The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/security/commoncap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* Common capabilities, needed by capability.o.
    2  *
    3  *      This program is free software; you can redistribute it and/or modify
    4  *      it under the terms of the GNU General Public License as published by
    5  *      the Free Software Foundation; either version 2 of the License, or
    6  *      (at your option) any later version.
    7  *
    8  */
    9 
   10 #include <linux/capability.h>
   11 #include <linux/audit.h>
   12 #include <linux/module.h>
   13 #include <linux/init.h>
   14 #include <linux/kernel.h>
   15 #include <linux/security.h>
   16 #include <linux/file.h>
   17 #include <linux/mm.h>
   18 #include <linux/mman.h>
   19 #include <linux/pagemap.h>
   20 #include <linux/swap.h>
   21 #include <linux/skbuff.h>
   22 #include <linux/netlink.h>
   23 #include <linux/ptrace.h>
   24 #include <linux/xattr.h>
   25 #include <linux/hugetlb.h>
   26 #include <linux/mount.h>
   27 #include <linux/sched.h>
   28 #include <linux/prctl.h>
   29 #include <linux/securebits.h>
   30 #include <linux/user_namespace.h>
   31 #include <linux/binfmts.h>
   32 #include <linux/personality.h>
   33 
   34 /*
   35  * If a non-root user executes a setuid-root binary in
   36  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
   37  * However if fE is also set, then the intent is for only
   38  * the file capabilities to be applied, and the setuid-root
   39  * bit is left on either to change the uid (plausible) or
   40  * to get full privilege on a kernel without file capabilities
   41  * support.  So in that case we do not raise capabilities.
   42  *
   43  * Warn if that happens, once per boot.
   44  */
   45 static void warn_setuid_and_fcaps_mixed(const char *fname)
   46 {
   47         static int warned;
   48         if (!warned) {
   49                 printk(KERN_INFO "warning: `%s' has both setuid-root and"
   50                         " effective capabilities. Therefore not raising all"
   51                         " capabilities.\n", fname);
   52                 warned = 1;
   53         }
   54 }
   55 
   56 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
   57 {
   58         return 0;
   59 }
   60 
   61 /**
   62  * cap_capable - Determine whether a task has a particular effective capability
   63  * @cred: The credentials to use
   64  * @ns:  The user namespace in which we need the capability
   65  * @cap: The capability to check for
   66  * @audit: Whether to write an audit message or not
   67  *
   68  * Determine whether the nominated task has the specified capability amongst
   69  * its effective set, returning 0 if it does, -ve if it does not.
   70  *
   71  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
   72  * and has_capability() functions.  That is, it has the reverse semantics:
   73  * cap_has_capability() returns 0 when a task has a capability, but the
   74  * kernel's capable() and has_capability() returns 1 for this case.
   75  */
   76 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
   77                 int cap, int audit)
   78 {
   79         struct user_namespace *ns = targ_ns;
   80 
   81         /* See if cred has the capability in the target user namespace
   82          * by examining the target user namespace and all of the target
   83          * user namespace's parents.
   84          */
   85         for (;;) {
   86                 /* Do we have the necessary capabilities? */
   87                 if (ns == cred->user_ns)
   88                         return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
   89 
   90                 /* Have we tried all of the parent namespaces? */
   91                 if (ns == &init_user_ns)
   92                         return -EPERM;
   93 
   94                 /* 
   95                  * The owner of the user namespace in the parent of the
   96                  * user namespace has all caps.
   97                  */
   98                 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
   99                         return 0;
  100 
  101                 /*
  102                  * If you have a capability in a parent user ns, then you have
  103                  * it over all children user namespaces as well.
  104                  */
  105                 ns = ns->parent;
  106         }
  107 
  108         /* We never get here */
  109 }
  110 
  111 /**
  112  * cap_settime - Determine whether the current process may set the system clock
  113  * @ts: The time to set
  114  * @tz: The timezone to set
  115  *
  116  * Determine whether the current process may set the system clock and timezone
  117  * information, returning 0 if permission granted, -ve if denied.
