The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/sparc64/pci/fire.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999, 2000 Matthew R. Green
    3  * Copyright (c) 2001 - 2003 by Thomas Moestl <tmm@FreeBSD.org>
    4  * Copyright (c) 2009 by Marius Strobl <marius@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. The name of the author may not be used to endorse or promote products
   16  *    derived from this software without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from: NetBSD: psycho.c,v 1.39 2001/10/07 20:30:41 eeh Exp
   31  *      from: FreeBSD: psycho.c 183152 2008-09-18 19:45:22Z marius
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/11.2/sys/sparc64/pci/fire.c 305614 2016-09-08 15:05:25Z pfg $");
   36 
   37 /*
   38  * Driver for `Fire' JBus to PCI Express and `Oberon' Uranus to PCI Express
   39  * bridges
   40  */
   41 
   42 #include "opt_fire.h"
   43 #include "opt_ofw_pci.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/bus.h>
   48 #include <sys/interrupt.h>
   49 #include <sys/kernel.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/module.h>
   53 #include <sys/mutex.h>
   54 #include <sys/pciio.h>
   55 #include <sys/pcpu.h>
   56 #include <sys/rman.h>
   57 #include <sys/smp.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/timetc.h>
   60 
   61 #include <dev/ofw/ofw_bus.h>
   62 #include <dev/ofw/openfirm.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/pmap.h>
   66 
   67 #include <machine/bus.h>
   68 #include <machine/bus_common.h>
   69 #include <machine/bus_private.h>
   70 #include <machine/iommureg.h>
   71 #include <machine/iommuvar.h>
   72 #include <machine/resource.h>
   73 
   74 #include <dev/pci/pcireg.h>
   75 #include <dev/pci/pcivar.h>
   76 
   77 #include <sparc64/pci/ofw_pci.h>
   78 #include <sparc64/pci/firereg.h>
   79 #include <sparc64/pci/firevar.h>
   80 
   81 #include "pcib_if.h"
   82 
   83 struct fire_msiqarg;
   84 
   85 static const struct fire_desc *fire_get_desc(device_t dev);
   86 static void fire_dmamap_sync(bus_dma_tag_t dt __unused, bus_dmamap_t map,
   87     bus_dmasync_op_t op);
   88 static int fire_get_intrmap(struct fire_softc *sc, u_int ino,
   89     bus_addr_t *intrmapptr, bus_addr_t *intrclrptr);
   90 static void fire_intr_assign(void *arg);
   91 static void fire_intr_clear(void *arg);
   92 static void fire_intr_disable(void *arg);
   93 static void fire_intr_enable(void *arg);
   94 static int fire_intr_register(struct fire_softc *sc, u_int ino);
   95 static inline void fire_msiq_common(struct intr_vector *iv,
   96     struct fire_msiqarg *fmqa);
   97 static void fire_msiq_filter(void *cookie);
   98 static void fire_msiq_handler(void *cookie);
   99 static void fire_set_intr(struct fire_softc *sc, u_int index, u_int ino,
  100     driver_filter_t handler, void *arg);
  101 static timecounter_get_t fire_get_timecount;
  102 
  103 /* Interrupt handlers */
  104 static driver_filter_t fire_dmc_pec;
  105 static driver_filter_t fire_pcie;
  106 static driver_filter_t fire_xcb;
  107 
  108 /*
  109  * Methods
  110  */
  111 static pcib_alloc_msi_t fire_alloc_msi;
  112 static pcib_alloc_msix_t fire_alloc_msix;
  113 static bus_alloc_resource_t fire_alloc_resource;
  114 static device_attach_t fire_attach;
  115 static pcib_map_msi_t fire_map_msi;
  116 static pcib_maxslots_t fire_maxslots;
  117 static device_probe_t fire_probe;
  118 static pcib_read_config_t fire_read_config;
  119 static pcib_release_msi_t fire_release_msi;
