The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/security/audit/audit_worker.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1999-2008 Apple Inc.
    5  * Copyright (c) 2006-2008, 2016, 2018 Robert N. M. Watson
    6  * All rights reserved.
    7  *
    8  * Portions of this software were developed by BAE Systems, the University of
    9  * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
   10  * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
   11  * Computing (TC) research program.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1.  Redistributions of source code must retain the above copyright
   17  *     notice, this list of conditions and the following disclaimer.
   18  * 2.  Redistributions in binary form must reproduce the above copyright
   19  *     notice, this list of conditions and the following disclaimer in the
   20  *     documentation and/or other materials provided with the distribution.
   21  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
   22  *     its contributors may be used to endorse or promote products derived
   23  *     from this software without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
   29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
   34  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   35  * POSSIBILITY OF SUCH DAMAGE.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include <sys/param.h>
   42 #include <sys/condvar.h>
   43 #include <sys/conf.h>
   44 #include <sys/file.h>
   45 #include <sys/filedesc.h>
   46 #include <sys/fcntl.h>
   47 #include <sys/ipc.h>
   48 #include <sys/kernel.h>
   49 #include <sys/kthread.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mount.h>
   52 #include <sys/namei.h>
   53 #include <sys/proc.h>
   54 #include <sys/queue.h>
   55 #include <sys/socket.h>
   56 #include <sys/socketvar.h>
   57 #include <sys/protosw.h>
   58 #include <sys/domain.h>
   59 #include <sys/sx.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/sysent.h>
   62 #include <sys/systm.h>
   63 #include <sys/ucred.h>
   64 #include <sys/uio.h>
   65 #include <sys/un.h>
   66 #include <sys/unistd.h>
   67 #include <sys/vnode.h>
   68 
   69 #include <bsm/audit.h>
   70 #include <bsm/audit_internal.h>
   71 #include <bsm/audit_kevents.h>
   72 
   73 #include <netinet/in.h>
   74 #include <netinet/in_pcb.h>
   75 
   76 #include <security/audit/audit.h>
   77 #include <security/audit/audit_private.h>
   78 
   79 #include <vm/uma.h>
   80 
   81 #include <machine/stdarg.h>
   82 
   83 /*
   84  * Worker thread that will schedule disk I/O, etc.
   85  */
   86 static struct proc              *audit_thread;
   87 
   88 /*
   89  * audit_cred and audit_vp are the stored credential and vnode to use for
   90  * active audit trail.  They are protected by the audit worker lock, which
   91  * will be held across all I/O and all rotation to prevent them from being
   92  * replaced (rotated) while in use.  The audit_file_rotate_wait flag is set
   93  * when the kernel has delivered a trigger to auditd to rotate the trail, and
   94  * is cleared when the next rotation takes place.  It is also protected by
   95  * the audit worker lock.
   96  */
   97 static int               audit_file_rotate_wait;
   98 static struct ucred     *audit_cred;
   99 static struct vnode     *audit_vp;
  100 static off_t             audit_size;
  101 static struct sx         audit_worker_lock;
  102 
  103 #define AUDIT_WORKER_LOCK_INIT()        sx_init(&audit_worker_lock, \
  104                                             "audit_worker_lock");
  105 #define AUDIT_WORKER_LOCK_ASSERT()      sx_assert(&audit_worker_lock, \
  106                                             SA_XLOCKED)
  107 #define AUDIT_WORKER_LOCK()             sx_xlock(&audit_worker_lock)
  108 #define AUDIT_WORKER_UNLOCK()           sx_xunlock(&audit_worker_lock)
  109 
  110 static void
  111 audit_worker_sync_vp(struct vnode *vp, struct mount *mp, const char *fmt, ...)
