The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/powerpc/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to The NetBSD Foundation
    6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *        This product includes software developed by the NetBSD
   19  *        Foundation, Inc. and its contributors.
   20  * 4. Neither the name of The NetBSD Foundation nor the names of its
   21  *    contributors may be used to endorse or promote products derived
   22  *    from this software without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   34  * POSSIBILITY OF SUCH DAMAGE.
   35  */
   36 /*-
   37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
   38  * Copyright (C) 1995, 1996 TooLs GmbH.
   39  * All rights reserved.
   40  *
   41  * Redistribution and use in source and binary forms, with or without
   42  * modification, are permitted provided that the following conditions
   43  * are met:
   44  * 1. Redistributions of source code must retain the above copyright
   45  *    notice, this list of conditions and the following disclaimer.
   46  * 2. Redistributions in binary form must reproduce the above copyright
   47  *    notice, this list of conditions and the following disclaimer in the
   48  *    documentation and/or other materials provided with the distribution.
   49  * 3. All advertising materials mentioning features or use of this software
   50  *    must display the following acknowledgement:
   51  *      This product includes software developed by TooLs GmbH.
   52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
   53  *    derived from this software without specific prior written permission.
   54  *
   55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
   56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
   61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
   63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
   64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   65  *
   66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
   67  */
   68 /*-
   69  * Copyright (C) 2001 Benno Rice.
   70  * All rights reserved.
   71  *
   72  * Redistribution and use in source and binary forms, with or without
   73  * modification, are permitted provided that the following conditions
   74  * are met:
   75  * 1. Redistributions of source code must retain the above copyright
   76  *    notice, this list of conditions and the following disclaimer.
   77  * 2. Redistributions in binary form must reproduce the above copyright
   78  *    notice, this list of conditions and the following disclaimer in the
   79  *    documentation and/or other materials provided with the distribution.
   80  *
   81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
   82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
   87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
   89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
   90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   91  */
   92 
   93 #include <sys/cdefs.h>
   94 __FBSDID("$FreeBSD: releng/6.0/sys/powerpc/powerpc/pmap.c 150070 2005-09-13 05:11:37Z grehan $");
   95 
   96 /*
   97  * Manages physical address maps.
   98  *
   99  * In addition to hardware address maps, this module is called upon to
  100  * provide software-use-only maps which may or may not be stored in the
  101  * same form as hardware maps.  These pseudo-maps are used to store
  102  * intermediate results from copy operations to and from address spaces.
  103  *
  104  * Since the information managed by this module is also stored by the
  105  * logical address mapping module, this module may throw away valid virtual
  106  * to physical mappings at almost any time.  However, invalidations of
  107  * mappings must be done as requested.
  108  *
  109  * In order to cope with hardware architectures which make virtual to
  110  * physical map invalidates expensive, this module may delay invalidate
  111  * reduced protection operations until such time as they are actually
  112  * necessary.  This module is given full information as to which processors
  113  * are currently using which maps, and to when physical maps must be made
  114  * correct.
  115  */
  116 
  117 #include "opt_kstack_pages.h"
  118 
  119 #include <sys/param.h>
  120 #include <sys/kernel.h>
  121 #include <sys/ktr.h>
  122 #include <sys/lock.h>
  123 #include <sys/msgbuf.h>
  124 #include <sys/mutex.h>
  125 #include <sys/proc.h>
  126 #include <sys/sysctl.h>
  127 #include <sys/systm.h>
  128 #include <sys/vmmeter.h>
  129 
  130 #include <dev/ofw/openfirm.h>
  131 
  132 #include <vm/vm.h> 
  133 #include <vm/vm_param.h>
  134 #include <vm/vm_kern.h>
  135 #include <vm/vm_page.h>
  136 #include <vm/vm_map.h>
  137 #include <vm/vm_object.h>
  138 #include <vm/vm_extern.h>
  139 #include <vm/vm_pageout.h>
  140 #include <vm/vm_pager.h>
  141 #include <vm/uma.h>
  142 
  143 #include <machine/cpu.h>
  144 #include <machine/powerpc.h>
  145 #include <machine/bat.h>
  146 #include <machine/frame.h>
  147 #include <machine/md_var.h>
  148 #include <machine/psl.h>
  149 #include <machine/pte.h>
  150 #include <machine/sr.h>
  151 
  152 #define PMAP_DEBUG
  153 
  154 #define TODO    panic("%s: not implemented", __func__);
  155 
  156 #define TLBIE(va)       __asm __volatile("tlbie %0" :: "r"(va))
  157 #define TLBSYNC()       __asm __volatile("tlbsync");
  158 #define SYNC()          __asm __volatile("sync");
  159 #define EIEIO()         __asm __volatile("eieio");
  160 
  161 #define VSID_MAKE(sr, hash)     ((sr) | (((hash) & 0xfffff) << 4))
  162 #define VSID_TO_SR(vsid)        ((vsid) & 0xf)
  163 #define VSID_TO_HASH(vsid)      (((vsid) >> 4) & 0xfffff)
  164 
  165 #define PVO_PTEGIDX_MASK        0x007           /* which PTEG slot */
  166 #define PVO_PTEGIDX_VALID       0x008           /* slot is valid */
  167 #define PVO_WIRED               0x010           /* PVO entry is wired */
  168 #define PVO_MANAGED             0x020           /* PVO entry is managed */
  169 #define PVO_EXECUTABLE          0x040           /* PVO entry is executable */
  170 #define PVO_BOOTSTRAP           0x080           /* PVO entry allocated during
  171                                                    bootstrap */
  172 #define PVO_FAKE                0x100           /* fictitious phys page */
  173 #define PVO_VADDR(pvo)          ((pvo)->pvo_vaddr & ~ADDR_POFF)
  174 #define PVO_ISEXECUTABLE(pvo)   ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
  175 #define PVO_ISFAKE(pvo)         ((pvo)->pvo_vaddr & PVO_FAKE)
  176 #define PVO_PTEGIDX_GET(pvo)    ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
  177 #define PVO_PTEGIDX_ISSET(pvo)  ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
  178 #define PVO_PTEGIDX_CLR(pvo)    \
  179         ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
  180 #define PVO_PTEGIDX_SET(pvo, i) \
  181         ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
  182 
  183 #define PMAP_PVO_CHECK(pvo)
  184 
  185 struct ofw_map {
  186         vm_offset_t     om_va;
  187         vm_size_t       om_len;
  188         vm_offset_t     om_pa;
  189         u_int           om_mode;
  190 };
  191 
  192 int     pmap_bootstrapped = 0;
  193 
  194 /*
  195  * Virtual and physical address of message buffer.
  196  */
  197 struct          msgbuf *msgbufp;
  198 vm_offset_t     msgbuf_phys;
  199 
  200 int pmap_pagedaemon_waken;
  201 
  202 /*
  203  * Map of physical memory regions.
  204  */
  205 vm_offset_t     phys_avail[128];
  206 u_int           phys_avail_count;
  207 static struct   mem_region *regions;
  208 static struct   mem_region *pregions;
  209 int             regions_sz, pregions_sz;
  210 static struct   ofw_map *translations;
  211 
  212 /*
  213  * First and last available kernel virtual addresses.
  214  */
  215 vm_offset_t virtual_avail;
  216 vm_offset_t virtual_end;
  217 vm_offset_t kernel_vm_end;
  218 
  219 /*
  220  * Kernel pmap.
  221  */
  222 struct pmap kernel_pmap_store;
  223 extern struct pmap ofw_pmap;
  224 
  225 /*
  226  * Lock for the pteg and pvo tables.
  227  */
  228 struct mtx      pmap_table_mutex;
  229 
  230 /*
  231  * PTEG data.
  232  */
  233 static struct   pteg *pmap_pteg_table;
  234 u_int           pmap_pteg_count;
  235 u_int           pmap_pteg_mask;
  236 
  237 /*
  238  * PVO data.
  239  */
  240 struct  pvo_head *pmap_pvo_table;               /* pvo entries by pteg index */
  241 struct  pvo_head pmap_pvo_kunmanaged =
  242     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
  243 struct  pvo_head pmap_pvo_unmanaged =
  244     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);  /* list of unmanaged pages */
  245 
  246 uma_zone_t      pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */
  247 uma_zone_t      pmap_mpvo_zone; /* zone for pvo entries for managed pages */
  248 
  249 #define BPVO_POOL_SIZE  32768
  250 static struct   pvo_entry *pmap_bpvo_pool;
  251 static int      pmap_bpvo_pool_index = 0;
  252 
  253 #define VSID_NBPW       (sizeof(u_int32_t) * 8)
  254 static u_int    pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
  255 
  256 static boolean_t pmap_initialized = FALSE;
  257 
  258 /*
  259  * Statistics.
  260  */
  261 u_int   pmap_pte_valid = 0;
  262 u_int   pmap_pte_overflow = 0;
  263 u_int   pmap_pte_replacements = 0;
  264 u_int   pmap_pvo_entries = 0;
  265 u_int   pmap_pvo_enter_calls = 0;
  266 u_int   pmap_pvo_remove_calls = 0;
  267 u_int   pmap_pte_spills = 0;
  268 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
  269     0, "");
  270 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
  271     &pmap_pte_overflow, 0, "");
  272 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
  273     &pmap_pte_replacements, 0, "");
  274 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
  275     0, "");
  276 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
  277     &pmap_pvo_enter_calls, 0, "");
  278 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
  279     &pmap_pvo_remove_calls, 0, "");
  280 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
  281     &pmap_pte_spills, 0, "");
  282 
  283 struct  pvo_entry *pmap_pvo_zeropage;
  284 
  285 vm_offset_t     pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
  286 u_int           pmap_rkva_count = 4;
  287 
  288 /*
  289  * Allocate physical memory for use in pmap_bootstrap.
  290  */
  291 static vm_offset_t      pmap_bootstrap_alloc(vm_size_t, u_int);
  292 
  293 /*
  294  * PTE calls.