  120 static pcib_release_msix_t fire_release_msix;
  121 static pcib_route_interrupt_t fire_route_interrupt;
  122 static bus_setup_intr_t fire_setup_intr;
  123 static bus_teardown_intr_t fire_teardown_intr;
  124 static pcib_write_config_t fire_write_config;
  125 
  126 static device_method_t fire_methods[] = {
  127         /* Device interface */
  128         DEVMETHOD(device_probe,         fire_probe),
  129         DEVMETHOD(device_attach,        fire_attach),
  130         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
  131         DEVMETHOD(device_suspend,       bus_generic_suspend),
  132         DEVMETHOD(device_resume,        bus_generic_resume),
  133 
  134         /* Bus interface */
  135         DEVMETHOD(bus_read_ivar,        ofw_pci_read_ivar),
  136         DEVMETHOD(bus_setup_intr,       fire_setup_intr),
  137         DEVMETHOD(bus_teardown_intr,    fire_teardown_intr),
  138         DEVMETHOD(bus_alloc_resource,   fire_alloc_resource),
  139         DEVMETHOD(bus_activate_resource, ofw_pci_activate_resource),
  140         DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
  141         DEVMETHOD(bus_adjust_resource,  ofw_pci_adjust_resource),
  142         DEVMETHOD(bus_release_resource, bus_generic_release_resource),
  143         DEVMETHOD(bus_get_dma_tag,      ofw_pci_get_dma_tag),
  144 
  145         /* pcib interface */
  146         DEVMETHOD(pcib_maxslots,        fire_maxslots),
  147         DEVMETHOD(pcib_read_config,     fire_read_config),
  148         DEVMETHOD(pcib_write_config,    fire_write_config),
  149         DEVMETHOD(pcib_route_interrupt, fire_route_interrupt),
  150         DEVMETHOD(pcib_alloc_msi,       fire_alloc_msi),
  151         DEVMETHOD(pcib_release_msi,     fire_release_msi),
  152         DEVMETHOD(pcib_alloc_msix,      fire_alloc_msix),
  153         DEVMETHOD(pcib_release_msix,    fire_release_msix),
  154         DEVMETHOD(pcib_map_msi,         fire_map_msi),
  155 
  156         /* ofw_bus interface */
  157         DEVMETHOD(ofw_bus_get_node,     ofw_pci_get_node),
  158 
  159         DEVMETHOD_END
  160 };
  161 
  162 static devclass_t fire_devclass;
  163 
  164 DEFINE_CLASS_0(pcib, fire_driver, fire_methods, sizeof(struct fire_softc));
  165 EARLY_DRIVER_MODULE(fire, nexus, fire_driver, fire_devclass, 0, 0,
  166     BUS_PASS_BUS);
  167 MODULE_DEPEND(fire, nexus, 1, 1, 1);
  168 
  169 static const struct intr_controller fire_ic = {
  170         fire_intr_enable,
  171         fire_intr_disable,
  172         fire_intr_assign,
  173         fire_intr_clear
  174 };
  175 
  176 struct fire_icarg {
  177         struct fire_softc       *fica_sc;
  178         bus_addr_t              fica_map;
  179         bus_addr_t              fica_clr;
  180 };
  181 
  182 static const struct intr_controller fire_msiqc_filter = {
  183         fire_intr_enable,
  184         fire_intr_disable,
  185         fire_intr_assign,
  186         NULL
  187 };
  188 
  189 struct fire_msiqarg {
  190         struct fire_icarg       fmqa_fica;
  191         struct mtx              fmqa_mtx;
  192         struct fo_msiq_record   *fmqa_base;
  193         uint64_t                fmqa_head;
  194         uint64_t                fmqa_tail;
  195         uint32_t                fmqa_msiq;
  196         uint32_t                fmqa_msi;
  197 };
  198 
  199 #define FIRE_PERF_CNT_QLTY      100
  200 
  201 #define FIRE_SPC_BARRIER(spc, sc, offs, len, flags)                     \
  202         bus_barrier((sc)->sc_mem_res[(spc)], (offs), (len), (flags))
