The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/security/audit/audit.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1999-2005 Apple Inc.
    5  * Copyright (c) 2006-2007, 2016-2018 Robert N. M. Watson
    6  * All rights reserved.
    7  *
    8  * Portions of this software were developed by BAE Systems, the University of
    9  * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
   10  * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
   11  * Computing (TC) research program.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1.  Redistributions of source code must retain the above copyright
   17  *     notice, this list of conditions and the following disclaimer.
   18  * 2.  Redistributions in binary form must reproduce the above copyright
   19  *     notice, this list of conditions and the following disclaimer in the
   20  *     documentation and/or other materials provided with the distribution.
   21  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
   22  *     its contributors may be used to endorse or promote products derived
   23  *     from this software without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
   29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
   34  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   35  * POSSIBILITY OF SUCH DAMAGE.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include <sys/param.h>
   42 #include <sys/condvar.h>
   43 #include <sys/conf.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/file.h>
   46 #include <sys/filedesc.h>
   47 #include <sys/fcntl.h>
   48 #include <sys/ipc.h>
   49 #include <sys/jail.h>
   50 #include <sys/kernel.h>
   51 #include <sys/kthread.h>
   52 #include <sys/malloc.h>
   53 #include <sys/mount.h>
   54 #include <sys/namei.h>
   55 #include <sys/priv.h>
   56 #include <sys/proc.h>
   57 #include <sys/queue.h>
   58 #include <sys/socket.h>
   59 #include <sys/socketvar.h>
   60 #include <sys/protosw.h>
   61 #include <sys/domain.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/sysproto.h>
   64 #include <sys/sysent.h>
   65 #include <sys/systm.h>
   66 #include <sys/ucred.h>
   67 #include <sys/uio.h>
   68 #include <sys/un.h>
   69 #include <sys/unistd.h>
   70 #include <sys/vnode.h>
   71 
   72 #include <bsm/audit.h>
   73 #include <bsm/audit_internal.h>
   74 #include <bsm/audit_kevents.h>
   75 
   76 #include <netinet/in.h>
   77 #include <netinet/in_pcb.h>
   78 
   79 #include <security/audit/audit.h>
   80 #include <security/audit/audit_private.h>
   81 
   82 #include <vm/uma.h>
   83 
   84 FEATURE(audit, "BSM audit support");
   85 
   86 static uma_zone_t       audit_record_zone;
   87 static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage");
   88 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
   89 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
   90 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
   91 MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage");
   92 
   93 static SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   94     "TrustedBSD audit controls");
   95 
   96 /*
   97  * Audit control settings that are set/read by system calls and are hence
   98  * non-static.
   99  *
  100  * Define the audit control flags.
  101  */
  102 int                     audit_trail_enabled;
  103 int                     audit_trail_suspended;
  104 #ifdef KDTRACE_HOOKS
  105 u_int                   audit_dtrace_enabled;
  106 #endif
  107 bool __read_frequently  audit_syscalls_enabled;
  108 
  109 /*
  110  * Flags controlling behavior in low storage situations.  Should we panic if
  111  * a write fails?  Should we fail stop if we're out of disk space?
  112  */
  113 int                     audit_panic_on_write_fail;
  114 int                     audit_fail_stop;
  115 int                     audit_argv;
  116 int                     audit_arge;
  117 
  118 /*
  119  * Are we currently "failing stop" due to out of disk space?
  120  */
  121 int                     audit_in_failure;
  122 
  123 /*
  124  * Global audit statistics.
  125  */
  126 struct audit_fstat      audit_fstat;
  127 
  128 /*
  129  * Preselection mask for non-attributable events.
  130  */
  131 struct au_mask          audit_nae_mask;
  132 
  133 /*
  134  * Mutex to protect global variables shared between various threads and
  135  * processes.
  136  */
  137 struct mtx              audit_mtx;
  138 
  139 /*
  140  * Queue of audit records ready for delivery to disk.  We insert new records
  141  * at the tail, and remove records from the head.  Also, a count of the
  142  * number of records used for checking queue depth.  In addition, a counter
  143  * of records that we have allocated but are not yet in the queue, which is
  144  * needed to estimate the total size of the combined set of records
  145  * outstanding in the system.
