The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/powerpc/powerpc/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to The NetBSD Foundation
    6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *        This product includes software developed by the NetBSD
   19  *        Foundation, Inc. and its contributors.
   20  * 4. Neither the name of The NetBSD Foundation nor the names of its
   21  *    contributors may be used to endorse or promote products derived
   22  *    from this software without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   34  * POSSIBILITY OF SUCH DAMAGE.
   35  */
   36 /*-
   37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
   38  * Copyright (C) 1995, 1996 TooLs GmbH.
   39  * All rights reserved.
   40  *
   41  * Redistribution and use in source and binary forms, with or without
   42  * modification, are permitted provided that the following conditions
   43  * are met:
   44  * 1. Redistributions of source code must retain the above copyright
   45  *    notice, this list of conditions and the following disclaimer.
   46  * 2. Redistributions in binary form must reproduce the above copyright
   47  *    notice, this list of conditions and the following disclaimer in the
   48  *    documentation and/or other materials provided with the distribution.
   49  * 3. All advertising materials mentioning features or use of this software
   50  *    must display the following acknowledgement:
   51  *      This product includes software developed by TooLs GmbH.
   52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
   53  *    derived from this software without specific prior written permission.
   54  *
   55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
   56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
   61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
   63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
   64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   65  *
   66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
   67  */
   68 /*-
   69  * Copyright (C) 2001 Benno Rice.
   70  * All rights reserved.
   71  *
   72  * Redistribution and use in source and binary forms, with or without
   73  * modification, are permitted provided that the following conditions
   74  * are met:
   75  * 1. Redistributions of source code must retain the above copyright
   76  *    notice, this list of conditions and the following disclaimer.
   77  * 2. Redistributions in binary form must reproduce the above copyright
   78  *    notice, this list of conditions and the following disclaimer in the
   79  *    documentation and/or other materials provided with the distribution.
   80  *
   81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
   82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
   87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
   89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
   90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   91  */
   92 
   93 #include <sys/cdefs.h>
   94 __FBSDID("$FreeBSD: releng/6.3/sys/powerpc/powerpc/pmap.c 173367 2007-11-05 16:18:00Z ups $");
   95 
   96 /*
   97  * Manages physical address maps.
   98  *
   99  * In addition to hardware address maps, this module is called upon to
  100  * provide software-use-only maps which may or may not be stored in the
  101  * same form as hardware maps.  These pseudo-maps are used to store
  102  * intermediate results from copy operations to and from address spaces.
  103  *
  104  * Since the information managed by this module is also stored by the
  105  * logical address mapping module, this module may throw away valid virtual
  106  * to physical mappings at almost any time.  However, invalidations of
  107  * mappings must be done as requested.
  108  *
  109  * In order to cope with hardware architectures which make virtual to
  110  * physical map invalidates expensive, this module may delay invalidate
  111  * reduced protection operations until such time as they are actually
  112  * necessary.  This module is given full information as to which processors
  113  * are currently using which maps, and to when physical maps must be made
  114  * correct.
  115  */
  116 
  117 #include "opt_kstack_pages.h"
  118 
  119 #include <sys/param.h>
  120 #include <sys/kernel.h>
  121 #include <sys/ktr.h>
  122 #include <sys/lock.h>
  123 #include <sys/msgbuf.h>
  124 #include <sys/mutex.h>
  125 #include <sys/proc.h>
  126 #include <sys/sysctl.h>
  127 #include <sys/systm.h>
  128 #include <sys/vmmeter.h>
  129 
  130 #include <dev/ofw/openfirm.h>
  131 
  132 #include <vm/vm.h> 
  133 #include <vm/vm_param.h>
  134 #include <vm/vm_kern.h>
  135 #include <vm/vm_page.h>
  136 #include <vm/vm_map.h>
  137 #include <vm/vm_object.h>
  138 #include <vm/vm_extern.h>
  139 #include <vm/vm_pageout.h>
  140 #include <vm/vm_pager.h>
  141 #include <vm/uma.h>
  142 
  143 #include <machine/cpu.h>
  144 #include <machine/powerpc.h>
  145 #include <machine/bat.h>
  146 #include <machine/frame.h>
  147 #include <machine/md_var.h>
  148 #include <machine/psl.h>
  149 #include <machine/pte.h>
  150 #include <machine/sr.h>
  151 
  152 #define PMAP_DEBUG
  153 
  154 #define TODO    panic("%s: not implemented", __func__);
  155 
  156 #define TLBIE(va)       __asm __volatile("tlbie %0" :: "r"(va))
  157 #define TLBSYNC()       __asm __volatile("tlbsync");
  158 #define SYNC()          __asm __volatile("sync");
  159 #define EIEIO()         __asm __volatile("eieio");
  160 
  161 #define VSID_MAKE(sr, hash)     ((sr) | (((hash) & 0xfffff) << 4))
  162 #define VSID_TO_SR(vsid)        ((vsid) & 0xf)
  163 #define VSID_TO_HASH(vsid)      (((vsid) >> 4) & 0xfffff)
  164 
  165 #define PVO_PTEGIDX_MASK        0x007           /* which PTEG slot */
  166 #define PVO_PTEGIDX_VALID       0x008           /* slot is valid */
  167 #define PVO_WIRED               0x010           /* PVO entry is wired */
  168 #define PVO_MANAGED             0x020           /* PVO entry is managed */
  169 #define PVO_EXECUTABLE          0x040           /* PVO entry is executable */
  170 #define PVO_BOOTSTRAP           0x080           /* PVO entry allocated during
  171                                                    bootstrap */
  172 #define PVO_FAKE                0x100           /* fictitious phys page */
  173 #define PVO_VADDR(pvo)          ((pvo)->pvo_vaddr & ~ADDR_POFF)
  174 #define PVO_ISEXECUTABLE(pvo)   ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
  175 #define PVO_ISFAKE(pvo)         ((pvo)->pvo_vaddr & PVO_FAKE)
  176 #define PVO_PTEGIDX_GET(pvo)    ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
  177 #define PVO_PTEGIDX_ISSET(pvo)  ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
  178 #define PVO_PTEGIDX_CLR(pvo)    \
  179         ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
  180 #define PVO_PTEGIDX_SET(pvo, i) \
  181         ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
  182 
  183 #define PMAP_PVO_CHECK(pvo)
  184 
  185 struct ofw_map {
  186         vm_offset_t     om_va;
  187         vm_size_t       om_len;
  188         vm_offset_t     om_pa;
  189         u_int           om_mode;
  190 };
  191 
  192 int     pmap_bootstrapped = 0;
  193 
  194 /*
  195  * Virtual and physical address of message buffer.
  196  */
  197 struct          msgbuf *msgbufp;
  198 vm_offset_t     msgbuf_phys;
  199 
  200 int pmap_pagedaemon_waken;
  201 
  202 /*
  203  * Map of physical memory regions.
  204  */
  205 vm_offset_t     phys_avail[128];
  206 u_int           phys_avail_count;
  207 static struct   mem_region *regions;
  208 static struct   mem_region *pregions;
  209 int             regions_sz, pregions_sz;
  210 static struct   ofw_map *translations;
  211 
  212 /*
  213  * First and last available kernel virtual addresses.
  214  */
  215 vm_offset_t virtual_avail;
  216 vm_offset_t virtual_end;
  217 vm_offset_t kernel_vm_end;
  218 
  219 /*
  220  * Kernel pmap.
  221  */
  222 struct pmap kernel_pmap_store;
  223 extern struct pmap ofw_pmap;
  224 
  225 /*
  226  * Lock for the pteg and pvo tables.
  227  */
  228 struct mtx      pmap_table_mutex;
  229 
  230 /*
  231  * PTEG data.
  232  */
  233 static struct   pteg *pmap_pteg_table;
  234 u_int           pmap_pteg_count;
  235 u_int           pmap_pteg_mask;
  236 
  237 /*
  238  * PVO data.
  239  */
  240 struct  pvo_head *pmap_pvo_table;               /* pvo entries by pteg index */
  241 struct  pvo_head pmap_pvo_kunmanaged =
  242     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
  243 struct  pvo_head pmap_pvo_unmanaged =
  244     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);  /* list of unmanaged pages */
  245 
  246 uma_zone_t      pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */
  247 uma_zone_t      pmap_mpvo_zone; /* zone for pvo entries for managed pages */
  248 
  249 #define BPVO_POOL_SIZE  32768
  250 static struct   pvo_entry *pmap_bpvo_pool;
  251 static int      pmap_bpvo_pool_index = 0;
  252 
  253 #define VSID_NBPW       (sizeof(u_int32_t) * 8)
  254 static u_int    pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
  255 
  256 static boolean_t pmap_initialized = FALSE;
  257 
  258 /*
  259  * Statistics.
  260  */
  261 u_int   pmap_pte_valid = 0;
  262 u_int   pmap_pte_overflow = 0;
  263 u_int   pmap_pte_replacements = 0;
  264 u_int   pmap_pvo_entries = 0;
  265 u_int   pmap_pvo_enter_calls = 0;
  266 u_int   pmap_pvo_remove_calls = 0;
  267 u_int   pmap_pte_spills = 0;
  268 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
  269     0, "");
  270 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
  271     &pmap_pte_overflow, 0, "");
  272 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
  273     &pmap_pte_replacements, 0, "");
  274 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
  275     0, "");
  276 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
  277     &pmap_pvo_enter_calls, 0, "");
  278 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
  279     &pmap_pvo_remove_calls, 0, "");
  280 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
  281     &pmap_pte_spills, 0, "");
  282 
  283 struct  pvo_entry *pmap_pvo_zeropage;
  284 
  285 vm_offset_t     pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
  286 u_int           pmap_rkva_count = 4;
  287 
  288 /*
  289  * Allocate physical memory for use in pmap_bootstrap.
  290  */
  291 static vm_offset_t      pmap_bootstrap_alloc(vm_size_t, u_int);
  292 
  293 /*
  294  * PTE calls.
  295  */
  296 static int              pmap_pte_insert(u_int, struct pte *);
  297 
  298 /*
  299  * PVO calls.
