->sc_mtx);
  531                 }
  532         }
  533 
  534         /* SMU acks the command by inverting the command bits */
  535         if (cmd->cmd == ((~cmd_code) & 0xff))
  536                 error = 0;
  537         else
  538                 error = EIO;
  539 
  540         return (error);
  541 }
  542 
  543 static int
  544 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
  545 {
  546         struct smu_cmd cmd;
  547         uint8_t addr[4];
  548 
  549         cmd.cmd = SMU_PARTITION;
  550         cmd.len = 2;
  551         cmd.data[0] = SMU_PARTITION_LATEST;
  552         cmd.data[1] = id; 
  553 
  554         smu_run_cmd(dev, &cmd, 1);
  555 
  556         addr[0] = addr[1] = 0;
  557         addr[2] = cmd.data[0];
  558         addr[3] = cmd.data[1];
  559 
  560         cmd.cmd = SMU_MISC;
  561         cmd.len = 7;
  562         cmd.data[0] = SMU_MISC_GET_DATA;
  563         cmd.data[1] = sizeof(addr);
  564         memcpy(&cmd.data[2], addr, sizeof(addr));
  565         cmd.data[6] = len;
  566 
  567         smu_run_cmd(dev, &cmd, 1);
  568         memcpy(buf, cmd.data, len);
  569         return (0);
  570 }
  571 
  572 static void
  573 smu_slew_cpu_voltage(device_t dev, int to)
  574 {
  575         struct smu_cmd cmd;
  576 
  577         cmd.cmd = SMU_POWER;
  578         cmd.len = 8;
  579         cmd.data[0] = 'V';
  580         cmd.data[1] = 'S'; 
  581         cmd.data[2] = 'L'; 
  582         cmd.data[3] = 'E'; 
  583         cmd.data[4] = 'W'; 
  584         cmd.data[5] = 0xff;
  585         cmd.data[6] = 1;
  586         cmd.data[7] = to;
  587 
  588         smu_run_cmd(dev, &cmd, 1);
  589 }
  590 
  591 static void
  592 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
  593 {
  594         /*
  595          * Make sure the CPU voltage is raised before we raise
  596          * the clock.
  597          */
  598                 
  599         if (level->rel_set[0].freq == 10000 /* max */)
  600                 smu_slew_cpu_voltage(dev, 0);
  601 }
  602 
  603 static void
  604 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
  605 {
  606         /* We are safe to reduce CPU voltage after a downward transition */
  607 
  608         if (level->rel_set[0].freq < 10000 /* max */)
  609                 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
  610 }
  611 
  612 /* Routines for probing the SMU doorbell GPIO */
  613 static int doorbell_probe(device_t dev);
  614 static int doorbell_attach(device_t dev);
  615 
  616 static device_method_t  doorbell_methods[] = {
  617         /* Device interface */
  618         DEVMETHOD(device_probe,         doorbell_probe),
  619         DEVMETHOD(device_attach,        doorbell_attach),
  620         { 0, 0 },
  621 };
  622 
  623 static driver_t doorbell_driver = {
  624         "smudoorbell",
  625         doorbell_methods,
  626         0
  627 };
  628 
  629 static devclass_t doorbell_devclass;
  630 
  631 DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass, 0, 0);
  632 
  633 static int
  634 doorbell_probe(device_t dev)
  635 {
  636         const char *name = ofw_bus_get_name(dev);
  637 
  638         if (strcmp(name, "smu-doorbell") != 0)
  639                 return (ENXIO);
  640 
  641         device_set_desc(dev, "SMU Doorbell GPIO");
  642         device_quiet(dev);
  643         return (0);
  644 }
  645 
  646 static int
  647 doorbell_attach(device_t dev)
  648 {
  649         smu_doorbell = dev;
  650         return (0);
  651 }
  652 
  653 /*
  654  * Sensor and fan management
  655  */
  656 
  657 static int
  658 smu_fan_check_old_style(struct smu_fan *fan)
  659 {
  660         device_t smu = fan->dev;
  661         struct smu_softc *sc = device_get_softc(smu);
  662         struct smu_cmd cmd;
  663         int error;
  664 
  665         if (sc->old_style_fans != -1)
  666                 return (sc->old_style_fans);
  667 
  668         /*
  669          * Apple has two fan control mechanisms. We can't distinguish
  670          * them except by seeing if the new one fails. If the new one
  671          * fails, use the old one.
