The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/security/audit/audit_worker.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999-2008 Apple Inc.
    3  * Copyright (c) 2006-2008 Robert N. M. Watson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1.  Redistributions of source code must retain the above copyright
   10  *     notice, this list of conditions and the following disclaimer.
   11  * 2.  Redistributions in binary form must reproduce the above copyright
   12  *     notice, this list of conditions and the following disclaimer in the
   13  *     documentation and/or other materials provided with the distribution.
   14  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
   15  *     its contributors may be used to endorse or promote products derived
   16  *     from this software without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
   22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
   27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   28  * POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD: releng/9.1/sys/security/audit/audit_worker.c 191990 2009-05-11 15:33:26Z attilio $");
   33 
   34 #include <sys/param.h>
   35 #include <sys/condvar.h>
   36 #include <sys/conf.h>
   37 #include <sys/file.h>
   38 #include <sys/filedesc.h>
   39 #include <sys/fcntl.h>
   40 #include <sys/ipc.h>
   41 #include <sys/kernel.h>
   42 #include <sys/kthread.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mount.h>
   45 #include <sys/namei.h>
   46 #include <sys/proc.h>
   47 #include <sys/queue.h>
   48 #include <sys/socket.h>
   49 #include <sys/socketvar.h>
   50 #include <sys/protosw.h>
   51 #include <sys/domain.h>
   52 #include <sys/sx.h>
   53 #include <sys/sysproto.h>
   54 #include <sys/sysent.h>
   55 #include <sys/systm.h>
   56 #include <sys/ucred.h>
   57 #include <sys/uio.h>
   58 #include <sys/un.h>
   59 #include <sys/unistd.h>
   60 #include <sys/vnode.h>
   61 
   62 #include <bsm/audit.h>
   63 #include <bsm/audit_internal.h>
   64 #include <bsm/audit_kevents.h>
   65 
   66 #include <netinet/in.h>
   67 #include <netinet/in_pcb.h>
   68 
   69 #include <security/audit/audit.h>
   70 #include <security/audit/audit_private.h>
   71 
   72 #include <vm/uma.h>
   73 
   74 /*
   75  * Worker thread that will schedule disk I/O, etc.
   76  */
   77 static struct proc              *audit_thread;
   78 
   79 /*
   80  * audit_cred and audit_vp are the stored credential and vnode to use for
   81  * active audit trail.  They are protected by the audit worker lock, which
   82  * will be held across all I/O and all rotation to prevent them from being
   83  * replaced (rotated) while in use.  The audit_file_rotate_wait flag is set
   84  * when the kernel has delivered a trigger to auditd to rotate the trail, and
   85  * is cleared when the next rotation takes place.  It is also protected by
   86  * the audit worker lock.
   87  */
   88 static int               audit_file_rotate_wait;
   89 static struct ucred     *audit_cred;
   90 static struct vnode     *audit_vp;
   91 static struct sx         audit_worker_lock;
   92 
   93 #define AUDIT_WORKER_LOCK_INIT()        sx_init(&audit_worker_lock, \
   94                                             "audit_worker_lock");
   95 #define AUDIT_WORKER_LOCK_ASSERT()      sx_assert(&audit_worker_lock, \
   96                                             SA_XLOCKED)
   97 #define AUDIT_WORKER_LOCK()             sx_xlock(&audit_worker_lock)
   98 #define AUDIT_WORKER_UNLOCK()           sx_xunlock(&audit_worker_lock)
   99 
  100 /*
  101  * Write an audit record to a file, performed as the last stage after both
  102  * preselection and BSM conversion.  Both space management and write failures
  103  * are handled in this function.
  104  *
  105  * No attempt is made to deal with possible failure to deliver a trigger to
  106  * the audit daemon, since the message is asynchronous anyway.
  107  */
  108 static void
  109 audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
  110     size_t len)
  111 {
  112         static struct timeval last_lowspace_trigger;
  113         static struct timeval last_fail;
  114         static int cur_lowspace_trigger;
  115         struct statfs *mnt_stat;
  116         int error, vfslocked;
  117         static int cur_fail;
  118         struct vattr vattr;
  119         long temp;
  120 
  121         AUDIT_WORKER_LOCK_ASSERT();
  122 
  123         if (vp == NULL)
  124                 return;
  125 
  126         mnt_stat = &vp->v_mount->mnt_stat;
  127         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  128 
  129         /*
  130          * First, gather statistics on the audit log file and file system so
  131          * that we know how we're doing on space.  Consider failure of these
  132          * operations to indicate a future inability to write to the file.