  300  */
  301 static int      pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
  302                     vm_offset_t, vm_offset_t, u_int, int);
  303 static void     pmap_pvo_remove(struct pvo_entry *, int);
  304 static struct   pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
  305 static struct   pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
  306 
  307 /*
  308  * Utility routines.
  309  */
  310 static void             pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
  311                             vm_prot_t, boolean_t);
  312 static struct           pvo_entry *pmap_rkva_alloc(void);
  313 static void             pmap_pa_map(struct pvo_entry *, vm_offset_t,
  314                             struct pte *, int *);
  315 static void             pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
  316 static void             pmap_syncicache(vm_offset_t, vm_size_t);
  317 static boolean_t        pmap_query_bit(vm_page_t, int);
  318 static u_int            pmap_clear_bit(vm_page_t, int, int *);
  319 static void             tlbia(void);
  320 
  321 static __inline int
  322 va_to_sr(u_int *sr, vm_offset_t va)
  323 {
  324         return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
  325 }
  326 
  327 static __inline u_int
  328 va_to_pteg(u_int sr, vm_offset_t addr)
  329 {
  330         u_int hash;
  331 
  332         hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
  333             ADDR_PIDX_SHFT);
  334         return (hash & pmap_pteg_mask);
  335 }
  336 
  337 static __inline struct pvo_head *
  338 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
  339 {
  340         struct  vm_page *pg;
  341 
  342         pg = PHYS_TO_VM_PAGE(pa);
  343 
  344         if (pg_p != NULL)
  345                 *pg_p = pg;
  346 
  347         if (pg == NULL)
  348                 return (&pmap_pvo_unmanaged);
  349 
  350         return (&pg->md.mdpg_pvoh);
  351 }
  352 
  353 static __inline struct pvo_head *
  354 vm_page_to_pvoh(vm_page_t m)
  355 {
  356 
  357         return (&m->md.mdpg_pvoh);
  358 }
  359 
  360 static __inline void
  361 pmap_attr_clear(vm_page_t m, int ptebit)
  362 {
  363 
  364         m->md.mdpg_attrs &= ~ptebit;
  365 }
  366 
  367 static __inline int
  368 pmap_attr_fetch(vm_page_t m)
  369 {
  370 
  371         return (m->md.mdpg_attrs);
  372 }
  373 
  374 static __inline void
  375 pmap_attr_save(vm_page_t m, int ptebit)
  376 {
  377 
  378         m->md.mdpg_attrs |= ptebit;
  379 }
  380 
  381 static __inline int
  382 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
  383 {
  384         if (pt->pte_hi == pvo_pt->pte_hi)
  385                 return (1);
  386 
  387         return (0);
  388 }
  389 
  390 static __inline int
  391 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
  392 {
  393         return (pt->pte_hi & ~PTE_VALID) ==
  394             (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
  395             ((va >> ADDR_API_SHFT) & PTE_API) | which);
  396 }
  397 
  398 static __inline void
  399 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
  400 {
  401         /*
  402          * Construct a PTE.  Default to IMB initially.  Valid bit only gets
  403          * set when the real pte is set in memory.
  404          *
  405          * Note: Don't set the valid bit for correct operation of tlb update.
  406          */
  407         pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
  408             (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
  409         pt->pte_lo = pte_lo;
  410 }
  411 
  412 static __inline void
  413 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
  414 {
  415 
  416         pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
  417 }
  418 
  419 static __inline void
  420 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
  421 {
  422 
  423         /*
  424          * As shown in Section 7.6.3.2.3
  425          */
  426         pt->pte_lo &= ~ptebit;
  427         TLBIE(va);
  428         EIEIO();
  429         TLBSYNC();
  430         SYNC();
  431 }
  432 
  433 static __inline void
  434 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
  435 {
  436 
  437         pvo_pt->pte_hi |= PTE_VALID;
  438 
  439         /*
  440          * Update the PTE as defined in section 7.6.3.1.
  441          * Note that the REF/CHG bits are from pvo_pt and thus should havce
  442          * been saved so this routine can restore them (if desired).
  443          */
  444         pt->pte_lo = pvo_pt->pte_lo;
  445         EIEIO();
  446         pt->pte_hi = pvo_pt->pte_hi;
  447         SYNC();
  448         pmap_pte_valid++;
  449 }
  450 
  451 static __inline void
  452 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
  453 {
  454 
  455         pvo_pt->pte_hi &= ~PTE_VALID;
  456 
  457         /*
  458          * Force the reg & chg bits back into the PTEs.
  459          */
  460         SYNC();
  461 
  462         /*
  463          * Invalidate the pte.
  464          */
  465         pt->pte_hi &= ~PTE_VALID;
  466 
  467         SYNC();
  468         TLBIE(va);
  469         EIEIO();
  470         TLBSYNC();
  471         SYNC();
  472 
  473         /*
  474          * Save the reg & chg bits.
  475          */
  476         pmap_pte_synch(pt, pvo_pt);
  477         pmap_pte_valid--;
  478 }
  479 
  480 static __inline void
  481 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
  482 {
  483 
  484         /*
  485          * Invalidate the PTE
  486          */
  487         pmap_pte_unset(pt, pvo_pt, va);
  488         pmap_pte_set(pt, pvo_pt);
  489 }
  490 
  491 /*
  492  * Quick sort callout for comparing memory regions.
  493  */
  494 static int      mr_cmp(const void *a, const void *b);
  495 static int      om_cmp(const void *a, const void *b);
  496 
  497 static int
  498 mr_cmp(const void *a, const void *b)
  499 {
  500         const struct    mem_region *regiona;
  501         const struct    mem_region *regionb;
  502 
  503         regiona = a;
  504         regionb = b;
  505         if (regiona->mr_start < regionb->mr_start)
  506                 return (-1);
  507         else if (regiona->mr_start > regionb->mr_start)
  508                 return (1);
  509         else
  510                 return (0);
  511 }
  512 
  513 static int
  514 om_cmp(const void *a, const void *b)
  515 {
  516         const struct    ofw_map *mapa;
  517         const struct    ofw_map *mapb;
  518 
  519         mapa = a;
  520         mapb = b;
  521         if (mapa->om_pa < mapb->om_pa)
  522                 return (-1);
  523         else if (mapa->om_pa > mapb->om_pa)
  524                 return (1);
  525         else
  526                 return (0);
  527 }
  528 
  529 void
  530 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
  531 {
  532         ihandle_t       mmui;
  533         phandle_t       chosen, mmu;
  534         int             sz;
  535         int             i, j;
  536         int             ofw_mappings;
  537         vm_size_t       size, physsz, hwphyssz;
  538         vm_offset_t     pa, va, off;
  539         u_int           batl, batu;
  540 
  541         /*
  542          * Set up BAT0 to map the lowest 256 MB area
  543          */
  544         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
  545         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
  546 
  547         /*
  548          * Map PCI memory space.
  549          */
  550         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
  551         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
  552 
  553         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
  554         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
  555 
  556         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
  557         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
  558 
  559         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
  560         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
  561 
  562         /*
  563          * Map obio devices.
  564          */
  565         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
  566         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
  567 
  568         /*
  569          * Use an IBAT and a DBAT to map the bottom segment of memory
  570          * where we are.
  571          */
  572         batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
  573         batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
  574         __asm (".balign 32; \n"
  575                "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
  576                "mtdbatu 0,%0; mtdbatl 0,%1; isync"
  577             :: "r"(batu), "r"(batl));
  578 
  579 #if 0
  580         /* map frame buffer */
  581         batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
  582         batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
  583         __asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
  584             :: "r"(batu), "r"(batl));
  585 #endif
  586 
  587 #if 1
  588         /* map pci space */
  589         batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
  590         batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
  591         __asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
  592             :: "r"(batu), "r"(batl));
  593 #endif
  594 
  595         /*
  596          * Set the start and end of kva.
  597          */
  598         virtual_avail = VM_MIN_KERNEL_ADDRESS;
  599         virtual_end = VM_MAX_KERNEL_ADDRESS;
  600 
  601         mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
  602         CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
  603 
  604         qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
  605         for (i = 0; i < pregions_sz; i++) {
  606                 vm_offset_t pa;
  607                 vm_offset_t end;
  608 
  609                 CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
  610                         pregions[i].mr_start,
  611                         pregions[i].mr_start + pregions[i].mr_size,
  612                         pregions[i].mr_size);
  613                 /*
  614                  * Install entries into the BAT table to allow all
  615                  * of physmem to be convered by on-demand BAT entries.
  616                  * The loop will sometimes set the same battable element
  617                  * twice, but that's fine since they won't be used for
  618                  * a while yet.
  619                  */
  620                 pa = pregions[i].mr_start & 0xf0000000;
  621                 end = pregions[i].mr_start + pregions[i].mr_size;
  622                 do {
  623                         u_int n = pa >> ADDR_SR_SHFT;
  624                         
  625                         battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
  626                         battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
  627                         pa += SEGMENT_LENGTH;
  628                 } while (pa < end);
  629         }
  630 
  631         if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
  632                 panic("pmap_bootstrap: phys_avail too small");
  633         qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
  634         phys_avail_count = 0;
  635         physsz = 0;
  636         hwphyssz = 0;
  637         TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
  638         for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
  639                 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
  640                     regions[i].mr_start + regions[i].mr_size,
  641                     regions[i].mr_size);
  642                 if (hwphyssz != 0 &&
  643                     (physsz + regions[i].mr_size) >= hwphyssz) {
  644                         if (physsz < hwphyssz) {
  645                                 phys_avail[j] = regions[i].mr_start;
  646                                 phys_avail[j + 1] = regions[i].mr_start +
  647                                     hwphyssz - physsz;
  648                                 physsz = hwphyssz;
  649                                 phys_avail_count++;
  650                         }
  651                         break;
  652                 }
  653                 phys_avail[j] = regions[i].mr_start;
  654                 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
  655                 phys_avail_count++;
  656                 physsz += regions[i].mr_size;
  657         }
  658         physmem = btoc(physsz);
  659 
  660         /*
  661          * Allocate PTEG table.