  672          */
  673         
  674         cmd.cmd = SMU_FAN;
  675         cmd.len = 2;
  676         cmd.data[0] = 0x31;
  677         cmd.data[1] = fan->reg;
  678 
  679         do {
  680                 error = smu_run_cmd(smu, &cmd, 1);
  681         } while (error == EWOULDBLOCK);
  682 
  683         sc->old_style_fans = (error != 0);
  684 
  685         return (sc->old_style_fans);
  686 }
  687 
  688 static int
  689 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
  690 {
  691         device_t smu = fan->dev;
  692         struct smu_cmd cmd;
  693         int error;
  694 
  695         cmd.cmd = SMU_FAN;
  696         error = EIO;
  697 
  698         /* Clamp to allowed range */
  699         rpm = max(fan->fan.min_rpm, rpm);
  700         rpm = min(fan->fan.max_rpm, rpm);
  701 
  702         smu_fan_check_old_style(fan);
  703 
  704         if (!fan->old_style) {
  705                 cmd.len = 4;
  706                 cmd.data[0] = 0x30;
  707                 cmd.data[1] = fan->reg;
  708                 cmd.data[2] = (rpm >> 8) & 0xff;
  709                 cmd.data[3] = rpm & 0xff;
  710 
  711                 error = smu_run_cmd(smu, &cmd, 1);
  712                 if (error && error != EWOULDBLOCK)
  713                         fan->old_style = 1;
  714         } else {
  715                 cmd.len = 14;
  716                 cmd.data[0] = 0x00; /* RPM fan. */
  717                 cmd.data[1] = 1 << fan->reg;
  718                 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
  719                 cmd.data[3 + 2*fan->reg] = rpm & 0xff;
  720                 error = smu_run_cmd(smu, &cmd, 1);
  721         }
  722 
  723         if (error == 0)
  724                 fan->setpoint = rpm;
  725 
  726         return (error);
  727 }
  728 
  729 static int
  730 smu_fan_read_rpm(struct smu_fan *fan)
  731 {
  732         device_t smu = fan->dev;
  733         struct smu_cmd cmd;
  734         int rpm, error;
  735 
  736         smu_fan_check_old_style(fan);
  737 
  738         if (!fan->old_style) {
  739                 cmd.cmd = SMU_FAN;
  740                 cmd.len = 2;
  741                 cmd.data[0] = 0x31;
  742                 cmd.data[1] = fan->reg;
  743 
  744                 error = smu_run_cmd(smu, &cmd, 1);
  745                 if (error && error != EWOULDBLOCK)
  746                         fan->old_style = 1;
  747 
  748                 rpm = (cmd.data[0] << 8) | cmd.data[1];
  749         }
  750 
  751         if (fan->old_style) {
  752                 cmd.cmd = SMU_FAN;
  753                 cmd.len = 1;
  754                 cmd.data[0] = SMU_RPM_STATUS;
  755 
  756                 error = smu_run_cmd(smu, &cmd, 1);
  757                 if (error)
  758                         return (error);
  759 
  760                 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
  761         }
  762 
  763         return (rpm);
  764 }
  765 static int
  766 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
  767 {
  768         device_t smu = fan->dev;
  769         struct smu_cmd cmd;
  770         int error;
  771 
  772         cmd.cmd = SMU_FAN;
  773         error = EIO;
  774 
  775         /* Clamp to allowed range */
  776         pwm = max(fan->fan.min_rpm, pwm);
  777         pwm = min(fan->fan.max_rpm, pwm);
  778 
  779         /*
  780          * Apple has two fan control mechanisms. We can't distinguish
  781          * them except by seeing if the new one fails. If the new one
  782          * fails, use the old one.
  783          */
  784         
  785         if (!fan->old_style) {
  786                 cmd.len = 4;
  787                 cmd.data[0] = 0x30;
  788                 cmd.data[1] = fan->reg;
  789                 cmd.data[2] = (pwm >> 8) & 0xff;
  790                 cmd.data[3] = pwm & 0xff;
  791         
  792                 error = smu_run_cmd(smu, &cmd, 1);
  793                 if (error && error != EWOULDBLOCK)
  794                         fan->old_style = 1;
  795         }
  796 
  797         if (fan->old_style) {
  798                 cmd.len = 14;
  799                 cmd.data[0] = 0x10; /* PWM fan. */
  800                 cmd.data[1] = 1 << fan->reg;
  801                 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
  802                 cmd.data[3 + 2*fan->reg] = pwm & 0xff;
  803                 error = smu_run_cmd(smu, &cmd, 1);
  804         }
  805 
  806         if (error == 0)
  807                 fan->setpoint = pwm;
  808 
  809         return (error);
  810 }
  811 
  812 static int
  813 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
  814 {
  815         device_t smu = fan->dev;
  816         struct smu_cmd cmd;
  817         int error;
  818 
  819         if (!fan->old_style) {
  820                 cmd.cmd = SMU_FAN;
  821                 cmd.len = 2;