  118  */
  119 int cap_settime(const struct timespec *ts, const struct timezone *tz)
  120 {
  121         if (!capable(CAP_SYS_TIME))
  122                 return -EPERM;
  123         return 0;
  124 }
  125 
  126 /**
  127  * cap_ptrace_access_check - Determine whether the current process may access
  128  *                         another
  129  * @child: The process to be accessed
  130  * @mode: The mode of attachment.
  131  *
  132  * If we are in the same or an ancestor user_ns and have all the target
  133  * task's capabilities, then ptrace access is allowed.
  134  * If we have the ptrace capability to the target user_ns, then ptrace
  135  * access is allowed.
  136  * Else denied.
  137  *
  138  * Determine whether a process may access another, returning 0 if permission
  139  * granted, -ve if denied.
  140  */
  141 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
  142 {
  143         int ret = 0;
  144         const struct cred *cred, *child_cred;
  145 
  146         rcu_read_lock();
  147         cred = current_cred();
  148         child_cred = __task_cred(child);
  149         if (cred->user_ns == child_cred->user_ns &&
  150             cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
  151                 goto out;
  152         if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
  153                 goto out;
  154         ret = -EPERM;
  155 out:
  156         rcu_read_unlock();
  157         return ret;
  158 }
  159 
  160 /**
  161  * cap_ptrace_traceme - Determine whether another process may trace the current
  162  * @parent: The task proposed to be the tracer
  163  *
  164  * If parent is in the same or an ancestor user_ns and has all current's
  165  * capabilities, then ptrace access is allowed.
  166  * If parent has the ptrace capability to current's user_ns, then ptrace
  167  * access is allowed.
  168  * Else denied.
  169  *
  170  * Determine whether the nominated task is permitted to trace the current
  171  * process, returning 0 if permission is granted, -ve if denied.
  172  */
  173 int cap_ptrace_traceme(struct task_struct *parent)
  174 {
  175         int ret = 0;
  176         const struct cred *cred, *child_cred;
  177 
  178         rcu_read_lock();
  179         cred = __task_cred(parent);
  180         child_cred = current_cred();
  181         if (cred->user_ns == child_cred->user_ns &&
  182             cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
  183                 goto out;
  184         if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
  185                 goto out;
  186         ret = -EPERM;
  187 out:
  188         rcu_read_unlock();
  189         return ret;
  190 }
  191 
  192 /**
  193  * cap_capget - Retrieve a task's capability sets
  194  * @target: The task from which to retrieve the capability sets
  195  * @effective: The place to record the effective set
  196  * @inheritable: The place to record the inheritable set
  197  * @permitted: The place to record the permitted set
  198  *
  199  * This function retrieves the capabilities of the nominated task and returns
  200  * them to the caller.
  201  */
  202 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
  203                kernel_cap_t *inheritable, kernel_cap_t *permitted)
  204 {
  205         const struct cred *cred;
  206 
  207         /* Derived from kernel/capability.c:sys_capget. */
  208         rcu_read_lock();
  209         cred = __task_cred(target);
  210         *effective   = cred->cap_effective;
  211         *inheritable = cred->cap_inheritable;
  212         *permitted   = cred->cap_permitted;
  213         rcu_read_unlock();
  214         return 0;
  215 }
  216 
  217 /*
  218  * Determine whether the inheritable capabilities are limited to the old
  219  * permitted set.  Returns 1 if they are limited, 0 if they are not.
  220  */
  221 static inline int cap_inh_is_capped(void)
  222 {
  223 
  224         /* they are so limited unless the current task has the CAP_SETPCAP
  225          * capability
  226          */
  227         if (cap_capable(current_cred(), current_cred()->user_ns,
  228                         CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
  229                 return 0;
  230         return 1;
  231 }
  232 
  233 /**
  234  * cap_capset - Validate and apply proposed changes to current's capabilities
  235  * @new: The proposed new credentials; alterations should be made here
  236  * @old: The current task's current credentials
  237  * @effective: A pointer to the proposed new effective capabilities set
  238  * @inheritable: A pointer to the proposed new inheritable capabilities set
  239  * @permitted: A pointer to the proposed new permitted capabilities set
  240  *
  241  * This function validates and applies a proposed mass change to the current
  242  * process's capability sets.  The changes are made to the proposed new
  243  * credentials, and assuming no error, will be committed by the caller of LSM.