  203 #define FIRE_SPC_READ_8(spc, sc, offs)                                  \
  204         bus_read_8((sc)->sc_mem_res[(spc)], (offs))
  205 #define FIRE_SPC_WRITE_8(spc, sc, offs, v)                              \
  206         bus_write_8((sc)->sc_mem_res[(spc)], (offs), (v))
  207 
  208 #ifndef FIRE_DEBUG
  209 #define FIRE_SPC_SET(spc, sc, offs, reg, v)                             \
  210         FIRE_SPC_WRITE_8((spc), (sc), (offs), (v))
  211 #else
  212 #define FIRE_SPC_SET(spc, sc, offs, reg, v) do {                        \
  213         device_printf((sc)->sc_dev, reg " 0x%016llx -> 0x%016llx\n",    \
  214             (unsigned long long)FIRE_SPC_READ_8((spc), (sc), (offs)),   \
  215             (unsigned long long)(v));                                   \
  216         FIRE_SPC_WRITE_8((spc), (sc), (offs), (v));                     \
  217         } while (0)
  218 #endif
  219 
  220 #define FIRE_PCI_BARRIER(sc, offs, len, flags)                          \
  221         FIRE_SPC_BARRIER(FIRE_PCI, (sc), (offs), len, flags)
  222 #define FIRE_PCI_READ_8(sc, offs)                                       \
  223         FIRE_SPC_READ_8(FIRE_PCI, (sc), (offs))
  224 #define FIRE_PCI_WRITE_8(sc, offs, v)                                   \
  225         FIRE_SPC_WRITE_8(FIRE_PCI, (sc), (offs), (v))
  226 #define FIRE_CTRL_BARRIER(sc, offs, len, flags)                         \
  227         FIRE_SPC_BARRIER(FIRE_CTRL, (sc), (offs), len, flags)
  228 #define FIRE_CTRL_READ_8(sc, offs)                                      \
  229         FIRE_SPC_READ_8(FIRE_CTRL, (sc), (offs))
  230 #define FIRE_CTRL_WRITE_8(sc, offs, v)                                  \
  231         FIRE_SPC_WRITE_8(FIRE_CTRL, (sc), (offs), (v))
  232 
  233 #define FIRE_PCI_SET(sc, offs, v)                                       \
  234         FIRE_SPC_SET(FIRE_PCI, (sc), (offs), # offs, (v))
  235 #define FIRE_CTRL_SET(sc, offs, v)                                      \
  236         FIRE_SPC_SET(FIRE_CTRL, (sc), (offs), # offs, (v))
  237 
  238 struct fire_desc {
  239         const char      *fd_string;
  240         int             fd_mode;
  241         const char      *fd_name;
  242 };
  243 
  244 static const struct fire_desc fire_compats[] = {
  245         { "pciex108e,80f0",     FIRE_MODE_FIRE,         "Fire" },
  246 #if 0
  247         { "pciex108e,80f8",     FIRE_MODE_OBERON,       "Oberon" },
  248 #endif
  249         { NULL,                 0,                      NULL }
  250 };
  251 
  252 static const struct fire_desc *
  253 fire_get_desc(device_t dev)
  254 {
  255         const struct fire_desc *desc;
  256         const char *compat;
  257 
  258         compat = ofw_bus_get_compat(dev);
  259         if (compat == NULL)
  260                 return (NULL);
  261         for (desc = fire_compats; desc->fd_string != NULL; desc++)
  262                 if (strcmp(desc->fd_string, compat) == 0)
  263                         return (desc);
  264         return (NULL);
  265 }
  266 
  267 static int
  268 fire_probe(device_t dev)
  269 {
  270         const char *dtype;
  271 
  272         dtype = ofw_bus_get_type(dev);
  273         if (dtype != NULL && strcmp(dtype, OFW_TYPE_PCIE) == 0 &&
  274             fire_get_desc(dev) != NULL) {
  275                 device_set_desc(dev, "Sun Host-PCIe bridge");
  276                 return (BUS_PROBE_GENERIC);
  277         }
  278         return (ENXIO);
  279 }
  280 
  281 static int
  282 fire_attach(device_t dev)
  283 {
  284         struct fire_softc *sc;