  822                 cmd.data[0] = 0x31;
  823                 cmd.data[1] = fan->reg;
  824 
  825                 error = smu_run_cmd(smu, &cmd, 1);
  826                 if (error && error != EWOULDBLOCK)
  827                         fan->old_style = 1;
  828 
  829                 *rpm = (cmd.data[0] << 8) | cmd.data[1];
  830         }
  831 
  832         if (fan->old_style) {
  833                 cmd.cmd = SMU_FAN;
  834                 cmd.len = 1;
  835                 cmd.data[0] = SMU_PWM_STATUS;
  836 
  837                 error = smu_run_cmd(smu, &cmd, 1);
  838                 if (error)
  839                         return (error);
  840 
  841                 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
  842         }
  843         if (fan->old_style) {
  844                 cmd.cmd = SMU_FAN;
  845                 cmd.len = 14;
  846                 cmd.data[0] = SMU_PWM_SETPOINT;
  847                 cmd.data[1] = 1 << fan->reg;
  848 
  849                 error = smu_run_cmd(smu, &cmd, 1);
  850                 if (error)
  851                         return (error);
  852 
  853                 *pwm = cmd.data[fan->reg*2+2];
  854         }
  855         return (0);
  856 }
  857 
  858 static int
  859 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
  860 {
  861         device_t smu;
  862         struct smu_softc *sc;
  863         struct smu_fan *fan;
  864         int pwm = 0, rpm, error = 0;
  865 
  866         smu = arg1;
  867         sc = device_get_softc(smu);
  868         fan = &sc->sc_fans[arg2 & 0xff];
  869 
  870         if (fan->type == SMU_FAN_RPM) {
  871                 rpm = smu_fan_read_rpm(fan);
  872                 if (rpm < 0)
  873                         return (rpm);
  874 
  875                 error = sysctl_handle_int(oidp, &rpm, 0, req);
  876         } else {
  877                 error = smu_fan_read_pwm(fan, &pwm, &rpm);
  878                 if (error < 0)
  879                         return (EIO);
  880 
  881                 switch (arg2 & 0xff00) {
  882                 case SMU_PWM_SYSCTL_PWM:
  883                         error = sysctl_handle_int(oidp, &pwm, 0, req);
  884                         break;
  885                 case SMU_PWM_SYSCTL_RPM:
  886                         error = sysctl_handle_int(oidp, &rpm, 0, req);
  887                         break;
  888                 default:
  889                         /* This should never happen */
  890                         return (EINVAL);
  891                 };
  892         }
  893         /* We can only read the RPM from a PWM controlled fan, so return. */
  894         if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
  895                 return (0);
  896 
  897         if (error || !req->newptr)
  898                 return (error);
  899 
  900         sc->sc_lastuserchange = time_uptime;
  901 
  902         if (fan->type == SMU_FAN_RPM)
  903                 return (smu_fan_set_rpm(fan, rpm));
  904         else
  905                 return (smu_fan_set_pwm(fan, pwm));
  906 }
  907 
  908 static void
  909 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
  910 {
  911         struct smu_fan *fan;
  912         struct smu_softc *sc;
  913         char type[32];
  914 
  915         sc = device_get_softc(dev);
  916         fan = &sc->sc_fans[id];
  917 
  918         OF_getprop(child, "device_type", type, sizeof(type));
  919         /* We have either RPM or PWM controlled fans. */
  920         if (strcmp(type, "fan-rpm-control") == 0)
  921                 fan->type = SMU_FAN_RPM;
  922         else
  923                 fan->type = SMU_FAN_PWM;
  924 
  925         fan->dev = dev;
  926         fan->old_style = 0;
  927         OF_getprop(child, "reg", &fan->reg,
  928                    sizeof(cell_t));
  929         OF_getprop(child, "min-value", &fan->fan.min_rpm,
  930                    sizeof(int));
  931         OF_getprop(child, "max-value", &fan->fan.max_rpm,
  932                    sizeof(int));
  933         OF_getprop(child, "zone", &fan->fan.zone,
  934                    sizeof(int));
  935 
  936         if (OF_getprop(child, "unmanaged-value",
  937                        &fan->fan.default_rpm,
  938                        sizeof(int)) != sizeof(int))
  939                 fan->fan.default_rpm = fan->fan.max_rpm;
  940 
  941         OF_getprop(child, "location", fan->fan.name,
  942                    sizeof(fan->fan.name));
  943 
  944         if (fan->type == SMU_FAN_RPM)
  945                 fan->setpoint = smu_fan_read_rpm(fan);
  946         else
  947                 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
  948 }
  949 
  950 /* On the first call count the number of fans. In the second call,
  951  * after allocating the fan struct, fill the properties of the fans.