  244  */
  245 int cap_capset(struct cred *new,
  246                const struct cred *old,
  247                const kernel_cap_t *effective,
  248                const kernel_cap_t *inheritable,
  249                const kernel_cap_t *permitted)
  250 {
  251         if (cap_inh_is_capped() &&
  252             !cap_issubset(*inheritable,
  253                           cap_combine(old->cap_inheritable,
  254                                       old->cap_permitted)))
  255                 /* incapable of using this inheritable set */
  256                 return -EPERM;
  257 
  258         if (!cap_issubset(*inheritable,
  259                           cap_combine(old->cap_inheritable,
  260                                       old->cap_bset)))
  261                 /* no new pI capabilities outside bounding set */
  262                 return -EPERM;
  263 
  264         /* verify restrictions on target's new Permitted set */
  265         if (!cap_issubset(*permitted, old->cap_permitted))
  266                 return -EPERM;
  267 
  268         /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
  269         if (!cap_issubset(*effective, *permitted))
  270                 return -EPERM;
  271 
  272         new->cap_effective   = *effective;
  273         new->cap_inheritable = *inheritable;
  274         new->cap_permitted   = *permitted;
  275         return 0;
  276 }
  277 
  278 /*
  279  * Clear proposed capability sets for execve().
  280  */
  281 static inline void bprm_clear_caps(struct linux_binprm *bprm)
  282 {
  283         cap_clear(bprm->cred->cap_permitted);
  284         bprm->cap_effective = false;
  285 }
  286 
  287 /**
  288  * cap_inode_need_killpriv - Determine if inode change affects privileges
  289  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
  290  *
  291  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
  292  * affects the security markings on that inode, and if it is, should
  293  * inode_killpriv() be invoked or the change rejected?
  294  *
  295  * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
  296  * -ve to deny the change.
  297  */
  298 int cap_inode_need_killpriv(struct dentry *dentry)
  299 {
  300         struct inode *inode = dentry->d_inode;
  301         int error;
  302 
  303         if (!inode->i_op->getxattr)
  304                return 0;
  305 
  306         error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
  307         if (error <= 0)
  308                 return 0;
  309         return 1;
  310 }
  311 
  312 /**
  313  * cap_inode_killpriv - Erase the security markings on an inode
  314  * @dentry: The inode/dentry to alter
  315  *
  316  * Erase the privilege-enhancing security markings on an inode.
  317  *
  318  * Returns 0 if successful, -ve on error.
  319  */
  320 int cap_inode_killpriv(struct dentry *dentry)
  321 {
  322         struct inode *inode = dentry->d_inode;
  323 
  324         if (!inode->i_op->removexattr)
  325                return 0;
  326 
  327         return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
  328 }
  329 
  330 /*
  331  * Calculate the new process capability sets from the capability sets attached
  332  * to a file.
  333  */
  334 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
  335                                           struct linux_binprm *bprm,
  336                                           bool *effective,
  337                                           bool *has_cap)
  338 {
  339         struct cred *new = bprm->cred;
  340         unsigned i;
  341         int ret = 0;
  342 
  343         if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
  344                 *effective = true;
  345 
  346         if (caps->magic_etc & VFS_CAP_REVISION_MASK)
  347                 *has_cap = true;
  348 
  349         CAP_FOR_EACH_U32(i) {
  350                 __u32 permitted = caps->permitted.cap[i];
  351                 __u32 inheritable = caps->inheritable.cap[i];
  352 
  353                 /*
  354                  * pP' = (X & fP) | (pI & fI)
  355                  */
  356                 new->cap_permitted.cap[i] =
  357                         (new->cap_bset.cap[i] & permitted) |
  358                         (new->cap_inheritable.cap[i] & inheritable);
  359 
  360                 if (permitted & ~new->cap_permitted.cap[i])
  361                         /* insufficient to execute correctly */
  362                         ret = -EPERM;
  363         }
  364 
  365         /*
  366          * For legacy apps, with no internal support for recognizing they
  367          * do not have enough capabilities, we return an error if they are
  368          * missing some "forced" (aka file-permitted) capabilities.
  369          */
  370         return *effective ? ret : 0;
  371 }
  372 
  373 /*
  374  * Extract the on-exec-apply capability sets for an executable file.