  285         const struct fire_desc *desc;
  286         struct ofw_pci_msi_ranges msi_ranges;
  287         struct ofw_pci_msi_addr_ranges msi_addr_ranges;
  288         struct ofw_pci_msi_eq_to_devino msi_eq_to_devino;
  289         struct fire_msiqarg *fmqa;
  290         struct timecounter *tc;
  291         bus_dma_tag_t dmat;
  292         uint64_t ino_bitmap, val;
  293         phandle_t node;
  294         uint32_t prop, prop_array[2];
  295         int i, j, mode;
  296         u_int lw;
  297         uint16_t mps;
  298 
  299         sc = device_get_softc(dev);
  300         node = ofw_bus_get_node(dev);
  301         desc = fire_get_desc(dev);
  302         mode = desc->fd_mode;
  303 
  304         sc->sc_dev = dev;
  305         sc->sc_mode = mode;
  306         sc->sc_flags = 0;
  307 
  308         mtx_init(&sc->sc_msi_mtx, "msi_mtx", NULL, MTX_DEF);
  309         mtx_init(&sc->sc_pcib_mtx, "pcib_mtx", NULL, MTX_SPIN);
  310 
  311         /*
  312          * Fire and Oberon have two register banks:
  313          * (0) per-PBM PCI Express configuration and status registers
  314          * (1) (shared) Fire/Oberon controller configuration and status
  315          *     registers
  316          */
  317         for (i = 0; i < FIRE_NREG; i++) {
  318                 j = i;
  319                 sc->sc_mem_res[i] = bus_alloc_resource_any(dev,
  320                     SYS_RES_MEMORY, &j, RF_ACTIVE);
  321                 if (sc->sc_mem_res[i] == NULL)
  322                         panic("%s: could not allocate register bank %d",
  323                             __func__, i);
  324         }
  325 
  326         if (OF_getprop(node, "portid", &sc->sc_ign, sizeof(sc->sc_ign)) == -1)
  327                 panic("%s: could not determine IGN", __func__);
  328         if (OF_getprop(node, "module-revision#", &prop, sizeof(prop)) == -1)
  329                 panic("%s: could not determine module-revision", __func__);
  330 
  331         device_printf(dev, "%s, module-revision %d, IGN %#x\n",
  332             desc->fd_name, prop, sc->sc_ign);
  333 
  334         /*
  335          * Hunt through all the interrupt mapping regs and register
  336          * the interrupt controller for our interrupt vectors.  We do
  337          * this early in order to be able to catch stray interrupts.
  338          */
  339         i = OF_getprop(node, "ino-bitmap", (void *)prop_array,
  340             sizeof(prop_array));
  341         if (i == -1)
  342                 panic("%s: could not get ino-bitmap", __func__);
  343         ino_bitmap = ((uint64_t)prop_array[1] << 32) | prop_array[0];
  344         for (i = 0; i <= FO_MAX_INO; i++) {
  345                 if ((ino_bitmap & (1ULL << i)) == 0)
  346                         continue;
  347                 j = fire_intr_register(sc, i);
  348                 if (j != 0)
  349                         device_printf(dev, "could not register interrupt "
  350                             "controller for INO %d (%d)\n", i, j);
  351         }
  352 
  353         /* JBC/UBC module initialization */
  354         FIRE_CTRL_SET(sc, FO_XBC_ERR_LOG_EN, ~0ULL);
  355         FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
  356         /* not enabled by OpenSolaris */
  357         FIRE_CTRL_SET(sc, FO_XBC_INT_EN, ~0ULL);
  358         if (sc->sc_mode == FIRE_MODE_FIRE) {
  359                 FIRE_CTRL_SET(sc, FIRE_JBUS_PAR_CTRL,
  360                     FIRE_JBUS_PAR_CTRL_P_EN);
  361                 FIRE_CTRL_SET(sc, FIRE_JBC_FATAL_RST_EN,