  295  */
  296 static int              pmap_pte_insert(u_int, struct pte *);
  297 
  298 /*
  299  * PVO calls.
  300  */
  301 static int      pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
  302                     vm_offset_t, vm_offset_t, u_int, int);
  303 static void     pmap_pvo_remove(struct pvo_entry *, int);
  304 static struct   pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
  305 static struct   pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
  306 
  307 /*
  308  * Utility routines.
  309  */
  310 static struct           pvo_entry *pmap_rkva_alloc(void);
  311 static void             pmap_pa_map(struct pvo_entry *, vm_offset_t,
  312                             struct pte *, int *);
  313 static void             pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
  314 static void             pmap_syncicache(vm_offset_t, vm_size_t);
  315 static boolean_t        pmap_query_bit(vm_page_t, int);
  316 static u_int            pmap_clear_bit(vm_page_t, int, int *);
  317 static void             tlbia(void);
  318 
  319 static __inline int
  320 va_to_sr(u_int *sr, vm_offset_t va)
  321 {
  322         return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
  323 }
  324 
  325 static __inline u_int
  326 va_to_pteg(u_int sr, vm_offset_t addr)
  327 {
  328         u_int hash;
  329 
  330         hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
  331             ADDR_PIDX_SHFT);
  332         return (hash & pmap_pteg_mask);
  333 }
  334 
  335 static __inline struct pvo_head *
  336 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
  337 {
  338         struct  vm_page *pg;
  339 
  340         pg = PHYS_TO_VM_PAGE(pa);
  341 
  342         if (pg_p != NULL)
  343                 *pg_p = pg;
  344 
  345         if (pg == NULL)
  346                 return (&pmap_pvo_unmanaged);
  347 
  348         return (&pg->md.mdpg_pvoh);
  349 }
  350 
  351 static __inline struct pvo_head *
  352 vm_page_to_pvoh(vm_page_t m)
  353 {
  354 
  355         return (&m->md.mdpg_pvoh);
  356 }
  357 
  358 static __inline void
  359 pmap_attr_clear(vm_page_t m, int ptebit)
  360 {
  361 
  362         m->md.mdpg_attrs &= ~ptebit;
  363 }
  364 
  365 static __inline int
  366 pmap_attr_fetch(vm_page_t m)
  367 {
  368 
  369         return (m->md.mdpg_attrs);
  370 }
  371 
  372 static __inline void
  373 pmap_attr_save(vm_page_t m, int ptebit)
  374 {
  375 
  376         m->md.mdpg_attrs |= ptebit;
  377 }
  378 
  379 static __inline int
  380 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
  381 {
  382         if (pt->pte_hi == pvo_pt->pte_hi)
  383                 return (1);
  384 
  385         return (0);
  386 }
  387 
  388 static __inline int
  389 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
  390 {
  391         return (pt->pte_hi & ~PTE_VALID) ==
  392             (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
  393             ((va >> ADDR_API_SHFT) & PTE_API) | which);
  394 }
  395 
  396 static __inline void
  397 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
  398 {
  399         /*
  400          * Construct a PTE.  Default to IMB initially.  Valid bit only gets
  401          * set when the real pte is set in memory.
  402          *
  403          * Note: Don't set the valid bit for correct operation of tlb update.
  404          */
  405         pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
  406             (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
  407         pt->pte_lo = pte_lo;
  408 }
  409 
  410 static __inline void
  411 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
  412 {
  413 
  414         pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
  415 }
  416 
  417 static __inline void
  418 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
  419 {
  420 
  421         /*
  422          * As shown in Section 7.6.3.2.3
  423          */
  424         pt->pte_lo &= ~ptebit;
  425         TLBIE(va);
  426         EIEIO();
  427         TLBSYNC();
  428         SYNC();
  429 }
  430 
  431 static __inline void
  432 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
  433 {
  434 
  435         pvo_pt->pte_hi |= PTE_VALID;
  436 
  437         /*
  438          * Update the PTE as defined in section 7.6.3.1.
  439          * Note that the REF/CHG bits are from pvo_pt and thus should havce
  440          * been saved so this routine can restore them (if desired).
  441          */
  442         pt->pte_lo = pvo_pt->pte_lo;
  443         EIEIO();
  444         pt->pte_hi = pvo_pt->pte_hi;
  445         SYNC();
  446         pmap_pte_valid++;
  447 }
  448 
  449 static __inline void
  450 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
  451 {
  452 
  453         pvo_pt->pte_hi &= ~PTE_VALID;
  454 
  455         /*
  456          * Force the reg & chg bits back into the PTEs.
  457          */
  458         SYNC();
  459 
  460         /*
  461          * Invalidate the pte.
  462          */
  463         pt->pte_hi &= ~PTE_VALID;
  464 
  465         SYNC();
  466         TLBIE(va);
  467         EIEIO();
  468         TLBSYNC();
  469         SYNC();
  470 
  471         /*
  472          * Save the reg & chg bits.
  473          */
  474         pmap_pte_synch(pt, pvo_pt);
  475         pmap_pte_valid--;
  476 }
  477 
  478 static __inline void
  479 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
  480 {
  481 
  482         /*
  483          * Invalidate the PTE
  484          */
  485         pmap_pte_unset(pt, pvo_pt, va);
  486         pmap_pte_set(pt, pvo_pt);
  487 }
  488 
  489 /*
  490  * Quick sort callout for comparing memory regions.
  491  */
  492 static int      mr_cmp(const void *a, const void *b);
  493 static int      om_cmp(const void *a, const void *b);
  494 
  495 static int
  496 mr_cmp(const void *a, const void *b)
  497 {
  498         const struct    mem_region *regiona;
  499         const struct    mem_region *regionb;
  500 
  501         regiona = a;
  502         regionb = b;
  503         if (regiona->mr_start < regionb->mr_start)
  504                 return (-1);
  505         else if (regiona->mr_start > regionb->mr_start)
  506                 return (1);
  507         else
  508                 return (0);
  509 }
  510 
  511 static int
  512 om_cmp(const void *a, const void *b)
  513 {
  514         const struct    ofw_map *mapa;
  515         const struct    ofw_map *mapb;
  516 
  517         mapa = a;
  518         mapb = b;
  519         if (mapa->om_pa < mapb->om_pa)
  520                 return (-1);
  521         else if (mapa->om_pa > mapb->om_pa)
  522                 return (1);
  523         else
  524                 return (0);
  525 }
  526 
  527 void
  528 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
  529 {
  530         ihandle_t       mmui;
  531         phandle_t       chosen, mmu;
  532         int             sz;
  533         int             i, j;
  534         int             ofw_mappings;
  535         vm_size_t       size, physsz, hwphyssz;
  536         vm_offset_t     pa, va, off;
  537         u_int           batl, batu;
  538 
  539         /*
  540          * Set up BAT0 to map the lowest 256 MB area
  541          */
  542         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
  543         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
  544 
  545         /*
  546          * Map PCI memory space.
  547          */
  548         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
  549         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
  550 
  551         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
  552         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
  553 
  554         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
  555         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
  556 
  557         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
  558         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
  559 
  560         /*
  561          * Map obio devices.
  562          */
  563         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
  564         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
  565 
  566         /*
  567          * Use an IBAT and a DBAT to map the bottom segment of memory
  568          * where we are.
  569          */
  570         batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
  571         batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
  572         __asm ("sync; isync; \n"
  573                "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
  574                "mtdbatu 0,%0; mtdbatl 0,%1; isync"
  575             :: "r"(batu), "r"(batl));
  576 
  577 #if 0
  578         /* map frame buffer */
  579         batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
  580         batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
  581         __asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
  582             :: "r"(batu), "r"(batl));
  583 #endif
  584 
  585 #if 1
  586         /* map pci space */
  587         batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
  588         batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
  589         __asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
  590             :: "r"(batu), "r"(batl));
  591 #endif
  592 
  593         /*
  594          * Set the start and end of kva.
  595          */
  596         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  597         virtual_end = VM_MAX_KERNEL_ADDRESS;
  598 
  599         mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
  600         CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
  601 
  602         qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
  603         for (i = 0; i < pregions_sz; i++) {
  604                 vm_offset_t pa;
  605                 vm_offset_t end;
  606 
  607                 CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
  608                         pregions[i].mr_start,
  609                         pregions[i].mr_start + pregions[i].mr_size,
  610                         pregions[i].mr_size);
  611                 /*
  612                  * Install entries into the BAT table to allow all
  613                  * of physmem to be convered by on-demand BAT entries.
  614                  * The loop will sometimes set the same battable element
  615                  * twice, but that's fine since they won't be used for
  616                  * a while yet.
  617                  */
  618                 pa = pregions[i].mr_start & 0xf0000000;
  619                 end = pregions[i].mr_start + pregions[i].mr_size;
  620                 do {
  621                         u_int n = pa >> ADDR_SR_SHFT;
  622                         
  623                         battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
  624                         battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
  625                         pa += SEGMENT_LENGTH;
  626                 } while (pa < end);
  627         }
  628 
  629         if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
  630                 panic("pmap_bootstrap: phys_avail too small");
  631         qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
  632         phys_avail_count = 0;
  633         physsz = 0;
  634         hwphyssz = 0;
  635         TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
  636         for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
  637                 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
  638                     regions[i].mr_start + regions[i].mr_size,
  639                     regions[i].mr_size);
  640                 if (hwphyssz != 0 &&
  641                     (physsz + regions[i].mr_size) >= hwphyssz) {
  642                         if (physsz < hwphyssz) {
  643                                 phys_avail[j] = regions[i].mr_start;
  644                                 phys_avail[j + 1] = regions[i].mr_start +
  645                                     hwphyssz - physsz;
  646                                 physsz = hwphyssz;
  647                                 phys_avail_count++;
  648                         }
  649                         break;
  650                 }
  651                 phys_avail[j] = regions[i].mr_start;
  652                 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
  653                 phys_avail_count++;
  654                 physsz += regions[i].mr_size;
  655         }
  656         physmem = btoc(physsz);
  657 
  658         /*
  659          * Allocate PTEG table.
