The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/security/audit/audit_worker.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999-2008 Apple Inc.
    3  * Copyright (c) 2006-2008 Robert N. M. Watson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1.  Redistributions of source code must retain the above copyright
   10  *     notice, this list of conditions and the following disclaimer.
   11  * 2.  Redistributions in binary form must reproduce the above copyright
   12  *     notice, this list of conditions and the following disclaimer in the
   13  *     documentation and/or other materials provided with the distribution.
   14  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
   15  *     its contributors may be used to endorse or promote products derived
   16  *     from this software without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
   22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
   27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   28  * POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include <sys/param.h>
   35 #include <sys/condvar.h>
   36 #include <sys/conf.h>
   37 #include <sys/file.h>
   38 #include <sys/filedesc.h>
   39 #include <sys/fcntl.h>
   40 #include <sys/ipc.h>
   41 #include <sys/kernel.h>
   42 #include <sys/kthread.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mount.h>
   45 #include <sys/namei.h>
   46 #include <sys/proc.h>
   47 #include <sys/queue.h>
   48 #include <sys/socket.h>
   49 #include <sys/socketvar.h>
   50 #include <sys/protosw.h>
   51 #include <sys/domain.h>
   52 #include <sys/sx.h>
   53 #include <sys/sysproto.h>
   54 #include <sys/sysent.h>
   55 #include <sys/systm.h>
   56 #include <sys/ucred.h>
   57 #include <sys/uio.h>
   58 #include <sys/un.h>
   59 #include <sys/unistd.h>
   60 #include <sys/vnode.h>
   61 
   62 #include <bsm/audit.h>
   63 #include <bsm/audit_internal.h>
   64 #include <bsm/audit_kevents.h>
   65 
   66 #include <netinet/in.h>
   67 #include <netinet/in_pcb.h>
   68 
   69 #include <security/audit/audit.h>
   70 #include <security/audit/audit_private.h>
   71 
   72 #include <vm/uma.h>
   73 
   74 /*
   75  * Worker thread that will schedule disk I/O, etc.
   76  */
   77 static struct proc              *audit_thread;
   78 
   79 /*
   80  * audit_cred and audit_vp are the stored credential and vnode to use for
   81  * active audit trail.  They are protected by the audit worker lock, which
   82  * will be held across all I/O and all rotation to prevent them from being
   83  * replaced (rotated) while in use.  The audit_file_rotate_wait flag is set
   84  * when the kernel has delivered a trigger to auditd to rotate the trail, and
   85  * is cleared when the next rotation takes place.  It is also protected by
   86  * the audit worker lock.
   87  */
   88 static int               audit_file_rotate_wait;
   89 static struct ucred     *audit_cred;
   90 static struct vnode     *audit_vp;
   91 static off_t             audit_size;
   92 static struct sx         audit_worker_lock;
   93 
   94 #define AUDIT_WORKER_LOCK_INIT()        sx_init(&audit_worker_lock, \
   95                                             "audit_worker_lock");
   96 #define AUDIT_WORKER_LOCK_ASSERT()      sx_assert(&audit_worker_lock, \
   97                                             SA_XLOCKED)
   98 #define AUDIT_WORKER_LOCK()             sx_xlock(&audit_worker_lock)
   99 #define AUDIT_WORKER_UNLOCK()           sx_xunlock(&audit_worker_lock)
  100 
  101 /*
  102  * Write an audit record to a file, performed as the last stage after both
  103  * preselection and BSM conversion.  Both space management and write failures
  104  * are handled in this function.
  105  *
  106  * No attempt is made to deal with possible failure to deliver a trigger to
  107  * the audit daemon, since the message is asynchronous anyway.
  108  */
  109 static void
  110 audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
  111     size_t len)
  112 {
  113         static struct timeval last_lowspace_trigger;
  114         static struct timeval last_fail;
  115         static int cur_lowspace_trigger;
  116         struct statfs *mnt_stat;
  117         int error, vfslocked;
  118         static int cur_fail;
  119         long temp;
  120 
  121         AUDIT_WORKER_LOCK_ASSERT();
  122 
  123         if (vp == NULL)
  124                 return;
  125 
  126         mnt_stat = &vp->v_mount->mnt_stat;
  127         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  128 
  129         /*
  130          * First, gather statistics on the audit log file and file system so
  131          * that we know how we're doing on space.  Consider failure of these
  132          * operations to indicate a future inability to write to the file.