  662          */
  663 #ifdef PTEGCOUNT
  664         pmap_pteg_count = PTEGCOUNT;
  665 #else
  666         pmap_pteg_count = 0x1000;
  667 
  668         while (pmap_pteg_count < physmem)
  669                 pmap_pteg_count <<= 1;
  670 
  671         pmap_pteg_count >>= 1;
  672 #endif /* PTEGCOUNT */
  673 
  674         size = pmap_pteg_count * sizeof(struct pteg);
  675         CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
  676             size);
  677         pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
  678         CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
  679         bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
  680         pmap_pteg_mask = pmap_pteg_count - 1;
  681 
  682         /*
  683          * Allocate pv/overflow lists.
  684          */
  685         size = sizeof(struct pvo_head) * pmap_pteg_count;
  686         pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
  687             PAGE_SIZE);
  688         CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
  689         for (i = 0; i < pmap_pteg_count; i++)
  690                 LIST_INIT(&pmap_pvo_table[i]);
  691 
  692         /*
  693          * Initialize the lock that synchronizes access to the pteg and pvo
  694          * tables.
  695          */
  696         mtx_init(&pmap_table_mutex, "pmap table", NULL, MTX_DEF);
  697 
  698         /*
  699          * Allocate the message buffer.
  700          */
  701         msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
  702 
  703         /*
  704          * Initialise the unmanaged pvo pool.
  705          */
  706         pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
  707                 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
  708         pmap_bpvo_pool_index = 0;
  709 
  710         /*
  711          * Make sure kernel vsid is allocated as well as VSID 0.
  712          */
  713         pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
  714                 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
  715         pmap_vsid_bitmap[0] |= 1;
  716 
  717         /*
  718          * Set up the Open Firmware pmap and add it's mappings.
  719          */
  720         pmap_pinit(&ofw_pmap);
  721         ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
  722         ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
  723         if ((chosen = OF_finddevice("/chosen")) == -1)
  724                 panic("pmap_bootstrap: can't find /chosen");
  725         OF_getprop(chosen, "mmu", &mmui, 4);
  726         if ((mmu = OF_instance_to_package(mmui)) == -1)
  727                 panic("pmap_bootstrap: can't get mmu package");
  728         if ((sz = OF_getproplen(mmu, "translations")) == -1)
  729                 panic("pmap_bootstrap: can't get ofw translation count");
  730         translations = NULL;
  731         for (i = 0; phys_avail[i] != 0; i += 2) {
  732                 if (phys_avail[i + 1] >= sz) {
  733                         translations = (struct ofw_map *)phys_avail[i];
  734                         break;
  735                 }
  736         }
  737         if (translations == NULL)
  738                 panic("pmap_bootstrap: no space to copy translations");
  739         bzero(translations, sz);
  740         if (OF_getprop(mmu, "translations", translations, sz) == -1)
  741                 panic("pmap_bootstrap: can't get ofw translations");
  742         CTR0(KTR_PMAP, "pmap_bootstrap: translations");
  743         sz /= sizeof(*translations);
  744         qsort(translations, sz, sizeof (*translations), om_cmp);
  745         for (i = 0, ofw_mappings = 0; i < sz; i++) {
  746                 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
  747                     translations[i].om_pa, translations[i].om_va,
  748                     translations[i].om_len);
  749 
  750                 /*
  751                  * If the mapping is 1:1, let the RAM and device on-demand
  752                  * BAT tables take care of the translation.
  753                  */
  754                 if (translations[i].om_va == translations[i].om_pa)
  755                         continue;
  756 
  757                 /* Enter the pages */
  758                 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
  759                         struct  vm_page m;
  760 
  761                         m.phys_addr = translations[i].om_pa + off;
  762                         PMAP_LOCK(&ofw_pmap);
  763                         pmap_enter_locked(&ofw_pmap, translations[i].om_va + off, &m,
  764                                    VM_PROT_ALL, 1);
  765                         PMAP_UNLOCK(&ofw_pmap);
  766                         ofw_mappings++;
  767                 }
  768         }
  769 #ifdef SMP
  770         TLBSYNC();
  771 #endif
  772 
  773         /*
  774          * Initialize the kernel pmap (which is statically allocated).
  775          */
  776         PMAP_LOCK_INIT(kernel_pmap);
  777         for (i = 0; i < 16; i++) {
  778                 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
  779         }
  780         kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
  781         kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
  782         kernel_pmap->pm_active = ~0;
  783 
  784         /*
  785          * Allocate a kernel stack with a guard page for thread0 and map it
  786          * into the kernel page map.
  787          */
  788         pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
  789         kstack0_phys = pa;
  790         kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
  791         CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
  792             kstack0);
  793         virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
  794         for (i = 0; i < KSTACK_PAGES; i++) {
  795                 pa = kstack0_phys + i * PAGE_SIZE;
  796                 va = kstack0 + i * PAGE_SIZE;
  797                 pmap_kenter(va, pa);
  798                 TLBIE(va);
  799         }
  800 
  801         /*
  802          * Calculate the last available physical address.
  803          */
  804         for (i = 0; phys_avail[i + 2] != 0; i += 2)
  805                 ;
  806         Maxmem = powerpc_btop(phys_avail[i + 1]);
  807 
  808         /*
  809          * Allocate virtual address space for the message buffer.
  810          */
  811         msgbufp = (struct msgbuf *)virtual_avail;
  812         virtual_avail += round_page(MSGBUF_SIZE);
  813 
  814         /*
  815          * Initialize hardware.
  816          */
  817         for (i = 0; i < 16; i++) {
  818                 mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
  819         }
  820         __asm __volatile ("mtsr %0,%1"
  821             :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
  822         __asm __volatile ("mtsr %0,%1"
  823             :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
  824         __asm __volatile ("sync; mtsdr1 %0; isync"
  825             :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
  826         tlbia();
  827 
  828         pmap_bootstrapped++;
  829 }
  830 
  831 /*
  832  * Activate a user pmap.  The pmap must be activated before it's address
  833  * space can be accessed in any way.
  834  */
  835 void
  836 pmap_activate(struct thread *td)
  837 {
  838         pmap_t  pm, pmr;
  839 
  840         /*
  841          * Load all the data we need up front to encourage the compiler to
  842          * not issue any loads while we have interrupts disabled below.
  843          */
  844         pm = &td->td_proc->p_vmspace->vm_pmap;
  845 
  846         if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
  847                 pmr = pm;
  848 
  849         pm->pm_active |= PCPU_GET(cpumask);
  850         PCPU_SET(curpmap, pmr);
  851 }
  852 
  853 void
  854 pmap_deactivate(struct thread *td)
  855 {
  856         pmap_t  pm;
  857 
  858         pm = &td->td_proc->p_vmspace->vm_pmap;
  859         pm->pm_active &= ~(PCPU_GET(cpumask));
  860         PCPU_SET(curpmap, NULL);
  861 }
  862 
  863 vm_offset_t
  864 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
  865 {
  866 
  867         return (va);
  868 }
  869 
  870 void
  871 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
  872 {
  873         struct  pvo_entry *pvo;
  874 
  875         PMAP_LOCK(pm);
  876         pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
  877 
  878         if (pvo != NULL) {
  879                 if (wired) {
  880                         if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
  881                                 pm->pm_stats.wired_count++;
  882                         pvo->pvo_vaddr |= PVO_WIRED;
  883                 } else {
  884                         if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
  885                                 pm->pm_stats.wired_count--;
  886                         pvo->pvo_vaddr &= ~PVO_WIRED;
  887                 }
  888         }
  889         PMAP_UNLOCK(pm);
  890 }
  891 
  892 void
  893 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
  894           vm_size_t len, vm_offset_t src_addr)
  895 {
  896 
  897         /*
  898          * This is not needed as it's mainly an optimisation.
  899          * It may want to be implemented later though.
  900          */
  901 }
  902 
  903 void
  904 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
  905 {
  906         vm_offset_t     dst;
  907         vm_offset_t     src;
  908 
  909         dst = VM_PAGE_TO_PHYS(mdst);
  910         src = VM_PAGE_TO_PHYS(msrc);
  911 
  912         kcopy((void *)src, (void *)dst, PAGE_SIZE);
  913 }
  914 
  915 /*
  916  * Zero a page of physical memory by temporarily mapping it into the tlb.
  917  */
  918 void
  919 pmap_zero_page(vm_page_t m)
  920 {
  921         vm_offset_t pa = VM_PAGE_TO_PHYS(m);
  922         caddr_t va;
  923 
  924         if (pa < SEGMENT_LENGTH) {
  925                 va = (caddr_t) pa;
  926         } else if (pmap_initialized) {
  927                 if (pmap_pvo_zeropage == NULL)
  928                         pmap_pvo_zeropage = pmap_rkva_alloc();
  929                 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
  930                 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
  931         } else {
  932                 panic("pmap_zero_page: can't zero pa %#x", pa);
  933         }
  934 
  935         bzero(va, PAGE_SIZE);
  936 
  937         if (pa >= SEGMENT_LENGTH)
  938                 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
  939 }
  940 
  941 void
  942 pmap_zero_page_area(vm_page_t m, int off, int size)
  943 {
  944         vm_offset_t pa = VM_PAGE_TO_PHYS(m);
  945         caddr_t va;
  946 
  947         if (pa < SEGMENT_LENGTH) {
  948                 va = (caddr_t) pa;
  949         } else if (pmap_initialized) {
  950                 if (pmap_pvo_zeropage == NULL)
  951                         pmap_pvo_zeropage = pmap_rkva_alloc();
  952                 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
  953                 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
  954         } else {
  955                 panic("pmap_zero_page: can't zero pa %#x", pa);
  956         }
  957 
  958         bzero(va + off, size);
  959 
  960         if (pa >= SEGMENT_LENGTH)
  961                 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
  962 }
  963 
  964 void
  965 pmap_zero_page_idle(vm_page_t m)
  966 {
  967 
  968         /* XXX this is called outside of Giant, is pmap_zero_page safe? */
  969         /* XXX maybe have a dedicated mapping for this to avoid the problem? */
  970         mtx_lock(&Giant);
  971         pmap_zero_page(m);
  972         mtx_unlock(&Giant);
  973 }
  974 
  975 /*
  976  * Map the given physical page at the specified virtual address in the
  977  * target pmap with the protection requested.  If specified the page
  978  * will be wired down.