  660          */
  661 #ifdef PTEGCOUNT
  662         pmap_pteg_count = PTEGCOUNT;
  663 #else
  664         pmap_pteg_count = 0x1000;
  665 
  666         while (pmap_pteg_count < physmem)
  667                 pmap_pteg_count <<= 1;
  668 
  669         pmap_pteg_count >>= 1;
  670 #endif /* PTEGCOUNT */
  671 
  672         size = pmap_pteg_count * sizeof(struct pteg);
  673         CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
  674             size);
  675         pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
  676         CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
  677         bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
  678         pmap_pteg_mask = pmap_pteg_count - 1;
  679 
  680         /*
  681          * Allocate pv/overflow lists.
  682          */
  683         size = sizeof(struct pvo_head) * pmap_pteg_count;
  684         pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
  685             PAGE_SIZE);
  686         CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
  687         for (i = 0; i < pmap_pteg_count; i++)
  688                 LIST_INIT(&pmap_pvo_table[i]);
  689 
  690         /*
  691          * Initialize the lock that synchronizes access to the pteg and pvo
  692          * tables.
  693          */
  694         mtx_init(&pmap_table_mutex, "pmap table", NULL, MTX_DEF);
  695 
  696         /*
  697          * Allocate the message buffer.
  698          */
  699         msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
  700 
  701         /*
  702          * Initialise the unmanaged pvo pool.
  703          */
  704         pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
  705                 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
  706         pmap_bpvo_pool_index = 0;
  707 
  708         /*
  709          * Make sure kernel vsid is allocated as well as VSID 0.
  710          */
  711         pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
  712                 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
  713         pmap_vsid_bitmap[0] |= 1;
  714 
  715         /*
  716          * Set up the Open Firmware pmap and add it's mappings.
  717          */
  718         pmap_pinit(&ofw_pmap);
  719         ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
  720         ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
  721         if ((chosen = OF_finddevice("/chosen")) == -1)
  722                 panic("pmap_bootstrap: can't find /chosen");
  723         OF_getprop(chosen, "mmu", &mmui, 4);
  724         if ((mmu = OF_instance_to_package(mmui)) == -1)
  725                 panic("pmap_bootstrap: can't get mmu package");
  726         if ((sz = OF_getproplen(mmu, "translations")) == -1)
  727                 panic("pmap_bootstrap: can't get ofw translation count");
  728         translations = NULL;
  729         for (i = 0; phys_avail[i] != 0; i += 2) {
  730                 if (phys_avail[i + 1] >= sz) {
  731                         translations = (struct ofw_map *)phys_avail[i];
  732                         break;
  733                 }
  734         }
  735         if (translations == NULL)
  736                 panic("pmap_bootstrap: no space to copy translations");
  737         bzero(translations, sz);
  738         if (OF_getprop(mmu, "translations", translations, sz) == -1)
  739                 panic("pmap_bootstrap: can't get ofw translations");
  740         CTR0(KTR_PMAP, "pmap_bootstrap: translations");
  741         sz /= sizeof(*translations);
  742         qsort(translations, sz, sizeof (*translations), om_cmp);
  743         for (i = 0, ofw_mappings = 0; i < sz; i++) {
  744                 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
  745                     translations[i].om_pa, translations[i].om_va,
  746                     translations[i].om_len);
  747 
  748                 /*
  749                  * If the mapping is 1:1, let the RAM and device on-demand
  750                  * BAT tables take care of the translation.
  751                  */
  752                 if (translations[i].om_va == translations[i].om_pa)
  753                         continue;
  754 
  755                 /* Enter the pages */
  756                 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
  757                         struct  vm_page m;
  758 
  759                         m.phys_addr = translations[i].om_pa + off;
  760                         pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
  761                                    VM_PROT_ALL, 1);
  762                         ofw_mappings++;
  763                 }
  764         }
  765 #ifdef SMP
  766         TLBSYNC();
  767 #endif
  768 
  769         /*
  770          * Initialize the kernel pmap (which is statically allocated).
  771          */
  772         PMAP_LOCK_INIT(kernel_pmap);
  773         for (i = 0; i < 16; i++) {
  774                 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
  775         }
  776         kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
  777         kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
  778         kernel_pmap->pm_active = ~0;
  779 
  780         /*
  781          * Allocate a kernel stack with a guard page for thread0 and map it
  782          * into the kernel page map.
  783          */
  784         pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
  785         kstack0_phys = pa;
  786         kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
  787         CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
  788             kstack0);
  789         virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
  790         for (i = 0; i < KSTACK_PAGES; i++) {
  791                 pa = kstack0_phys + i * PAGE_SIZE;
  792                 va = kstack0 + i * PAGE_SIZE;
  793                 pmap_kenter(va, pa);
  794                 TLBIE(va);
  795         }
  796 
  797         /*
  798          * Calculate the last available physical address.
  799          */
  800         for (i = 0; phys_avail[i + 2] != 0; i += 2)
  801                 ;
  802         Maxmem = powerpc_btop(phys_avail[i + 1]);
  803 
  804         /*
  805          * Allocate virtual address space for the message buffer.
  806          */
  807         msgbufp = (struct msgbuf *)virtual_avail;
  808         virtual_avail += round_page(MSGBUF_SIZE);
  809 
  810         /*
  811          * Initialize hardware.
  812          */
  813         for (i = 0; i < 16; i++) {
  814                 mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
  815         }
  816         __asm __volatile ("mtsr %0,%1"
  817             :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
  818         __asm __volatile ("mtsr %0,%1"
  819             :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
  820         __asm __volatile ("sync; mtsdr1 %0; isync"
  821             :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
  822         tlbia();
  823 
  824         pmap_bootstrapped++;
  825 }
  826 
  827 /*
  828  * Activate a user pmap.  The pmap must be activated before it's address
  829  * space can be accessed in any way.
  830  */
  831 void
  832 pmap_activate(struct thread *td)
  833 {
  834         pmap_t  pm, pmr;
  835 
  836         /*
  837          * Load all the data we need up front to encourage the compiler to
  838          * not issue any loads while we have interrupts disabled below.
  839          */
  840         pm = &td->td_proc->p_vmspace->vm_pmap;
  841 
  842         if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
  843                 pmr = pm;
  844 
  845         pm->pm_active |= PCPU_GET(cpumask);
  846         PCPU_SET(curpmap, pmr);
  847 }
  848 
  849 void
  850 pmap_deactivate(struct thread *td)
  851 {
  852         pmap_t  pm;
  853 
  854         pm = &td->td_proc->p_vmspace->vm_pmap;
  855         pm->pm_active &= ~(PCPU_GET(cpumask));
  856         PCPU_SET(curpmap, NULL);
  857 }
  858 
  859 vm_offset_t
  860 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
  861 {
  862 
  863         return (va);
  864 }
  865 
  866 void
  867 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
  868 {
  869         struct  pvo_entry *pvo;
  870 
  871         PMAP_LOCK(pm);
  872         pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
  873 
  874         if (pvo != NULL) {
  875                 if (wired) {
  876                         if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
  877                                 pm->pm_stats.wired_count++;
  878                         pvo->pvo_vaddr |= PVO_WIRED;
  879                 } else {
  880                         if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
  881                                 pm->pm_stats.wired_count--;
  882                         pvo->pvo_vaddr &= ~PVO_WIRED;
  883                 }
  884         }
  885         PMAP_UNLOCK(pm);
  886 }
  887 
  888 void
  889 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
  890           vm_size_t len, vm_offset_t src_addr)
  891 {
  892 
  893         /*
  894          * This is not needed as it's mainly an optimisation.
  895          * It may want to be implemented later though.
  896          */
  897 }
  898 
  899 void
  900 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
  901 {
  902         vm_offset_t     dst;
  903         vm_offset_t     src;
  904 
  905         dst = VM_PAGE_TO_PHYS(mdst);
  906         src = VM_PAGE_TO_PHYS(msrc);
  907 
  908         kcopy((void *)src, (void *)dst, PAGE_SIZE);
  909 }
  910 
  911 /*
  912  * Zero a page of physical memory by temporarily mapping it into the tlb.
  913  */
  914 void
  915 pmap_zero_page(vm_page_t m)
  916 {
  917         vm_offset_t pa = VM_PAGE_TO_PHYS(m);
  918         caddr_t va;
  919 
  920         if (pa < SEGMENT_LENGTH) {
  921                 va = (caddr_t) pa;
  922         } else if (pmap_initialized) {
  923                 if (pmap_pvo_zeropage == NULL)
  924                         pmap_pvo_zeropage = pmap_rkva_alloc();
  925                 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
  926                 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
  927         } else {
  928                 panic("pmap_zero_page: can't zero pa %#x", pa);
  929         }
  930 
  931         bzero(va, PAGE_SIZE);
  932 
  933         if (pa >= SEGMENT_LENGTH)
  934                 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
  935 }
  936 
  937 void
  938 pmap_zero_page_area(vm_page_t m, int off, int size)
  939 {
  940         vm_offset_t pa = VM_PAGE_TO_PHYS(m);
  941         caddr_t va;
  942 
  943         if (pa < SEGMENT_LENGTH) {
  944                 va = (caddr_t) pa;
  945         } else if (pmap_initialized) {
  946                 if (pmap_pvo_zeropage == NULL)
  947                         pmap_pvo_zeropage = pmap_rkva_alloc();
  948                 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
  949                 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
  950         } else {
  951                 panic("pmap_zero_page: can't zero pa %#x", pa);
  952         }
  953 
  954         bzero(va + off, size);
  955 
  956         if (pa >= SEGMENT_LENGTH)
  957                 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
  958 }
  959 
  960 void
  961 pmap_zero_page_idle(vm_page_t m)
  962 {
  963 
  964         /* XXX this is called outside of Giant, is pmap_zero_page safe? */
  965         /* XXX maybe have a dedicated mapping for this to avoid the problem? */
  966         mtx_lock(&Giant);
  967         pmap_zero_page(m);
  968         mtx_unlock(&Giant);
  969 }
  970 
  971 /*
  972  * Map the given physical page at the specified virtual address in the
  973  * target pmap with the protection requested.  If specified the page
  974  * will be wired down.