  362                     ((1ULL << FIRE_JBC_FATAL_RST_EN_SPARE_P_INT_SHFT) &
  363                     FIRE_JBC_FATAL_RST_EN_SPARE_P_INT_MASK) |
  364                     FIRE_JBC_FATAL_RST_EN_MB_PEA_P_INT |
  365                     FIRE_JBC_FATAL_RST_EN_CPE_P_INT |
  366                     FIRE_JBC_FATAL_RST_EN_APE_P_INT |
  367                     FIRE_JBC_FATAL_RST_EN_PIO_CPE_INT |
  368                     FIRE_JBC_FATAL_RST_EN_JTCEEW_P_INT |
  369                     FIRE_JBC_FATAL_RST_EN_JTCEEI_P_INT |
  370                     FIRE_JBC_FATAL_RST_EN_JTCEER_P_INT);
  371                 FIRE_CTRL_SET(sc, FIRE_JBC_CORE_BLOCK_INT_EN, ~0ULL);
  372         }
  373 
  374         /* TLU initialization */
  375         FIRE_PCI_SET(sc, FO_PCI_TLU_OEVENT_STAT_CLR,
  376             FO_PCI_TLU_OEVENT_S_MASK | FO_PCI_TLU_OEVENT_P_MASK);
  377         /* not enabled by OpenSolaris */
  378         FIRE_PCI_SET(sc, FO_PCI_TLU_OEVENT_INT_EN,
  379             FO_PCI_TLU_OEVENT_S_MASK | FO_PCI_TLU_OEVENT_P_MASK);
  380         FIRE_PCI_SET(sc, FO_PCI_TLU_UERR_STAT_CLR,
  381             FO_PCI_TLU_UERR_INT_S_MASK | FO_PCI_TLU_UERR_INT_P_MASK);
  382         /* not enabled by OpenSolaris */
  383         FIRE_PCI_SET(sc, FO_PCI_TLU_UERR_INT_EN,
  384             FO_PCI_TLU_UERR_INT_S_MASK | FO_PCI_TLU_UERR_INT_P_MASK);
  385         FIRE_PCI_SET(sc, FO_PCI_TLU_CERR_STAT_CLR,
  386             FO_PCI_TLU_CERR_INT_S_MASK | FO_PCI_TLU_CERR_INT_P_MASK);
  387         /* not enabled by OpenSolaris */
  388         FIRE_PCI_SET(sc, FO_PCI_TLU_CERR_INT_EN,
  389             FO_PCI_TLU_CERR_INT_S_MASK | FO_PCI_TLU_CERR_INT_P_MASK);
  390         val = FIRE_PCI_READ_8(sc, FO_PCI_TLU_CTRL) |
  391             ((FO_PCI_TLU_CTRL_L0S_TIM_DFLT << FO_PCI_TLU_CTRL_L0S_TIM_SHFT) &
  392             FO_PCI_TLU_CTRL_L0S_TIM_MASK) |
  393             ((FO_PCI_TLU_CTRL_CFG_DFLT << FO_PCI_TLU_CTRL_CFG_SHFT) &
  394             FO_PCI_TLU_CTRL_CFG_MASK);
  395         if (sc->sc_mode == FIRE_MODE_OBERON)
  396                 val &= ~FO_PCI_TLU_CTRL_NWPR_EN;
  397         val |= FO_PCI_TLU_CTRL_CFG_REMAIN_DETECT_QUIET;
  398         FIRE_PCI_SET(sc, FO_PCI_TLU_CTRL, val);
  399         FIRE_PCI_SET(sc, FO_PCI_TLU_DEV_CTRL, 0);
  400         FIRE_PCI_SET(sc, FO_PCI_TLU_LNK_CTRL, FO_PCI_TLU_LNK_CTRL_CLK);
  401 
  402         /* DLU/LPU initialization */
  403         if (sc->sc_mode == FIRE_MODE_OBERON)
  404                 FIRE_PCI_SET(sc, FO_PCI_LPU_INT_MASK, 0);
  405         else
  406                 FIRE_PCI_SET(sc, FO_PCI_LPU_RST, 0);
  407         FIRE_PCI_SET(sc, FO_PCI_LPU_LNK_LYR_CFG,
  408             FO_PCI_LPU_LNK_LYR_CFG_VC0_EN);
  409         FIRE_PCI_SET(sc, FO_PCI_LPU_FLW_CTRL_UPDT_CTRL,
  410             FO_PCI_LPU_FLW_CTRL_UPDT_CTRL_FC0_NP_EN |
  411             FO_PCI_LPU_FLW_CTRL_UPDT_CTRL_FC0_P_EN);
  412         if (sc->sc_mode == FIRE_MODE_OBERON)
  413                 FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RPLY_TMR_THRS,
  414                     (OBERON_PCI_LPU_TXLNK_RPLY_TMR_THRS_DFLT <<
  415                     FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_SHFT) &
  416                     FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_MASK);
  417         else {
  418                 switch ((FIRE_PCI_READ_8(sc, FO_PCI_TLU_LNK_STAT) &
  419                     FO_PCI_TLU_LNK_STAT_WDTH_MASK) >>
  420                     FO_PCI_TLU_LNK_STAT_WDTH_SHFT) {
  421                 case 1:
  422                         lw = 0;
