The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/servers/inet/sha2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 
    2 /*
    3  * sha2.c
    4  *
    5  * Version 1.0.0beta1
    6  *
    7  * Written by Aaron D. Gifford <me@aarongifford.com>
    8  *
    9  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. Neither the name of the copyright holder nor the names of contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  * 
   23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  */
   36 
   37 
   38 #include <sys/types.h>
   39 /* #include <sys/time.h> */
   40 /* #include <sys/systm.h> */
   41 /* #include <machine/endian.h> */
   42 #include "sha2.h"
   43 
   44 /*
   45  * ASSERT NOTE:
   46  * Some sanity checking code is included using assert().  On my FreeBSD
   47  * system, this additional code can be removed by compiling with NDEBUG
   48  * defined.  Check your own systems manpage on assert() to see how to
   49  * compile WITHOUT the sanity checking code on your system.
   50  *
   51  * UNROLLED TRANSFORM LOOP NOTE:
   52  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
   53  * loop version for the hash transform rounds (defined using macros
   54  * later in this file).  Either define on the command line, for example:
   55  *
   56  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
   57  *
   58  * or define below:
   59  *
   60  *   #define SHA2_UNROLL_TRANSFORM
   61  *
   62  */
   63 
   64 #if defined(__bsdi__) || defined(__FreeBSD__)
   65 #define assert(x)
   66 #endif
   67 
   68 
   69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
   70 /*
   71  * SHA2_BYTE_ORDER NOTE:
   72  *
   73  * Please make sure that your system defines SHA2_BYTE_ORDER.  If your
   74  * architecture is little-endian, make sure it also defines
   75  * SHA2_LITTLE_ENDIAN and that the two (SHA2_BYTE_ORDER and
   76  * SHA2_LITTLE_ENDIAN) are equivilent.
   77  *
   78  * If your system does not define the above, then you can do so by
   79  * hand like this:
   80  *
   81  *   #define SHA2_LITTLE_ENDIAN 1234
   82  *   #define SHA2_BIG_ENDIAN    4321
   83  *
   84  * And for little-endian machines, add:
   85  *
   86  *   #define SHA2_BYTE_ORDER SHA2_LITTLE_ENDIAN 
   87  *
   88  * Or for big-endian machines:
   89  *
   90  *   #define SHA2_BYTE_ORDER SHA2_BIG_ENDIAN
   91  *
   92  * The FreeBSD machine this was written on defines BYTE_ORDER
   93  * appropriately by including <sys/types.h> (which in turn includes
   94  * <machine/endian.h> where the appropriate definitions are actually
   95  * made).
   96  */
   97 #if !defined(SHA2_BYTE_ORDER) || (SHA2_BYTE_ORDER != SHA2_LITTLE_ENDIAN && SHA2_BYTE_ORDER != SHA2_BIG_ENDIAN)
   98 #error Define SHA2_BYTE_ORDER to be equal to either SHA2_LITTLE_ENDIAN or SHA2_BIG_ENDIAN
   99 #endif
  100 
  101 /*
  102  * Define the followingsha2_* types to types of the correct length on
  103  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
  104  * types.  Machines with very recent ANSI C headers, can use the
  105  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
  106  * during compile or in the sha.h header file.
  107  *
  108  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
  109  * will need to define these three typedefs below (and the appropriate
  110  * ones in sha.h too) by hand according to their system architecture.