  975  */
  976 void
  977 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
  978            boolean_t wired)
  979 {
  980         struct          pvo_head *pvo_head;
  981         uma_zone_t      zone;
  982         vm_page_t       pg;
  983         u_int           pte_lo, pvo_flags, was_exec, i;
  984         int             error;
  985 
  986         if (!pmap_initialized) {
  987                 pvo_head = &pmap_pvo_kunmanaged;
  988                 zone = pmap_upvo_zone;
  989                 pvo_flags = 0;
  990                 pg = NULL;
  991                 was_exec = PTE_EXEC;
  992         } else {
  993                 pvo_head = vm_page_to_pvoh(m);
  994                 pg = m;
  995                 zone = pmap_mpvo_zone;
  996                 pvo_flags = PVO_MANAGED;
  997                 was_exec = 0;
  998         }
  999         if (pmap_bootstrapped)
 1000                 vm_page_lock_queues();
 1001         PMAP_LOCK(pmap);
 1002 
 1003         /* XXX change the pvo head for fake pages */
 1004         if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS)
 1005                 pvo_head = &pmap_pvo_kunmanaged;
 1006 
 1007         /*
 1008          * If this is a managed page, and it's the first reference to the page,
 1009          * clear the execness of the page.  Otherwise fetch the execness.
 1010          */
 1011         if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
 1012                 if (LIST_EMPTY(pvo_head)) {
 1013                         pmap_attr_clear(pg, PTE_EXEC);
 1014                 } else {
 1015                         was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
 1016                 }
 1017         }
 1018 
 1019         /*
 1020          * Assume the page is cache inhibited and access is guarded unless
 1021          * it's in our available memory array.
 1022          */
 1023         pte_lo = PTE_I | PTE_G;
 1024         for (i = 0; i < pregions_sz; i++) {
 1025                 if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
 1026                     (VM_PAGE_TO_PHYS(m) < 
 1027                         (pregions[i].mr_start + pregions[i].mr_size))) {
 1028                         pte_lo &= ~(PTE_I | PTE_G);
 1029                         break;
 1030                 }
 1031         }
 1032 
 1033         if (prot & VM_PROT_WRITE)
 1034                 pte_lo |= PTE_BW;
 1035         else
 1036                 pte_lo |= PTE_BR;
 1037 
 1038         if (prot & VM_PROT_EXECUTE)
 1039                 pvo_flags |= PVO_EXECUTABLE;
 1040 
 1041         if (wired)
 1042                 pvo_flags |= PVO_WIRED;
 1043 
 1044         if ((m->flags & PG_FICTITIOUS) != 0)
 1045                 pvo_flags |= PVO_FAKE;
 1046 
 1047         error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
 1048             pte_lo, pvo_flags);
 1049 
 1050         /*
 1051          * Flush the real page from the instruction cache if this page is
 1052          * mapped executable and cacheable and was not previously mapped (or
 1053          * was not mapped executable).
 1054          */
 1055         if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
 1056             (pte_lo & PTE_I) == 0 && was_exec == 0) {
 1057                 /*
 1058                  * Flush the real memory from the cache.
 1059                  */
 1060                 pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
 1061                 if (pg != NULL)
 1062                         pmap_attr_save(pg, PTE_EXEC);
 1063         }
 1064         if (pmap_bootstrapped)
 1065                 vm_page_unlock_queues();
 1066 
 1067         /* XXX syncicache always until problems are sorted */
 1068         pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
 1069         PMAP_UNLOCK(pmap);
 1070 }
 1071 
 1072 vm_page_t
 1073 pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
 1074 {
 1075 
 1076         vm_page_busy(m);
 1077         vm_page_unlock_queues();
 1078         VM_OBJECT_UNLOCK(m->object);
 1079         mtx_lock(&Giant);
 1080         pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
 1081         mtx_unlock(&Giant);
 1082         VM_OBJECT_LOCK(m->object);
 1083         vm_page_lock_queues();
 1084         vm_page_wakeup(m);
 1085         return (NULL);
 1086 }
 1087 
 1088 vm_paddr_t
 1089 pmap_extract(pmap_t pm, vm_offset_t va)
 1090 {
 1091         struct  pvo_entry *pvo;
 1092         vm_paddr_t pa;
 1093 
 1094         PMAP_LOCK(pm);
 1095         pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
 1096         if (pvo == NULL)
 1097                 pa = 0;
 1098         else
 1099                 pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
 1100         PMAP_UNLOCK(pm);
 1101         return (pa);
 1102 }
 1103 
 1104 /*
 1105  * Atomically extract and hold the physical page with the given
 1106  * pmap and virtual address pair if that mapping permits the given
 1107  * protection.
 1108  */
 1109 vm_page_t
 1110 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1111 {
 1112         struct  pvo_entry *pvo;
 1113         vm_page_t m;
 1114         
 1115         m = NULL;
 1116         mtx_lock(&Giant);
 1117         vm_page_lock_queues();
 1118         PMAP_LOCK(pmap);
 1119         pvo = pmap_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
 1120         if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
 1121             ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
 1122              (prot & VM_PROT_WRITE) == 0)) {
 1123                 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
 1124                 vm_page_hold(m);
 1125         }
 1126         vm_page_unlock_queues();
 1127         PMAP_UNLOCK(pmap);
 1128         mtx_unlock(&Giant);
 1129         return (m);
 1130 }
 1131 
 1132 /*
 1133  * Grow the number of kernel page table entries.  Unneeded.
 1134  */
 1135 void
 1136 pmap_growkernel(vm_offset_t addr)
 1137 {
 1138 }
 1139 
 1140 /*
 1141  *      Initialize a vm_page's machine-dependent fields.
 1142  */
 1143 void
 1144 pmap_page_init(vm_page_t m)
 1145 {
 1146 }
 1147 
 1148 void
 1149 pmap_init(void)
 1150 {
 1151 
 1152         CTR0(KTR_PMAP, "pmap_init");
 1153 
 1154         pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
 1155             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
 1156             UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1157         pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
 1158             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
 1159             UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1160         pmap_initialized = TRUE;
 1161 }
 1162 
 1163 void
 1164 pmap_init2(void)
 1165 {
 1166 
 1167         CTR0(KTR_PMAP, "pmap_init2");
 1168 }
 1169 
 1170 boolean_t
 1171 pmap_is_modified(vm_page_t m)
 1172 {
 1173 
 1174         if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
 1175                 return (FALSE);
 1176 
 1177         return (pmap_query_bit(m, PTE_CHG));
 1178 }
 1179 
 1180 /*
 1181  *      pmap_is_prefaultable:
 1182  *
 1183  *      Return whether or not the specified virtual address is elgible
 1184  *      for prefault.
 1185  */
 1186 boolean_t
 1187 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 1188 {
 1189 
 1190         return (FALSE);
 1191 }
 1192 
 1193 void
 1194 pmap_clear_reference(vm_page_t m)
 1195 {
 1196 
 1197         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 1198                 return;
 1199         pmap_clear_bit(m, PTE_REF, NULL);
 1200 }
 1201 
 1202 void
 1203 pmap_clear_modify(vm_page_t m)
 1204 {
 1205 
 1206         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 1207                 return;
 1208         pmap_clear_bit(m, PTE_CHG, NULL);
 1209 }
 1210 
 1211 /*
 1212  *      pmap_ts_referenced:
 1213  *
 1214  *      Return a count of reference bits for a page, clearing those bits.
 1215  *      It is not necessary for every reference bit to be cleared, but it
 1216  *      is necessary that 0 only be returned when there are truly no
 1217  *      reference bits set.
 1218  *
 1219  *      XXX: The exact number of bits to check and clear is a matter that
 1220  *      should be tested and standardized at some point in the future for
 1221  *      optimal aging of shared pages.
 1222  */
 1223 int
 1224 pmap_ts_referenced(vm_page_t m)
 1225 {
 1226         int count;
 1227 
 1228         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 1229                 return (0);
 1230 
 1231         count = pmap_clear_bit(m, PTE_REF, NULL);
 1232 
 1233         return (count);
 1234 }
 1235 
 1236 /*
 1237  * Map a wired page into kernel virtual address space.
 1238  */
 1239 void
 1240 pmap_kenter(vm_offset_t va, vm_offset_t pa)
 1241 {
 1242         u_int           pte_lo;
 1243         int             error;  
 1244         int             i;
 1245 
 1246 #if 0
 1247         if (va < VM_MIN_KERNEL_ADDRESS)
 1248                 panic("pmap_kenter: attempt to enter non-kernel address %#x",
 1249                     va);
 1250 #endif
 1251 
 1252         pte_lo = PTE_I | PTE_G;
 1253         for (i = 0; i < pregions_sz; i++) {
 1254                 if ((pa >= pregions[i].mr_start) &&
 1255                     (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
 1256                         pte_lo &= ~(PTE_I | PTE_G);
 1257                         break;
 1258                 }
 1259         }       
 1260 
 1261         PMAP_LOCK(kernel_pmap);
 1262         error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
 1263             &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
 1264 
 1265         if (error != 0 && error != ENOENT)
 1266                 panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
 1267                     pa, error);
 1268 
 1269         /*
 1270          * Flush the real memory from the instruction cache.
 1271          */
 1272         if ((pte_lo & (PTE_I | PTE_G)) == 0) {
 1273                 pmap_syncicache(pa, PAGE_SIZE);
 1274         }
 1275         PMAP_UNLOCK(kernel_pmap);
 1276 }
 1277 
 1278 /*
 1279  * Extract the physical page address associated with the given kernel virtual
 1280  * address.