  979  */
  980 void
  981 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
  982            boolean_t wired)
  983 {
  984 
  985         vm_page_lock_queues();
  986         PMAP_LOCK(pmap);
  987         pmap_enter_locked(pmap, va, m, prot, wired);
  988         vm_page_unlock_queues();
  989         PMAP_UNLOCK(pmap);
  990 }
  991 
  992 /*
  993  * Map the given physical page at the specified virtual address in the
  994  * target pmap with the protection requested.  If specified the page
  995  * will be wired down.
  996  *
  997  * The page queues and pmap must be locked.
  998  */
  999 static void
 1000 pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 1001     boolean_t wired)
 1002 {
 1003         struct          pvo_head *pvo_head;
 1004         uma_zone_t      zone;
 1005         vm_page_t       pg;
 1006         u_int           pte_lo, pvo_flags, was_exec, i;
 1007         int             error;
 1008 
 1009         if (!pmap_initialized) {
 1010                 pvo_head = &pmap_pvo_kunmanaged;
 1011                 zone = pmap_upvo_zone;
 1012                 pvo_flags = 0;
 1013                 pg = NULL;
 1014                 was_exec = PTE_EXEC;
 1015         } else {
 1016                 pvo_head = vm_page_to_pvoh(m);
 1017                 pg = m;
 1018                 zone = pmap_mpvo_zone;
 1019                 pvo_flags = PVO_MANAGED;
 1020                 was_exec = 0;
 1021         }
 1022         if (pmap_bootstrapped)
 1023                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1024         PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 1025 
 1026         /* XXX change the pvo head for fake pages */
 1027         if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS)
 1028                 pvo_head = &pmap_pvo_kunmanaged;
 1029 
 1030         /*
 1031          * If this is a managed page, and it's the first reference to the page,
 1032          * clear the execness of the page.  Otherwise fetch the execness.
 1033          */
 1034         if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
 1035                 if (LIST_EMPTY(pvo_head)) {
 1036                         pmap_attr_clear(pg, PTE_EXEC);
 1037                 } else {
 1038                         was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
 1039                 }
 1040         }
 1041 
 1042         /*
 1043          * Assume the page is cache inhibited and access is guarded unless
 1044          * it's in our available memory array.
 1045          */
 1046         pte_lo = PTE_I | PTE_G;
 1047         for (i = 0; i < pregions_sz; i++) {
 1048                 if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
 1049                     (VM_PAGE_TO_PHYS(m) < 
 1050                         (pregions[i].mr_start + pregions[i].mr_size))) {
 1051                         pte_lo &= ~(PTE_I | PTE_G);
 1052                         break;
 1053                 }
 1054         }
 1055 
 1056         if (prot & VM_PROT_WRITE)
 1057                 pte_lo |= PTE_BW;
 1058         else
 1059                 pte_lo |= PTE_BR;
 1060 
 1061         if (prot & VM_PROT_EXECUTE)
 1062                 pvo_flags |= PVO_EXECUTABLE;
 1063 
 1064         if (wired)
 1065                 pvo_flags |= PVO_WIRED;
 1066 
 1067         if ((m->flags & PG_FICTITIOUS) != 0)
 1068                 pvo_flags |= PVO_FAKE;
 1069 
 1070         error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
 1071             pte_lo, pvo_flags);
 1072 
 1073         /*
 1074          * Flush the real page from the instruction cache if this page is
 1075          * mapped executable and cacheable and was not previously mapped (or
 1076          * was not mapped executable).
 1077          */
 1078         if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
 1079             (pte_lo & PTE_I) == 0 && was_exec == 0) {
 1080                 /*
 1081                  * Flush the real memory from the cache.
 1082                  */
 1083                 pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
 1084                 if (pg != NULL)
 1085                         pmap_attr_save(pg, PTE_EXEC);
 1086         }
 1087 
 1088         /* XXX syncicache always until problems are sorted */
 1089         pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
 1090 }
 1091 
 1092 /*
 1093  * Maps a sequence of resident pages belonging to the same object.
 1094  * The sequence begins with the given page m_start.  This page is
 1095  * mapped at the given virtual address start.  Each subsequent page is
 1096  * mapped at a virtual address that is offset from start by the same
 1097  * amount as the page is offset from m_start within the object.  The
 1098  * last page in the sequence is the page with the largest offset from
 1099  * m_start that can be mapped at a virtual address less than the given
 1100  * virtual address end.  Not every virtual page between start and end
 1101  * is mapped; only those for which a resident page exists with the
 1102  * corresponding offset from m_start are mapped.
 1103  */
 1104 void
 1105 pmap_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
 1106     vm_page_t m_start, vm_prot_t prot)
 1107 {
 1108         vm_page_t m;
 1109         vm_pindex_t diff, psize;
 1110 
 1111         psize = atop(end - start);
 1112         m = m_start;
 1113         PMAP_LOCK(pm);
 1114         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 1115                 pmap_enter_locked(pm, start + ptoa(diff), m, prot &
 1116                     (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
 1117                 m = TAILQ_NEXT(m, listq);
 1118         }
 1119         PMAP_UNLOCK(pm);
 1120 }
 1121 
 1122 void
 1123 pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 1124 {
 1125 
 1126         PMAP_LOCK(pm);
 1127         pmap_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
 1128             FALSE);
 1129         PMAP_UNLOCK(pm);
 1130 }
 1131 
 1132 vm_paddr_t
 1133 pmap_extract(pmap_t pm, vm_offset_t va)
 1134 {
 1135         struct  pvo_entry *pvo;
 1136         vm_paddr_t pa;
 1137 
 1138         PMAP_LOCK(pm);
 1139         pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
 1140         if (pvo == NULL)
 1141                 pa = 0;
 1142         else
 1143                 pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
 1144         PMAP_UNLOCK(pm);
 1145         return (pa);
 1146 }
 1147 
 1148 /*
 1149  * Atomically extract and hold the physical page with the given
 1150  * pmap and virtual address pair if that mapping permits the given
 1151  * protection.
 1152  */
 1153 vm_page_t
 1154 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 1155 {
 1156         struct  pvo_entry *pvo;
 1157         vm_page_t m;
 1158         
 1159         m = NULL;
 1160         mtx_lock(&Giant);
 1161         vm_page_lock_queues();
 1162         PMAP_LOCK(pmap);
 1163         pvo = pmap_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
 1164         if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
 1165             ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
 1166              (prot & VM_PROT_WRITE) == 0)) {
 1167                 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
 1168                 vm_page_hold(m);
 1169         }
 1170         vm_page_unlock_queues();
 1171         PMAP_UNLOCK(pmap);
 1172         mtx_unlock(&Giant);
 1173         return (m);
 1174 }
 1175 
 1176 /*
 1177  * Grow the number of kernel page table entries.  Unneeded.
 1178  */
 1179 void
 1180 pmap_growkernel(vm_offset_t addr)
 1181 {
 1182 }
 1183 
 1184 /*
 1185  *      Initialize a vm_page's machine-dependent fields.
 1186  */
 1187 void
 1188 pmap_page_init(vm_page_t m)
 1189 {
 1190 }
 1191 
 1192 void
 1193 pmap_init(void)
 1194 {
 1195 
 1196         CTR0(KTR_PMAP, "pmap_init");
 1197 
 1198         pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
 1199             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
 1200             UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1201         pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
 1202             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
 1203             UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1204         pmap_initialized = TRUE;
 1205 }
 1206 
 1207 void
 1208 pmap_init2(void)
 1209 {
 1210 
 1211         CTR0(KTR_PMAP, "pmap_init2");
 1212 }
 1213 
 1214 boolean_t
 1215 pmap_is_modified(vm_page_t m)
 1216 {
 1217 
 1218         if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
 1219                 return (FALSE);
 1220 
 1221         return (pmap_query_bit(m, PTE_CHG));
 1222 }
 1223 
 1224 /*
 1225  *      pmap_is_prefaultable:
 1226  *
 1227  *      Return whether or not the specified virtual address is elgible
 1228  *      for prefault.
 1229  */
 1230 boolean_t
 1231 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 1232 {
 1233 
 1234         return (FALSE);
 1235 }
 1236 
 1237 void
 1238 pmap_clear_reference(vm_page_t m)
 1239 {
 1240 
 1241         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 1242                 return;
 1243         pmap_clear_bit(m, PTE_REF, NULL);
 1244 }
 1245 
 1246 void
 1247 pmap_clear_modify(vm_page_t m)
 1248 {
 1249 
 1250         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 1251                 return;
 1252         pmap_clear_bit(m, PTE_CHG, NULL);
 1253 }
 1254 
 1255 /*
 1256  *      pmap_ts_referenced:
 1257  *
 1258  *      Return a count of reference bits for a page, clearing those bits.
 1259  *      It is not necessary for every reference bit to be cleared, but it
 1260  *      is necessary that 0 only be returned when there are truly no
 1261  *      reference bits set.
 1262  *
 1263  *      XXX: The exact number of bits to check and clear is a matter that
 1264  *      should be tested and standardized at some point in the future for
 1265  *      optimal aging of shared pages.
 1266  */
 1267 int
 1268 pmap_ts_referenced(vm_page_t m)
 1269 {
 1270         int count;
 1271 
 1272         if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
 1273                 return (0);
 1274 
 1275         count = pmap_clear_bit(m, PTE_REF, NULL);
 1276 
 1277         return (count);
 1278 }
 1279 
 1280 /*
 1281  * Map a wired page into kernel virtual address space.
 1282  */
 1283 void
 1284 pmap_kenter(vm_offset_t va, vm_offset_t pa)
 1285 {
 1286         u_int           pte_lo;
 1287         int             error;  
 1288         int             i;
 1289 
 1290 #if 0
 1291         if (va < VM_MIN_KERNEL_ADDRESS)
 1292                 panic("pmap_kenter: attempt to enter non-kernel address %#x",
 1293                     va);
 1294 #endif
 1295 
 1296         pte_lo = PTE_I | PTE_G;
 1297         for (i = 0; i < pregions_sz; i++) {
 1298                 if ((pa >= pregions[i].mr_start) &&
 1299                     (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
 1300                         pte_lo &= ~(PTE_I | PTE_G);
 1301                         break;
 1302                 }
 1303         }       
 1304 
 1305         PMAP_LOCK(kernel_pmap);
 1306         error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
 1307             &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
 1308 
 1309         if (error != 0 && error != ENOENT)
 1310                 panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
 1311                     pa, error);
 1312 
 1313         /*
 1314          * Flush the real memory from the instruction cache.