  112 {
  113         struct mount *mp1;
  114         int error;
  115         va_list va;
  116 
  117         va_start(va, fmt);
  118         error = vn_start_write(vp, &mp1, 0);
  119         if (error == 0) {
  120                 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  121                 (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  122                 VOP_UNLOCK(vp);
  123                 vn_finished_write(mp1);
  124         }
  125         vfs_unbusy(mp);
  126         vpanic(fmt, va);
  127         va_end(va);
  128 }
  129 
  130 /*
  131  * Write an audit record to a file, performed as the last stage after both
  132  * preselection and BSM conversion.  Both space management and write failures
  133  * are handled in this function.
  134  *
  135  * No attempt is made to deal with possible failure to deliver a trigger to
  136  * the audit daemon, since the message is asynchronous anyway.
  137  */
  138 static void
  139 audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
  140     size_t len)
  141 {
  142         static struct timeval last_lowspace_trigger;
  143         static struct timeval last_fail;
  144         static int cur_lowspace_trigger;
  145         struct statfs *mnt_stat;
  146         struct mount *mp;
  147         int error;
  148         static int cur_fail;
  149         long temp;
  150 
  151         AUDIT_WORKER_LOCK_ASSERT();
  152 
  153         if (vp == NULL)
  154                 return;
  155 
  156         mp = vp->v_mount;
  157         if (mp == NULL) {
  158                 error = EINVAL;
  159                 goto fail;
  160         }
  161         error = vfs_busy(mp, 0);
  162         if (error != 0) {
  163                 mp = NULL;
  164                 goto fail;
  165         }
  166         mnt_stat = &mp->mnt_stat;
  167 
  168         /*
  169          * First, gather statistics on the audit log file and file system so
  170          * that we know how we're doing on space.  Consider failure of these
  171          * operations to indicate a future inability to write to the file.
  172          */
  173         error = VFS_STATFS(mp, mnt_stat);
  174         if (error != 0)
  175                 goto fail;
  176 
  177         /*
  178          * We handle four different space-related limits:
  179          *
  180          * - A fixed (hard) limit on the minimum free blocks we require on
  181          *   the file system, and results in record loss, a trigger, and
  182          *   possible fail stop due to violating invariants.
  183          *
  184          * - An administrative (soft) limit, which when fallen below, results
  185          *   in the kernel notifying the audit daemon of low space.
  186          *
  187          * - An audit trail size limit, which when gone above, results in the
  188          *   kernel notifying the audit daemon that rotation is desired.
  189          *
  190          * - The total depth of the kernel audit record exceeding free space,
  191          *   which can lead to possible fail stop (with drain), in order to
  192          *   prevent violating invariants.  Failure here doesn't halt
  193          *   immediately, but prevents new records from being generated.
  194          *
  195          * Possibly, the last of these should be handled differently, always
  196          * allowing a full queue to be lost, rather than trying to prevent
  197          * loss.
  198          *
  199          * First, handle the hard limit, which generates a trigger and may
  200          * fail stop.  This is handled in the same manner as ENOSPC from
  201          * VOP_WRITE, and results in record loss.
  202          */
  203         if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
  204                 error = ENOSPC;
  205                 goto fail_enospc;
  206         }
  207 
  208         /*
  209          * Second, handle falling below the soft limit, if defined; we send
  210          * the daemon a trigger and continue processing the record.  Triggers
  211          * are limited to 1/sec.
  212          */
  213         if (audit_qctrl.aq_minfree != 0) {
  214                 temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
  215                 if (mnt_stat->f_bfree < temp) {
  216                         if (ppsratecheck(&last_lowspace_trigger,
  217                             &cur_lowspace_trigger, 1)) {
  218                                 (void)audit_send_trigger(
  219                                     AUDIT_TRIGGER_LOW_SPACE);
  220                                 printf("Warning: disk space low (< %d%% free) "
  221                                     "on audit log file-system\n",
  222                                     audit_qctrl.aq_minfree);
  223                         }
  224                 }
  225         }
  226 
  227         /*
  228          * If the current file is getting full, generate a rotation trigger
  229          * to the daemon.  This is only approximate, which is fine as more
  230          * records may be generated before the daemon rotates the file.