  133          */
  134         error = VFS_STATFS(vp->v_mount, mnt_stat);
  135         if (error)
  136                 goto fail;
  137 
  138         /*
  139          * We handle four different space-related limits:
  140          *
  141          * - A fixed (hard) limit on the minimum free blocks we require on
  142          *   the file system, and results in record loss, a trigger, and
  143          *   possible fail stop due to violating invariants.
  144          *
  145          * - An administrative (soft) limit, which when fallen below, results
  146          *   in the kernel notifying the audit daemon of low space.
  147          *
  148          * - An audit trail size limit, which when gone above, results in the
  149          *   kernel notifying the audit daemon that rotation is desired.
  150          *
  151          * - The total depth of the kernel audit record exceeding free space,
  152          *   which can lead to possible fail stop (with drain), in order to
  153          *   prevent violating invariants.  Failure here doesn't halt
  154          *   immediately, but prevents new records from being generated.
  155          *
  156          * Possibly, the last of these should be handled differently, always
  157          * allowing a full queue to be lost, rather than trying to prevent
  158          * loss.
  159          *
  160          * First, handle the hard limit, which generates a trigger and may
  161          * fail stop.  This is handled in the same manner as ENOSPC from
  162          * VOP_WRITE, and results in record loss.
  163          */
  164         if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
  165                 error = ENOSPC;
  166                 goto fail_enospc;
  167         }
  168 
  169         /*
  170          * Second, handle falling below the soft limit, if defined; we send
  171          * the daemon a trigger and continue processing the record.  Triggers
  172          * are limited to 1/sec.
  173          */
  174         if (audit_qctrl.aq_minfree != 0) {
  175                 temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
  176                 if (mnt_stat->f_bfree < temp) {
  177                         if (ppsratecheck(&last_lowspace_trigger,
  178                             &cur_lowspace_trigger, 1)) {
  179                                 (void)audit_send_trigger(
  180                                     AUDIT_TRIGGER_LOW_SPACE);
  181                                 printf("Warning: disk space low (< %d%% free) "
  182                                     "on audit log file-system\n",
  183                                     audit_qctrl.aq_minfree);
  184                         }
  185                 }
  186         }
  187 
  188         /*
  189          * If the current file is getting full, generate a rotation trigger
  190          * to the daemon.  This is only approximate, which is fine as more
  191          * records may be generated before the daemon rotates the file.
  192          */
  193         if (audit_fstat.af_filesz != 0 &&
  194             audit_size >= audit_fstat.af_filesz * (audit_file_rotate_wait + 1)) {
  195                 AUDIT_WORKER_LOCK_ASSERT();
  196 
  197                 audit_file_rotate_wait++;
  198                 (void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
  199         }
  200 
  201         /*
  202          * If the estimated amount of audit data in the audit event queue
  203          * (plus records allocated but not yet queued) has reached the amount
  204          * of free space on the disk, then we need to go into an audit fail
  205          * stop state, in which we do not permit the allocation/committing of
  206          * any new audit records.  We continue to process records but don't
  207          * allow any activities that might generate new records.  In the
  208          * future, we might want to detect when space is available again and
  209          * allow operation to continue, but this behavior is sufficient to
  210          * meet fail stop requirements in CAPP.
  211          */
  212         if (audit_fail_stop) {
  213                 if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
  214                     MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
  215                     (unsigned long)(mnt_stat->f_bfree)) {
  216                         if (ppsratecheck(&last_fail, &cur_fail, 1))
  217                                 printf("audit_record_write: free space "
  218                                     "below size of audit queue, failing "
  219                                     "stop\n");
  220                         audit_in_failure = 1;
  221                 } else if (audit_in_failure) {
  222                         /*
  223                          * Note: if we want to handle recovery, this is the
  224                          * spot to do it: unset audit_in_failure, and issue a
  225                          * wakeup on the cv.
  226                          */
  227                 }
  228         }
  229 
  230         error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
  231             IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
  232         if (error == ENOSPC)
  233                 goto fail_enospc;
  234         else if (error)
  235                 goto fail;
  236         AUDIT_WORKER_LOCK_ASSERT();
  237         audit_size += len;
  238 
  239         /*
  240          * Catch completion of a queue drain here; if we're draining and the
  241          * queue is now empty, fail stop.  That audit_fail_stop is implicitly
  242          * true, since audit_in_failure can only be set of audit_fail_stop is
  243          * set.
  244          *
  245          * Note: if we handle recovery from audit_in_failure, then we need to
  246          * make panic here conditional.