  952  */
  953 static int
  954 smu_count_fans(device_t dev)
  955 {
  956         struct smu_softc *sc;
  957         phandle_t child, node, root;
  958         int nfans = 0;
  959 
  960         node = ofw_bus_get_node(dev);
  961         sc = device_get_softc(dev);
  962 
  963         /* First find the fanroots and count the number of fans. */
  964         for (root = OF_child(node); root != 0; root = OF_peer(root)) {
  965                 char name[32];
  966                 memset(name, 0, sizeof(name));
  967                 OF_getprop(root, "name", name, sizeof(name));
  968                 if (strncmp(name, "rpm-fans", 9) == 0 ||
  969                     strncmp(name, "pwm-fans", 9) == 0 ||
  970                     strncmp(name, "fans", 5) == 0)
  971                         for (child = OF_child(root); child != 0;
  972                              child = OF_peer(child)) {
  973                                 nfans++;
  974                                 /* When allocated, fill the fan properties. */
  975                                 if (sc->sc_fans != NULL) {
  976                                         smu_fill_fan_prop(dev, child,
  977                                                           nfans - 1);
  978                                 }
  979                         }
  980         }
  981         if (nfans == 0) {
  982                 device_printf(dev, "WARNING: No fans detected!\n");
  983                 return (0);
  984         }
  985         return (nfans);
  986 }
  987 
  988 static void
  989 smu_attach_fans(device_t dev, phandle_t fanroot)
  990 {
  991         struct smu_fan *fan;
  992         struct smu_softc *sc;
  993         struct sysctl_oid *oid, *fanroot_oid;
  994         struct sysctl_ctx_list *ctx;
  995         char sysctl_name[32];
  996         int i, j;
  997 
  998         sc = device_get_softc(dev);
  999 
 1000         /* Get the number of fans. */
 1001         sc->sc_nfans = smu_count_fans(dev);
 1002         if (sc->sc_nfans == 0)
 1003                 return;
 1004 
 1005         /* Now we're able to allocate memory for the fans struct. */
 1006         sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
 1007             M_WAITOK | M_ZERO);
 1008 
 1009         /* Now fill in the properties. */
 1010         smu_count_fans(dev);
 1011         
 1012         /* Register fans with pmac_thermal */
 1013         for (i = 0; i < sc->sc_nfans; i++)
 1014                 pmac_thermal_fan_register(&sc->sc_fans[i].fan);
 1015 
 1016         ctx = device_get_sysctl_ctx(dev);
 1017         fanroot_oid = SYSCTL_ADD_NODE(ctx,
 1018             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
 1019             CTLFLAG_RD, 0, "SMU Fan Information");
 1020 
 1021         /* Add sysctls */
 1022         for (i = 0; i < sc->sc_nfans; i++) {
 1023                 fan = &sc->sc_fans[i];
 1024                 for (j = 0; j < strlen(fan->fan.name); j++) {
 1025                         sysctl_name[j] = tolower(fan->fan.name[j]);
 1026                         if (isspace(sysctl_name[j]))
 1027                                 sysctl_name[j] = '_';
 1028                 }
 1029                 sysctl_name[j] = 0;
 1030                 if (fan->type == SMU_FAN_RPM) {
 1031                         oid = SYSCTL_ADD_NODE(ctx,
 1032                                               SYSCTL_CHILDREN(fanroot_oid),
 1033                                               OID_AUTO, sysctl_name,
 1034                                               CTLFLAG_RD, 0, "Fan Information");
 1035                         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1036                                        "minrpm", CTLFLAG_RD,
 1037                                        &fan->fan.min_rpm, 0,
 1038                                        "Minimum allowed RPM");
 1039                         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1040                                        "maxrpm", CTLFLAG_RD,
 1041                                        &fan->fan.max_rpm, 0,
 1042                                        "Maximum allowed RPM");
 1043                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1044                                         "rpm",CTLTYPE_INT | CTLFLAG_RW |
 1045                                         CTLFLAG_MPSAFE, dev, i,
 1046                                         smu_fanrpm_sysctl, "I", "Fan RPM");
 1047 
 1048                         fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
 1049                         fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
 1050 
 1051                 } else {
 1052                         oid = SYSCTL_ADD_NODE(ctx,
 1053                                               SYSCTL_CHILDREN(fanroot_oid),
 1054                                               OID_AUTO, sysctl_name,