  231          */
  232         if (audit_fstat.af_filesz != 0 &&
  233             audit_size >= audit_fstat.af_filesz * (audit_file_rotate_wait + 1)) {
  234                 AUDIT_WORKER_LOCK_ASSERT();
  235 
  236                 audit_file_rotate_wait++;
  237                 (void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
  238         }
  239 
  240         /*
  241          * If the estimated amount of audit data in the audit event queue
  242          * (plus records allocated but not yet queued) has reached the amount
  243          * of free space on the disk, then we need to go into an audit fail
  244          * stop state, in which we do not permit the allocation/committing of
  245          * any new audit records.  We continue to process records but don't
  246          * allow any activities that might generate new records.  In the
  247          * future, we might want to detect when space is available again and
  248          * allow operation to continue, but this behavior is sufficient to
  249          * meet fail stop requirements in CAPP.
  250          */
  251         if (audit_fail_stop) {
  252                 if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
  253                     MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
  254                     (unsigned long)(mnt_stat->f_bfree)) {
  255                         if (ppsratecheck(&last_fail, &cur_fail, 1))
  256                                 printf("audit_record_write: free space "
  257                                     "below size of audit queue, failing "
  258                                     "stop\n");
  259                         audit_in_failure = 1;
  260                 } else if (audit_in_failure) {
  261                         /*
  262                          * Note: if we want to handle recovery, this is the
  263                          * spot to do it: unset audit_in_failure, and issue a
  264                          * wakeup on the cv.
  265                          */
  266                 }
  267         }
  268 
  269         error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
  270             IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
  271         if (error == ENOSPC)
  272                 goto fail_enospc;
  273         else if (error)
  274                 goto fail;
  275         AUDIT_WORKER_LOCK_ASSERT();
  276         audit_size += len;
  277 
  278         /*
  279          * Catch completion of a queue drain here; if we're draining and the
  280          * queue is now empty, fail stop.  That audit_fail_stop is implicitly
  281          * true, since audit_in_failure can only be set of audit_fail_stop is
  282          * set.
  283          *
  284          * Note: if we handle recovery from audit_in_failure, then we need to
  285          * make panic here conditional.
  286          */
  287         if (audit_in_failure) {
  288                 if (audit_q_len == 0 && audit_pre_q_len == 0) {
  289                         audit_worker_sync_vp(vp, mp,
  290                             "Audit store overflow; record queue drained.");
  291                 }
  292         }
  293 
  294         vfs_unbusy(mp);
  295         return;
  296 
  297 fail_enospc:
  298         /*
  299          * ENOSPC is considered a special case with respect to failures, as
  300          * this can reflect either our preemptive detection of insufficient
  301          * space, or ENOSPC returned by the vnode write call.
  302          */
  303         if (audit_fail_stop) {
  304                 audit_worker_sync_vp(vp, mp,
  305                     "Audit log space exhausted and fail-stop set.");
  306         }
  307         (void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
  308         audit_trail_suspended = 1;
  309         audit_syscalls_enabled_update();
  310 
  311         /* FALLTHROUGH */
  312 fail:
  313         /*
  314          * We have failed to write to the file, so the current record is
  315          * lost, which may require an immediate system halt.
  316          */
  317         if (audit_panic_on_write_fail) {
  318                 audit_worker_sync_vp(vp, mp,
  319                     "audit_worker: write error %d\n", error);
  320         } else if (ppsratecheck(&last_fail, &cur_fail, 1))
  321                 printf("audit_worker: write error %d\n", error);
  322         if (mp != NULL)
  323                 vfs_unbusy(mp);
  324 }
  325 
  326 /*
  327  * Given a kernel audit record, process as required.  Kernel audit records
  328  * are converted to one, or possibly two, BSM records, depending on whether
  329  * there is a user audit record present also.  Kernel records need be
  330  * converted to BSM before they can be written out.  Both types will be
  331  * written to disk, and audit pipes.