  146  */
  147 struct kaudit_queue     audit_q;
  148 int                     audit_q_len;
  149 int                     audit_pre_q_len;
  150 
  151 /*
  152  * Audit queue control settings (minimum free, low/high water marks, etc.)
  153  */
  154 struct au_qctrl         audit_qctrl;
  155 
  156 /*
  157  * Condition variable to signal to the worker that it has work to do: either
  158  * new records are in the queue, or a log replacement is taking place.
  159  */
  160 struct cv               audit_worker_cv;
  161 
  162 /*
  163  * Condition variable to flag when crossing the low watermark, meaning that
  164  * threads blocked due to hitting the high watermark can wake up and continue
  165  * to commit records.
  166  */
  167 struct cv               audit_watermark_cv;
  168 
  169 /*
  170  * Condition variable for  auditing threads wait on when in fail-stop mode.
  171  * Threads wait on this CV forever (and ever), never seeing the light of day
  172  * again.
  173  */
  174 static struct cv        audit_fail_cv;
  175 
  176 /*
  177  * Optional DTrace audit provider support: function pointers for preselection
  178  * and commit events.
  179  */
  180 #ifdef KDTRACE_HOOKS
  181 void    *(*dtaudit_hook_preselect)(au_id_t auid, au_event_t event,
  182             au_class_t class);
  183 int     (*dtaudit_hook_commit)(struct kaudit_record *kar, au_id_t auid,
  184             au_event_t event, au_class_t class, int sorf);
  185 void    (*dtaudit_hook_bsm)(struct kaudit_record *kar, au_id_t auid,
  186             au_event_t event, au_class_t class, int sorf,
  187             void *bsm_data, size_t bsm_lenlen);
  188 #endif
  189 
  190 /*
  191  * Kernel audit information.  This will store the current audit address
  192  * or host information that the kernel will use when it's generating
  193  * audit records.  This data is modified by the A_GET{SET}KAUDIT auditon(2)
  194  * command.
  195  */
  196 static struct auditinfo_addr    audit_kinfo;
  197 static struct rwlock            audit_kinfo_lock;
  198 
  199 #define KINFO_LOCK_INIT()       rw_init(&audit_kinfo_lock, \
  200                                     "audit_kinfo_lock")
  201 #define KINFO_RLOCK()           rw_rlock(&audit_kinfo_lock)
  202 #define KINFO_WLOCK()           rw_wlock(&audit_kinfo_lock)
  203 #define KINFO_RUNLOCK()         rw_runlock(&audit_kinfo_lock)
  204 #define KINFO_WUNLOCK()         rw_wunlock(&audit_kinfo_lock)
  205 
  206 /*
  207  * Check various policies to see if we should enable system-call audit hooks.
  208  * Note that despite the mutex being held, we want to assign a value exactly
  209  * once, as checks of the flag are performed lock-free for performance
  210  * reasons.  The mutex is used to get a consistent snapshot of policy state --
  211  * e.g., safely accessing the two audit_trail flags.
  212  */
  213 void
  214 audit_syscalls_enabled_update(void)
  215 {
  216 
  217         mtx_lock(&audit_mtx);
  218 #ifdef KDTRACE_HOOKS
  219         if (audit_dtrace_enabled)
  220                 audit_syscalls_enabled = true;
  221         else {
  222 #endif
  223                 if (audit_trail_enabled && !audit_trail_suspended)
  224                         audit_syscalls_enabled = true;
  225                 else
  226                         audit_syscalls_enabled = false;
  227 #ifdef KDTRACE_HOOKS
  228         }
  229 #endif
  230         mtx_unlock(&audit_mtx);
  231 }
  232 
  233 void
  234 audit_set_kinfo(struct auditinfo_addr *ak)
  235 {
  236 
  237         KASSERT(ak->ai_termid.at_type == AU_IPv4 ||
  238             ak->ai_termid.at_type == AU_IPv6,
  239             ("audit_set_kinfo: invalid address type"));
  240 
  241         KINFO_WLOCK();
  242         audit_kinfo = *ak;
  243         KINFO_WUNLOCK();
  244 }
  245 
  246 void
  247 audit_get_kinfo(struct auditinfo_addr *ak)
  248 {
  249 
  250         KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 ||
  251             audit_kinfo.ai_termid.at_type == AU_IPv6,
  252             ("audit_set_kinfo: invalid address type"));
  253 
  254         KINFO_RLOCK();
  255         *ak = audit_kinfo;
  256         KINFO_RUNLOCK();
  257 }
  258 
  259 /*
  260  * Construct an audit record for the passed thread.