 1315          */
 1316         if ((pte_lo & (PTE_I | PTE_G)) == 0) {
 1317                 pmap_syncicache(pa, PAGE_SIZE);
 1318         }
 1319         PMAP_UNLOCK(kernel_pmap);
 1320 }
 1321 
 1322 /*
 1323  * Extract the physical page address associated with the given kernel virtual
 1324  * address.
 1325  */
 1326 vm_offset_t
 1327 pmap_kextract(vm_offset_t va)
 1328 {
 1329         struct          pvo_entry *pvo;
 1330         vm_paddr_t pa;
 1331 
 1332 #ifdef UMA_MD_SMALL_ALLOC
 1333         /*
 1334          * Allow direct mappings
 1335          */
 1336         if (va < VM_MIN_KERNEL_ADDRESS) {
 1337                 return (va);
 1338         }
 1339 #endif
 1340 
 1341         PMAP_LOCK(kernel_pmap);
 1342         pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
 1343         KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
 1344         pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
 1345         PMAP_UNLOCK(kernel_pmap);
 1346         return (pa);
 1347 }
 1348 
 1349 /*
 1350  * Remove a wired page from kernel virtual address space.
 1351  */
 1352 void
 1353 pmap_kremove(vm_offset_t va)
 1354 {
 1355 
 1356         pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
 1357 }
 1358 
 1359 /*
 1360  * Map a range of physical addresses into kernel virtual address space.
 1361  *
 1362  * The value passed in *virt is a suggested virtual address for the mapping.
 1363  * Architectures which can support a direct-mapped physical to virtual region
 1364  * can return the appropriate address within that region, leaving '*virt'
 1365  * unchanged.  We cannot and therefore do not; *virt is updated with the
 1366  * first usable address after the mapped region.
 1367  */
 1368 vm_offset_t
 1369 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
 1370 {
 1371         vm_offset_t     sva, va;
 1372 
 1373         sva = *virt;
 1374         va = sva;
 1375         for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
 1376                 pmap_kenter(va, pa_start);
 1377         *virt = va;
 1378         return (sva);
 1379 }
 1380 
 1381 int
 1382 pmap_mincore(pmap_t pmap, vm_offset_t addr)
 1383 {
 1384         TODO;
 1385         return (0);
 1386 }
 1387 
 1388 void
 1389 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
 1390                     vm_pindex_t pindex, vm_size_t size)
 1391 {
 1392 
 1393         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1394         KASSERT(object->type == OBJT_DEVICE,
 1395             ("pmap_object_init_pt: non-device object"));
 1396         KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
 1397             ("pmap_object_init_pt: non current pmap"));
 1398 }
 1399 
 1400 /*
 1401  * Lower the permission for all mappings to a given page.
 1402  */
 1403 void
 1404 pmap_page_protect(vm_page_t m, vm_prot_t prot)
 1405 {
 1406         struct  pvo_head *pvo_head;
 1407         struct  pvo_entry *pvo, *next_pvo;
 1408         struct  pte *pt;
 1409         pmap_t  pmap;
 1410 
 1411         /*
 1412          * Since the routine only downgrades protection, if the
 1413          * maximal protection is desired, there isn't any change
 1414          * to be made.
 1415          */
 1416         if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
 1417             (VM_PROT_READ|VM_PROT_WRITE))
 1418                 return;
 1419 
 1420         pvo_head = vm_page_to_pvoh(m);
 1421         for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
 1422                 next_pvo = LIST_NEXT(pvo, pvo_vlink);
 1423                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 1424                 pmap = pvo->pvo_pmap;
 1425                 PMAP_LOCK(pmap);
 1426 
 1427                 /*
 1428                  * Downgrading to no mapping at all, we just remove the entry.
 1429                  */
 1430                 if ((prot & VM_PROT_READ) == 0) {
 1431                         pmap_pvo_remove(pvo, -1);
 1432                         PMAP_UNLOCK(pmap);
 1433                         continue;
 1434                 }
 1435 
 1436                 /*
 1437                  * If EXEC permission is being revoked, just clear the flag
 1438                  * in the PVO.
 1439                  */
 1440                 if ((prot & VM_PROT_EXECUTE) == 0)
 1441                         pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
 1442 
 1443                 /*
 1444                  * If this entry is already RO, don't diddle with the page
 1445                  * table.
 1446                  */
 1447                 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
 1448                         PMAP_UNLOCK(pmap);
 1449                         PMAP_PVO_CHECK(pvo);
 1450                         continue;
 1451                 }
 1452 
 1453                 /*
 1454                  * Grab the PTE before we diddle the bits so pvo_to_pte can
 1455                  * verify the pte contents are as expected.
 1456                  */
 1457                 pt = pmap_pvo_to_pte(pvo, -1);
 1458                 pvo->pvo_pte.pte_lo &= ~PTE_PP;
 1459                 pvo->pvo_pte.pte_lo |= PTE_BR;
 1460                 if (pt != NULL)
 1461                         pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1462                 PMAP_UNLOCK(pmap);
 1463                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 1464         }
 1465 
 1466         /*
 1467          * Downgrading from writeable: clear the VM page flag
 1468          */
 1469         if ((prot & VM_PROT_WRITE) != VM_PROT_WRITE)
 1470                 vm_page_flag_clear(m, PG_WRITEABLE);
 1471 }
 1472 
 1473 /*
 1474  * Returns true if the pmap's pv is one of the first
 1475  * 16 pvs linked to from this page.  This count may
 1476  * be changed upwards or downwards in the future; it
 1477  * is only necessary that true be returned for a small
 1478  * subset of pmaps for proper page aging.
 1479  */
 1480 boolean_t
 1481 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 1482 {
 1483         int loops;
 1484         struct pvo_entry *pvo;
 1485 
 1486         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
 1487                 return FALSE;
 1488 
 1489         loops = 0;
 1490         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 1491                 if (pvo->pvo_pmap == pmap)
 1492                         return (TRUE);
 1493                 if (++loops >= 16)
 1494                         break;
 1495         }
 1496 
 1497         return (FALSE);
 1498 }
 1499 
 1500 static u_int    pmap_vsidcontext;
 1501 
 1502 void
 1503 pmap_pinit(pmap_t pmap)
 1504 {
 1505         int     i, mask;
 1506         u_int   entropy;
 1507 
 1508         KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
 1509         PMAP_LOCK_INIT(pmap);
 1510 
 1511         entropy = 0;
 1512         __asm __volatile("mftb %0" : "=r"(entropy));
 1513 
 1514         /*
 1515          * Allocate some segment registers for this pmap.
 1516          */
 1517         for (i = 0; i < NPMAPS; i += VSID_NBPW) {
 1518                 u_int   hash, n;
 1519 
 1520                 /*
 1521                  * Create a new value by mutiplying by a prime and adding in
 1522                  * entropy from the timebase register.  This is to make the
 1523                  * VSID more random so that the PT hash function collides
 1524                  * less often.  (Note that the prime casues gcc to do shifts
 1525                  * instead of a multiply.)
 1526                  */
 1527                 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
 1528                 hash = pmap_vsidcontext & (NPMAPS - 1);
 1529                 if (hash == 0)          /* 0 is special, avoid it */
 1530                         continue;
 1531                 n = hash >> 5;
 1532                 mask = 1 << (hash & (VSID_NBPW - 1));
 1533                 hash = (pmap_vsidcontext & 0xfffff);
 1534                 if (pmap_vsid_bitmap[n] & mask) {       /* collision? */
 1535                         /* anything free in this bucket? */
 1536                         if (pmap_vsid_bitmap[n] == 0xffffffff) {
 1537                                 entropy = (pmap_vsidcontext >> 20);
 1538                                 continue;
 1539                         }
 1540                         i = ffs(~pmap_vsid_bitmap[i]) - 1;
 1541                         mask = 1 << i;
 1542                         hash &= 0xfffff & ~(VSID_NBPW - 1);
 1543                         hash |= i;
 1544                 }
 1545                 pmap_vsid_bitmap[n] |= mask;
 1546                 for (i = 0; i < 16; i++)
 1547                         pmap->pm_sr[i] = VSID_MAKE(i, hash);
 1548                 return;
 1549         }
 1550 
 1551         panic("pmap_pinit: out of segments");
 1552 }
 1553 
 1554 /*
 1555  * Initialize the pmap associated with process 0.
 1556  */
 1557 void
 1558 pmap_pinit0(pmap_t pm)
 1559 {
 1560 
 1561         pmap_pinit(pm);
 1562         bzero(&pm->pm_stats, sizeof(pm->pm_stats));
 1563 }
 1564 
 1565 /*
 1566  * Set the physical protection on the specified range of this map as requested.
 1567  */
 1568 void
 1569 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 1570 {
 1571         struct  pvo_entry *pvo;
 1572         struct  pte *pt;
 1573         int     pteidx;
 1574 
 1575         CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
 1576             eva, prot);
 1577 
 1578 
 1579         KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
 1580             ("pmap_protect: non current pmap"));
 1581 
 1582         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
 1583                 mtx_lock(&Giant);
 1584                 pmap_remove(pm, sva, eva);
 1585                 mtx_unlock(&Giant);
 1586                 return;
 1587         }
 1588 
 1589         mtx_lock(&Giant);
 1590         vm_page_lock_queues();
 1591         PMAP_LOCK(pm);
 1592         for (; sva < eva; sva += PAGE_SIZE) {
 1593                 pvo = pmap_pvo_find_va(pm, sva, &pteidx);
 1594                 if (pvo == NULL)
 1595                         continue;
 1596 
 1597                 if ((prot & VM_PROT_EXECUTE) == 0)
 1598                         pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
 1599 
 1600                 /*
 1601                  * Grab the PTE pointer before we diddle with the cached PTE
 1602                  * copy.