  375  */
  376 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
  377 {
  378         struct inode *inode = dentry->d_inode;
  379         __u32 magic_etc;
  380         unsigned tocopy, i;
  381         int size;
  382         struct vfs_cap_data caps;
  383 
  384         memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
  385 
  386         if (!inode || !inode->i_op->getxattr)
  387                 return -ENODATA;
  388 
  389         size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
  390                                    XATTR_CAPS_SZ);
  391         if (size == -ENODATA || size == -EOPNOTSUPP)
  392                 /* no data, that's ok */
  393                 return -ENODATA;
  394         if (size < 0)
  395                 return size;
  396 
  397         if (size < sizeof(magic_etc))
  398                 return -EINVAL;
  399 
  400         cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
  401 
  402         switch (magic_etc & VFS_CAP_REVISION_MASK) {
  403         case VFS_CAP_REVISION_1:
  404                 if (size != XATTR_CAPS_SZ_1)
  405                         return -EINVAL;
  406                 tocopy = VFS_CAP_U32_1;
  407                 break;
  408         case VFS_CAP_REVISION_2:
  409                 if (size != XATTR_CAPS_SZ_2)
  410                         return -EINVAL;
  411                 tocopy = VFS_CAP_U32_2;
  412                 break;
  413         default:
  414                 return -EINVAL;
  415         }
  416 
  417         CAP_FOR_EACH_U32(i) {
  418                 if (i >= tocopy)
  419                         break;
  420                 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
  421                 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
  422         }
  423 
  424         return 0;
  425 }
  426 
  427 /*
  428  * Attempt to get the on-exec apply capability sets for an executable file from
  429  * its xattrs and, if present, apply them to the proposed credentials being
  430  * constructed by execve().
  431  */
  432 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
  433 {
  434         struct dentry *dentry;
  435         int rc = 0;
  436         struct cpu_vfs_cap_data vcaps;
  437 
  438         bprm_clear_caps(bprm);
  439 
  440         if (!file_caps_enabled)
  441                 return 0;
  442 
  443         if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
  444                 return 0;
  445 
  446         dentry = dget(bprm->file->f_dentry);
  447 
  448         rc = get_vfs_caps_from_disk(dentry, &vcaps);
  449         if (rc < 0) {
  450                 if (rc == -EINVAL)
  451                         printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
  452                                 __func__, rc, bprm->filename);
  453                 else if (rc == -ENODATA)
  454                         rc = 0;
  455                 goto out;
  456         }
  457 
  458         rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
  459         if (rc == -EINVAL)
  460                 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
  461                        __func__, rc, bprm->filename);
  462 
  463 out:
  464         dput(dentry);
  465         if (rc)
  466                 bprm_clear_caps(bprm);
  467 
  468         return rc;
  469 }
  470 
  471 /**
  472  * cap_bprm_set_creds - Set up the proposed credentials for execve().
  473  * @bprm: The execution parameters, including the proposed creds
  474  *
  475  * Set up the proposed credentials for a new execution context being
  476  * constructed by execve().  The proposed creds in @bprm->cred is altered,
  477  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
  478  */
  479 int cap_bprm_set_creds(struct linux_binprm *bprm)
  480 {
  481         const struct cred *old = current_cred();
  482         struct cred *new = bprm->cred;
  483         bool effective, has_cap = false;
  484         int ret;
  485         kuid_t root_uid;
  486 
  487         effective = false;
  488         ret = get_file_caps(bprm, &effective, &has_cap);
  489         if (ret < 0)
  490                 return ret;
  491 
  492         root_uid = make_kuid(new->user_ns, 0);
  493 
  494         if (!issecure(SECURE_NOROOT)) {
  495                 /*
  496                  * If the legacy file capability is set, then don't set privs
  497                  * for a setuid root binary run by a non-root user.  Do set it
  498                  * for a root user just to cause least surprise to an admin.
  499                  */
  500                 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
  501                         warn_setuid_and_fcaps_mixed(bprm->filename);
  502                         goto skip;
  503                 }
  504                 /*
  505                  * To support inheritance of root-permissions and suid-root
  506                  * executables under compatibility mode, we override the
  507                  * capability sets for the file.
  508                  *
  509                  * If only the real uid is 0, we do not set the effective bit.