  133          */
  134         error = VFS_STATFS(vp->v_mount, mnt_stat);
  135         if (error)
  136                 goto fail;
  137         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  138         error = VOP_GETATTR(vp, &vattr, cred);
  139         VOP_UNLOCK(vp, 0);
  140         if (error)
  141                 goto fail;
  142         audit_fstat.af_currsz = vattr.va_size;
  143 
  144         /*
  145          * We handle four different space-related limits:
  146          *
  147          * - A fixed (hard) limit on the minimum free blocks we require on
  148          *   the file system, and results in record loss, a trigger, and
  149          *   possible fail stop due to violating invariants.
  150          *
  151          * - An administrative (soft) limit, which when fallen below, results
  152          *   in the kernel notifying the audit daemon of low space.
  153          *
  154          * - An audit trail size limit, which when gone above, results in the
  155          *   kernel notifying the audit daemon that rotation is desired.
  156          *
  157          * - The total depth of the kernel audit record exceeding free space,
  158          *   which can lead to possible fail stop (with drain), in order to
  159          *   prevent violating invariants.  Failure here doesn't halt
  160          *   immediately, but prevents new records from being generated.
  161          *
  162          * Possibly, the last of these should be handled differently, always
  163          * allowing a full queue to be lost, rather than trying to prevent
  164          * loss.
  165          *
  166          * First, handle the hard limit, which generates a trigger and may
  167          * fail stop.  This is handled in the same manner as ENOSPC from
  168          * VOP_WRITE, and results in record loss.
  169          */
  170         if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
  171                 error = ENOSPC;
  172                 goto fail_enospc;
  173         }
  174 
  175         /*
  176          * Second, handle falling below the soft limit, if defined; we send
  177          * the daemon a trigger and continue processing the record.  Triggers
  178          * are limited to 1/sec.
  179          */
  180         if (audit_qctrl.aq_minfree != 0) {
  181                 temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
  182                 if (mnt_stat->f_bfree < temp) {
  183                         if (ppsratecheck(&last_lowspace_trigger,
  184                             &cur_lowspace_trigger, 1)) {
  185                                 (void)audit_send_trigger(
  186                                     AUDIT_TRIGGER_LOW_SPACE);
  187                                 printf("Warning: disk space low (< %d%% free) "
  188                                     "on audit log file-system\n",
  189                                     audit_qctrl.aq_minfree);
  190                         }
  191                 }
  192         }
  193 
  194         /*
  195          * If the current file is getting full, generate a rotation trigger
  196          * to the daemon.  This is only approximate, which is fine as more
  197          * records may be generated before the daemon rotates the file.
  198          */
  199         if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
  200             (vattr.va_size >= audit_fstat.af_filesz)) {
  201                 AUDIT_WORKER_LOCK_ASSERT();
  202 
  203                 audit_file_rotate_wait = 1;
  204                 (void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
  205         }
  206 
  207         /*
  208          * If the estimated amount of audit data in the audit event queue
  209          * (plus records allocated but not yet queued) has reached the amount
  210          * of free space on the disk, then we need to go into an audit fail
  211          * stop state, in which we do not permit the allocation/committing of
  212          * any new audit records.  We continue to process records but don't
  213          * allow any activities that might generate new records.  In the
  214          * future, we might want to detect when space is available again and
  215          * allow operation to continue, but this behavior is sufficient to
  216          * meet fail stop requirements in CAPP.
  217          */
  218         if (audit_fail_stop) {
  219                 if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
  220                     MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
  221                     (unsigned long)(mnt_stat->f_bfree)) {
  222                         if (ppsratecheck(&last_fail, &cur_fail, 1))
  223                                 printf("audit_record_write: free space "
  224                                     "below size of audit queue, failing "
  225                                     "stop\n");
  226                         audit_in_failure = 1;
  227                 } else if (audit_in_failure) {
  228                         /*
  229                          * Note: if we want to handle recovery, this is the
  230                          * spot to do it: unset audit_in_failure, and issue a
  231                          * wakeup on the cv.
  232                          */
  233                 }
  234         }
  235 
  236         error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
  237             IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
  238         if (error == ENOSPC)
  239                 goto fail_enospc;
  240         else if (error)
  241                 goto fail;
  242 
  243         /*
  244          * Catch completion of a queue drain here; if we're draining and the
  245          * queue is now empty, fail stop.  That audit_fail_stop is implicitly
  246          * true, since audit_in_failure can only be set of audit_fail_stop is
  247          * set.