 1281  */
 1282 vm_offset_t
 1283 pmap_kextract(vm_offset_t va)
 1284 {
 1285         struct          pvo_entry *pvo;
 1286         vm_paddr_t pa;
 1287 
 1288 #ifdef UMA_MD_SMALL_ALLOC
 1289         /*
 1290          * Allow direct mappings
 1291          */
 1292         if (va < VM_MIN_KERNEL_ADDRESS) {
 1293                 return (va);
 1294         }
 1295 #endif
 1296 
 1297         PMAP_LOCK(kernel_pmap);
 1298         pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
 1299         KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
 1300         pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
 1301         PMAP_UNLOCK(kernel_pmap);
 1302         return (pa);
 1303 }
 1304 
 1305 /*
 1306  * Remove a wired page from kernel virtual address space.
 1307  */
 1308 void
 1309 pmap_kremove(vm_offset_t va)
 1310 {
 1311 
 1312         pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
 1313 }
 1314 
 1315 /*
 1316  * Map a range of physical addresses into kernel virtual address space.
 1317  *
 1318  * The value passed in *virt is a suggested virtual address for the mapping.
 1319  * Architectures which can support a direct-mapped physical to virtual region
 1320  * can return the appropriate address within that region, leaving '*virt'
 1321  * unchanged.  We cannot and therefore do not; *virt is updated with the
 1322  * first usable address after the mapped region.
 1323  */
 1324 vm_offset_t
 1325 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
 1326 {
 1327         vm_offset_t     sva, va;
 1328 
 1329         sva = *virt;
 1330         va = sva;
 1331         for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
 1332                 pmap_kenter(va, pa_start);
 1333         *virt = va;
 1334         return (sva);
 1335 }
 1336 
 1337 int
 1338 pmap_mincore(pmap_t pmap, vm_offset_t addr)
 1339 {
 1340         TODO;
 1341         return (0);
 1342 }
 1343 
 1344 void
 1345 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
 1346                     vm_pindex_t pindex, vm_size_t size)
 1347 {
 1348 
 1349         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1350         KASSERT(object->type == OBJT_DEVICE,
 1351             ("pmap_object_init_pt: non-device object"));
 1352         KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
 1353             ("pmap_object_init_pt: non current pmap"));
 1354 }
 1355 
 1356 /*
 1357  * Lower the permission for all mappings to a given page.
 1358  */
 1359 void
 1360 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 1361 {
 1362         struct  pvo_head *pvo_head;
 1363         struct  pvo_entry *pvo, *next_pvo;
 1364         struct  pte *pt;
 1365         pmap_t  pmap;
 1366 
 1367         /*
 1368          * Since the routine only downgrades protection, if the
 1369          * maximal protection is desired, there isn't any change
 1370          * to be made.
 1371          */
 1372         if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
 1373             (VM_PROT_READ|VM_PROT_WRITE))
 1374                 return;
 1375 
 1376         pvo_head = vm_page_to_pvoh(m);
 1377         for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
 1378                 next_pvo = LIST_NEXT(pvo, pvo_vlink);
 1379                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 1380                 pmap = pvo->pvo_pmap;
 1381                 PMAP_LOCK(pmap);
 1382 
 1383                 /*
 1384                  * Downgrading to no mapping at all, we just remove the entry.
 1385                  */
 1386                 if ((prot & VM_PROT_READ) == 0) {
 1387                         pmap_pvo_remove(pvo, -1);
 1388                         PMAP_UNLOCK(pmap);
 1389                         continue;
 1390                 }
 1391 
 1392                 /*
 1393                  * If EXEC permission is being revoked, just clear the flag
 1394                  * in the PVO.
 1395                  */
 1396                 if ((prot & VM_PROT_EXECUTE) == 0)
 1397                         pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
 1398 
 1399                 /*
 1400                  * If this entry is already RO, don't diddle with the page
 1401                  * table.
 1402                  */
 1403                 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
 1404                         PMAP_UNLOCK(pmap);
 1405                         PMAP_PVO_CHECK(pvo);
 1406                         continue;
 1407                 }
 1408 
 1409                 /*
 1410                  * Grab the PTE before we diddle the bits so pvo_to_pte can
 1411                  * verify the pte contents are as expected.
 1412                  */
 1413                 pt = pmap_pvo_to_pte(pvo, -1);
 1414                 pvo->pvo_pte.pte_lo &= ~PTE_PP;
 1415                 pvo->pvo_pte.pte_lo |= PTE_BR;
 1416                 if (pt != NULL)
 1417                         pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1418                 PMAP_UNLOCK(pmap);
 1419                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 1420         }
 1421 
 1422         /*
 1423          * Downgrading from writeable: clear the VM page flag
 1424          */
 1425         if ((prot & VM_PROT_WRITE) != VM_PROT_WRITE)
 1426                 vm_page_flag_clear(m, PG_WRITEABLE);
 1427 }
 1428 
 1429 /*
 1430  * Returns true if the pmap's pv is one of the first
 1431  * 16 pvs linked to from this page.  This count may
 1432  * be changed upwards or downwards in the future; it
 1433  * is only necessary that true be returned for a small
 1434  * subset of pmaps for proper page aging.
 1435  */
 1436 boolean_t
 1437 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 1438 {
 1439         int loops;
 1440         struct pvo_entry *pvo;
 1441 
 1442         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 1443                 return FALSE;
 1444 
 1445         loops = 0;
 1446         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 1447                 if (pvo->pvo_pmap == pmap)
 1448                         return (TRUE);
 1449                 if (++loops >= 16)
 1450                         break;
 1451         }
 1452 
 1453         return (FALSE);
 1454 }
 1455 
 1456 static u_int    pmap_vsidcontext;
 1457 
 1458 void
 1459 pmap_pinit(pmap_t pmap)
 1460 {
 1461         int     i, mask;
 1462         u_int   entropy;
 1463 
 1464         KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
 1465         PMAP_LOCK_INIT(pmap);
 1466 
 1467         entropy = 0;
 1468         __asm __volatile("mftb %0" : "=r"(entropy));
 1469 
 1470         /*
 1471          * Allocate some segment registers for this pmap.
 1472          */
 1473         for (i = 0; i < NPMAPS; i += VSID_NBPW) {
 1474                 u_int   hash, n;
 1475 
 1476                 /*
 1477                  * Create a new value by mutiplying by a prime and adding in
 1478                  * entropy from the timebase register.  This is to make the
 1479                  * VSID more random so that the PT hash function collides
 1480                  * less often.  (Note that the prime casues gcc to do shifts
 1481                  * instead of a multiply.)
 1482                  */
 1483                 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
 1484                 hash = pmap_vsidcontext & (NPMAPS - 1);
 1485                 if (hash == 0)          /* 0 is special, avoid it */
 1486                         continue;
 1487                 n = hash >> 5;
 1488                 mask = 1 << (hash & (VSID_NBPW - 1));
 1489                 hash = (pmap_vsidcontext & 0xfffff);
 1490                 if (pmap_vsid_bitmap[n] & mask) {       /* collision? */
 1491                         /* anything free in this bucket? */
 1492                         if (pmap_vsid_bitmap[n] == 0xffffffff) {
 1493                                 entropy = (pmap_vsidcontext >> 20);
 1494                                 continue;
 1495                         }
 1496                         i = ffs(~pmap_vsid_bitmap[i]) - 1;
 1497                         mask = 1 << i;
 1498                         hash &= 0xfffff & ~(VSID_NBPW - 1);
 1499                         hash |= i;
 1500                 }
 1501                 pmap_vsid_bitmap[n] |= mask;
 1502                 for (i = 0; i < 16; i++)
 1503                         pmap->pm_sr[i] = VSID_MAKE(i, hash);
 1504                 return;
 1505         }
 1506 
 1507         panic("pmap_pinit: out of segments");
 1508 }
 1509 
 1510 /*
 1511  * Initialize the pmap associated with process 0.
 1512  */
 1513 void
 1514 pmap_pinit0(pmap_t pm)
 1515 {
 1516 
 1517         pmap_pinit(pm);
 1518         bzero(&pm->pm_stats, sizeof(pm->pm_stats));
 1519 }
 1520 
 1521 /*
 1522  * Set the physical protection on the specified range of this map as requested.
 1523  */
 1524 void
 1525 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1526 {
 1527         struct  pvo_entry *pvo;
 1528         struct  pte *pt;
 1529         int     pteidx;
 1530 
 1531         CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
 1532             eva, prot);
 1533 
 1534 
 1535         KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
 1536             ("pmap_protect: non current pmap"));
 1537 
 1538         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1539                 mtx_lock(&Giant);
 1540                 pmap_remove(pm, sva, eva);
 1541                 mtx_unlock(&Giant);
 1542                 return;
 1543         }
 1544 
 1545         mtx_lock(&Giant);
 1546         vm_page_lock_queues();
 1547         PMAP_LOCK(pm);
 1548         for (; sva < eva; sva += PAGE_SIZE) {
 1549                 pvo = pmap_pvo_find_va(pm, sva, &pteidx);
 1550                 if (pvo == NULL)
 1551                         continue;
 1552 
 1553                 if ((prot & VM_PROT_EXECUTE) == 0)
 1554                         pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
 1555 
 1556                 /*
 1557                  * Grab the PTE pointer before we diddle with the cached PTE
 1558                  * copy.
 1559                  */
 1560                 pt = pmap_pvo_to_pte(pvo, pteidx);
 1561                 /*
 1562                  * Change the protection of the page.
 1563                  */
 1564                 pvo->pvo_pte.pte_lo &= ~PTE_PP;
 1565                 pvo->pvo_pte.pte_lo |= PTE_BR;
 1566 
 1567                 /*
 1568                  * If the PVO is in the page table, update that pte as well.