  261  */
  262 static int
  263 audit_record_ctor(void *mem, int size, void *arg, int flags)
  264 {
  265         struct kaudit_record *ar;
  266         struct thread *td;
  267         struct ucred *cred;
  268         struct prison *pr;
  269 
  270         KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
  271 
  272         td = arg;
  273         ar = mem;
  274         bzero(ar, sizeof(*ar));
  275         ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
  276         nanotime(&ar->k_ar.ar_starttime);
  277 
  278         /*
  279          * Export the subject credential.
  280          */
  281         cred = td->td_ucred;
  282         cru2x(cred, &ar->k_ar.ar_subj_cred);
  283         ar->k_ar.ar_subj_ruid = cred->cr_ruid;
  284         ar->k_ar.ar_subj_rgid = cred->cr_rgid;
  285         ar->k_ar.ar_subj_egid = cred->cr_groups[0];
  286         ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid;
  287         ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid;
  288         ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
  289         ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask;
  290         ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid;
  291         /*
  292          * If this process is jailed, make sure we capture the name of the
  293          * jail so we can use it to generate a zonename token when we covert
  294          * this record to BSM.
  295          */
  296         if (jailed(cred)) {
  297                 pr = cred->cr_prison;
  298                 (void) strlcpy(ar->k_ar.ar_jailname, pr->pr_name,
  299                     sizeof(ar->k_ar.ar_jailname));
  300         } else
  301                 ar->k_ar.ar_jailname[0] = '\0';
  302         return (0);
  303 }
  304 
  305 static void
  306 audit_record_dtor(void *mem, int size, void *arg)
  307 {
  308         struct kaudit_record *ar;
  309 
  310         KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
  311 
  312         ar = mem;
  313         if (ar->k_ar.ar_arg_upath1 != NULL)
  314                 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
  315         if (ar->k_ar.ar_arg_upath2 != NULL)
  316                 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
  317         if (ar->k_ar.ar_arg_text != NULL)
  318                 free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
  319         if (ar->k_udata != NULL)
  320                 free(ar->k_udata, M_AUDITDATA);
  321         if (ar->k_ar.ar_arg_argv != NULL)
  322                 free(ar->k_ar.ar_arg_argv, M_AUDITTEXT);
  323         if (ar->k_ar.ar_arg_envv != NULL)
  324                 free(ar->k_ar.ar_arg_envv, M_AUDITTEXT);
  325         if (ar->k_ar.ar_arg_groups.gidset != NULL)
  326                 free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET);
  327 }
  328 
  329 /*
  330  * Initialize the Audit subsystem: configuration state, work queue,
  331  * synchronization primitives, worker thread, and trigger device node.  Also
  332  * call into the BSM assembly code to initialize it.