  510                  */
  511                 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
  512                         /* pP' = (cap_bset & ~0) | (pI & ~0) */
  513                         new->cap_permitted = cap_combine(old->cap_bset,
  514                                                          old->cap_inheritable);
  515                 }
  516                 if (uid_eq(new->euid, root_uid))
  517                         effective = true;
  518         }
  519 skip:
  520 
  521         /* if we have fs caps, clear dangerous personality flags */
  522         if (!cap_issubset(new->cap_permitted, old->cap_permitted))
  523                 bprm->per_clear |= PER_CLEAR_ON_SETID;
  524 
  525 
  526         /* Don't let someone trace a set[ug]id/setpcap binary with the revised
  527          * credentials unless they have the appropriate permit.
  528          *
  529          * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
  530          */
  531         if ((!uid_eq(new->euid, old->uid) ||
  532              !gid_eq(new->egid, old->gid) ||
  533              !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
  534             bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
  535                 /* downgrade; they get no more than they had, and maybe less */
  536                 if (!capable(CAP_SETUID) ||
  537                     (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
  538                         new->euid = new->uid;
  539                         new->egid = new->gid;
  540                 }
  541                 new->cap_permitted = cap_intersect(new->cap_permitted,
  542                                                    old->cap_permitted);
  543         }
  544 
  545         new->suid = new->fsuid = new->euid;
  546         new->sgid = new->fsgid = new->egid;
  547 
  548         if (effective)
  549                 new->cap_effective = new->cap_permitted;
  550         else
  551                 cap_clear(new->cap_effective);
  552         bprm->cap_effective = effective;
  553 
  554         /*
  555          * Audit candidate if current->cap_effective is set
  556          *
  557          * We do not bother to audit if 3 things are true:
  558          *   1) cap_effective has all caps
  559          *   2) we are root
  560          *   3) root is supposed to have all caps (SECURE_NOROOT)
  561          * Since this is just a normal root execing a process.
  562          *
  563          * Number 1 above might fail if you don't have a full bset, but I think
  564          * that is interesting information to audit.
  565          */
  566         if (!cap_isclear(new->cap_effective)) {
  567                 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
  568                     !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
  569                     issecure(SECURE_NOROOT)) {
  570                         ret = audit_log_bprm_fcaps(bprm, new, old);
  571                         if (ret < 0)
  572                                 return ret;
  573                 }
  574         }
  575 
  576         new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  577         return 0;
  578 }
  579 
  580 /**
  581  * cap_bprm_secureexec - Determine whether a secure execution is required
  582  * @bprm: The execution parameters
  583  *
  584  * Determine whether a secure execution is required, return 1 if it is, and 0
  585  * if it is not.
  586  *
  587  * The credentials have been committed by this point, and so are no longer
  588  * available through @bprm->cred.
  589  */
  590 int cap_bprm_secureexec(struct linux_binprm *bprm)
  591 {
  592         const struct cred *cred = current_cred();
  593         kuid_t root_uid = make_kuid(cred->user_ns, 0);
  594 
  595         if (!uid_eq(cred->uid, root_uid)) {
  596                 if (bprm->cap_effective)
  597                         return 1;
  598                 if (!cap_isclear(cred->cap_permitted))
  599                         return 1;
  600         }
  601 
  602         return (!uid_eq(cred->euid, cred->uid) ||
  603                 !gid_eq(cred->egid, cred->gid));
  604 }
  605 
  606 /**
  607  * cap_inode_setxattr - Determine whether an xattr may be altered
  608  * @dentry: The inode/dentry being altered
  609  * @name: The name of the xattr to be changed
  610  * @value: The value that the xattr will be changed to
  611  * @size: The size of value
  612  * @flags: The replacement flag
  613  *
  614  * Determine whether an xattr may be altered or set on an inode, returning 0 if
  615  * permission is granted, -ve if denied.
  616  *
  617  * This is used to make sure security xattrs don't get updated or set by those
  618  * who aren't privileged to do so.