 1569                  */
 1570                 if (pt != NULL)
 1571                         pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1572         }
 1573         vm_page_unlock_queues();
 1574         PMAP_UNLOCK(pm);
 1575         mtx_unlock(&Giant);
 1576 }
 1577 
 1578 /*
 1579  * Map a list of wired pages into kernel virtual address space.  This is
 1580  * intended for temporary mappings which do not need page modification or
 1581  * references recorded.  Existing mappings in the region are overwritten.
 1582  */
 1583 void
 1584 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
 1585 {
 1586         vm_offset_t va;
 1587 
 1588         va = sva;
 1589         while (count-- > 0) {
 1590                 pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
 1591                 va += PAGE_SIZE;
 1592                 m++;
 1593         }
 1594 }
 1595 
 1596 /*
 1597  * Remove page mappings from kernel virtual address space.  Intended for
 1598  * temporary mappings entered by pmap_qenter.
 1599  */
 1600 void
 1601 pmap_qremove(vm_offset_t sva, int count)
 1602 {
 1603         vm_offset_t va;
 1604 
 1605         va = sva;
 1606         while (count-- > 0) {
 1607                 pmap_kremove(va);
 1608                 va += PAGE_SIZE;
 1609         }
 1610 }
 1611 
 1612 void
 1613 pmap_release(pmap_t pmap)
 1614 {
 1615         int idx, mask;
 1616         
 1617         /*
 1618          * Free segment register's VSID
 1619          */
 1620         if (pmap->pm_sr[0] == 0)
 1621                 panic("pmap_release");
 1622 
 1623         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
 1624         mask = 1 << (idx % VSID_NBPW);
 1625         idx /= VSID_NBPW;
 1626         pmap_vsid_bitmap[idx] &= ~mask;
 1627         PMAP_LOCK_DESTROY(pmap);
 1628 }
 1629 
 1630 /*
 1631  * Remove the given range of addresses from the specified map.
 1632  */
 1633 void
 1634 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
 1635 {
 1636         struct  pvo_entry *pvo;
 1637         int     pteidx;
 1638 
 1639         vm_page_lock_queues();
 1640         PMAP_LOCK(pm);
 1641         for (; sva < eva; sva += PAGE_SIZE) {
 1642                 pvo = pmap_pvo_find_va(pm, sva, &pteidx);
 1643                 if (pvo != NULL) {
 1644                         pmap_pvo_remove(pvo, pteidx);
 1645                 }
 1646         }
 1647         PMAP_UNLOCK(pm);
 1648         vm_page_unlock_queues();
 1649 }
 1650 
 1651 /*
 1652  * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
 1653  * will reflect changes in pte's back to the vm_page.
 1654  */
 1655 void
 1656 pmap_remove_all(vm_page_t m)
 1657 {
 1658         struct  pvo_head *pvo_head;
 1659         struct  pvo_entry *pvo, *next_pvo;
 1660         pmap_t  pmap;
 1661 
 1662         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1663 
 1664         pvo_head = vm_page_to_pvoh(m);
 1665         for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
 1666                 next_pvo = LIST_NEXT(pvo, pvo_vlink);
 1667 
 1668                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 1669                 pmap = pvo->pvo_pmap;
 1670                 PMAP_LOCK(pmap);
 1671                 pmap_pvo_remove(pvo, -1);
 1672                 PMAP_UNLOCK(pmap);
 1673         }
 1674         vm_page_flag_clear(m, PG_WRITEABLE);
 1675 }
 1676 
 1677 /*
 1678  * Remove all pages from specified address space, this aids process exit
 1679  * speeds.  This is much faster than pmap_remove in the case of running down
 1680  * an entire address space.  Only works for the current pmap.
 1681  */
 1682 void
 1683 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
 1684 {
 1685 }
 1686 
 1687 /*
 1688  * Allocate a physical page of memory directly from the phys_avail map.
 1689  * Can only be called from pmap_bootstrap before avail start and end are
 1690  * calculated.
 1691  */
 1692 static vm_offset_t
 1693 pmap_bootstrap_alloc(vm_size_t size, u_int align)
 1694 {
 1695         vm_offset_t     s, e;
 1696         int             i, j;
 1697 
 1698         size = round_page(size);
 1699         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
 1700                 if (align != 0)
 1701                         s = (phys_avail[i] + align - 1) & ~(align - 1);
 1702                 else
 1703                         s = phys_avail[i];
 1704                 e = s + size;
 1705 
 1706                 if (s < phys_avail[i] || e > phys_avail[i + 1])
 1707                         continue;
 1708 
 1709                 if (s == phys_avail[i]) {
 1710                         phys_avail[i] += size;
 1711                 } else if (e == phys_avail[i + 1]) {
 1712                         phys_avail[i + 1] -= size;
 1713                 } else {
 1714                         for (j = phys_avail_count * 2; j > i; j -= 2) {
 1715                                 phys_avail[j] = phys_avail[j - 2];
 1716                                 phys_avail[j + 1] = phys_avail[j - 1];
 1717                         }
 1718 
 1719                         phys_avail[i + 3] = phys_avail[i + 1];
 1720                         phys_avail[i + 1] = s;
 1721                         phys_avail[i + 2] = e;
 1722                         phys_avail_count++;
 1723                 }
 1724 
 1725                 return (s);
 1726         }
 1727         panic("pmap_bootstrap_alloc: could not allocate memory");
 1728 }
 1729 
 1730 /*
 1731  * Return an unmapped pvo for a kernel virtual address.
 1732  * Used by pmap functions that operate on physical pages.
 1733  */
 1734 static struct pvo_entry *
 1735 pmap_rkva_alloc(void)
 1736 {
 1737         struct          pvo_entry *pvo;
 1738         struct          pte *pt;
 1739         vm_offset_t     kva;
 1740         int             pteidx;
 1741 
 1742         if (pmap_rkva_count == 0)
 1743                 panic("pmap_rkva_alloc: no more reserved KVAs");
 1744 
 1745         kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
 1746         pmap_kenter(kva, 0);
 1747 
 1748         pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
 1749 
 1750         if (pvo == NULL)
 1751                 panic("pmap_kva_alloc: pmap_pvo_find_va failed");
 1752 
 1753         pt = pmap_pvo_to_pte(pvo, pteidx);
 1754 
 1755         if (pt == NULL)
 1756                 panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
 1757 
 1758         pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1759         PVO_PTEGIDX_CLR(pvo);
 1760 
 1761         pmap_pte_overflow++;
 1762 
 1763         return (pvo);
 1764 }
 1765 
 1766 static void
 1767 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
 1768     int *depth_p)
 1769 {
 1770         struct  pte *pt;
 1771 
 1772         /*
 1773          * If this pvo already has a valid pte, we need to save it so it can
 1774          * be restored later.  We then just reload the new PTE over the old
 1775          * slot.
 1776          */
 1777         if (saved_pt != NULL) {
 1778                 pt = pmap_pvo_to_pte(pvo, -1);
 1779 
 1780                 if (pt != NULL) {
 1781                         pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1782                         PVO_PTEGIDX_CLR(pvo);
 1783                         pmap_pte_overflow++;
 1784                 }
 1785 
 1786                 *saved_pt = pvo->pvo_pte;
 1787 
 1788                 pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
 1789         }
 1790 
 1791         pvo->pvo_pte.pte_lo |= pa;
 1792 
 1793         if (!pmap_pte_spill(pvo->pvo_vaddr))
 1794                 panic("pmap_pa_map: could not spill pvo %p", pvo);
 1795 
 1796         if (depth_p != NULL)
 1797                 (*depth_p)++;
 1798 }
 1799 
 1800 static void
 1801 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
 1802 {
 1803         struct  pte *pt;
 1804 
 1805         pt = pmap_pvo_to_pte(pvo, -1);
 1806 
 1807         if (pt != NULL) {
 1808                 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1809                 PVO_PTEGIDX_CLR(pvo);
 1810                 pmap_pte_overflow++;
 1811         }
 1812 
 1813         pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
 1814 
 1815         /*
 1816          * If there is a saved PTE and it's valid, restore it and return.
 1817          */
 1818         if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
 1819                 if (depth_p != NULL && --(*depth_p) == 0)
 1820                         panic("pmap_pa_unmap: restoring but depth == 0");
 1821 
 1822                 pvo->pvo_pte = *saved_pt;
 1823 
 1824                 if (!pmap_pte_spill(pvo->pvo_vaddr))
 1825                         panic("pmap_pa_unmap: could not spill pvo %p", pvo);
 1826         }
 1827 }
 1828 
 1829 static void
 1830 pmap_syncicache(vm_offset_t pa, vm_size_t len)
 1831 {
 1832         __syncicache((void *)pa, len);
 1833 }
 1834 
 1835 static void
 1836 tlbia(void)
 1837 {
 1838         caddr_t i;
 1839 
 1840         SYNC();
 1841         for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
 1842                 TLBIE(i);
 1843                 EIEIO();
 1844         }
 1845         TLBSYNC();
 1846         SYNC();
 1847 }
 1848 
 1849 static int
 1850 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
 1851     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
 1852 {
 1853         struct  pvo_entry *pvo;
 1854         u_int   sr;
 1855         int     first;
 1856         u_int   ptegidx;
 1857         int     i;
 1858         int     bootstrap;
 1859 
 1860         pmap_pvo_enter_calls++;
 1861         first = 0;
 1862         bootstrap = 0;
 1863 
 1864         /*
 1865          * Compute the PTE Group index.
 1866          */
 1867         va &= ~ADDR_POFF;
 1868         sr = va_to_sr(pm->pm_sr, va);
 1869         ptegidx = va_to_pteg(sr, va);
 1870 
 1871         /*
 1872          * Remove any existing mapping for this page.  Reuse the pvo entry if
 1873          * there is a mapping.