  332  */
  333 static void
  334 audit_worker_process_record(struct kaudit_record *ar)
  335 {
  336         struct au_record *bsm;
  337         au_class_t class;
  338         au_event_t event;
  339         au_id_t auid;
  340         int error, sorf;
  341         int locked;
  342 
  343         /*
  344          * We hold the audit worker lock over both writes, if there are two,
  345          * so that the two records won't be split across a rotation and end
  346          * up in two different trail files.
  347          */
  348         if (((ar->k_ar_commit & AR_COMMIT_USER) &&
  349             (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
  350             (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
  351                 AUDIT_WORKER_LOCK();
  352                 locked = 1;
  353         } else
  354                 locked = 0;
  355 
  356         /*
  357          * First, handle the user record, if any: commit to the system trail
  358          * and audit pipes as selected.
  359          */
  360         if ((ar->k_ar_commit & AR_COMMIT_USER) &&
  361             (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
  362                 AUDIT_WORKER_LOCK_ASSERT();
  363                 audit_record_write(audit_vp, audit_cred, ar->k_udata,
  364                     ar->k_ulen);
  365         }
  366 
  367         if ((ar->k_ar_commit & AR_COMMIT_USER) &&
  368             (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
  369                 audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
  370 
  371         if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
  372             ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
  373             (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0 &&
  374             (ar->k_ar_commit & AR_PRESELECT_DTRACE) == 0))
  375                 goto out;
  376 
  377         auid = ar->k_ar.ar_subj_auid;
  378         event = ar->k_ar.ar_event;
  379         class = au_event_class(event);
  380         if (ar->k_ar.ar_errno == 0)
  381                 sorf = AU_PRS_SUCCESS;
  382         else
  383                 sorf = AU_PRS_FAILURE;
  384 
  385         error = kaudit_to_bsm(ar, &bsm);
  386         switch (error) {
  387         case BSM_NOAUDIT:
  388                 goto out;
  389 
  390         case BSM_FAILURE:
  391                 printf("audit_worker_process_record: BSM_FAILURE\n");
  392                 goto out;
  393 
  394         case BSM_SUCCESS:
  395                 break;
  396 
  397         default:
  398                 panic("kaudit_to_bsm returned %d", error);
  399         }
  400 
  401         if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
  402                 AUDIT_WORKER_LOCK_ASSERT();
  403                 audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
  404         }
  405 
  406         if (ar->k_ar_commit & AR_PRESELECT_PIPE)
  407                 audit_pipe_submit(auid, event, class, sorf,
  408                     ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
  409                     bsm->len);
  410 
  411 #ifdef KDTRACE_HOOKS
  412         /*
  413          * Version of the dtaudit commit hook that accepts BSM.
  414          */
  415         if (ar->k_ar_commit & AR_PRESELECT_DTRACE) {
  416                 if (dtaudit_hook_bsm != NULL)
  417                         dtaudit_hook_bsm(ar, auid, event, class, sorf,
  418                             bsm->data, bsm->len);
  419         }
  420 #endif
  421 
  422         kau_free(bsm);
  423 out:
  424         if (locked)
  425                 AUDIT_WORKER_UNLOCK();
  426 }
  427 
  428 /*
  429  * The audit_worker thread is responsible for watching the event queue,
  430  * dequeueing records, converting them to BSM format, and committing them to
  431  * disk.  In order to minimize lock thrashing, records are dequeued in sets
  432  * to a thread-local work queue.
  433  *
  434  * Note: this means that the effect bound on the size of the pending record
  435  * queue is 2x the length of the global queue.