  248          *
  249          * Note: if we handle recovery from audit_in_failure, then we need to
  250          * make panic here conditional.
  251          */
  252         if (audit_in_failure) {
  253                 if (audit_q_len == 0 && audit_pre_q_len == 0) {
  254                         VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  255                         (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  256                         VOP_UNLOCK(vp, 0);
  257                         panic("Audit store overflow; record queue drained.");
  258                 }
  259         }
  260 
  261         VFS_UNLOCK_GIANT(vfslocked);
  262         return;
  263 
  264 fail_enospc:
  265         /*
  266          * ENOSPC is considered a special case with respect to failures, as
  267          * this can reflect either our preemptive detection of insufficient
  268          * space, or ENOSPC returned by the vnode write call.
  269          */
  270         if (audit_fail_stop) {
  271                 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  272                 (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  273                 VOP_UNLOCK(vp, 0);
  274                 panic("Audit log space exhausted and fail-stop set.");
  275         }
  276         (void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
  277         audit_suspended = 1;
  278 
  279         /* FALLTHROUGH */
  280 fail:
  281         /*
  282          * We have failed to write to the file, so the current record is
  283          * lost, which may require an immediate system halt.
  284          */
  285         if (audit_panic_on_write_fail) {
  286                 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  287                 (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  288                 VOP_UNLOCK(vp, 0);
  289                 panic("audit_worker: write error %d\n", error);
  290         } else if (ppsratecheck(&last_fail, &cur_fail, 1))
  291                 printf("audit_worker: write error %d\n", error);
  292         VFS_UNLOCK_GIANT(vfslocked);
  293 }
  294 
  295 /*
  296  * Given a kernel audit record, process as required.  Kernel audit records
  297  * are converted to one, or possibly two, BSM records, depending on whether
  298  * there is a user audit record present also.  Kernel records need be
  299  * converted to BSM before they can be written out.  Both types will be
  300  * written to disk, and audit pipes.
  301  */
  302 static void
  303 audit_worker_process_record(struct kaudit_record *ar)
  304 {
  305         struct au_record *bsm;
  306         au_class_t class;
  307         au_event_t event;
  308         au_id_t auid;
  309         int error, sorf;
  310         int locked;
  311 
  312         /*
  313          * We hold the audit worker lock over both writes, if there are two,
  314          * so that the two records won't be split across a rotation and end
  315          * up in two different trail files.
  316          */
  317         if (((ar->k_ar_commit & AR_COMMIT_USER) &&
  318             (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
  319             (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
  320                 AUDIT_WORKER_LOCK();
  321                 locked = 1;
  322         } else
  323                 locked = 0;
  324 
  325         /*
  326          * First, handle the user record, if any: commit to the system trail
  327          * and audit pipes as selected.
  328          */
  329         if ((ar->k_ar_commit & AR_COMMIT_USER) &&
  330             (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
  331                 AUDIT_WORKER_LOCK_ASSERT();
  332                 audit_record_write(audit_vp, audit_cred, ar->k_udata,
  333                     ar->k_ulen);
  334         }
  335 
  336         if ((ar->k_ar_commit & AR_COMMIT_USER) &&
  337             (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
  338                 audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
  339 
  340         if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
  341             ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
  342             (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
  343                 goto out;
  344 
  345         auid = ar->k_ar.ar_subj_auid;
  346         event = ar->k_ar.ar_event;
  347         class = au_event_class(event);
  348         if (ar->k_ar.ar_errno == 0)
  349                 sorf = AU_PRS_SUCCESS;
  350         else
  351                 sorf = AU_PRS_FAILURE;
  352 
  353         error = kaudit_to_bsm(ar, &bsm);
  354         switch (error) {
  355         case BSM_NOAUDIT:
  356                 goto out;
  357 
  358         case BSM_FAILURE:
  359                 printf("audit_worker_process_record: BSM_FAILURE\n");
  360                 goto out;
  361 
  362         case BSM_SUCCESS:
  363                 break;
  364 
  365         default:
  366                 panic("kaudit_to_bsm returned %d", error);
  367         }
  368 
  369         if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
  370                 AUDIT_WORKER_LOCK_ASSERT();
  371                 audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
  372         }
  373 
  374         if (ar->k_ar_commit & AR_PRESELECT_PIPE)
  375                 audit_pipe_submit(auid, event, class, sorf,
  376                     ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
  377                     bsm->len);
  378 
  379         kau_free(bsm);
  380 out:
  381         if (locked)
  382                 AUDIT_WORKER_UNLOCK();
  383 }
  384 
  385 /*
  386  * The audit_worker thread is responsible for watching the event queue,
  387  * dequeueing records, converting them to BSM format, and committing them to
  388  * disk.  In order to minimize lock thrashing, records are dequeued in sets
  389  * to a thread-local work queue.