 1603                  */
 1604                 pt = pmap_pvo_to_pte(pvo, pteidx);
 1605                 /*
 1606                  * Change the protection of the page.
 1607                  */
 1608                 pvo->pvo_pte.pte_lo &= ~PTE_PP;
 1609                 pvo->pvo_pte.pte_lo |= PTE_BR;
 1610 
 1611                 /*
 1612                  * If the PVO is in the page table, update that pte as well.
 1613                  */
 1614                 if (pt != NULL)
 1615                         pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1616         }
 1617         vm_page_unlock_queues();
 1618         PMAP_UNLOCK(pm);
 1619         mtx_unlock(&Giant);
 1620 }
 1621 
 1622 /*
 1623  * Map a list of wired pages into kernel virtual address space.  This is
 1624  * intended for temporary mappings which do not need page modification or
 1625  * references recorded.  Existing mappings in the region are overwritten.
 1626  */
 1627 void
 1628 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
 1629 {
 1630         vm_offset_t va;
 1631 
 1632         va = sva;
 1633         while (count-- > 0) {
 1634                 pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
 1635                 va += PAGE_SIZE;
 1636                 m++;
 1637         }
 1638 }
 1639 
 1640 /*
 1641  * Remove page mappings from kernel virtual address space.  Intended for
 1642  * temporary mappings entered by pmap_qenter.
 1643  */
 1644 void
 1645 pmap_qremove(vm_offset_t sva, int count)
 1646 {
 1647         vm_offset_t va;
 1648 
 1649         va = sva;
 1650         while (count-- > 0) {
 1651                 pmap_kremove(va);
 1652                 va += PAGE_SIZE;
 1653         }
 1654 }
 1655 
 1656 void
 1657 pmap_release(pmap_t pmap)
 1658 {
 1659         int idx, mask;
 1660         
 1661         /*
 1662          * Free segment register's VSID
 1663          */
 1664         if (pmap->pm_sr[0] == 0)
 1665                 panic("pmap_release");
 1666 
 1667         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
 1668         mask = 1 << (idx % VSID_NBPW);
 1669         idx /= VSID_NBPW;
 1670         pmap_vsid_bitmap[idx] &= ~mask;
 1671         PMAP_LOCK_DESTROY(pmap);
 1672 }
 1673 
 1674 /*
 1675  * Remove the given range of addresses from the specified map.
 1676  */
 1677 void
 1678 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
 1679 {
 1680         struct  pvo_entry *pvo;
 1681         int     pteidx;
 1682 
 1683         vm_page_lock_queues();
 1684         PMAP_LOCK(pm);
 1685         for (; sva < eva; sva += PAGE_SIZE) {
 1686                 pvo = pmap_pvo_find_va(pm, sva, &pteidx);
 1687                 if (pvo != NULL) {
 1688                         pmap_pvo_remove(pvo, pteidx);
 1689                 }
 1690         }
 1691         PMAP_UNLOCK(pm);
 1692         vm_page_unlock_queues();
 1693 }
 1694 
 1695 /*
 1696  * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
 1697  * will reflect changes in pte's back to the vm_page.
 1698  */
 1699 void
 1700 pmap_remove_all(vm_page_t m)
 1701 {
 1702         struct  pvo_head *pvo_head;
 1703         struct  pvo_entry *pvo, *next_pvo;
 1704         pmap_t  pmap;
 1705 
 1706         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1707 
 1708         pvo_head = vm_page_to_pvoh(m);
 1709         for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
 1710                 next_pvo = LIST_NEXT(pvo, pvo_vlink);
 1711 
 1712                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 1713                 pmap = pvo->pvo_pmap;
 1714                 PMAP_LOCK(pmap);
 1715                 pmap_pvo_remove(pvo, -1);
 1716                 PMAP_UNLOCK(pmap);
 1717         }
 1718         vm_page_flag_clear(m, PG_WRITEABLE);
 1719 }
 1720 
 1721 /*
 1722  * Remove all pages from specified address space, this aids process exit
 1723  * speeds.  This is much faster than pmap_remove in the case of running down
 1724  * an entire address space.  Only works for the current pmap.
 1725  */
 1726 void
 1727 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
 1728 {
 1729 }
 1730 
 1731 /*
 1732  * Allocate a physical page of memory directly from the phys_avail map.
 1733  * Can only be called from pmap_bootstrap before avail start and end are
 1734  * calculated.
 1735  */
 1736 static vm_offset_t
 1737 pmap_bootstrap_alloc(vm_size_t size, u_int align)
 1738 {
 1739         vm_offset_t     s, e;
 1740         int             i, j;
 1741 
 1742         size = round_page(size);
 1743         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
 1744                 if (align != 0)
 1745                         s = (phys_avail[i] + align - 1) & ~(align - 1);
 1746                 else
 1747                         s = phys_avail[i];
 1748                 e = s + size;
 1749 
 1750                 if (s < phys_avail[i] || e > phys_avail[i + 1])
 1751                         continue;
 1752 
 1753                 if (s == phys_avail[i]) {
 1754                         phys_avail[i] += size;
 1755                 } else if (e == phys_avail[i + 1]) {
 1756                         phys_avail[i + 1] -= size;
 1757                 } else {
 1758                         for (j = phys_avail_count * 2; j > i; j -= 2) {
 1759                                 phys_avail[j] = phys_avail[j - 2];
 1760                                 phys_avail[j + 1] = phys_avail[j - 1];
 1761                         }
 1762 
 1763                         phys_avail[i + 3] = phys_avail[i + 1];
 1764                         phys_avail[i + 1] = s;
 1765                         phys_avail[i + 2] = e;
 1766                         phys_avail_count++;
 1767                 }
 1768 
 1769                 return (s);
 1770         }
 1771         panic("pmap_bootstrap_alloc: could not allocate memory");
 1772 }
 1773 
 1774 /*
 1775  * Return an unmapped pvo for a kernel virtual address.
 1776  * Used by pmap functions that operate on physical pages.
 1777  */
 1778 static struct pvo_entry *
 1779 pmap_rkva_alloc(void)
 1780 {
 1781         struct          pvo_entry *pvo;
 1782         struct          pte *pt;
 1783         vm_offset_t     kva;
 1784         int             pteidx;
 1785 
 1786         if (pmap_rkva_count == 0)
 1787                 panic("pmap_rkva_alloc: no more reserved KVAs");
 1788 
 1789         kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
 1790         pmap_kenter(kva, 0);
 1791 
 1792         pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
 1793 
 1794         if (pvo == NULL)
 1795                 panic("pmap_kva_alloc: pmap_pvo_find_va failed");
 1796 
 1797         pt = pmap_pvo_to_pte(pvo, pteidx);
 1798 
 1799         if (pt == NULL)
 1800                 panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
 1801 
 1802         pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1803         PVO_PTEGIDX_CLR(pvo);
 1804 
 1805         pmap_pte_overflow++;
 1806 
 1807         return (pvo);
 1808 }
 1809 
 1810 static void
 1811 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
 1812     int *depth_p)
 1813 {
 1814         struct  pte *pt;
 1815 
 1816         /*
 1817          * If this pvo already has a valid pte, we need to save it so it can
 1818          * be restored later.  We then just reload the new PTE over the old
 1819          * slot.
 1820          */
 1821         if (saved_pt != NULL) {
 1822                 pt = pmap_pvo_to_pte(pvo, -1);
 1823 
 1824                 if (pt != NULL) {
 1825                         pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1826                         PVO_PTEGIDX_CLR(pvo);
 1827                         pmap_pte_overflow++;
 1828                 }
 1829 
 1830                 *saved_pt = pvo->pvo_pte;
 1831 
 1832                 pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
 1833         }
 1834 
 1835         pvo->pvo_pte.pte_lo |= pa;
 1836 
 1837         if (!pmap_pte_spill(pvo->pvo_vaddr))
 1838                 panic("pmap_pa_map: could not spill pvo %p", pvo);
 1839 
 1840         if (depth_p != NULL)
 1841                 (*depth_p)++;
 1842 }
 1843 
 1844 static void
 1845 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
 1846 {
 1847         struct  pte *pt;
 1848 
 1849         pt = pmap_pvo_to_pte(pvo, -1);
 1850 
 1851         if (pt != NULL) {
 1852                 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 1853                 PVO_PTEGIDX_CLR(pvo);
 1854                 pmap_pte_overflow++;
 1855         }
 1856 
 1857         pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
 1858 
 1859         /*
 1860          * If there is a saved PTE and it's valid, restore it and return.
 1861          */
 1862         if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
 1863                 if (depth_p != NULL && --(*depth_p) == 0)
 1864                         panic("pmap_pa_unmap: restoring but depth == 0");
 1865 
 1866                 pvo->pvo_pte = *saved_pt;
 1867 
 1868                 if (!pmap_pte_spill(pvo->pvo_vaddr))
 1869                         panic("pmap_pa_unmap: could not spill pvo %p", pvo);
 1870         }
 1871 }
 1872 
 1873 static void
 1874 pmap_syncicache(vm_offset_t pa, vm_size_t len)
 1875 {
 1876         __syncicache((void *)pa, len);
 1877 }
 1878 
 1879 static void
 1880 tlbia(void)
 1881 {
 1882         caddr_t i;
 1883 
 1884         SYNC();
 1885         for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
 1886                 TLBIE(i);
 1887                 EIEIO();
 1888         }
 1889         TLBSYNC();
 1890         SYNC();
 1891 }
 1892 
 1893 static int
 1894 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
 1895     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
 1896 {
 1897         struct  pvo_entry *pvo;
 1898         u_int   sr;
 1899         int     first;
 1900         u_int   ptegidx;
 1901         int     i;
 1902         int     bootstrap;
 1903 
 1904         pmap_pvo_enter_calls++;
 1905         first = 0;
 1906         bootstrap = 0;
 1907 
 1908         /*
 1909          * Compute the PTE Group index.
 1910          */
 1911         va &= ~ADDR_POFF;
 1912         sr = va_to_sr(pm->pm_sr, va);
 1913         ptegidx = va_to_pteg(sr, va);
 1914 
 1915         /*
 1916          * Remove any existing mapping for this page.  Reuse the pvo entry if
 1917          * there is a mapping.