  333  */
  334 static void
  335 audit_init(void)
  336 {
  337 
  338         audit_trail_enabled = 0;
  339         audit_trail_suspended = 0;
  340         audit_syscalls_enabled = false;
  341         audit_panic_on_write_fail = 0;
  342         audit_fail_stop = 0;
  343         audit_in_failure = 0;
  344         audit_argv = 0;
  345         audit_arge = 0;
  346 
  347         audit_fstat.af_filesz = 0;      /* '' means unset, unbounded. */
  348         audit_fstat.af_currsz = 0;
  349         audit_nae_mask.am_success = 0;
  350         audit_nae_mask.am_failure = 0;
  351 
  352         TAILQ_INIT(&audit_q);
  353         audit_q_len = 0;
  354         audit_pre_q_len = 0;
  355         audit_qctrl.aq_hiwater = AQ_HIWATER;
  356         audit_qctrl.aq_lowater = AQ_LOWATER;
  357         audit_qctrl.aq_bufsz = AQ_BUFSZ;
  358         audit_qctrl.aq_minfree = AU_FS_MINFREE;
  359 
  360         audit_kinfo.ai_termid.at_type = AU_IPv4;
  361         audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY;
  362 
  363         mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
  364         KINFO_LOCK_INIT();
  365         cv_init(&audit_worker_cv, "audit_worker_cv");
  366         cv_init(&audit_watermark_cv, "audit_watermark_cv");
  367         cv_init(&audit_fail_cv, "audit_fail_cv");
  368 
  369         audit_record_zone = uma_zcreate("audit_record",
  370             sizeof(struct kaudit_record), audit_record_ctor,
  371             audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
  372 
  373         /* First initialisation of audit_syscalls_enabled. */
  374         audit_syscalls_enabled_update();
  375 
  376         /* Initialize the BSM audit subsystem. */
  377         kau_init();
  378 
  379         audit_trigger_init();
  380 
  381         /* Register shutdown handler. */
  382         EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
  383             SHUTDOWN_PRI_FIRST);
  384 
  385         /* Start audit worker thread. */
  386         audit_worker_init();
  387 }
  388 
  389 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL);
  390 
  391 /*
  392  * Drain the audit queue and close the log at shutdown.  Note that this can
  393  * be called both from the system shutdown path and also from audit
  394  * configuration syscalls, so 'arg' and 'howto' are ignored.
  395  *
  396  * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to
  397  * drain before returning, which could lead to lost records on shutdown.
  398  */
  399 void
  400 audit_shutdown(void *arg, int howto)
  401 {
  402 
  403         audit_rotate_vnode(NULL, NULL);
  404 }
  405 
  406 /*
  407  * Return the current thread's audit record, if any.
  408  */
  409 struct kaudit_record *
  410 currecord(void)
  411 {
  412 
  413         return (curthread->td_ar);
  414 }
  415 
  416 /*
  417  * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
  418  * pre_q space, suspending the system call until there is room?
  419  */
  420 struct kaudit_record *
  421 audit_new(int event, struct thread *td)
  422 {
  423         struct kaudit_record *ar;
  424 
  425         /*
  426          * Note: the number of outstanding uncommitted audit records is
  427          * limited to the number of concurrent threads servicing system calls
  428          * in the kernel.
  429          */
  430         ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
  431         ar->k_ar.ar_event = event;
  432 
  433         mtx_lock(&audit_mtx);
  434         audit_pre_q_len++;
  435         mtx_unlock(&audit_mtx);
  436 
  437         return (ar);
  438 }
  439 
  440 void
  441 audit_free(struct kaudit_record *ar)
  442 {
  443 
  444         uma_zfree(audit_record_zone, ar);
  445 }
  446 
  447 void
  448 audit_commit(struct kaudit_record *ar, int error, int retval)
  449 {
  450         au_event_t event;
  451         au_class_t class;
  452         au_id_t auid;
  453         int sorf;
  454         struct au_mask *aumask;
  455 
  456         if (ar == NULL)
  457                 return;
  458 
  459         ar->k_ar.ar_errno = error;
  460         ar->k_ar.ar_retval = retval;
  461         nanotime(&ar->k_ar.ar_endtime);
  462 
  463         /*
  464          * Decide whether to commit the audit record by checking the error
  465          * value from the system call and using the appropriate audit mask.
  466          */
  467         if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
  468                 aumask = &audit_nae_mask;
  469         else
  470                 aumask = &ar->k_ar.ar_subj_amask;
  471 
  472         if (error)
  473                 sorf = AU_PRS_FAILURE;
  474         else
  475                 sorf = AU_PRS_SUCCESS;
  476 
  477         /*
  478          * syscalls.master sometimes contains a prototype event number, which
  479          * we will transform into a more specific event number now that we
  480          * have more complete information gathered during the system call.