  111  *
  112  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
  113  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
  114  */
  115 #if 0 /*def SHA2_USE_INTTYPES_H*/
  116 
  117 typedef uint8_t  sha2_byte;     /* Exactly 1 byte */
  118 typedef uint32_t sha2_word32;   /* Exactly 4 bytes */
  119 typedef uint64_t sha2_word64;   /* Exactly 8 bytes */
  120 
  121 #else /* SHA2_USE_INTTYPES_H */
  122 
  123 typedef u_int8_t  sha2_byte;    /* Exactly 1 byte */
  124 typedef u_int32_t sha2_word32;  /* Exactly 4 bytes */
  125 typedef u_int64_t sha2_word64;  /* Exactly 8 bytes */
  126 
  127 #endif /* SHA2_USE_INTTYPES_H */
  128 
  129 
  130 /*** SHA-256/384/512 Various Length Definitions ***********************/
  131 /* NOTE: Most of these are in sha2.h */
  132 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
  133 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
  134 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
  135 
  136 
  137 /*** ENDIAN REVERSAL MACROS *******************************************/
  138 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  139 #define REVERSE32(w,x)  { \
  140         sha2_word32 tmp = (w); \
  141         tmp = (tmp >> 16) | (tmp << 16); \
  142         (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  143 }
  144 #define REVERSE64(w,x)  { \
  145         sha2_word64 tmp = (w); \
  146         tmp = (tmp >> 32) | (tmp << 32); \
  147         tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  148               ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  149         (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  150               ((tmp & 0x0000ffff0000ffffULL) << 16); \
  151 }
  152 #if MINIX_64BIT
  153 #undef REVERSE64
  154 #define REVERSE64(w,x)  { \
  155         u32_t hi, lo; \
  156         REVERSE32(ex64hi((w)), lo); \
  157         REVERSE32(ex64lo((w)), hi); \
  158         (x) = make64(lo, hi); \
  159 }
  160 #endif /* MINIX_64BIT */
  161 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  162 
  163 /*
  164  * Macro for incrementally adding the unsigned 64-bit integer n to the
  165  * unsigned 128-bit integer (represented using a two-element array of
  166  * 64-bit words):
  167  */
  168 #define ADDINC128(w,n)  { \
  169         (w)[0] += (sha2_word64)(n); \
  170         if ((w)[0] < (n)) { \
  171                 (w)[1]++; \
  172         } \
  173 }
  174 
  175 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  176 /*
  177  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  178  *
  179  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
  180  *   S is a ROTATION) because the SHA-256/384/512 description document
  181  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  182  *   same "backwards" definition.
  183  */
  184 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  185 #define R(b,x)          ((x) >> (b))
  186 /* 32-bit Rotate-right (used in SHA-256): */
  187 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
  188 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  189 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
  190 
  191 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  192 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
  193 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  194 
  195 /* Four of six logical functions used in SHA-256: */
  196 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  197 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  198 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
  199 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
  200 
  201 /* Four of six logical functions used in SHA-384 and SHA-512: */
  202 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  203 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  204 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
  205 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
  206 
  207 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  208 /* NOTE: These should not be accessed directly from outside this
  209  * library -- they are intended for private internal visibility/use
  210  * only.
  211  */
  212 void SHA512_Last(SHA512_CTX*);
  213 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  214 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  215 
  216 
  217 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  218 /* Hash constant words K for SHA-256: */
  219 const static sha2_word32 K256[64] = {
  220         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  221         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  222         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  223         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  224         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  225         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  226         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  227         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  228         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  229         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  230         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  231         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  232         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  233         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  234         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  235         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  236 };
  237 
  238 /* Initial hash value H for SHA-256: */
  239 const static sha2_word32 sha256_initial_hash_value[8] = {
  240         0x6a09e667UL,
  241         0xbb67ae85UL,
  242         0x3c6ef372UL,
  243         0xa54ff53aUL,
  244         0x510e527fUL,
  245         0x9b05688cUL,
  246         0x1f83d9abUL,
  247         0x5be0cd19UL