 1055                                               CTLFLAG_RD, 0, "Fan Information");
 1056                         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1057                                        "minpwm", CTLFLAG_RD,
 1058                                        &fan->fan.min_rpm, 0,
 1059                                        "Minimum allowed PWM in %");
 1060                         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1061                                        "maxpwm", CTLFLAG_RD,
 1062                                        &fan->fan.max_rpm, 0,
 1063                                        "Maximum allowed PWM in %");
 1064                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1065                                         "pwm",CTLTYPE_INT | CTLFLAG_RW |
 1066                                         CTLFLAG_MPSAFE, dev,
 1067                                         SMU_PWM_SYSCTL_PWM | i,
 1068                                         smu_fanrpm_sysctl, "I", "Fan PWM in %");
 1069                         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
 1070                                         "rpm",CTLTYPE_INT | CTLFLAG_RD |
 1071                                         CTLFLAG_MPSAFE, dev,
 1072                                         SMU_PWM_SYSCTL_RPM | i,
 1073                                         smu_fanrpm_sysctl, "I", "Fan RPM");
 1074                         fan->fan.read = NULL;
 1075                         fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
 1076 
 1077                 }
 1078                 if (bootverbose)
 1079                         device_printf(dev, "Fan: %s type: %d\n",
 1080                                       fan->fan.name, fan->type);
 1081         }
 1082 }
 1083 
 1084 static int
 1085 smu_sensor_read(struct smu_sensor *sens)
 1086 {
 1087         device_t smu = sens->dev;
 1088         struct smu_cmd cmd;
 1089         struct smu_softc *sc;
 1090         int64_t value;
 1091         int error;
 1092 
 1093         cmd.cmd = SMU_ADC;
 1094         cmd.len = 1;
 1095         cmd.data[0] = sens->reg;
 1096         error = 0;
 1097 
 1098         error = smu_run_cmd(smu, &cmd, 1);
 1099         if (error != 0)
 1100                 return (-1);
 1101         
 1102         sc = device_get_softc(smu);
 1103         value = (cmd.data[0] << 8) | cmd.data[1];
 1104 
 1105         switch (sens->type) {
 1106         case SMU_TEMP_SENSOR:
 1107                 value *= sc->sc_cpu_diode_scale;
 1108                 value >>= 3;
 1109                 value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
 1110                 value <<= 1;
 1111 
 1112                 /* Convert from 16.16 fixed point degC into integer 0.1 K. */
 1113                 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2732;
 1114                 break;
 1115         case SMU_VOLTAGE_SENSOR:
 1116                 value *= sc->sc_cpu_volt_scale;
 1117                 value += sc->sc_cpu_volt_offset;
 1118                 value <<= 4;
 1119 
 1120                 /* Convert from 16.16 fixed point V into mV. */
 1121                 value *= 15625;
 1122                 value /= 1024;
 1123                 value /= 1000;
 1124                 break;
 1125         case SMU_CURRENT_SENSOR:
 1126                 value *= sc->sc_cpu_curr_scale;
 1127                 value += sc->sc_cpu_curr_offset;
 1128                 value <<= 4;
 1129 
 1130                 /* Convert from 16.16 fixed point A into mA. */
 1131                 value *= 15625;
 1132                 value /= 1024;
 1133                 value /= 1000;
 1134                 break;
 1135         case SMU_POWER_SENSOR:
 1136                 value *= sc->sc_slots_pow_scale;
 1137                 value += sc->sc_slots_pow_offset;
 1138                 value <<= 4;
 1139 
 1140                 /* Convert from 16.16 fixed point W into mW. */
 1141                 value *= 15625;
 1142                 value /= 1024;
 1143                 value /= 1000;
 1144                 break;
 1145         }
 1146 
 1147         return (value);
 1148 }
 1149 
 1150 static int
 1151 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
 1152 {
 1153         device_t smu;
 1154         struct smu_softc *sc;
 1155         struct smu_sensor *sens;
 1156         int value, error;
 1157 
 1158         smu = arg1;
 1159         sc = device_get_softc(smu);
 1160         sens = &sc->sc_sensors[arg2];
 1161 
 1162         value = smu_sensor_read(sens);
 1163         if (value < 0)
 1164                 return (EBUSY);
 1165 
 1166         error = sysctl_handle_int(oidp, &value, 0, req);
 1167 
 1168         return (error);
 1169 }
 1170 
 1171 static void
 1172 smu_attach_sensors(device_t dev, phandle_t sensroot)
 1173 {
 1174         struct smu_sensor *sens;