  436  */
  437 static void
  438 audit_worker(void *arg)
  439 {
  440         struct kaudit_queue ar_worklist;
  441         struct kaudit_record *ar;
  442         int lowater_signal;
  443 
  444         TAILQ_INIT(&ar_worklist);
  445         mtx_lock(&audit_mtx);
  446         while (1) {
  447                 mtx_assert(&audit_mtx, MA_OWNED);
  448 
  449                 /*
  450                  * Wait for a record.
  451                  */
  452                 while (TAILQ_EMPTY(&audit_q))
  453                         cv_wait(&audit_worker_cv, &audit_mtx);
  454 
  455                 /*
  456                  * If there are records in the global audit record queue,
  457                  * transfer them to a thread-local queue and process them
  458                  * one by one.  If we cross the low watermark threshold,
  459                  * signal any waiting processes that they may wake up and
  460                  * continue generating records.
  461                  */
  462                 lowater_signal = 0;
  463                 while ((ar = TAILQ_FIRST(&audit_q))) {
  464                         TAILQ_REMOVE(&audit_q, ar, k_q);
  465                         audit_q_len--;
  466                         if (audit_q_len == audit_qctrl.aq_lowater)
  467                                 lowater_signal++;
  468                         TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
  469                 }
  470                 if (lowater_signal)
  471                         cv_broadcast(&audit_watermark_cv);
  472 
  473                 mtx_unlock(&audit_mtx);
  474                 while ((ar = TAILQ_FIRST(&ar_worklist))) {
  475                         TAILQ_REMOVE(&ar_worklist, ar, k_q);
  476                         audit_worker_process_record(ar);
  477                         audit_free(ar);
  478                 }
  479                 mtx_lock(&audit_mtx);
  480         }
  481 }
  482 
  483 /*
  484  * audit_rotate_vnode() is called by a user or kernel thread to configure or
  485  * de-configure auditing on a vnode.  The arguments are the replacement
  486  * credential (referenced) and vnode (referenced and opened) to substitute
  487  * for the current credential and vnode, if any.  If either is set to NULL,
  488  * both should be NULL, and this is used to indicate that audit is being
  489  * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
  490  * generating rotation requests to auditd.
  491  */
  492 void
  493 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
  494 {
  495         struct ucred *old_audit_cred;
  496         struct vnode *old_audit_vp;
  497         struct vattr vattr;
  498 
  499         KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
  500             ("audit_rotate_vnode: cred %p vp %p", cred, vp));
  501 
  502         if (vp != NULL) {
  503                 vn_lock(vp, LK_SHARED | LK_RETRY);
  504                 if (VOP_GETATTR(vp, &vattr, cred) != 0)
  505                         vattr.va_size = 0;
  506                 VOP_UNLOCK(vp);
  507         } else {
  508                 vattr.va_size = 0;
  509         }
  510 
  511         /*
  512          * Rotate the vnode/cred, and clear the rotate flag so that we will
  513          * send a rotate trigger if the new file fills.
  514          */
  515         AUDIT_WORKER_LOCK();
  516         old_audit_cred = audit_cred;
  517         old_audit_vp = audit_vp;
  518         audit_cred = cred;
  519         audit_vp = vp;
  520         audit_size = vattr.va_size;
  521         audit_file_rotate_wait = 0;
  522         audit_trail_enabled = (audit_vp != NULL);
  523         audit_syscalls_enabled_update();
  524         AUDIT_WORKER_UNLOCK();
  525 
  526         /*
  527          * If there was an old vnode/credential, close and free.
  528          */
  529         if (old_audit_vp != NULL) {
  530                 vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
  531                     curthread);
  532                 crfree(old_audit_cred);
  533         }
  534 }
  535 
  536 void
  537 audit_worker_init(void)
  538 {
  539         int error;
  540 
  541         AUDIT_WORKER_LOCK_INIT();
  542         error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
  543             0, "audit");
  544         if (error)
  545                 panic("audit_worker_init: kproc_create returned %d", error);
  546 }

Cache object: bfa755732c87b968a2cdc46008087cc4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.