  248 };
  249 
  250 #if !NO_64BIT
  251 /* Hash constant words K for SHA-384 and SHA-512: */
  252 const static sha2_word64 K512[80] = {
  253         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  254         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  255         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  256         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  257         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  258         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  259         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  260         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  261         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  262         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  263         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  264         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  265         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  266         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  267         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  268         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  269         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  270         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  271         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  272         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  273         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  274         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  275         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  276         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  277         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  278         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  279         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  280         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  281         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  282         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  283         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  284         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  285         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  286         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  287         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  288         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  289         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  290         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  291         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  292         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  293 };
  294 
  295 /* Initial hash value H for SHA-384 */
  296 const static sha2_word64 sha384_initial_hash_value[8] = {
  297         0xcbbb9d5dc1059ed8ULL,
  298         0x629a292a367cd507ULL,
  299         0x9159015a3070dd17ULL,
  300         0x152fecd8f70e5939ULL,
  301         0x67332667ffc00b31ULL,
  302         0x8eb44a8768581511ULL,
  303         0xdb0c2e0d64f98fa7ULL,
  304         0x47b5481dbefa4fa4ULL
  305 };
  306 
  307 /* Initial hash value H for SHA-512 */
  308 const static sha2_word64 sha512_initial_hash_value[8] = {
  309         0x6a09e667f3bcc908ULL,
  310         0xbb67ae8584caa73bULL,
  311         0x3c6ef372fe94f82bULL,
  312         0xa54ff53a5f1d36f1ULL,
  313         0x510e527fade682d1ULL,
  314         0x9b05688c2b3e6c1fULL,
  315         0x1f83d9abfb41bd6bULL,
  316         0x5be0cd19137e2179ULL
  317 };
  318 #endif /* !NO_64BIT */
  319 
  320 /*
  321  * Constant used by SHA256/384/512_End() functions for converting the
  322  * digest to a readable hexadecimal character string:
  323  */
  324 static const char *sha2_hex_digits = "0123456789abcdef";
  325 
  326 
  327 /*** SHA-256: *********************************************************/
  328 void SHA256_Init(SHA256_CTX* context) {
  329         if (context == (SHA256_CTX*)0) {
  330                 return;
  331         }
  332         bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
  333         bzero(context->buffer, SHA256_BLOCK_LENGTH);
  334 #if MINIX_64BIT
  335         context->bitcount= cvu64(0);
  336 #else /* !MINIX_64BIT */
  337         context->bitcount = 0;
  338 #endif /* MINIX_64BIT */
  339 }
  340 
  341 #ifdef SHA2_UNROLL_TRANSFORM
  342 
  343 /* Unrolled SHA-256 round macros: */
  344 
  345 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  346 
  347 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
  348         REVERSE32(*data++, W256[j]); \
  349         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  350              K256[j] + W256[j]; \
  351         (d) += T1; \
  352         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  353         j++
  354 
  355 
  356 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  357 
  358 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
  359         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  360              K256[j] + (W256[j] = *data++); \
  361         (d) += T1; \
  362         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  363         j++
  364 
  365 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  366 
  367 #define ROUND256(a,b,c,d,e,f,g,h)       \
  368         s0 = W256[(j+1)&0x0f]; \
  369         s0 = sigma0_256(s0); \
  370         s1 = W256[(j+14)&0x0f]; \
  371         s1 = sigma1_256(s1); \
  372         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  373              (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  374         (d) += T1; \
  375         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  376         j++
  377 