 1918          */
 1919         mtx_lock(&pmap_table_mutex);
 1920         LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
 1921                 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
 1922                         if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
 1923                             (pvo->pvo_pte.pte_lo & PTE_PP) ==
 1924                             (pte_lo & PTE_PP)) {
 1925                                 mtx_unlock(&pmap_table_mutex);
 1926                                 return (0);
 1927                         }
 1928                         pmap_pvo_remove(pvo, -1);
 1929                         break;
 1930                 }
 1931         }
 1932 
 1933         /*
 1934          * If we aren't overwriting a mapping, try to allocate.
 1935          */
 1936         if (pmap_initialized) {
 1937                 pvo = uma_zalloc(zone, M_NOWAIT);
 1938         } else {
 1939                 if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
 1940                         panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
 1941                               pmap_bpvo_pool_index, BPVO_POOL_SIZE, 
 1942                               BPVO_POOL_SIZE * sizeof(struct pvo_entry));
 1943                 }
 1944                 pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
 1945                 pmap_bpvo_pool_index++;
 1946                 bootstrap = 1;
 1947         }
 1948 
 1949         if (pvo == NULL) {
 1950                 mtx_unlock(&pmap_table_mutex);
 1951                 return (ENOMEM);
 1952         }
 1953 
 1954         pmap_pvo_entries++;
 1955         pvo->pvo_vaddr = va;
 1956         pvo->pvo_pmap = pm;
 1957         LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
 1958         pvo->pvo_vaddr &= ~ADDR_POFF;
 1959         if (flags & VM_PROT_EXECUTE)
 1960                 pvo->pvo_vaddr |= PVO_EXECUTABLE;
 1961         if (flags & PVO_WIRED)
 1962                 pvo->pvo_vaddr |= PVO_WIRED;
 1963         if (pvo_head != &pmap_pvo_kunmanaged)
 1964                 pvo->pvo_vaddr |= PVO_MANAGED;
 1965         if (bootstrap)
 1966                 pvo->pvo_vaddr |= PVO_BOOTSTRAP;
 1967         if (flags & PVO_FAKE)
 1968                 pvo->pvo_vaddr |= PVO_FAKE;
 1969 
 1970         pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
 1971 
 1972         /*
 1973          * Remember if the list was empty and therefore will be the first
 1974          * item.
 1975          */
 1976         if (LIST_FIRST(pvo_head) == NULL)
 1977                 first = 1;
 1978         LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
 1979 
 1980         if (pvo->pvo_pte.pte_lo & PVO_WIRED)
 1981                 pm->pm_stats.wired_count++;
 1982         pm->pm_stats.resident_count++;
 1983 
 1984         /*
 1985          * We hope this succeeds but it isn't required.
 1986          */
 1987         i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
 1988         if (i >= 0) {
 1989                 PVO_PTEGIDX_SET(pvo, i);
 1990         } else {
 1991                 panic("pmap_pvo_enter: overflow");
 1992                 pmap_pte_overflow++;
 1993         }
 1994         mtx_unlock(&pmap_table_mutex);
 1995 
 1996         return (first ? ENOENT : 0);
 1997 }
 1998 
 1999 static void
 2000 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
 2001 {
 2002         struct  pte *pt;
 2003 
 2004         /*
 2005          * If there is an active pte entry, we need to deactivate it (and
 2006          * save the ref & cfg bits).
 2007          */
 2008         pt = pmap_pvo_to_pte(pvo, pteidx);
 2009         if (pt != NULL) {
 2010                 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
 2011                 PVO_PTEGIDX_CLR(pvo);
 2012         } else {
 2013                 pmap_pte_overflow--;
 2014         }
 2015 
 2016         /*
 2017          * Update our statistics.
 2018          */
 2019         pvo->pvo_pmap->pm_stats.resident_count--;
 2020         if (pvo->pvo_pte.pte_lo & PVO_WIRED)
 2021                 pvo->pvo_pmap->pm_stats.wired_count--;
 2022 
 2023         /*
 2024          * Save the REF/CHG bits into their cache if the page is managed.
 2025          */
 2026         if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
 2027                 struct  vm_page *pg;
 2028 
 2029                 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
 2030                 if (pg != NULL) {
 2031                         pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
 2032                             (PTE_REF | PTE_CHG));
 2033                 }
 2034         }
 2035 
 2036         /*
 2037          * Remove this PVO from the PV list.
 2038          */
 2039         LIST_REMOVE(pvo, pvo_vlink);
 2040 
 2041         /*
 2042          * Remove this from the overflow list and return it to the pool
 2043          * if we aren't going to reuse it.
 2044          */
 2045         LIST_REMOVE(pvo, pvo_olink);
 2046         if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
 2047                 uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
 2048                     pmap_upvo_zone, pvo);
 2049         pmap_pvo_entries--;
 2050         pmap_pvo_remove_calls++;
 2051 }
 2052 
 2053 static __inline int
 2054 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
 2055 {
 2056         int     pteidx;
 2057 
 2058         /*
 2059          * We can find the actual pte entry without searching by grabbing
 2060          * the PTEG index from 3 unused bits in pte_lo[11:9] and by
 2061          * noticing the HID bit.
 2062          */
 2063         pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
 2064         if (pvo->pvo_pte.pte_hi & PTE_HID)
 2065                 pteidx ^= pmap_pteg_mask * 8;
 2066 
 2067         return (pteidx);
 2068 }
 2069 
 2070 static struct pvo_entry *
 2071 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
 2072 {
 2073         struct  pvo_entry *pvo;
 2074         int     ptegidx;
 2075         u_int   sr;
 2076 
 2077         va &= ~ADDR_POFF;
 2078         sr = va_to_sr(pm->pm_sr, va);
 2079         ptegidx = va_to_pteg(sr, va);
 2080 
 2081         mtx_lock(&pmap_table_mutex);
 2082         LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
 2083                 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
 2084                         if (pteidx_p)
 2085                                 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
 2086                         break;
 2087                 }
 2088         }
 2089         mtx_unlock(&pmap_table_mutex);
 2090 
 2091         return (pvo);
 2092 }
 2093 
 2094 static struct pte *
 2095 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
 2096 {
 2097         struct  pte *pt;
 2098 
 2099         /*
 2100          * If we haven't been supplied the ptegidx, calculate it.
 2101          */
 2102         if (pteidx == -1) {
 2103                 int     ptegidx;
 2104                 u_int   sr;
 2105 
 2106                 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
 2107                 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
 2108                 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
 2109         }
 2110 
 2111         pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
 2112 
 2113         if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
 2114                 panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
 2115                     "valid pte index", pvo);
 2116         }
 2117 
 2118         if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
 2119                 panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
 2120                     "pvo but no valid pte", pvo);
 2121         }
 2122 
 2123         if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
 2124                 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
 2125                         panic("pmap_pvo_to_pte: pvo %p has valid pte in "
 2126                             "pmap_pteg_table %p but invalid in pvo", pvo, pt);
 2127                 }
 2128 
 2129                 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
 2130                     != 0) {
 2131                         panic("pmap_pvo_to_pte: pvo %p pte does not match "
 2132                             "pte %p in pmap_pteg_table", pvo, pt);
 2133                 }
 2134 
 2135                 return (pt);
 2136         }
 2137 
 2138         if (pvo->pvo_pte.pte_hi & PTE_VALID) {
 2139                 panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
 2140                     "pmap_pteg_table but valid in pvo", pvo, pt);
 2141         }
 2142 
 2143         return (NULL);
 2144 }
 2145 
 2146 /*
 2147  * XXX: THIS STUFF SHOULD BE IN pte.c?
 2148  */
 2149 int
 2150 pmap_pte_spill(vm_offset_t addr)
 2151 {
 2152         struct  pvo_entry *source_pvo, *victim_pvo;
 2153         struct  pvo_entry *pvo;
 2154         int     ptegidx, i, j;
 2155         u_int   sr;
 2156         struct  pteg *pteg;
 2157         struct  pte *pt;
 2158 
 2159         pmap_pte_spills++;
 2160 
 2161         sr = mfsrin(addr);
 2162         ptegidx = va_to_pteg(sr, addr);
 2163 
 2164         /*
 2165          * Have to substitute some entry.  Use the primary hash for this.
 2166          * Use low bits of timebase as random generator.
 2167          */
 2168         pteg = &pmap_pteg_table[ptegidx];
 2169         mtx_lock(&pmap_table_mutex);
 2170         __asm __volatile("mftb %0" : "=r"(i));
 2171         i &= 7;
 2172         pt = &pteg->pt[i];
 2173 
 2174         source_pvo = NULL;
 2175         victim_pvo = NULL;
 2176         LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
 2177                 /*
 2178                  * We need to find a pvo entry for this address.
 2179                  */
 2180                 PMAP_PVO_CHECK(pvo);
 2181                 if (source_pvo == NULL &&
 2182                     pmap_pte_match(&pvo->pvo_pte, sr, addr,
 2183                     pvo->pvo_pte.pte_hi & PTE_HID)) {
 2184                         /*
 2185                          * Now found an entry to be spilled into the pteg.
 2186                          * The PTE is now valid, so we know it's active.
 2187                          */
 2188                         j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
 2189 
 2190                         if (j >= 0) {
 2191                                 PVO_PTEGIDX_SET(pvo, j);
 2192                                 pmap_pte_overflow--;
 2193                                 PMAP_PVO_CHECK(pvo);
 2194                                 mtx_unlock(&pmap_table_mutex);
 2195                                 return (1);
 2196                         }
 2197 
 2198                         source_pvo = pvo;
 2199 
 2200                         if (victim_pvo != NULL)
 2201                                 break;
 2202                 }
 2203 
 2204                 /*
 2205                  * We also need the pvo entry of the victim we are replacing
 2206                  * so save the R & C bits of the PTE.