  423                         break;
  424                 case 4:
  425                         lw = 1;
  426                         break;
  427                 case 8:
  428                         lw = 2;
  429                         break;
  430                 case 16:
  431                         lw = 3;
  432                         break;
  433                 default:
  434                         lw = 0;
  435                 }
  436                 mps = (FIRE_PCI_READ_8(sc, FO_PCI_TLU_CTRL) &
  437                     FO_PCI_TLU_CTRL_CFG_MPS_MASK) >>
  438                     FO_PCI_TLU_CTRL_CFG_MPS_SHFT;
  439                 i = sizeof(fire_freq_nak_tmr_thrs) /
  440                     sizeof(*fire_freq_nak_tmr_thrs);
  441                 if (mps >= i)
  442                         mps = i - 1;
  443                 FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS,
  444                     (fire_freq_nak_tmr_thrs[mps][lw] <<
  445                     FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS_SHFT) &
  446                     FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS_MASK);
  447                 FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RPLY_TMR_THRS,
  448                     (fire_rply_tmr_thrs[mps][lw] <<
  449                     FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_SHFT) &
  450                     FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_MASK);
  451                 FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RTR_FIFO_PTR,
  452                     ((FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_DFLT <<
  453                     FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_SHFT) &
  454                     FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_MASK) |
  455                     ((FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_DFLT <<
  456                     FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_SHFT) &
  457                     FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_MASK));
  458                 FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG2,
  459                     (FO_PCI_LPU_LTSSM_CFG2_12_TO_DFLT <<
  460                     FO_PCI_LPU_LTSSM_CFG2_12_TO_SHFT) &
  461                     FO_PCI_LPU_LTSSM_CFG2_12_TO_MASK);
  462                 FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG3,
  463                     (FO_PCI_LPU_LTSSM_CFG3_2_TO_DFLT <<
  464                     FO_PCI_LPU_LTSSM_CFG3_2_TO_SHFT) &
  465                     FO_PCI_LPU_LTSSM_CFG3_2_TO_MASK);
  466                 FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG4,
  467                     ((FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_DFLT <<
  468                     FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_SHFT) &
  469                     FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_MASK) |
  470                     ((FO_PCI_LPU_LTSSM_CFG4_N_FTS_DFLT <<
  471                     FO_PCI_LPU_LTSSM_CFG4_N_FTS_SHFT) &
  472                     FO_PCI_LPU_LTSSM_CFG4_N_FTS_MASK));
  473                 FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG5, 0);
  474         }
  475 
  476         /* ILU initialization */
  477         FIRE_PCI_SET(sc, FO_PCI_ILU_ERR_STAT_CLR, ~0ULL);
  478         /* not enabled by OpenSolaris */
  479         FIRE_PCI_SET(sc, FO_PCI_ILU_INT_EN, ~0ULL);
  480 
  481         /* IMU initialization */
  482         FIRE_PCI_SET(sc, FO_PCI_IMU_ERR_STAT_CLR, ~0ULL);