 1874          */
 1875         mtx_lock(&pmap_table_mutex);
 1876         LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
 1877                 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
 1878                         if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
 1879                             (pvo->pvo_pte.pte_lo & PTE_PP) ==
 1880                             (pte_lo & PTE_PP)) {
 1881                                 mtx_unlock(&pmap_table_mutex);
 1882                                 return (0);
 1883                         }
 1884                         pmap_pvo_remove(pvo, -1);
 1885                         break;
 1886                 }
 1887         }
 1888 
 1889         /*
 1890          * If we aren't overwriting a mapping, try to allocate.
 1891          */
 1892         if (pmap_initialized) {
 1893                 pvo = uma_zalloc(zone, M_NOWAIT);
 1894         } else {
 1895                 if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
 1896                         panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
 1897                               pmap_bpvo_pool_index, BPVO_POOL_SIZE, 
 1898                               BPVO_POOL_SIZE * sizeof(struct pvo_entry));
 1899                 }
 1900                 pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
 1901                 pmap_bpvo_pool_index++;
 1902                 bootstrap = 1;
 1903         }
 1904 
 1905         if (pvo == NULL) {
 1906                 mtx_unlock(&pmap_table_mutex);
 1907                 return (ENOMEM);
 1908         }
 1909 
 1910         pmap_pvo_entries++;
 1911         pvo->pvo_vaddr = va;
 1912         pvo->pvo_pmap = pm;
 1913         LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
 1914         pvo->pvo_vaddr &= ~ADDR_POFF;
 1915         if (flags & VM_PROT_EXECUTE)
 1916                 pvo->pvo_vaddr |= PVO_EXECUTABLE;
 1917         if (flags & PVO_WIRED)
 1918                 pvo->pvo_vaddr |= PVO_WIRED;
 1919         if (pvo_head != &pmap_pvo_kunmanaged)
 1920                 pvo->pvo_vaddr |= PVO_MANAGED;
 1921         if (bootstrap)
 1922                 pvo->pvo_vaddr |= PVO_BOOTSTRAP;
 1923         if (flags & PVO_FAKE)
 1924                 pvo->pvo_vaddr |= PVO_FAKE;
 1925 
 1926         pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
 1927 
 1928         /*
 1929          * Remember if the list was empty and therefore will be the first
 1930          * item.
 1931          */
 1932         if (LIST_FIRST(pvo_head) == NULL)
 1933                 first = 1;
 1934         LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
 1935 
 1936         if (pvo->pvo_pte.pte_lo & PVO_WIRED)
 1937                 pm->pm_stats.wired_count++;
 1938         pm->pm_stats.resident_count++;
 1939 
 1940         /*
 1941          * We hope this succeeds but it isn't required.
 1942          */
 1943         i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
 1944         if (i >= 0) {
 1945                 PVO_PTEGIDX_SET(pvo, i);
 1946         } else {
 1947                 panic("pmap_pvo_enter: overflow");
 1948                 pmap_pte_overflow++;
 1949         }
 1950         mtx_unlock(&pmap_table_mutex);
 1951 
 1952         return (first ? ENOENT : 0);
 1953 }
 1954 
 1955 static void
 1956 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
 1957 {
 1958         struct  pte *pt;
 1959 
 1960         /*
 1961          * If there is an active pte entry, we need to deactivate it (and
 1962          * save the ref & cfg bits).
 1963          */
 1964         pt = pmap_pvo_to_pte(pvo, pteidx);
 1965         if (pt != NULL) {
 1966                 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1967                 PVO_PTEGIDX_CLR(pvo);
 1968         } else {
 1969                 pmap_pte_overflow--;
 1970         }
 1971 
 1972         /*
 1973          * Update our statistics.
 1974          */
 1975         pvo->pvo_pmap->pm_stats.resident_count--;
 1976         if (pvo->pvo_pte.pte_lo & PVO_WIRED)
 1977                 pvo->pvo_pmap->pm_stats.wired_count--;
 1978 
 1979         /*
 1980          * Save the REF/CHG bits into their cache if the page is managed.
 1981          */
 1982         if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
 1983                 struct  vm_page *pg;
 1984 
 1985                 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
 1986                 if (pg != NULL) {
 1987                         pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
 1988                             (PTE_REF | PTE_CHG));
 1989                 }
 1990         }
 1991 
 1992         /*
 1993          * Remove this PVO from the PV list.
 1994          */
 1995         LIST_REMOVE(pvo, pvo_vlink);
 1996 
 1997         /*
 1998          * Remove this from the overflow list and return it to the pool
 1999          * if we aren't going to reuse it.
 2000          */
 2001         LIST_REMOVE(pvo, pvo_olink);
 2002         if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
 2003                 uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
 2004                     pmap_upvo_zone, pvo);
 2005         pmap_pvo_entries--;
 2006         pmap_pvo_remove_calls++;
 2007 }
 2008 
 2009 static __inline int
 2010 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
 2011 {
 2012         int     pteidx;
 2013 
 2014         /*
 2015          * We can find the actual pte entry without searching by grabbing
 2016          * the PTEG index from 3 unused bits in pte_lo[11:9] and by
 2017          * noticing the HID bit.
 2018          */
 2019         pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
 2020         if (pvo->pvo_pte.pte_hi & PTE_HID)
 2021                 pteidx ^= pmap_pteg_mask * 8;
 2022 
 2023         return (pteidx);
 2024 }
 2025 
 2026 static struct pvo_entry *
 2027 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
 2028 {
 2029         struct  pvo_entry *pvo;
 2030         int     ptegidx;
 2031         u_int   sr;
 2032 
 2033         va &= ~ADDR_POFF;
 2034         sr = va_to_sr(pm->pm_sr, va);
 2035         ptegidx = va_to_pteg(sr, va);
 2036 
 2037         mtx_lock(&pmap_table_mutex);
 2038         LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
 2039                 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
 2040                         if (pteidx_p)
 2041                                 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
 2042                         break;
 2043                 }
 2044         }
 2045         mtx_unlock(&pmap_table_mutex);
 2046 
 2047         return (pvo);
 2048 }
 2049 
 2050 static struct pte *
 2051 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
 2052 {
 2053         struct  pte *pt;
 2054 
 2055         /*
 2056          * If we haven't been supplied the ptegidx, calculate it.
 2057          */
 2058         if (pteidx == -1) {
 2059                 int     ptegidx;
 2060                 u_int   sr;
 2061 
 2062                 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
 2063                 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
 2064                 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
 2065         }
 2066 
 2067         pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
 2068 
 2069         if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
 2070                 panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
 2071                     "valid pte index", pvo);
 2072         }
 2073 
 2074         if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
 2075                 panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
 2076                     "pvo but no valid pte", pvo);
 2077         }
 2078 
 2079         if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
 2080                 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
 2081                         panic("pmap_pvo_to_pte: pvo %p has valid pte in "
 2082                             "pmap_pteg_table %p but invalid in pvo", pvo, pt);
 2083                 }
 2084 
 2085                 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
 2086                     != 0) {
 2087                         panic("pmap_pvo_to_pte: pvo %p pte does not match "
 2088                             "pte %p in pmap_pteg_table", pvo, pt);
 2089                 }
 2090 
 2091                 return (pt);
 2092         }
 2093 
 2094         if (pvo->pvo_pte.pte_hi & PTE_VALID) {
 2095                 panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
 2096                     "pmap_pteg_table but valid in pvo", pvo, pt);
 2097         }
 2098 
 2099         return (NULL);
 2100 }
 2101 
 2102 /*
 2103  * XXX: THIS STUFF SHOULD BE IN pte.c?
 2104  */
 2105 int
 2106 pmap_pte_spill(vm_offset_t addr)
 2107 {
 2108         struct  pvo_entry *source_pvo, *victim_pvo;
 2109         struct  pvo_entry *pvo;
 2110         int     ptegidx, i, j;
 2111         u_int   sr;
 2112         struct  pteg *pteg;
 2113         struct  pte *pt;
 2114 
 2115         pmap_pte_spills++;
 2116 
 2117         sr = mfsrin(addr);
 2118         ptegidx = va_to_pteg(sr, addr);
 2119 
 2120         /*
 2121          * Have to substitute some entry.  Use the primary hash for this.
 2122          * Use low bits of timebase as random generator.
 2123          */
 2124         pteg = &pmap_pteg_table[ptegidx];
 2125         mtx_lock(&pmap_table_mutex);
 2126         __asm __volatile("mftb %0" : "=r"(i));
 2127         i &= 7;
 2128         pt = &pteg->pt[i];
 2129 
 2130         source_pvo = NULL;
 2131         victim_pvo = NULL;
 2132         LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
 2133                 /*
 2134                  * We need to find a pvo entry for this address.
 2135                  */
 2136                 PMAP_PVO_CHECK(pvo);
 2137                 if (source_pvo == NULL &&
 2138                     pmap_pte_match(&pvo->pvo_pte, sr, addr,
 2139                     pvo->pvo_pte.pte_hi & PTE_HID)) {
 2140                         /*
 2141                          * Now found an entry to be spilled into the pteg.
 2142                          * The PTE is now valid, so we know it's active.
 2143                          */
 2144                         j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
 2145 
 2146                         if (j >= 0) {
 2147                                 PVO_PTEGIDX_SET(pvo, j);
 2148                                 pmap_pte_overflow--;
 2149                                 PMAP_PVO_CHECK(pvo);
 2150                                 mtx_unlock(&pmap_table_mutex);
 2151                                 return (1);
 2152                         }
 2153 
 2154                         source_pvo = pvo;
 2155 
 2156                         if (victim_pvo != NULL)
 2157                                 break;
 2158                 }
 2159 
 2160                 /*
 2161                  * We also need the pvo entry of the victim we are replacing
 2162                  * so save the R & C bits of the PTE.
 2163                  */
 2164                 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
 2165                     pmap_pte_compare(pt, &pvo->pvo_pte)) {
 2166                         victim_pvo = pvo;
 2167                         if (source_pvo != NULL)
 2168                                 break;
 2169                 }
 2170         }
 2171 
 2172         if (source_pvo == NULL) {
 2173                 mtx_unlock(&pmap_table_mutex);
 2174                 return (0);
 2175         }
 2176 
 2177         if (victim_pvo == NULL) {
 2178                 if ((pt->pte_hi & PTE_HID) == 0)
 2179                         panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
 2180                             "entry", pt);
 2181 
 2182                 /*
 2183                  * If this is a secondary PTE, we need to search it's primary
 2184                  * pvo bucket for the matching PVO.