  619  */
  620 int cap_inode_setxattr(struct dentry *dentry, const char *name,
  621                        const void *value, size_t size, int flags)
  622 {
  623         if (!strcmp(name, XATTR_NAME_CAPS)) {
  624                 if (!capable(CAP_SETFCAP))
  625                         return -EPERM;
  626                 return 0;
  627         }
  628 
  629         if (!strncmp(name, XATTR_SECURITY_PREFIX,
  630                      sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  631             !capable(CAP_SYS_ADMIN))
  632                 return -EPERM;
  633         return 0;
  634 }
  635 
  636 /**
  637  * cap_inode_removexattr - Determine whether an xattr may be removed
  638  * @dentry: The inode/dentry being altered
  639  * @name: The name of the xattr to be changed
  640  *
  641  * Determine whether an xattr may be removed from an inode, returning 0 if
  642  * permission is granted, -ve if denied.
  643  *
  644  * This is used to make sure security xattrs don't get removed by those who
  645  * aren't privileged to remove them.
  646  */
  647 int cap_inode_removexattr(struct dentry *dentry, const char *name)
  648 {
  649         if (!strcmp(name, XATTR_NAME_CAPS)) {
  650                 if (!capable(CAP_SETFCAP))
  651                         return -EPERM;
  652                 return 0;
  653         }
  654 
  655         if (!strncmp(name, XATTR_SECURITY_PREFIX,
  656                      sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  657             !capable(CAP_SYS_ADMIN))
  658                 return -EPERM;
  659         return 0;
  660 }
  661 
  662 /*
  663  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
  664  * a process after a call to setuid, setreuid, or setresuid.
  665  *
  666  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
  667  *  {r,e,s}uid != 0, the permitted and effective capabilities are
  668  *  cleared.
  669  *
  670  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
  671  *  capabilities of the process are cleared.
  672  *
  673  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
  674  *  capabilities are set to the permitted capabilities.
  675  *
  676  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
  677  *  never happen.
  678  *
  679  *  -astor
  680  *
  681  * cevans - New behaviour, Oct '99
  682  * A process may, via prctl(), elect to keep its capabilities when it
  683  * calls setuid() and switches away from uid==0. Both permitted and
  684  * effective sets will be retained.
  685  * Without this change, it was impossible for a daemon to drop only some
  686  * of its privilege. The call to setuid(!=0) would drop all privileges!
  687  * Keeping uid 0 is not an option because uid 0 owns too many vital
  688  * files..
  689  * Thanks to Olaf Kirch and Peter Benie for spotting this.
  690  */
  691 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
  692 {
  693         kuid_t root_uid = make_kuid(old->user_ns, 0);
  694 
  695         if ((uid_eq(old->uid, root_uid) ||
  696              uid_eq(old->euid, root_uid) ||
  697              uid_eq(old->suid, root_uid)) &&
  698             (!uid_eq(new->uid, root_uid) &&
  699              !uid_eq(new->euid, root_uid) &&
  700              !uid_eq(new->suid, root_uid)) &&
  701             !issecure(SECURE_KEEP_CAPS)) {
  702                 cap_clear(new->cap_permitted);
  703                 cap_clear(new->cap_effective);
  704         }
  705         if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
  706                 cap_clear(new->cap_effective);
  707         if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
  708                 new->cap_effective = new->cap_permitted;
  709 }
  710 
  711 /**
  712  * cap_task_fix_setuid - Fix up the results of setuid() call
  713  * @new: The proposed credentials
  714  * @old: The current task's current credentials
  715  * @flags: Indications of what has changed
  716  *
  717  * Fix up the results of setuid() call before the credential changes are
  718  * actually applied, returning 0 to grant the changes, -ve to deny them.
  719  */
  720 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
  721 {
  722         switch (flags) {
  723         case LSM_SETID_RE:
  724         case LSM_SETID_ID:
  725         case LSM_SETID_RES:
  726                 /* juggle the capabilities to follow [RES]UID changes unless
  727                  * otherwise suppressed */
  728                 if (!issecure(SECURE_NO_SETUID_FIXUP))
  729                         cap_emulate_setxuid(new, old);
  730                 break;
  731 
  732         case LSM_SETID_FS:
  733                 /* juggle the capabilties to follow FSUID changes, unless
  734                  * otherwise suppressed
  735                  *
  736                  * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
  737                  *          if not, we might be a bit too harsh here.