  390  *
  391  * Note: this means that the effect bound on the size of the pending record
  392  * queue is 2x the length of the global queue.
  393  */
  394 static void
  395 audit_worker(void *arg)
  396 {
  397         struct kaudit_queue ar_worklist;
  398         struct kaudit_record *ar;
  399         int lowater_signal;
  400 
  401         TAILQ_INIT(&ar_worklist);
  402         mtx_lock(&audit_mtx);
  403         while (1) {
  404                 mtx_assert(&audit_mtx, MA_OWNED);
  405 
  406                 /*
  407                  * Wait for a record.
  408                  */
  409                 while (TAILQ_EMPTY(&audit_q))
  410                         cv_wait(&audit_worker_cv, &audit_mtx);
  411 
  412                 /*
  413                  * If there are records in the global audit record queue,
  414                  * transfer them to a thread-local queue and process them
  415                  * one by one.  If we cross the low watermark threshold,
  416                  * signal any waiting processes that they may wake up and
  417                  * continue generating records.
  418                  */
  419                 lowater_signal = 0;
  420                 while ((ar = TAILQ_FIRST(&audit_q))) {
  421                         TAILQ_REMOVE(&audit_q, ar, k_q);
  422                         audit_q_len--;
  423                         if (audit_q_len == audit_qctrl.aq_lowater)
  424                                 lowater_signal++;
  425                         TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
  426                 }
  427                 if (lowater_signal)
  428                         cv_broadcast(&audit_watermark_cv);
  429 
  430                 mtx_unlock(&audit_mtx);
  431                 while ((ar = TAILQ_FIRST(&ar_worklist))) {
  432                         TAILQ_REMOVE(&ar_worklist, ar, k_q);
  433                         audit_worker_process_record(ar);
  434                         audit_free(ar);
  435                 }
  436                 mtx_lock(&audit_mtx);
  437         }
  438 }
  439 
  440 /*
  441  * audit_rotate_vnode() is called by a user or kernel thread to configure or
  442  * de-configure auditing on a vnode.  The arguments are the replacement
  443  * credential (referenced) and vnode (referenced and opened) to substitute
  444  * for the current credential and vnode, if any.  If either is set to NULL,
  445  * both should be NULL, and this is used to indicate that audit is being
  446  * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
  447  * generating rotation requests to auditd.
  448  */
  449 void
  450 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
  451 {
  452         struct ucred *old_audit_cred;
  453         struct vnode *old_audit_vp;
  454         int vfslocked;
  455 
  456         KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
  457             ("audit_rotate_vnode: cred %p vp %p", cred, vp));
  458 
  459         /*
  460          * Rotate the vnode/cred, and clear the rotate flag so that we will
  461          * send a rotate trigger if the new file fills.
  462          */
  463         AUDIT_WORKER_LOCK();
  464         old_audit_cred = audit_cred;
  465         old_audit_vp = audit_vp;
  466         audit_cred = cred;
  467         audit_vp = vp;
  468         audit_file_rotate_wait = 0;
  469         audit_enabled = (audit_vp != NULL);
  470         AUDIT_WORKER_UNLOCK();
  471 
  472         /*
  473          * If there was an old vnode/credential, close and free.
  474          */
  475         if (old_audit_vp != NULL) {
  476                 vfslocked = VFS_LOCK_GIANT(old_audit_vp->v_mount);
  477                 vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
  478                     curthread);
  479                 VFS_UNLOCK_GIANT(vfslocked);
  480                 crfree(old_audit_cred);
  481         }
  482 }
  483 
  484 void
  485 audit_worker_init(void)
  486 {
  487         int error;
  488 
  489         AUDIT_WORKER_LOCK_INIT();
  490         error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
  491             0, "audit");
  492         if (error)
  493                 panic("audit_worker_init: kproc_create returned %d", error);
  494 }

Cache object: 513e005961673465175d6fde0ee3af7e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.