  481          */
  482         switch(ar->k_ar.ar_event) {
  483         case AUE_OPEN_RWTC:
  484                 ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
  485                     ar->k_ar.ar_arg_fflags, error);
  486                 break;
  487 
  488         case AUE_OPENAT_RWTC:
  489                 ar->k_ar.ar_event = audit_flags_and_error_to_openatevent(
  490                     ar->k_ar.ar_arg_fflags, error);
  491                 break;
  492 
  493         case AUE_SYSCTL:
  494                 ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
  495                     ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
  496                 break;
  497 
  498         case AUE_AUDITON:
  499                 /* Convert the auditon() command to an event. */
  500                 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
  501                 break;
  502 
  503         case AUE_MSGSYS:
  504                 if (ARG_IS_VALID(ar, ARG_SVIPC_WHICH))
  505                         ar->k_ar.ar_event =
  506                             audit_msgsys_to_event(ar->k_ar.ar_arg_svipc_which);
  507                 break;
  508 
  509         case AUE_SEMSYS:
  510                 if (ARG_IS_VALID(ar, ARG_SVIPC_WHICH))
  511                         ar->k_ar.ar_event =
  512                             audit_semsys_to_event(ar->k_ar.ar_arg_svipc_which);
  513                 break;
  514 
  515         case AUE_SHMSYS:
  516                 if (ARG_IS_VALID(ar, ARG_SVIPC_WHICH))
  517                         ar->k_ar.ar_event =
  518                             audit_shmsys_to_event(ar->k_ar.ar_arg_svipc_which);
  519                 break;
  520         }
  521 
  522         auid = ar->k_ar.ar_subj_auid;
  523         event = ar->k_ar.ar_event;
  524         class = au_event_class(event);
  525 
  526         ar->k_ar_commit |= AR_COMMIT_KERNEL;
  527         if (au_preselect(event, class, aumask, sorf) != 0)
  528                 ar->k_ar_commit |= AR_PRESELECT_TRAIL;
  529         if (audit_pipe_preselect(auid, event, class, sorf,
  530             ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
  531                 ar->k_ar_commit |= AR_PRESELECT_PIPE;
  532 #ifdef KDTRACE_HOOKS
  533         /*
  534          * Expose the audit record to DTrace, both to allow the "commit" probe
  535          * to fire if it's desirable, and also to allow a decision to be made
  536          * about later firing with BSM in the audit worker.
  537          */
  538         if (dtaudit_hook_commit != NULL) {
  539                 if (dtaudit_hook_commit(ar, auid, event, class, sorf) != 0)
  540                         ar->k_ar_commit |= AR_PRESELECT_DTRACE;
  541         }
  542 #endif
  543 
  544         if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
  545             AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE |
  546             AR_PRESELECT_DTRACE)) == 0) {
  547                 mtx_lock(&audit_mtx);
  548                 audit_pre_q_len--;
  549                 mtx_unlock(&audit_mtx);
  550                 audit_free(ar);
  551                 return;
  552         }
  553 
  554         /*
  555          * Note: it could be that some records initiated while audit was
  556          * enabled should still be committed?
  557          *
  558          * NB: The check here is not for audit_syscalls because any
  559          * DTrace-related obligations have been fulfilled above -- we're just
  560          * down to the trail and pipes now.
  561          */
  562         mtx_lock(&audit_mtx);
  563         if (audit_trail_suspended || !audit_trail_enabled) {
  564                 audit_pre_q_len--;
  565                 mtx_unlock(&audit_mtx);
  566                 audit_free(ar);
  567                 return;
  568         }
  569 
  570         /*
  571          * Constrain the number of committed audit records based on the
  572          * configurable parameter.
  573          */
  574         while (audit_q_len >= audit_qctrl.aq_hiwater)
  575                 cv_wait(&audit_watermark_cv, &audit_mtx);
  576 
  577         TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
  578         audit_q_len++;
  579         audit_pre_q_len--;
  580         cv_signal(&audit_worker_cv);
  581         mtx_unlock(&audit_mtx);
  582 }
  583 
  584 /*
  585  * audit_syscall_enter() is called on entry to each system call.  It is
  586  * responsible for deciding whether or not to audit the call (preselection),
  587  * and if so, allocating a per-thread audit record.  audit_new() will fill in
  588  * basic thread/credential properties.
  589  *
  590  * This function will be entered only if audit_syscalls_enabled was set in the
  591  * macro wrapper for this function.  It could be cleared by the time this
  592  * function runs, but that is an acceptable race.