  738                  */
  739                 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
  740                         kuid_t root_uid = make_kuid(old->user_ns, 0);
  741                         if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
  742                                 new->cap_effective =
  743                                         cap_drop_fs_set(new->cap_effective);
  744 
  745                         if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
  746                                 new->cap_effective =
  747                                         cap_raise_fs_set(new->cap_effective,
  748                                                          new->cap_permitted);
  749                 }
  750                 break;
  751 
  752         default:
  753                 return -EINVAL;
  754         }
  755 
  756         return 0;
  757 }
  758 
  759 /*
  760  * Rationale: code calling task_setscheduler, task_setioprio, and
  761  * task_setnice, assumes that
  762  *   . if capable(cap_sys_nice), then those actions should be allowed
  763  *   . if not capable(cap_sys_nice), but acting on your own processes,
  764  *      then those actions should be allowed
  765  * This is insufficient now since you can call code without suid, but
  766  * yet with increased caps.
  767  * So we check for increased caps on the target process.
  768  */
  769 static int cap_safe_nice(struct task_struct *p)
  770 {
  771         int is_subset;
  772 
  773         rcu_read_lock();
  774         is_subset = cap_issubset(__task_cred(p)->cap_permitted,
  775                                  current_cred()->cap_permitted);
  776         rcu_read_unlock();
  777 
  778         if (!is_subset && !capable(CAP_SYS_NICE))
  779                 return -EPERM;
  780         return 0;
  781 }
  782 
  783 /**
  784  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
  785  * @p: The task to affect
  786  *
  787  * Detemine if the requested scheduler policy change is permitted for the
  788  * specified task, returning 0 if permission is granted, -ve if denied.
  789  */
  790 int cap_task_setscheduler(struct task_struct *p)
  791 {
  792         return cap_safe_nice(p);
  793 }
  794 
  795 /**
  796  * cap_task_ioprio - Detemine if I/O priority change is permitted
  797  * @p: The task to affect
  798  * @ioprio: The I/O priority to set
  799  *
  800  * Detemine if the requested I/O priority change is permitted for the specified
  801  * task, returning 0 if permission is granted, -ve if denied.
  802  */
  803 int cap_task_setioprio(struct task_struct *p, int ioprio)
  804 {
  805         return cap_safe_nice(p);
  806 }
  807 
  808 /**
  809  * cap_task_ioprio - Detemine if task priority change is permitted
  810  * @p: The task to affect
  811  * @nice: The nice value to set
  812  *
  813  * Detemine if the requested task priority change is permitted for the
  814  * specified task, returning 0 if permission is granted, -ve if denied.
  815  */
  816 int cap_task_setnice(struct task_struct *p, int nice)
  817 {
  818         return cap_safe_nice(p);
  819 }
  820 
  821 /*
  822  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
  823  * the current task's bounding set.  Returns 0 on success, -ve on error.
  824  */
  825 static long cap_prctl_drop(struct cred *new, unsigned long cap)
  826 {
  827         if (!capable(CAP_SETPCAP))
  828                 return -EPERM;
  829         if (!cap_valid(cap))
  830                 return -EINVAL;
  831 
  832         cap_lower(new->cap_bset, cap);
  833         return 0;
  834 }
  835 
  836 /**
  837  * cap_task_prctl - Implement process control functions for this security module
  838  * @option: The process control function requested
  839  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
  840  *
  841  * Allow process control functions (sys_prctl()) to alter capabilities; may
  842  * also deny access to other functions not otherwise implemented here.
  843  *
  844  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
  845  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
  846  * modules will consider performing the function.
  847  */
  848 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  849                    unsigned long arg4, unsigned long arg5)
  850 {
  851         struct cred *new;
  852         long error = 0;
  853 
  854         new = prepare_creds();
  855         if (!new)
  856                 return -ENOMEM;
  857 
  858         switch (option) {
  859         case PR_CAPBSET_READ:
  860                 error = -EINVAL;
  861                 if (!cap_valid(arg2))
  862                         goto error;
  863                 error = !!cap_raised(new->cap_bset, arg2);
  864                 goto no_change;
  865 
  866         case PR_CAPBSET_DROP:
  867                 error = cap_prctl_drop(new, arg2);
  868                 if (error < 0)
  869                         goto error;
  870                 goto changed;
  871 
  872         /*
  873          * The next four prctl's remain to assist with transitioning a
  874          * system from legacy UID=0 based privilege (when filesystem
  875          * capabilities are not in use) to a system using filesystem
  876          * capabilities only - as the POSIX.1e draft intended.