 2185                  */
 2186                 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
 2187                     pvo_olink) {
 2188                         PMAP_PVO_CHECK(pvo);
 2189                         /*
 2190                          * We also need the pvo entry of the victim we are
 2191                          * replacing so save the R & C bits of the PTE.
 2192                          */
 2193                         if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
 2194                                 victim_pvo = pvo;
 2195                                 break;
 2196                         }
 2197                 }
 2198 
 2199                 if (victim_pvo == NULL)
 2200                         panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
 2201                             "entry", pt);
 2202         }
 2203 
 2204         /*
 2205          * We are invalidating the TLB entry for the EA we are replacing even
 2206          * though it's valid.  If we don't, we lose any ref/chg bit changes
 2207          * contained in the TLB entry.
 2208          */
 2209         source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
 2210 
 2211         pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
 2212         pmap_pte_set(pt, &source_pvo->pvo_pte);
 2213 
 2214         PVO_PTEGIDX_CLR(victim_pvo);
 2215         PVO_PTEGIDX_SET(source_pvo, i);
 2216         pmap_pte_replacements++;
 2217 
 2218         PMAP_PVO_CHECK(victim_pvo);
 2219         PMAP_PVO_CHECK(source_pvo);
 2220 
 2221         mtx_unlock(&pmap_table_mutex);
 2222         return (1);
 2223 }
 2224 
 2225 static int
 2226 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
 2227 {
 2228         struct  pte *pt;
 2229         int     i;
 2230 
 2231         /*
 2232          * First try primary hash.
 2233          */
 2234         for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
 2235                 if ((pt->pte_hi & PTE_VALID) == 0) {
 2236                         pvo_pt->pte_hi &= ~PTE_HID;
 2237                         pmap_pte_set(pt, pvo_pt);
 2238                         return (i);
 2239                 }
 2240         }
 2241 
 2242         /*
 2243          * Now try secondary hash.
 2244          */
 2245         ptegidx ^= pmap_pteg_mask;
 2246         ptegidx++;
 2247         for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
 2248                 if ((pt->pte_hi & PTE_VALID) == 0) {
 2249                         pvo_pt->pte_hi |= PTE_HID;
 2250                         pmap_pte_set(pt, pvo_pt);
 2251                         return (i);
 2252                 }
 2253         }
 2254 
 2255         panic("pmap_pte_insert: overflow");
 2256         return (-1);
 2257 }
 2258 
 2259 static boolean_t
 2260 pmap_query_bit(vm_page_t m, int ptebit)
 2261 {
 2262         struct  pvo_entry *pvo;
 2263         struct  pte *pt;
 2264 
 2265 #if 0
 2266         if (pmap_attr_fetch(m) & ptebit)
 2267                 return (TRUE);
 2268 #endif
 2269 
 2270         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 2271                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2272 
 2273                 /*
 2274                  * See if we saved the bit off.  If so, cache it and return
 2275                  * success.
 2276                  */
 2277                 if (pvo->pvo_pte.pte_lo & ptebit) {
 2278                         pmap_attr_save(m, ptebit);
 2279                         PMAP_PVO_CHECK(pvo);    /* sanity check */
 2280                         return (TRUE);
 2281                 }
 2282         }
 2283 
 2284         /*
 2285          * No luck, now go through the hard part of looking at the PTEs
 2286          * themselves.  Sync so that any pending REF/CHG bits are flushed to
 2287          * the PTEs.
 2288          */
 2289         SYNC();
 2290         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 2291                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2292 
 2293                 /*
 2294                  * See if this pvo has a valid PTE.  if so, fetch the
 2295                  * REF/CHG bits from the valid PTE.  If the appropriate
 2296                  * ptebit is set, cache it and return success.
 2297                  */
 2298                 pt = pmap_pvo_to_pte(pvo, -1);
 2299                 if (pt != NULL) {
 2300                         pmap_pte_synch(pt, &pvo->pvo_pte);
 2301                         if (pvo->pvo_pte.pte_lo & ptebit) {
 2302                                 pmap_attr_save(m, ptebit);
 2303                                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2304                                 return (TRUE);
 2305                         }
 2306                 }
 2307         }
 2308 
 2309         return (FALSE);
 2310 }
 2311 
 2312 static u_int
 2313 pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
 2314 {
 2315         u_int   count;
 2316         struct  pvo_entry *pvo;
 2317         struct  pte *pt;
 2318         int     rv;
 2319 
 2320         /*
 2321          * Clear the cached value.
 2322          */
 2323         rv = pmap_attr_fetch(m);
 2324         pmap_attr_clear(m, ptebit);
 2325 
 2326         /*
 2327          * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
 2328          * we can reset the right ones).  note that since the pvo entries and
 2329          * list heads are accessed via BAT0 and are never placed in the page
 2330          * table, we don't have to worry about further accesses setting the
 2331          * REF/CHG bits.
 2332          */
 2333         SYNC();
 2334 
 2335         /*
 2336          * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
 2337          * valid pte clear the ptebit from the valid pte.
 2338          */
 2339         count = 0;
 2340         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 2341                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2342                 pt = pmap_pvo_to_pte(pvo, -1);
 2343                 if (pt != NULL) {
 2344                         pmap_pte_synch(pt, &pvo->pvo_pte);
 2345                         if (pvo->pvo_pte.pte_lo & ptebit) {
 2346                                 count++;
 2347                                 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
 2348                         }
 2349                 }
 2350                 rv |= pvo->pvo_pte.pte_lo;
 2351                 pvo->pvo_pte.pte_lo &= ~ptebit;
 2352                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2353         }
 2354 
 2355         if (origbit != NULL) {
 2356                 *origbit = rv;
 2357         }
 2358 
 2359         return (count);
 2360 }
 2361 
 2362 /*
 2363  * Return true if the physical range is encompassed by the battable[idx]
 2364  */
 2365 static int
 2366 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
 2367 {
 2368         u_int prot;
 2369         u_int32_t start;
 2370         u_int32_t end;
 2371         u_int32_t bat_ble;
 2372 
 2373         /*
 2374          * Return immediately if not a valid mapping
 2375          */
 2376         if (!battable[idx].batu & BAT_Vs)
 2377                 return (EINVAL);
 2378 
 2379         /*
 2380          * The BAT entry must be cache-inhibited, guarded, and r/w
 2381          * so it can function as an i/o page
 2382          */
 2383         prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
 2384         if (prot != (BAT_I|BAT_G|BAT_PP_RW))
 2385                 return (EPERM); 
 2386 
 2387         /*
 2388          * The address should be within the BAT range. Assume that the
 2389          * start address in the BAT has the correct alignment (thus
 2390          * not requiring masking)
 2391          */
 2392         start = battable[idx].batl & BAT_PBS;
 2393         bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
 2394         end = start | (bat_ble << 15) | 0x7fff;
 2395 
 2396         if ((pa < start) || ((pa + size) > end))
 2397                 return (ERANGE);
 2398 
 2399         return (0);
 2400 }
 2401 
 2402 int
 2403 pmap_dev_direct_mapped(vm_offset_t pa, vm_size_t size)
 2404 {
 2405         int i;
 2406 
 2407         /*
 2408          * This currently does not work for entries that 
 2409          * overlap 256M BAT segments.
 2410          */
 2411 
 2412         for(i = 0; i < 16; i++)
 2413                 if (pmap_bat_mapped(i, pa, size) == 0)
 2414                         return (0);
 2415 
 2416         return (EFAULT);
 2417 }
 2418 
 2419 /*
 2420  * Map a set of physical memory pages into the kernel virtual
 2421  * address space. Return a pointer to where it is mapped. This
 2422  * routine is intended to be used for mapping device memory,
 2423  * NOT real memory.
 2424  */
 2425 void *
 2426 pmap_mapdev(vm_offset_t pa, vm_size_t size)
 2427 {
 2428         vm_offset_t va, tmpva, ppa, offset;
 2429         int i;
 2430 
 2431         ppa = trunc_page(pa);
 2432         offset = pa & PAGE_MASK;
 2433         size = roundup(offset + size, PAGE_SIZE);
 2434         
 2435         GIANT_REQUIRED;
 2436 
 2437         /*
 2438          * If the physical address lies within a valid BAT table entry,
 2439          * return the 1:1 mapping. This currently doesn't work
 2440          * for regions that overlap 256M BAT segments.
 2441          */
 2442         for (i = 0; i < 16; i++) {
 2443                 if (pmap_bat_mapped(i, pa, size) == 0)
 2444                         return ((void *) pa);
 2445         }
 2446 
 2447         va = kmem_alloc_nofault(kernel_map, size);
 2448         if (!va)
 2449                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 2450 
 2451         for (tmpva = va; size > 0;) {
 2452                 pmap_kenter(tmpva, ppa);
 2453                 TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
 2454                 size -= PAGE_SIZE;
 2455                 tmpva += PAGE_SIZE;
 2456                 ppa += PAGE_SIZE;
 2457         }
 2458 
 2459         return ((void *)(va + offset));
 2460 }
 2461 
 2462 void
 2463 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 2464 {
 2465         vm_offset_t base, offset;
 2466 
 2467         /*
 2468          * If this is outside kernel virtual space, then it's a
 2469          * battable entry and doesn't require unmapping
 2470          */
 2471         if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
 2472                 base = trunc_page(va);
 2473                 offset = va & PAGE_MASK;
 2474                 size = roundup(offset + size, PAGE_SIZE);
 2475                 kmem_free(kernel_map, base, size);
 2476         }
 2477 }

Cache object: 6e9efb0b8e7c69b8202fa7126653cb52


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.