  593  */
  594 void
  595 audit_syscall_enter(unsigned short code, struct thread *td)
  596 {
  597         struct au_mask *aumask;
  598 #ifdef KDTRACE_HOOKS
  599         void *dtaudit_state;
  600 #endif
  601         au_class_t class;
  602         au_event_t event;
  603         au_id_t auid;
  604         int record_needed;
  605 
  606         KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
  607         KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
  608             ("audit_syscall_enter: TDP_AUDITREC set"));
  609 
  610         /*
  611          * In FreeBSD, each ABI has its own system call table, and hence
  612          * mapping of system call codes to audit events.  Convert the code to
  613          * an audit event identifier using the process system call table
  614          * reference.  In Darwin, there's only one, so we use the global
  615          * symbol for the system call table.  No audit record is generated
  616          * for bad system calls, as no operation has been performed.
  617          */
  618         if (code >= td->td_proc->p_sysent->sv_size)
  619                 return;
  620 
  621         event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
  622         if (event == AUE_NULL)
  623                 return;
  624 
  625         /*
  626          * Check which audit mask to use; either the kernel non-attributable
  627          * event mask or the process audit mask.
  628          */
  629         auid = td->td_ucred->cr_audit.ai_auid;
  630         if (auid == AU_DEFAUDITID)
  631                 aumask = &audit_nae_mask;
  632         else
  633                 aumask = &td->td_ucred->cr_audit.ai_mask;
  634 
  635         /*
  636          * Determine whether trail or pipe preselection would like an audit
  637          * record allocated for this system call.
  638          */
  639         class = au_event_class(event);
  640         if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
  641                 /*
  642                  * If we're out of space and need to suspend unprivileged
  643                  * processes, do that here rather than trying to allocate
  644                  * another audit record.
  645                  *
  646                  * Note: we might wish to be able to continue here in the
  647                  * future, if the system recovers.  That should be possible
  648                  * by means of checking the condition in a loop around
  649                  * cv_wait().  It might be desirable to reevaluate whether an
  650                  * audit record is still required for this event by
  651                  * re-calling au_preselect().
  652                  */
  653                 if (audit_in_failure &&
  654                     priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
  655                         cv_wait(&audit_fail_cv, &audit_mtx);
  656                         panic("audit_failing_stop: thread continued");
  657                 }
  658                 record_needed = 1;
  659         } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
  660                 record_needed = 1;
  661         } else {
  662                 record_needed = 0;
  663         }
  664 
  665         /*
  666          * After audit trails and pipes have made their policy choices, DTrace
  667          * may request that records be generated as well.  This is a slightly
  668          * complex affair, as the DTrace audit provider needs the audit
  669          * framework to maintain some state on the audit record, which has not
  670          * been allocated at the point where the decision has to be made.
  671          * This hook must run even if we are not changing the decision, as
  672          * DTrace may want to stick event state onto a record we were going to
  673          * produce due to the trail or pipes.  The event state returned by the
  674          * DTrace provider must be safe without locks held between here and
  675          * below -- i.e., dtaudit_state must must refer to stable memory.
  676          */
  677 #ifdef KDTRACE_HOOKS
  678         dtaudit_state = NULL;
  679         if (dtaudit_hook_preselect != NULL) {
  680                 dtaudit_state = dtaudit_hook_preselect(auid, event, class);
  681                 if (dtaudit_state != NULL)
  682                         record_needed = 1;
  683         }
  684 #endif
  685 
  686         /*
  687          * If a record is required, allocate it and attach it to the thread
  688          * for use throughout the system call.  Also attach DTrace state if
  689          * required.
  690          *
  691          * XXXRW: If we decide to reference count the evname_elem underlying
  692          * dtaudit_state, we will need to free here if no record is allocated
  693          * or allocatable.
  694          */
  695         if (record_needed) {
  696                 td->td_ar = audit_new(event, td);
  697                 if (td->td_ar != NULL) {
  698                         td->td_pflags |= TDP_AUDITREC;
  699 #ifdef KDTRACE_HOOKS
  700                         td->td_ar->k_dtaudit_state = dtaudit_state;
  701 #endif
  702                 }
  703         } else
  704                 td->td_ar = NULL;
  705 }
  706 
  707 /*
  708  * audit_syscall_exit() is called from the return of every system call, or in
  709  * the event of exit1(), during the execution of exit1().  It is responsible
  710  * for committing the audit record, if any, along with return condition.