  877          *
  878          * Note:
  879          *
  880          *  PR_SET_SECUREBITS =
  881          *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
  882          *    | issecure_mask(SECURE_NOROOT)
  883          *    | issecure_mask(SECURE_NOROOT_LOCKED)
  884          *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
  885          *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
  886          *
  887          * will ensure that the current process and all of its
  888          * children will be locked into a pure
  889          * capability-based-privilege environment.
  890          */
  891         case PR_SET_SECUREBITS:
  892                 error = -EPERM;
  893                 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
  894                      & (new->securebits ^ arg2))                        /*[1]*/
  895                     || ((new->securebits & SECURE_ALL_LOCKS & ~arg2))   /*[2]*/
  896                     || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))   /*[3]*/
  897                     || (cap_capable(current_cred(),
  898                                     current_cred()->user_ns, CAP_SETPCAP,
  899                                     SECURITY_CAP_AUDIT) != 0)           /*[4]*/
  900                         /*
  901                          * [1] no changing of bits that are locked
  902                          * [2] no unlocking of locks
  903                          * [3] no setting of unsupported bits
  904                          * [4] doing anything requires privilege (go read about
  905                          *     the "sendmail capabilities bug")
  906                          */
  907                     )
  908                         /* cannot change a locked bit */
  909                         goto error;
  910                 new->securebits = arg2;
  911                 goto changed;
  912 
  913         case PR_GET_SECUREBITS:
  914                 error = new->securebits;
  915                 goto no_change;
  916 
  917         case PR_GET_KEEPCAPS:
  918                 if (issecure(SECURE_KEEP_CAPS))
  919                         error = 1;
  920                 goto no_change;
  921 
  922         case PR_SET_KEEPCAPS:
  923                 error = -EINVAL;
  924                 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
  925                         goto error;
  926                 error = -EPERM;
  927                 if (issecure(SECURE_KEEP_CAPS_LOCKED))
  928                         goto error;
  929                 if (arg2)
  930                         new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
  931                 else
  932                         new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  933                 goto changed;
  934 
  935         default:
  936                 /* No functionality available - continue with default */
  937                 error = -ENOSYS;
  938                 goto error;
  939         }
  940 
  941         /* Functionality provided */
  942 changed:
  943         return commit_creds(new);
  944 
  945 no_change:
  946 error:
  947         abort_creds(new);
  948         return error;
  949 }
  950 
  951 /**
  952  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
  953  * @mm: The VM space in which the new mapping is to be made
  954  * @pages: The size of the mapping
  955  *
  956  * Determine whether the allocation of a new virtual mapping by the current
  957  * task is permitted, returning 0 if permission is granted, -ve if not.
  958  */
  959 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
  960 {
  961         int cap_sys_admin = 0;
  962 
  963         if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
  964                         SECURITY_CAP_NOAUDIT) == 0)
  965                 cap_sys_admin = 1;
  966         return __vm_enough_memory(mm, pages, cap_sys_admin);
  967 }
  968 
  969 /*
  970  * cap_mmap_addr - check if able to map given addr
  971  * @addr: address attempting to be mapped
  972  *
  973  * If the process is attempting to map memory below dac_mmap_min_addr they need
  974  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
  975  * capability security module.  Returns 0 if this mapping should be allowed
  976  * -EPERM if not.
  977  */
  978 int cap_mmap_addr(unsigned long addr)
  979 {
  980         int ret = 0;
  981 
  982         if (addr < dac_mmap_min_addr) {
  983                 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
  984                                   SECURITY_CAP_AUDIT);
  985                 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
  986                 if (ret == 0)
  987                         current->flags |= PF_SUPERPRIV;
  988         }
  989         return ret;
  990 }
  991 
  992 int cap_mmap_file(struct file *file, unsigned long reqprot,
  993                   unsigned long prot, unsigned long flags)
  994 {
  995         return 0;
  996 }

Cache object: 8b8b7348ed527d8ce8ba3652ec375516


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.