 1175         struct smu_softc *sc;
 1176         struct sysctl_oid *sensroot_oid;
 1177         struct sysctl_ctx_list *ctx;
 1178         phandle_t child;
 1179         char type[32];
 1180         int i;
 1181 
 1182         sc = device_get_softc(dev);
 1183         sc->sc_nsensors = 0;
 1184 
 1185         for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
 1186                 sc->sc_nsensors++;
 1187 
 1188         if (sc->sc_nsensors == 0) {
 1189                 device_printf(dev, "WARNING: No sensors detected!\n");
 1190                 return;
 1191         }
 1192 
 1193         sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
 1194             M_SMU, M_WAITOK | M_ZERO);
 1195 
 1196         sens = sc->sc_sensors;
 1197         sc->sc_nsensors = 0;
 1198 
 1199         ctx = device_get_sysctl_ctx(dev);
 1200         sensroot_oid = SYSCTL_ADD_NODE(ctx,
 1201             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
 1202             CTLFLAG_RD, 0, "SMU Sensor Information");
 1203 
 1204         for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
 1205                 char sysctl_name[40], sysctl_desc[40];
 1206                 const char *units;
 1207 
 1208                 sens->dev = dev;
 1209                 OF_getprop(child, "device_type", type, sizeof(type));
 1210 
 1211                 if (strcmp(type, "current-sensor") == 0) {
 1212                         sens->type = SMU_CURRENT_SENSOR;
 1213                         units = "mA";
 1214                 } else if (strcmp(type, "temp-sensor") == 0) {
 1215                         sens->type = SMU_TEMP_SENSOR;
 1216                         units = "C";
 1217                 } else if (strcmp(type, "voltage-sensor") == 0) {
 1218                         sens->type = SMU_VOLTAGE_SENSOR;
 1219                         units = "mV";
 1220                 } else if (strcmp(type, "power-sensor") == 0) {
 1221                         sens->type = SMU_POWER_SENSOR;
 1222                         units = "mW";
 1223                 } else {
 1224                         continue;
 1225                 }
 1226 
 1227                 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
 1228                 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
 1229                 OF_getprop(child, "location", sens->therm.name,
 1230                     sizeof(sens->therm.name));
 1231 
 1232                 for (i = 0; i < strlen(sens->therm.name); i++) {
 1233                         sysctl_name[i] = tolower(sens->therm.name[i]);
 1234                         if (isspace(sysctl_name[i]))
 1235                                 sysctl_name[i] = '_';
 1236                 }
 1237                 sysctl_name[i] = 0;
 1238 
 1239                 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
 1240 
 1241                 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
 1242                     sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
 1243                     dev, sc->sc_nsensors, smu_sensor_sysctl, 
 1244                     (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
 1245 
 1246                 if (sens->type == SMU_TEMP_SENSOR) {
 1247                         /* Make up some numbers */
 1248                         sens->therm.target_temp = 500 + 2732; /* 50 C */
 1249                         sens->therm.max_temp = 900 + 2732; /* 90 C */
 1250 
 1251                         sens->therm.read =
 1252                             (int (*)(struct pmac_therm *))smu_sensor_read;
 1253                         pmac_thermal_sensor_register(&sens->therm);
 1254                 }
 1255 
 1256                 sens++;
 1257                 sc->sc_nsensors++;
 1258         }
 1259 }
 1260 
 1261 static void
 1262 smu_set_sleepled(void *xdev, int onoff)
 1263 {
 1264         static struct smu_cmd cmd;
 1265         device_t smu = xdev;
 1266 
 1267         cmd.cmd = SMU_MISC;
 1268         cmd.len = 3;
 1269         cmd.data[0] = SMU_MISC_LED_CTRL;
 1270         cmd.data[1] = 0;
 1271         cmd.data[2] = onoff; 
 1272 
 1273         smu_run_cmd(smu, &cmd, 0);
 1274 }
 1275 
 1276 static int
 1277 smu_server_mode(SYSCTL_HANDLER_ARGS)
 1278 {
 1279         struct smu_cmd cmd;
 1280         u_int server_mode;
 1281         device_t smu = arg1;
 1282         int error;
 1283         
 1284         cmd.cmd = SMU_POWER_EVENTS;
 1285         cmd.len = 1;
 1286         cmd.data[0] = SMU_PWR_GET_POWERUP;
 1287 
 1288         error = smu_run_cmd(smu, &cmd, 1);
 1289 
 1290         if (error)
 1291                 return (error);
 1292 
 1293         server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
 1294 
 1295         error = sysctl_handle_int(oidp, &server_mode, 0, req);
 1296 
 1297         if (error || !req->newptr)
 1298                 return (error);
 1299 
 1300         if (server_mode == 1)