  378 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  379         sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
  380         sha2_word32     T1, *W256;
  381         int             j;
  382 
  383         W256 = (sha2_word32*)context->buffer;
  384 
  385         /* Initialize registers with the prev. intermediate value */
  386         a = context->state[0];
  387         b = context->state[1];
  388         c = context->state[2];
  389         d = context->state[3];
  390         e = context->state[4];
  391         f = context->state[5];
  392         g = context->state[6];
  393         h = context->state[7];
  394 
  395         j = 0;
  396         do {
  397                 /* Rounds 0 to 15 (unrolled): */
  398                 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  399                 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  400                 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  401                 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  402                 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  403                 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  404                 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  405                 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  406         } while (j < 16);
  407 
  408         /* Now for the remaining rounds to 64: */
  409         do {
  410                 ROUND256(a,b,c,d,e,f,g,h);
  411                 ROUND256(h,a,b,c,d,e,f,g);
  412                 ROUND256(g,h,a,b,c,d,e,f);
  413                 ROUND256(f,g,h,a,b,c,d,e);
  414                 ROUND256(e,f,g,h,a,b,c,d);
  415                 ROUND256(d,e,f,g,h,a,b,c);
  416                 ROUND256(c,d,e,f,g,h,a,b);
  417                 ROUND256(b,c,d,e,f,g,h,a);
  418         } while (j < 64);
  419 
  420         /* Compute the current intermediate hash value */
  421         context->state[0] += a;
  422         context->state[1] += b;
  423         context->state[2] += c;
  424         context->state[3] += d;
  425         context->state[4] += e;
  426         context->state[5] += f;
  427         context->state[6] += g;
  428         context->state[7] += h;
  429 
  430         /* Clean up */
  431         a = b = c = d = e = f = g = h = T1 = 0;
  432 }
  433 
  434 #else /* SHA2_UNROLL_TRANSFORM */
  435 
  436 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  437         sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
  438         sha2_word32     T1, T2, *W256;
  439         int             j;
  440 
  441         W256 = (sha2_word32*)context->buffer;
  442 
  443         /* Initialize registers with the prev. intermediate value */
  444         a = context->state[0];
  445         b = context->state[1];
  446         c = context->state[2];
  447         d = context->state[3];
  448         e = context->state[4];
  449         f = context->state[5];
  450         g = context->state[6];
  451         h = context->state[7];
  452 
  453         j = 0;
  454         do {
  455 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  456                 /* Copy data while converting to host byte order */
  457                 REVERSE32(*data++,W256[j]);
  458                 /* Apply the SHA-256 compression function to update a..h */
  459                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  460 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  461                 /* Apply the SHA-256 compression function to update a..h with copy */
  462                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  463 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  464                 T2 = Sigma0_256(a) + Maj(a, b, c);
  465                 h = g;
  466                 g = f;
  467                 f = e;
  468                 e = d + T1;
  469                 d = c;
  470                 c = b;
  471                 b = a;
  472                 a = T1 + T2;
  473 
  474                 j++;
  475         } while (j < 16);
  476 
  477         do {
  478                 /* Part of the message block expansion: */
  479                 s0 = W256[(j+1)&0x0f];
  480                 s0 = sigma0_256(s0);
  481                 s1 = W256[(j+14)&0x0f]; 
  482                 s1 = sigma1_256(s1);
  483 
  484                 /* Apply the SHA-256 compression function to update a..h */
  485                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
  486                      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  487                 T2 = Sigma0_256(a) + Maj(a, b, c);
  488                 h = g;
  489                 g = f;
  490                 f = e;
  491                 e = d + T1;
  492                 d = c;
  493                 c = b;
  494                 b = a;
  495                 a = T1 + T2;
  496 
  497                 j++;
  498         } while (j < 64);
  499 
  500         /* Compute the current intermediate hash value */
  501         context->state[0] += a;
  502         context->state[1] += b;
  503         context->state[2] += c;
  504         context->state[3] += d;
  505         context->state[4] += e;
  506         context->state[5] += f;
  507         context->state[6] += g;
  508         context->state[7] += h;
  509 
  510         /* Clean up */
  511         a = b = c = d = e = f = g = h = T1 = T2 = 0;
  512 }
  513 
  514 #endif /* SHA2_UNROLL_TRANSFORM */
  515 
  516 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  517         unsigned int    freespace, usedspace;
  518 
  519         if (len == 0) {
  520                 /* Calling with no data is valid - we do nothing */
  521                 return;
  522         }
  523 
  524         /* Sanity check: */
  525         assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  526 
  527 #if MINIX_64BIT
  528         usedspace= rem64u(context->bitcount, SHA256_BLOCK_LENGTH*8)/8;