 2207                  */
 2208                 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
 2209                     pmap_pte_compare(pt, &pvo->pvo_pte)) {
 2210                         victim_pvo = pvo;
 2211                         if (source_pvo != NULL)
 2212                                 break;
 2213                 }
 2214         }
 2215 
 2216         if (source_pvo == NULL) {
 2217                 mtx_unlock(&pmap_table_mutex);
 2218                 return (0);
 2219         }
 2220 
 2221         if (victim_pvo == NULL) {
 2222                 if ((pt->pte_hi & PTE_HID) == 0)
 2223                         panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
 2224                             "entry", pt);
 2225 
 2226                 /*
 2227                  * If this is a secondary PTE, we need to search it's primary
 2228                  * pvo bucket for the matching PVO.
 2229                  */
 2230                 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
 2231                     pvo_olink) {
 2232                         PMAP_PVO_CHECK(pvo);
 2233                         /*
 2234                          * We also need the pvo entry of the victim we are
 2235                          * replacing so save the R & C bits of the PTE.
 2236                          */
 2237                         if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
 2238                                 victim_pvo = pvo;
 2239                                 break;
 2240                         }
 2241                 }
 2242 
 2243                 if (victim_pvo == NULL)
 2244                         panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
 2245                             "entry", pt);
 2246         }
 2247 
 2248         /*
 2249          * We are invalidating the TLB entry for the EA we are replacing even
 2250          * though it's valid.  If we don't, we lose any ref/chg bit changes
 2251          * contained in the TLB entry.
 2252          */
 2253         source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
 2254 
 2255         pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
 2256         pmap_pte_set(pt, &source_pvo->pvo_pte);
 2257 
 2258         PVO_PTEGIDX_CLR(victim_pvo);
 2259         PVO_PTEGIDX_SET(source_pvo, i);
 2260         pmap_pte_replacements++;
 2261 
 2262         PMAP_PVO_CHECK(victim_pvo);
 2263         PMAP_PVO_CHECK(source_pvo);
 2264 
 2265         mtx_unlock(&pmap_table_mutex);
 2266         return (1);
 2267 }
 2268 
 2269 static int
 2270 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
 2271 {
 2272         struct  pte *pt;
 2273         int     i;
 2274 
 2275         /*
 2276          * First try primary hash.
 2277          */
 2278         for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
 2279                 if ((pt->pte_hi & PTE_VALID) == 0) {
 2280                         pvo_pt->pte_hi &= ~PTE_HID;
 2281                         pmap_pte_set(pt, pvo_pt);
 2282                         return (i);
 2283                 }
 2284         }
 2285 
 2286         /*
 2287          * Now try secondary hash.
 2288          */
 2289         ptegidx ^= pmap_pteg_mask;
 2290         ptegidx++;
 2291         for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
 2292                 if ((pt->pte_hi & PTE_VALID) == 0) {
 2293                         pvo_pt->pte_hi |= PTE_HID;
 2294                         pmap_pte_set(pt, pvo_pt);
 2295                         return (i);
 2296                 }
 2297         }
 2298 
 2299         panic("pmap_pte_insert: overflow");
 2300         return (-1);
 2301 }
 2302 
 2303 static boolean_t
 2304 pmap_query_bit(vm_page_t m, int ptebit)
 2305 {
 2306         struct  pvo_entry *pvo;
 2307         struct  pte *pt;
 2308 
 2309 #if 0
 2310         if (pmap_attr_fetch(m) & ptebit)
 2311                 return (TRUE);
 2312 #endif
 2313 
 2314         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 2315                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2316 
 2317                 /*
 2318                  * See if we saved the bit off.  If so, cache it and return
 2319                  * success.
 2320                  */
 2321                 if (pvo->pvo_pte.pte_lo & ptebit) {
 2322                         pmap_attr_save(m, ptebit);
 2323                         PMAP_PVO_CHECK(pvo);    /* sanity check */
 2324                         return (TRUE);
 2325                 }
 2326         }
 2327 
 2328         /*
 2329          * No luck, now go through the hard part of looking at the PTEs
 2330          * themselves.  Sync so that any pending REF/CHG bits are flushed to
 2331          * the PTEs.
 2332          */
 2333         SYNC();
 2334         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 2335                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2336 
 2337                 /*
 2338                  * See if this pvo has a valid PTE.  if so, fetch the
 2339                  * REF/CHG bits from the valid PTE.  If the appropriate
 2340                  * ptebit is set, cache it and return success.
 2341                  */
 2342                 pt = pmap_pvo_to_pte(pvo, -1);
 2343                 if (pt != NULL) {
 2344                         pmap_pte_synch(pt, &pvo->pvo_pte);
 2345                         if (pvo->pvo_pte.pte_lo & ptebit) {
 2346                                 pmap_attr_save(m, ptebit);
 2347                                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2348                                 return (TRUE);
 2349                         }
 2350                 }
 2351         }
 2352 
 2353         return (FALSE);
 2354 }
 2355 
 2356 static u_int
 2357 pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
 2358 {
 2359         u_int   count;
 2360         struct  pvo_entry *pvo;
 2361         struct  pte *pt;
 2362         int     rv;
 2363 
 2364         /*
 2365          * Clear the cached value.
 2366          */
 2367         rv = pmap_attr_fetch(m);
 2368         pmap_attr_clear(m, ptebit);
 2369 
 2370         /*
 2371          * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
 2372          * we can reset the right ones).  note that since the pvo entries and
 2373          * list heads are accessed via BAT0 and are never placed in the page
 2374          * table, we don't have to worry about further accesses setting the
 2375          * REF/CHG bits.
 2376          */
 2377         SYNC();
 2378 
 2379         /*
 2380          * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
 2381          * valid pte clear the ptebit from the valid pte.
 2382          */
 2383         count = 0;
 2384         LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
 2385                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2386                 pt = pmap_pvo_to_pte(pvo, -1);
 2387                 if (pt != NULL) {
 2388                         pmap_pte_synch(pt, &pvo->pvo_pte);
 2389                         if (pvo->pvo_pte.pte_lo & ptebit) {
 2390                                 count++;
 2391                                 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
 2392                         }
 2393                 }
 2394                 rv |= pvo->pvo_pte.pte_lo;
 2395                 pvo->pvo_pte.pte_lo &= ~ptebit;
 2396                 PMAP_PVO_CHECK(pvo);    /* sanity check */
 2397         }
 2398 
 2399         if (origbit != NULL) {
 2400                 *origbit = rv;
 2401         }
 2402 
 2403         return (count);
 2404 }
 2405 
 2406 /*
 2407  * Return true if the physical range is encompassed by the battable[idx]
 2408  */
 2409 static int
 2410 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
 2411 {
 2412         u_int prot;
 2413         u_int32_t start;
 2414         u_int32_t end;
 2415         u_int32_t bat_ble;
 2416 
 2417         /*
 2418          * Return immediately if not a valid mapping
 2419          */
 2420         if (!battable[idx].batu & BAT_Vs)
 2421                 return (EINVAL);
 2422 
 2423         /*
 2424          * The BAT entry must be cache-inhibited, guarded, and r/w
 2425          * so it can function as an i/o page
 2426          */
 2427         prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
 2428         if (prot != (BAT_I|BAT_G|BAT_PP_RW))
 2429                 return (EPERM); 
 2430 
 2431         /*
 2432          * The address should be within the BAT range. Assume that the
 2433          * start address in the BAT has the correct alignment (thus
 2434          * not requiring masking)
 2435          */
 2436         start = battable[idx].batl & BAT_PBS;
 2437         bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
 2438         end = start | (bat_ble << 15) | 0x7fff;
 2439 
 2440         if ((pa < start) || ((pa + size) > end))
 2441                 return (ERANGE);
 2442 
 2443         return (0);
 2444 }
 2445 
 2446 int
 2447 pmap_dev_direct_mapped(vm_offset_t pa, vm_size_t size)
 2448 {
 2449         int i;
 2450 
 2451         /*
 2452          * This currently does not work for entries that 
 2453          * overlap 256M BAT segments.
 2454          */
 2455 
 2456         for(i = 0; i < 16; i++)
 2457                 if (pmap_bat_mapped(i, pa, size) == 0)
 2458                         return (0);
 2459 
 2460         return (EFAULT);
 2461 }
 2462 
 2463 /*
 2464  * Map a set of physical memory pages into the kernel virtual
 2465  * address space. Return a pointer to where it is mapped. This
 2466  * routine is intended to be used for mapping device memory,
 2467  * NOT real memory.
 2468  */
 2469 void *
 2470 pmap_mapdev(vm_offset_t pa, vm_size_t size)
 2471 {
 2472         vm_offset_t va, tmpva, ppa, offset;
 2473         int i;
 2474 
 2475         ppa = trunc_page(pa);
 2476         offset = pa & PAGE_MASK;
 2477         size = roundup(offset + size, PAGE_SIZE);
 2478         
 2479         GIANT_REQUIRED;
 2480 
 2481         /*
 2482          * If the physical address lies within a valid BAT table entry,
 2483          * return the 1:1 mapping. This currently doesn't work
 2484          * for regions that overlap 256M BAT segments.
 2485          */
 2486         for (i = 0; i < 16; i++) {
 2487                 if (pmap_bat_mapped(i, pa, size) == 0)
 2488                         return ((void *) pa);
 2489         }
 2490 
 2491         va = kmem_alloc_nofault(kernel_map, size);
 2492         if (!va)
 2493                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 2494 
 2495         for (tmpva = va; size > 0;) {
 2496                 pmap_kenter(tmpva, ppa);
 2497                 TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
 2498                 size -= PAGE_SIZE;
 2499                 tmpva += PAGE_SIZE;
 2500                 ppa += PAGE_SIZE;
 2501         }
 2502 
 2503         return ((void *)(va + offset));
 2504 }
 2505 
 2506 void
 2507 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 2508 {
 2509         vm_offset_t base, offset;
 2510 
 2511         /*
 2512          * If this is outside kernel virtual space, then it's a
 2513          * battable entry and doesn't require unmapping
 2514          */
 2515         if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
 2516                 base = trunc_page(va);
 2517                 offset = va & PAGE_MASK;
 2518                 size = roundup(offset + size, PAGE_SIZE);
 2519                 kmem_free(kernel_map, base, size);
 2520         }
 2521 }

Cache object: 7bff28f510ebadecde46175e9ea13bca


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.