  483         FIRE_PCI_SET(sc, FO_PCI_IMU_INT_EN,
  484             FIRE_PCI_READ_8(sc, FO_PCI_IMU_INT_EN) &
  485             ~(FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_S |
  486             FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_S |
  487             FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_S |
  488             FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_P |
  489             FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_P |
  490             FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_P));
  491 
  492         /* MMU initialization */
  493         FIRE_PCI_SET(sc, FO_PCI_MMU_ERR_STAT_CLR,
  494             FO_PCI_MMU_ERR_INT_S_MASK | FO_PCI_MMU_ERR_INT_P_MASK);
  495         /* not enabled by OpenSolaris */
  496         FIRE_PCI_SET(sc, FO_PCI_MMU_INT_EN,
  497             FO_PCI_MMU_ERR_INT_S_MASK | FO_PCI_MMU_ERR_INT_P_MASK);
  498 
  499         /* DMC initialization */
  500         FIRE_PCI_SET(sc, FO_PCI_DMC_CORE_BLOCK_INT_EN, ~0ULL);
  501         FIRE_PCI_SET(sc, FO_PCI_DMC_DBG_SEL_PORTA, 0);
  502         FIRE_PCI_SET(sc, FO_PCI_DMC_DBG_SEL_PORTB, 0);
  503 
  504         /* PEC initialization */
  505         FIRE_PCI_SET(sc, FO_PCI_PEC_CORE_BLOCK_INT_EN, ~0ULL);
  506 
  507         /* Establish handlers for interesting interrupts. */
  508         if ((ino_bitmap & (1ULL << FO_DMC_PEC_INO)) != 0)
  509                 fire_set_intr(sc, 1, FO_DMC_PEC_INO, fire_dmc_pec, sc);
  510         if ((ino_bitmap & (1ULL << FO_XCB_INO)) != 0)
  511                 fire_set_intr(sc, 0, FO_XCB_INO, fire_xcb, sc);
  512 
  513         /* MSI/MSI-X support */
  514         if (OF_getprop(node, "#msi", &sc->sc_msi_count,
  515             sizeof(sc->sc_msi_count)) == -1)
  516                 panic("%s: could not determine MSI count", __func__);
  517         if (OF_getprop(node, "msi-ranges", &msi_ranges,
  518             sizeof(msi_ranges)) == -1)
  519                 sc->sc_msi_first = 0;
  520         else
  521                 sc->sc_msi_first = msi_ranges.first;
  522         if (OF_getprop(node, "msi-data-mask", &sc->sc_msi_data_mask,
  523             sizeof(sc->sc_msi_data_mask)) == -1)
  524                 panic("%s: could not determine MSI data mask", __func__);
  525         if (OF_getprop(node, "msix-data-width", &sc->sc_msix_data_width,
  526             sizeof(sc->sc_msix_data_width)) > 0)
  527                 sc->sc_flags |= FIRE_MSIX;
  528         if (OF_getprop(node, "msi-address-ranges", &msi_addr_ranges,
  529             sizeof(msi_addr_ranges)) == -1)
  530                 panic("%s: could not determine MSI address ranges", __func__);
  531         sc->sc_msi_addr32 = OFW_PCI_MSI_ADDR_RANGE_32(&msi_addr_ranges);
  532         sc->sc_msi_addr64 = OFW_PCI_MSI_ADDR_RANGE_64(&msi_addr_ranges);
  533         if (OF_getprop(node, "#msi-eqs", &sc->sc_msiq_count,
  534             sizeof(sc->sc_msiq_count)) == -1)
  535                 panic("%s: could not determine MSI event queue count",
  536                     __func__);
  537         if (OF_getprop(node, "msi-eq-size", &sc->sc_msiq_size,
  538             sizeof(sc->sc_msiq_size)) == -1)
  539                 panic("%s: could not determine MSI event queue size",
  540                     __func__);
  541         if (OF_getprop(node, "msi-eq-to-devino", &msi_eq_to_devino,
  542             sizeof(msi_eq_to_devino)) == -1 &&
  543             OF_getprop(node, "msi-eq-devino", &msi_eq_to_devino,