  529 #else /* !MINIX_64BIT */
  530         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  531 #endif /* MINIX_64BIT */
  532         if (usedspace > 0) {
  533                 /* Calculate how much free space is available in the buffer */
  534                 freespace = SHA256_BLOCK_LENGTH - usedspace;
  535 
  536                 if (len >= freespace) {
  537                         /* Fill the buffer completely and process it */
  538                         bcopy(data, &context->buffer[usedspace], freespace);
  539 #if MINIX_64BIT
  540                         context->bitcount= add64u(context->bitcount,
  541                                 freespace << 3);
  542 #else /* !MINIX_64BIT */
  543                         context->bitcount += freespace << 3;
  544 #endif /* MINIX_64BIT */
  545                         len -= freespace;
  546                         data += freespace;
  547                         SHA256_Transform(context, (sha2_word32*)context->buffer);
  548                 } else {
  549                         /* The buffer is not yet full */
  550                         bcopy(data, &context->buffer[usedspace], len);
  551 #if MINIX_64BIT
  552                         context->bitcount= add64u(context->bitcount, len << 3);
  553 #else /* !MINIX_64BIT */
  554                         context->bitcount += len << 3;
  555 #endif /* MINIX_64BIT */
  556                         /* Clean up: */
  557                         usedspace = freespace = 0;
  558                         return;
  559                 }
  560         }
  561         while (len >= SHA256_BLOCK_LENGTH) {
  562                 /* Process as many complete blocks as we can */
  563                 SHA256_Transform(context, (const sha2_word32*)data);
  564 #if MINIX_64BIT
  565                 context->bitcount= add64u(context->bitcount,
  566                         SHA256_BLOCK_LENGTH << 3);
  567 #else /* !MINIX_64BIT */
  568                 context->bitcount += SHA256_BLOCK_LENGTH << 3;
  569 #endif /* MINIX_64BIT */
  570                 len -= SHA256_BLOCK_LENGTH;
  571                 data += SHA256_BLOCK_LENGTH;
  572         }
  573         if (len > 0) {
  574                 /* There's left-overs, so save 'em */
  575                 bcopy(data, context->buffer, len);
  576 #if MINIX_64BIT
  577                 context->bitcount= add64u(context->bitcount, len << 3);
  578 #else /* !MINIX_64BIT */
  579                 context->bitcount += len << 3;
  580 #endif /* MINIX_64BIT */
  581         }
  582         /* Clean up: */
  583         usedspace = freespace = 0;
  584 }
  585 
  586 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  587         sha2_word32     *d = (sha2_word32*)digest;
  588         unsigned int    usedspace;
  589 
  590         /* Sanity check: */
  591         assert(context != (SHA256_CTX*)0);
  592 
  593         /* If no digest buffer is passed, we don't bother doing this: */
  594         if (digest != (sha2_byte*)0) {
  595 #if MINIX_64BIT
  596                 usedspace= rem64u(context->bitcount, SHA256_BLOCK_LENGTH*8)/8;
  597 #else /* !MINIX_64BIT */
  598                 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  599 #endif /* MINIX_64BIT */
  600 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  601                 /* Convert FROM host byte order */
  602                 REVERSE64(context->bitcount,context->bitcount);
  603 #endif
  604                 if (usedspace > 0) {
  605                         /* Begin padding with a 1 bit: */
  606                         context->buffer[usedspace++] = 0x80;
  607 
  608                         if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  609                                 /* Set-up for the last transform: */
  610                                 bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  611                         } else {
  612                                 if (usedspace < SHA256_BLOCK_LENGTH) {
  613                                         bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  614                                 }
  615                                 /* Do second-to-last transform: */
  616                                 SHA256_Transform(context, (sha2_word32*)context->buffer);
  617 
  618                                 /* And set-up for the last transform: */
  619                                 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  620                         }
  621                 } else {
  622                         /* Set-up for the last transform: */
  623                         bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  624 
  625                         /* Begin padding with a 1 bit: */
  626                         *context->buffer = 0x80;
  627                 }
  628                 /* Set the bit count: */
  629                 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
  630 
  631                 /* Final transform: */
  632                 SHA256_Transform(context, (sha2_word32*)context->buffer);
  633 
  634 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  635                 {
  636                         /* Convert TO host byte order */
  637                         int     j;
  638                         for (j = 0; j < 8; j++) {
  639                                 REVERSE32(context->state[j],context->state[j]);
  640                                 *d++ = context->state[j];
  641                         }
  642                 }
  643 #else
  644                 bcopy(context->state, d, SHA256_DIGEST_LENGTH);
  645 #endif
  646         }
  647 
  648         /* Clean up state data: */
  649         bzero(context, sizeof(context));
  650         usedspace = 0;
  651 }
  652 
  653 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  654         sha2_byte       digest[SHA256_DIGEST_LENGTH], *d = digest;