  247          */
  248         if (audit_in_failure) {
  249                 if (audit_q_len == 0 && audit_pre_q_len == 0) {
  250                         VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  251                         (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  252                         VOP_UNLOCK(vp, 0);
  253                         panic("Audit store overflow; record queue drained.");
  254                 }
  255         }
  256 
  257         VFS_UNLOCK_GIANT(vfslocked);
  258         return;
  259 
  260 fail_enospc:
  261         /*
  262          * ENOSPC is considered a special case with respect to failures, as
  263          * this can reflect either our preemptive detection of insufficient
  264          * space, or ENOSPC returned by the vnode write call.
  265          */
  266         if (audit_fail_stop) {
  267                 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  268                 (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  269                 VOP_UNLOCK(vp, 0);
  270                 panic("Audit log space exhausted and fail-stop set.");
  271         }
  272         (void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
  273         audit_suspended = 1;
  274 
  275         /* FALLTHROUGH */
  276 fail:
  277         /*
  278          * We have failed to write to the file, so the current record is
  279          * lost, which may require an immediate system halt.
  280          */
  281         if (audit_panic_on_write_fail) {
  282                 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
  283                 (void)VOP_FSYNC(vp, MNT_WAIT, curthread);
  284                 VOP_UNLOCK(vp, 0);
  285                 panic("audit_worker: write error %d\n", error);
  286         } else if (ppsratecheck(&last_fail, &cur_fail, 1))
  287                 printf("audit_worker: write error %d\n", error);
  288         VFS_UNLOCK_GIANT(vfslocked);
  289 }
  290 
  291 /*
  292  * Given a kernel audit record, process as required.  Kernel audit records
  293  * are converted to one, or possibly two, BSM records, depending on whether
  294  * there is a user audit record present also.  Kernel records need be
  295  * converted to BSM before they can be written out.  Both types will be
  296  * written to disk, and audit pipes.
  297  */
  298 static void
  299 audit_worker_process_record(struct kaudit_record *ar)
  300 {
  301         struct au_record *bsm;
  302         au_class_t class;
  303         au_event_t event;
  304         au_id_t auid;
  305         int error, sorf;
  306         int locked;
  307 
  308         /*
  309          * We hold the audit worker lock over both writes, if there are two,
  310          * so that the two records won't be split across a rotation and end
  311          * up in two different trail files.
  312          */
  313         if (((ar->k_ar_commit & AR_COMMIT_USER) &&
  314             (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
  315             (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
  316                 AUDIT_WORKER_LOCK();
  317                 locked = 1;
  318         } else
  319                 locked = 0;
  320 
  321         /*
  322          * First, handle the user record, if any: commit to the system trail
  323          * and audit pipes as selected.
  324          */
  325         if ((ar->k_ar_commit & AR_COMMIT_USER) &&
  326             (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
  327                 AUDIT_WORKER_LOCK_ASSERT();
  328                 audit_record_write(audit_vp, audit_cred, ar->k_udata,
  329                     ar->k_ulen);
  330         }
  331 
  332         if ((ar->k_ar_commit & AR_COMMIT_USER) &&
  333             (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
  334                 audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
  335 
  336         if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
  337             ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
  338             (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
  339                 goto out;
  340 
  341         auid = ar->k_ar.ar_subj_auid;
  342         event = ar->k_ar.ar_event;
  343         class = au_event_class(event);
  344         if (ar->k_ar.ar_errno == 0)
  345                 sorf = AU_PRS_SUCCESS;
  346         else
  347                 sorf = AU_PRS_FAILURE;
  348 
  349         error = kaudit_to_bsm(ar, &bsm);
  350         switch (error) {
  351         case BSM_NOAUDIT:
  352                 goto out;
  353 
  354         case BSM_FAILURE:
  355                 printf("audit_worker_process_record: BSM_FAILURE\n");
  356                 goto out;
  357 
  358         case BSM_SUCCESS:
  359                 break;
  360 
  361         default:
  362                 panic("kaudit_to_bsm returned %d", error);
  363         }
  364 
  365         if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
  366                 AUDIT_WORKER_LOCK_ASSERT();
  367                 audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
  368         }
  369 
  370         if (ar->k_ar_commit & AR_PRESELECT_PIPE)
  371                 audit_pipe_submit(auid, event, class, sorf,
  372                     ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
  373                     bsm->len);
  374 
  375         kau_free(bsm);
  376 out:
  377         if (locked)
  378                 AUDIT_WORKER_UNLOCK();
  379 }
  380 
  381 /*
  382  * The audit_worker thread is responsible for watching the event queue,
  383  * dequeueing records, converting them to BSM format, and committing them to
  384  * disk.  In order to minimize lock thrashing, records are dequeued in sets
  385  * to a thread-local work queue.