  711  */
  712 void
  713 audit_syscall_exit(int error, struct thread *td)
  714 {
  715         int retval;
  716 
  717         /*
  718          * Commit the audit record as desired; once we pass the record into
  719          * audit_commit(), the memory is owned by the audit subsystem.  The
  720          * return value from the system call is stored on the user thread.
  721          * If there was an error, the return value is set to -1, imitating
  722          * the behavior of the cerror routine.
  723          */
  724         if (error)
  725                 retval = -1;
  726         else
  727                 retval = td->td_retval[0];
  728 
  729         audit_commit(td->td_ar, error, retval);
  730         td->td_ar = NULL;
  731         td->td_pflags &= ~TDP_AUDITREC;
  732 }
  733 
  734 void
  735 audit_cred_copy(struct ucred *src, struct ucred *dest)
  736 {
  737 
  738         bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit));
  739 }
  740 
  741 void
  742 audit_cred_destroy(struct ucred *cred)
  743 {
  744 
  745 }
  746 
  747 void
  748 audit_cred_init(struct ucred *cred)
  749 {
  750 
  751         bzero(&cred->cr_audit, sizeof(cred->cr_audit));
  752 }
  753 
  754 /*
  755  * Initialize audit information for the first kernel process (proc 0) and for
  756  * the first user process (init).
  757  */
  758 void
  759 audit_cred_kproc0(struct ucred *cred)
  760 {
  761 
  762         cred->cr_audit.ai_auid = AU_DEFAUDITID;
  763         cred->cr_audit.ai_termid.at_type = AU_IPv4;
  764 }
  765 
  766 void
  767 audit_cred_proc1(struct ucred *cred)
  768 {
  769 
  770         cred->cr_audit.ai_auid = AU_DEFAUDITID;
  771         cred->cr_audit.ai_termid.at_type = AU_IPv4;
  772 }
  773 
  774 void
  775 audit_thread_alloc(struct thread *td)
  776 {
  777 
  778         td->td_ar = NULL;
  779 }
  780 
  781 void
  782 audit_thread_free(struct thread *td)
  783 {
  784 
  785         KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
  786         KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
  787             ("audit_thread_free: TDP_AUDITREC set"));
  788 }
  789 
  790 void
  791 audit_proc_coredump(struct thread *td, char *path, int errcode)
  792 {
  793         struct kaudit_record *ar;
  794         struct au_mask *aumask;
  795         struct ucred *cred;
  796         au_class_t class;
  797         int ret, sorf;
  798         char **pathp;
  799         au_id_t auid;
  800 
  801         ret = 0;
  802 
  803         /*
  804          * Make sure we are using the correct preselection mask.
  805          */
  806         cred = td->td_ucred;
  807         auid = cred->cr_audit.ai_auid;
  808         if (auid == AU_DEFAUDITID)
  809                 aumask = &audit_nae_mask;
  810         else
  811                 aumask = &cred->cr_audit.ai_mask;
  812         /*
  813          * It's possible for coredump(9) generation to fail.  Make sure that
  814          * we handle this case correctly for preselection.
  815          */
  816         if (errcode != 0)
  817                 sorf = AU_PRS_FAILURE;
  818         else
  819                 sorf = AU_PRS_SUCCESS;
  820         class = au_event_class(AUE_CORE);
  821         if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 &&
  822             audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0)
  823                 return;
  824 
  825         /*
  826          * If we are interested in seeing this audit record, allocate it.
  827          * Where possible coredump records should contain a pathname and arg32
  828          * (signal) tokens.
  829          */
  830         ar = audit_new(AUE_CORE, td);
  831         if (ar == NULL)
  832                 return;
  833         if (path != NULL) {
  834                 pathp = &ar->k_ar.ar_arg_upath1;
  835                 *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK);
  836                 audit_canon_path(td, AT_FDCWD, path, *pathp);
  837                 ARG_SET_VALID(ar, ARG_UPATH1);
  838         }
  839         ar->k_ar.ar_arg_signum = td->td_proc->p_sig;
  840         ARG_SET_VALID(ar, ARG_SIGNUM);
  841         if (errcode != 0)
  842                 ret = 1;
  843         audit_commit(ar, errcode, ret);
  844 }

Cache object: 530b63d1f364675c1471fcc7b5d417d3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.