  655         int             i;
  656 
  657         /* Sanity check: */
  658         assert(context != (SHA256_CTX*)0);
  659 
  660         if (buffer != (char*)0) {
  661                 SHA256_Final(digest, context);
  662 
  663                 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  664                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  665                         *buffer++ = sha2_hex_digits[*d & 0x0f];
  666                         d++;
  667                 }
  668                 *buffer = (char)0;
  669         } else {
  670                 bzero(context, sizeof(context));
  671         }
  672         bzero(digest, SHA256_DIGEST_LENGTH);
  673         return buffer;
  674 }
  675 
  676 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  677         SHA256_CTX      context;
  678 
  679         SHA256_Init(&context);
  680         SHA256_Update(&context, data, len);
  681         return SHA256_End(&context, digest);
  682 }
  683 
  684 #if !NO_64BIT
  685 
  686 /*** SHA-512: *********************************************************/
  687 void SHA512_Init(SHA512_CTX* context) {
  688         if (context == (SHA512_CTX*)0) {
  689                 return;
  690         }
  691         bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
  692         bzero(context->buffer, SHA512_BLOCK_LENGTH);
  693         context->bitcount[0] = context->bitcount[1] =  0;
  694 }
  695 
  696 #ifdef SHA2_UNROLL_TRANSFORM
  697 
  698 /* Unrolled SHA-512 round macros: */
  699 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  700 
  701 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
  702         REVERSE64(*data++, W512[j]); \
  703         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  704              K512[j] + W512[j]; \
  705         (d) += T1, \
  706         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  707         j++
  708 
  709 
  710 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  711 
  712 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
  713         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  714              K512[j] + (W512[j] = *data++); \
  715         (d) += T1; \
  716         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  717         j++
  718 
  719 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  720 
  721 #define ROUND512(a,b,c,d,e,f,g,h)       \
  722         s0 = W512[(j+1)&0x0f]; \
  723         s0 = sigma0_512(s0); \
  724         s1 = W512[(j+14)&0x0f]; \
  725         s1 = sigma1_512(s1); \
  726         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  727              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  728         (d) += T1; \
  729         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  730         j++
  731 
  732 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  733         sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
  734         sha2_word64     T1, *W512 = (sha2_word64*)context->buffer;
  735         int             j;
  736 
  737         /* Initialize registers with the prev. intermediate value */
  738         a = context->state[0];
  739         b = context->state[1];
  740         c = context->state[2];
  741         d = context->state[3];
  742         e = context->state[4];
  743         f = context->state[5];
  744         g = context->state[6];
  745         h = context->state[7];
  746 
  747         j = 0;
  748         do {
  749                 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  750                 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  751                 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  752                 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  753                 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  754                 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  755                 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  756                 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  757         } while (j < 16);
  758 
  759         /* Now for the remaining rounds up to 79: */
  760         do {
  761                 ROUND512(a,b,c,d,e,f,g,h);
  762                 ROUND512(h,a,b,c,d,e,f,g);
  763                 ROUND512(g,h,a,b,c,d,e,f);
  764                 ROUND512(f,g,h,a,b,c,d,e);
  765                 ROUND512(e,f,g,h,a,b,c,d);
  766                 ROUND512(d,e,f,g,h,a,b,c);
  767                 ROUND512(c,d,e,f,g,h,a,b);
  768                 ROUND512(b,c,d,e,f,g,h,a);
  769         } while (j < 80);
  770 
  771         /* Compute the current intermediate hash value */
  772         context->state[0] += a;
  773         context->state[1] += b;
  774         context->state[2] += c;
  775         context->state[3] += d;
  776         context->state[4] += e;
  777         context->state[5] += f;
  778         context->state[6] += g;
  779         context->state[7] += h;
  780 
  781         /* Clean up */
  782         a = b = c = d = e = f = g = h = T1 = 0;
  783 }
  784 
  785 #else /* SHA2_UNROLL_TRANSFORM */
  786 
  787 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  788         sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
  789         sha2_word64     T1, T2, *W512 = (sha2_word64*)context->buffer;
  790         int             j;
  791 
  792         /* Initialize registers with the prev. intermediate value */
  793         a = context->state[0];
  794         b = context->state[1];
  795         c = context->state[2];
  796         d = context->state[3];
  797         e = context->state[4];
  798         f = context->state[5];
  799         g = context->state[6];
  800         h = context->state[7];
  801 
  802         j = 0;
  803         do {
  804 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  805                 /* Convert TO host byte order */