  386  *
  387  * Note: this means that the effect bound on the size of the pending record
  388  * queue is 2x the length of the global queue.
  389  */
  390 static void
  391 audit_worker(void *arg)
  392 {
  393         struct kaudit_queue ar_worklist;
  394         struct kaudit_record *ar;
  395         int lowater_signal;
  396 
  397         TAILQ_INIT(&ar_worklist);
  398         mtx_lock(&audit_mtx);
  399         while (1) {
  400                 mtx_assert(&audit_mtx, MA_OWNED);
  401 
  402                 /*
  403                  * Wait for a record.
  404                  */
  405                 while (TAILQ_EMPTY(&audit_q))
  406                         cv_wait(&audit_worker_cv, &audit_mtx);
  407 
  408                 /*
  409                  * If there are records in the global audit record queue,
  410                  * transfer them to a thread-local queue and process them
  411                  * one by one.  If we cross the low watermark threshold,
  412                  * signal any waiting processes that they may wake up and
  413                  * continue generating records.
  414                  */
  415                 lowater_signal = 0;
  416                 while ((ar = TAILQ_FIRST(&audit_q))) {
  417                         TAILQ_REMOVE(&audit_q, ar, k_q);
  418                         audit_q_len--;
  419                         if (audit_q_len == audit_qctrl.aq_lowater)
  420                                 lowater_signal++;
  421                         TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
  422                 }
  423                 if (lowater_signal)
  424                         cv_broadcast(&audit_watermark_cv);
  425 
  426                 mtx_unlock(&audit_mtx);
  427                 while ((ar = TAILQ_FIRST(&ar_worklist))) {
  428                         TAILQ_REMOVE(&ar_worklist, ar, k_q);
  429                         audit_worker_process_record(ar);
  430                         audit_free(ar);
  431                 }
  432                 mtx_lock(&audit_mtx);
  433         }
  434 }
  435 
  436 /*
  437  * audit_rotate_vnode() is called by a user or kernel thread to configure or
  438  * de-configure auditing on a vnode.  The arguments are the replacement
  439  * credential (referenced) and vnode (referenced and opened) to substitute
  440  * for the current credential and vnode, if any.  If either is set to NULL,
  441  * both should be NULL, and this is used to indicate that audit is being
  442  * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
  443  * generating rotation requests to auditd.
  444  */
  445 void
  446 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
  447 {
  448         struct ucred *old_audit_cred;
  449         struct vnode *old_audit_vp;
  450         int vfslocked;
  451         struct vattr vattr;
  452 
  453         KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
  454             ("audit_rotate_vnode: cred %p vp %p", cred, vp));
  455 
  456         if (vp != NULL) {
  457                 vn_lock(vp, LK_SHARED | LK_RETRY);
  458                 if (VOP_GETATTR(vp, &vattr, cred) != 0)
  459                         vattr.va_size = 0;
  460                 VOP_UNLOCK(vp, 0);
  461         } else {
  462                 vattr.va_size = 0;
  463         }
  464 
  465         /*
  466          * Rotate the vnode/cred, and clear the rotate flag so that we will
  467          * send a rotate trigger if the new file fills.
  468          */
  469         AUDIT_WORKER_LOCK();
  470         old_audit_cred = audit_cred;
  471         old_audit_vp = audit_vp;
  472         audit_cred = cred;
  473         audit_vp = vp;
  474         audit_size = vattr.va_size;
  475         audit_file_rotate_wait = 0;
  476         audit_enabled = (audit_vp != NULL);
  477         AUDIT_WORKER_UNLOCK();
  478 
  479         /*
  480          * If there was an old vnode/credential, close and free.
  481          */
  482         if (old_audit_vp != NULL) {
  483                 vfslocked = VFS_LOCK_GIANT(old_audit_vp->v_mount);
  484                 vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
  485                     curthread);
  486                 VFS_UNLOCK_GIANT(vfslocked);
  487                 crfree(old_audit_cred);
  488         }
  489 }
  490 
  491 void
  492 audit_worker_init(void)
  493 {
  494         int error;
  495 
  496         AUDIT_WORKER_LOCK_INIT();
  497         error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
  498             0, "audit");
  499         if (error)
  500                 panic("audit_worker_init: kproc_create returned %d", error);
  501 }

Cache object: fb6617a16bfe55d69749649cc7fdf926


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.