 1301                 cmd.data[0] = SMU_PWR_SET_POWERUP;
 1302         else if (server_mode == 0)
 1303                 cmd.data[0] = SMU_PWR_CLR_POWERUP;
 1304         else
 1305                 return (EINVAL);
 1306 
 1307         cmd.len = 3;
 1308         cmd.data[1] = 0;
 1309         cmd.data[2] = SMU_WAKEUP_AC_INSERT;
 1310 
 1311         return (smu_run_cmd(smu, &cmd, 1));
 1312 }
 1313 
 1314 static void
 1315 smu_shutdown(void *xdev, int howto)
 1316 {
 1317         device_t smu = xdev;
 1318         struct smu_cmd cmd;
 1319 
 1320         cmd.cmd = SMU_POWER;
 1321         if (howto & RB_HALT)
 1322                 strcpy(cmd.data, "SHUTDOWN");
 1323         else
 1324                 strcpy(cmd.data, "RESTART");
 1325 
 1326         cmd.len = strlen(cmd.data);
 1327 
 1328         smu_run_cmd(smu, &cmd, 1);
 1329 
 1330         for (;;);
 1331 }
 1332 
 1333 static int
 1334 smu_gettime(device_t dev, struct timespec *ts)
 1335 {
 1336         struct smu_cmd cmd;
 1337         struct clocktime ct;
 1338 
 1339         cmd.cmd = SMU_RTC;
 1340         cmd.len = 1;
 1341         cmd.data[0] = SMU_RTC_GET;
 1342 
 1343         if (smu_run_cmd(dev, &cmd, 1) != 0)
 1344                 return (ENXIO);
 1345 
 1346         ct.nsec = 0;
 1347         ct.sec  = bcd2bin(cmd.data[0]);
 1348         ct.min  = bcd2bin(cmd.data[1]);
 1349         ct.hour = bcd2bin(cmd.data[2]);
 1350         ct.dow  = bcd2bin(cmd.data[3]);
 1351         ct.day  = bcd2bin(cmd.data[4]);
 1352         ct.mon  = bcd2bin(cmd.data[5]);
 1353         ct.year = bcd2bin(cmd.data[6]) + 2000;
 1354 
 1355         return (clock_ct_to_ts(&ct, ts));
 1356 }
 1357 
 1358 static int
 1359 smu_settime(device_t dev, struct timespec *ts)
 1360 {
 1361         static struct smu_cmd cmd;
 1362         struct clocktime ct;
 1363 
 1364         cmd.cmd = SMU_RTC;
 1365         cmd.len = 8;
 1366         cmd.data[0] = SMU_RTC_SET;
 1367 
 1368         clock_ts_to_ct(ts, &ct);
 1369 
 1370         cmd.data[1] = bin2bcd(ct.sec);
 1371         cmd.data[2] = bin2bcd(ct.min);
 1372         cmd.data[3] = bin2bcd(ct.hour);
 1373         cmd.data[4] = bin2bcd(ct.dow);
 1374         cmd.data[5] = bin2bcd(ct.day);
 1375         cmd.data[6] = bin2bcd(ct.mon);
 1376         cmd.data[7] = bin2bcd(ct.year - 2000);
 1377 
 1378         return (smu_run_cmd(dev, &cmd, 0));
 1379 }
 1380 
 1381 /* SMU I2C Interface */
 1382 
 1383 static int smuiic_probe(device_t dev);
 1384 static int smuiic_attach(device_t dev);
 1385 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
 1386 static phandle_t smuiic_get_node(device_t bus, device_t dev);
 1387 
 1388 static device_method_t smuiic_methods[] = {
 1389         /* device interface */
 1390         DEVMETHOD(device_probe,         smuiic_probe),
 1391         DEVMETHOD(device_attach,        smuiic_attach),
 1392 
 1393         /* iicbus interface */
 1394         DEVMETHOD(iicbus_callback,      iicbus_null_callback),
 1395         DEVMETHOD(iicbus_transfer,      smuiic_transfer),
 1396 
 1397         /* ofw_bus interface */
 1398         DEVMETHOD(ofw_bus_get_node,     smuiic_get_node),
 1399 
 1400         { 0, 0 }
 1401 };
 1402 
 1403 struct smuiic_softc {
 1404         struct mtx      sc_mtx;
 1405         volatile int    sc_iic_inuse;
 1406         int             sc_busno;
 1407 };
 1408 
 1409 static driver_t smuiic_driver = {
 1410         "iichb",
 1411         smuiic_methods,
 1412         sizeof(struct smuiic_softc)
 1413 };
 1414 static devclass_t smuiic_devclass;
 1415 
 1416 DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0);
 1417 
 1418 static void
 1419 smu_attach_i2c(device_t smu, phandle_t i2croot)
 1420 {
 1421         phandle_t child;
 1422         device_t cdev;
 1423         struct ofw_bus_devinfo *dinfo;
 1424         char name[32];
 1425 
 1426         for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
 1427                 if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
 1428                         continue;
 1429 
 1430                 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
 1431                         continue;
 1432 
 1433                 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
 1434                     M_WAITOK | M_ZERO);
 1435                 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
 1436                         free(dinfo, M_SMU);
 1437                         continue;
 1438                 }
 1439 
 1440                 cdev = device_add_child(smu, NULL, -1);
 1441                 if (cdev == NULL) {
 1442                         device_printf(smu, "<%s>: device_add_child failed\n",
 1443                             dinfo->obd_name);
 1444                         ofw_bus_gen_destroy_devinfo(dinfo);
 1445                         free(dinfo, M_SMU);
 1446                         continue;
 1447                 }