  806                 REVERSE64(*data++, W512[j]);
  807                 /* Apply the SHA-512 compression function to update a..h */
  808                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  809 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  810                 /* Apply the SHA-512 compression function to update a..h with copy */
  811                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  812 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
  813                 T2 = Sigma0_512(a) + Maj(a, b, c);
  814                 h = g;
  815                 g = f;
  816                 f = e;
  817                 e = d + T1;
  818                 d = c;
  819                 c = b;
  820                 b = a;
  821                 a = T1 + T2;
  822 
  823                 j++;
  824         } while (j < 16);
  825 
  826         do {
  827                 /* Part of the message block expansion: */
  828                 s0 = W512[(j+1)&0x0f];
  829                 s0 = sigma0_512(s0);
  830                 s1 = W512[(j+14)&0x0f];
  831                 s1 =  sigma1_512(s1);
  832 
  833                 /* Apply the SHA-512 compression function to update a..h */
  834                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  835                      (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  836                 T2 = Sigma0_512(a) + Maj(a, b, c);
  837                 h = g;
  838                 g = f;
  839                 f = e;
  840                 e = d + T1;
  841                 d = c;
  842                 c = b;
  843                 b = a;
  844                 a = T1 + T2;
  845 
  846                 j++;
  847         } while (j < 80);
  848 
  849         /* Compute the current intermediate hash value */
  850         context->state[0] += a;
  851         context->state[1] += b;
  852         context->state[2] += c;
  853         context->state[3] += d;
  854         context->state[4] += e;
  855         context->state[5] += f;
  856         context->state[6] += g;
  857         context->state[7] += h;
  858 
  859         /* Clean up */
  860         a = b = c = d = e = f = g = h = T1 = T2 = 0;
  861 }
  862 
  863 #endif /* SHA2_UNROLL_TRANSFORM */
  864 
  865 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  866         unsigned int    freespace, usedspace;
  867 
  868         if (len == 0) {
  869                 /* Calling with no data is valid - we do nothing */
  870                 return;
  871         }
  872 
  873         /* Sanity check: */
  874         assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  875 
  876         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  877         if (usedspace > 0) {
  878                 /* Calculate how much free space is available in the buffer */
  879                 freespace = SHA512_BLOCK_LENGTH - usedspace;
  880 
  881                 if (len >= freespace) {
  882                         /* Fill the buffer completely and process it */
  883                         bcopy(data, &context->buffer[usedspace], freespace);
  884                         ADDINC128(context->bitcount, freespace << 3);
  885                         len -= freespace;
  886                         data += freespace;
  887                         SHA512_Transform(context, (sha2_word64*)context->buffer);
  888                 } else {
  889                         /* The buffer is not yet full */
  890                         bcopy(data, &context->buffer[usedspace], len);
  891                         ADDINC128(context->bitcount, len << 3);
  892                         /* Clean up: */
  893                         usedspace = freespace = 0;
  894                         return;
  895                 }
  896         }
  897         while (len >= SHA512_BLOCK_LENGTH) {
  898                 /* Process as many complete blocks as we can */
  899                 SHA512_Transform(context, (const sha2_word64*)data);
  900                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  901                 len -= SHA512_BLOCK_LENGTH;
  902                 data += SHA512_BLOCK_LENGTH;
  903         }
  904         if (len > 0) {
  905                 /* There's left-overs, so save 'em */
  906                 bcopy(data, context->buffer, len);
  907                 ADDINC128(context->bitcount, len << 3);
  908         }
  909         /* Clean up: */
  910         usedspace = freespace = 0;
  911 }
  912 
  913 void SHA512_Last(SHA512_CTX* context) {
  914         unsigned int    usedspace;
  915 
  916         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  917 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  918         /* Convert FROM host byte order */
  919         REVERSE64(context->bitcount[0],context->bitcount[0]);
  920         REVERSE64(context->bitcount[1],context->bitcount[1]);
  921 #endif
  922         if (usedspace > 0) {
  923                 /* Begin padding with a 1 bit: */
  924                 context->buffer[usedspace++] = 0x80;
  925 
  926                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  927                         /* Set-up for the last transform: */
  928                         bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  929                 } else {
  930                         if (usedspace < SHA512_BLOCK_LENGTH) {
  931                                 bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  932                         }
  933                         /* Do second-to-last transform: */
  934                         SHA512_Transform(context, (sha2_word64*)context->buffer);
  935 
  936                         /* And set-up for the last transform: */
  937                         bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
  938                 }
  939         } else {
  940                 /* Prepare for final transform: */
  941                 bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  942 
  943                 /* Begin padding with a 1 bit: */
  944                 *context->buffer = 0x80;
  945         }
  946         /* Store the length of input data (in bits): */
  947         *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
  948         *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
  949 
  950         /* Final transform: */
  951         SHA512_Transform(context, (sha2_word64*)context->buffer);
  952 }
  953 
  954 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  955         sha2_word64     *d = (sha2_word64*)digest;
  956 
  957         /* Sanity check: */
  958         assert(context != (SHA512_CTX*)0);
  959 
  960         /* If no digest buffer is passed, we don't bother doing this: */
  961         if (digest != (sha2_byte*)0) {
  962                 SHA512_Last(context);
  963 
  964                 /* Save the hash data for output: */
  965 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
  966                 {
  967                         /* Convert TO host byte order */
  968                         int     j;
  969                         for (j = 0; j < 8; j++) {
  970                                 REVERSE64(context->state[j],context->state[j]);
  971                                 *d++ = context->state[j];
  972                         }
  973                 }
  974 #else
  975                 bcopy(context->state, d, SHA512_DIGEST_LENGTH);
  976 #endif
  977         }
  978 
  979         /* Zero out state data */
  980         bzero(context, sizeof(context));
  981 }
  982 
  983 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  984         sha2_byte       digest[SHA512_DIGEST_LENGTH], *d = digest;
  985         int             i;
  986 
  987         /* Sanity check: */
  988         assert(context != (SHA512_CTX*)0);
  989 
  990         if (buffer != (char*)0) {
  991                 SHA512_Final(digest, context);
  992 
  993                 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  994                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  995                         *buffer++ = sha2_hex_digits[*d & 0x0f];
  996                         d++;
  997                 }
  998                 *buffer = (char)0;
  999         } else {
 1000                 bzero(context, sizeof(context));
 1001         }
 1002         bzero(digest, SHA512_DIGEST_LENGTH);
 1003         return buffer;
 1004 }
 1005 
 1006 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
 1007         SHA512_CTX      context;
 1008 
 1009         SHA512_Init(&context);
 1010         SHA512_Update(&context, data, len);
 1011         return SHA512_End(&context, digest);
 1012 }
 1013 
 1014 
 1015 /*** SHA-384: *********************************************************/
 1016 void SHA384_Init(SHA384_CTX* context) {
 1017         if (context == (SHA384_CTX*)0) {
 1018                 return;
 1019         }
 1020         bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
 1021         bzero(context->buffer, SHA384_BLOCK_LENGTH);
 1022         context->bitcount[0] = context->bitcount[1] = 0;
 1023 }
 1024 
 1025 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
 1026         SHA512_Update((SHA512_CTX*)context, data, len);
 1027 }
 1028 
 1029 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
 1030         sha2_word64     *d = (sha2_word64*)digest;
 1031 
 1032         /* Sanity check: */
 1033         assert(context != (SHA384_CTX*)0);
 1034 
 1035         /* If no digest buffer is passed, we don't bother doing this: */
 1036         if (digest != (sha2_byte*)0) {
 1037                 SHA512_Last((SHA512_CTX*)context);
 1038 
 1039                 /* Save the hash data for output: */
 1040 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
 1041                 {
 1042                         /* Convert TO host byte order */
 1043                         int     j;
 1044                         for (j = 0; j < 6; j++) {
 1045                                 REVERSE64(context->state[j],context->state[j]);
 1046                                 *d++ = context->state[j];
 1047                         }
 1048                 }
 1049 #else
 1050                 bcopy(context->state, d, SHA384_DIGEST_LENGTH);
 1051 #endif
 1052         }
 1053 
 1054         /* Zero out state data */
 1055         bzero(context, sizeof(context));
 1056 }
 1057 
 1058 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
 1059         sha2_byte       digest[SHA384_DIGEST_LENGTH], *d = digest;
 1060         int             i;
 1061 
 1062         /* Sanity check: */
 1063         assert(context != (SHA384_CTX*)0);
 1064 
 1065         if (buffer != (char*)0) {
 1066                 SHA384_Final(digest, context);
 1067 
 1068                 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
 1069                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
 1070                         *buffer++ = sha2_hex_digits[*d & 0x0f];
 1071                         d++;
 1072                 }
 1073                 *buffer = (char)0;
 1074         } else {
 1075                 bzero(context, sizeof(context));
 1076         }
 1077         bzero(digest, SHA384_DIGEST_LENGTH);
 1078         return buffer;
 1079 }
 1080 
 1081 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
 1082         SHA384_CTX      context;
 1083 
 1084         SHA384_Init(&context);
 1085         SHA384_Update(&context, data, len);
 1086         return SHA384_End(&context, digest);
 1087 }
 1088 
 1089 #endif /* !NO_64BIT */
 1090 
 1091 /*
 1092  * $PchId: sha2.c,v 1.1 2005/06/28 14:29:23 philip Exp $
 1093  */

Cache object: b52d8a1875fc64620218454a64f9fe7f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.