 1448                 device_set_ivars(cdev, dinfo);
 1449         }
 1450 }
 1451 
 1452 static int
 1453 smuiic_probe(device_t dev)
 1454 {
 1455         const char *name;
 1456 
 1457         name = ofw_bus_get_name(dev);
 1458         if (name == NULL)
 1459                 return (ENXIO);
 1460 
 1461         if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
 1462                 device_set_desc(dev, "SMU I2C controller");
 1463                 return (0);
 1464         }
 1465 
 1466         return (ENXIO);
 1467 }
 1468 
 1469 static int
 1470 smuiic_attach(device_t dev)
 1471 {
 1472         struct smuiic_softc *sc = device_get_softc(dev);
 1473         mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
 1474         sc->sc_iic_inuse = 0;
 1475 
 1476         /* Get our bus number */
 1477         OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
 1478             sizeof(sc->sc_busno));
 1479 
 1480         /* Add the IIC bus layer */
 1481         device_add_child(dev, "iicbus", -1);
 1482 
 1483         return (bus_generic_attach(dev));
 1484 }
 1485 
 1486 static int
 1487 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
 1488 {
 1489         struct smuiic_softc *sc = device_get_softc(dev);
 1490         struct smu_cmd cmd;
 1491         int i, j, error;
 1492 
 1493         mtx_lock(&sc->sc_mtx);
 1494         while (sc->sc_iic_inuse)
 1495                 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
 1496 
 1497         sc->sc_iic_inuse = 1;
 1498         error = 0;
 1499 
 1500         for (i = 0; i < nmsgs; i++) {
 1501                 cmd.cmd = SMU_I2C;
 1502                 cmd.data[0] = sc->sc_busno;
 1503                 if (msgs[i].flags & IIC_M_NOSTOP)
 1504                         cmd.data[1] = SMU_I2C_COMBINED;
 1505                 else
 1506                         cmd.data[1] = SMU_I2C_SIMPLE;
 1507 
 1508                 cmd.data[2] = msgs[i].slave;
 1509                 if (msgs[i].flags & IIC_M_RD)
 1510                         cmd.data[2] |= 1; 
 1511 
 1512                 if (msgs[i].flags & IIC_M_NOSTOP) {
 1513                         KASSERT(msgs[i].len < 4,
 1514                             ("oversize I2C combined message"));
 1515 
 1516                         cmd.data[3] = min(msgs[i].len, 3);
 1517                         memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
 1518                         i++; /* Advance to next part of message */
 1519                 } else {
 1520                         cmd.data[3] = 0;
 1521                         memset(&cmd.data[4], 0, 3);
 1522                 }
 1523 
 1524                 cmd.data[7] = msgs[i].slave;
 1525                 if (msgs[i].flags & IIC_M_RD)
 1526                         cmd.data[7] |= 1; 
 1527 
 1528                 cmd.data[8] = msgs[i].len;
 1529                 if (msgs[i].flags & IIC_M_RD) {
 1530                         memset(&cmd.data[9], 0xff, msgs[i].len);
 1531                         cmd.len = 9;
 1532                 } else {
 1533                         memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
 1534                         cmd.len = 9 + msgs[i].len;
 1535                 }
 1536 
 1537                 mtx_unlock(&sc->sc_mtx);
 1538                 smu_run_cmd(device_get_parent(dev), &cmd, 1);
 1539                 mtx_lock(&sc->sc_mtx);
 1540 
 1541                 for (j = 0; j < 10; j++) {
 1542                         cmd.cmd = SMU_I2C;
 1543                         cmd.len = 1;
 1544                         cmd.data[0] = 0;
 1545                         memset(&cmd.data[1], 0xff, msgs[i].len);
 1546                         
 1547                         mtx_unlock(&sc->sc_mtx);
 1548                         smu_run_cmd(device_get_parent(dev), &cmd, 1);
 1549                         mtx_lock(&sc->sc_mtx);
 1550                         
 1551                         if (!(cmd.data[0] & 0x80))
 1552                                 break;
 1553 
 1554                         mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
 1555                 }
 1556                 
 1557                 if (cmd.data[0] & 0x80) {
 1558                         error = EIO;
 1559                         msgs[i].len = 0;
 1560                         goto exit;
 1561                 }
 1562                 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
 1563                 msgs[i].len = cmd.len - 1;
 1564         }
 1565 
 1566     exit:
 1567         sc->sc_iic_inuse = 0;
 1568         mtx_unlock(&sc->sc_mtx);
 1569         wakeup(sc);
 1570         return (error);
 1571 }
 1572 
 1573 static phandle_t
 1574 smuiic_get_node(device_t bus, device_t dev)
 1575 {
 1576 
 1577         return (ofw_bus_get_node(bus));
 1578 }
 1579 

Cache object: 21c72d82f9fcd5e2f0e0abec9f716cdb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.