  544             sizeof(msi_eq_to_devino)) == -1) {
  545                 sc->sc_msiq_first = 0;
  546                 sc->sc_msiq_ino_first = FO_EQ_FIRST_INO;
  547         } else {
  548                 sc->sc_msiq_first = msi_eq_to_devino.eq_first;
  549                 sc->sc_msiq_ino_first = msi_eq_to_devino.devino_first;
  550         }
  551         if (sc->sc_msiq_ino_first < FO_EQ_FIRST_INO ||
  552             sc->sc_msiq_ino_first + sc->sc_msiq_count - 1 > FO_EQ_LAST_INO)
  553                 panic("%s: event queues exceed INO range", __func__);
  554         sc->sc_msi_bitmap = malloc(roundup2(sc->sc_msi_count, NBBY) / NBBY,
  555             M_DEVBUF, M_NOWAIT | M_ZERO);
  556         if (sc->sc_msi_bitmap == NULL)
  557                 panic("%s: could not malloc MSI bitmap", __func__);
  558         sc->sc_msi_msiq_table = malloc(sc->sc_msi_count *
  559             sizeof(*sc->sc_msi_msiq_table), M_DEVBUF, M_NOWAIT | M_ZERO);
  560         if (sc->sc_msi_msiq_table == NULL)
  561                 panic("%s: could not malloc MSI-MSI event queue table",
  562                     __func__);
  563         sc->sc_msiq_bitmap = malloc(roundup2(sc->sc_msiq_count, NBBY) / NBBY,
  564             M_DEVBUF, M_NOWAIT | M_ZERO);
  565         if (sc->sc_msiq_bitmap == NULL)
  566                 panic("%s: could not malloc MSI event queue bitmap", __func__);
  567         j = FO_EQ_RECORD_SIZE * FO_EQ_NRECORDS * sc->sc_msiq_count;
  568         sc->sc_msiq = contigmalloc(j, M_DEVBUF, M_NOWAIT, 0, ~0UL,
  569             FO_EQ_ALIGNMENT, 0);
  570         if (sc->sc_msiq == NULL)
  571                 panic("%s: could not contigmalloc MSI event queue", __func__);
  572         memset(sc->sc_msiq, 0, j);
  573         FIRE_PCI_SET(sc, FO_PCI_EQ_BASE_ADDR, FO_PCI_EQ_BASE_ADDR_BYPASS |
  574             (pmap_kextract((vm_offset_t)sc->sc_msiq) &
  575             FO_PCI_EQ_BASE_ADDR_MASK));
  576         for (i = 0; i < sc->sc_msi_count; i++) {
  577                 j = (i + sc->sc_msi_first) << 3;
  578                 FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + j,
  579                     FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + j) &
  580                     ~FO_PCI_MSI_MAP_V);
  581         }
  582         for (i = 0; i < sc->sc_msiq_count; i++) {
  583                 j = i + sc->sc_msiq_ino_first;
  584                 if ((ino_bitmap & (1ULL << j)) == 0) {
  585                         mtx_lock(&sc->sc_msi_mtx);
  586                         setbit(sc->sc_msiq_bitmap, i);
  587                         mtx_unlock(&sc->sc_msi_mtx);
  588                 }
  589                 fmqa = intr_vectors[INTMAP_VEC(sc->sc_ign, j)].iv_icarg;
  590                 mtx_init(&fmqa->fmqa_mtx, "msiq_mtx", NULL, MTX_SPIN);
  591                 fmqa->fmqa_base =
  592                     (struct fo_msiq_record *)((caddr_t)sc->sc_msiq +
  593                     (FO_EQ_RECORD_SIZE * FO_EQ_NRECORDS * i));
  594                 j = i + sc->sc_msiq_first;
  595                 fmqa->fmqa_msiq = j;
  596                 j <<= 3;
  597                 fmqa->fmqa_head = FO_PCI_EQ_HD_BASE + j;
  598                 fmqa->fmqa_tail = FO_PCI_EQ_TL_BASE + j;
  599                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + j,
  600                     FO_PCI_EQ_CTRL_CLR_COVERR | FO_PCI_EQ_CTRL_CLR_E2I |
  601                     FO_PCI_EQ_CTRL_CLR_DIS);
  602                 FIRE_PCI_WRITE_8(sc, fmqa->fmqa_tail,
  603                     (0 << FO_PCI_EQ_TL_SHFT) & FO_PCI_EQ_TL_MASK);
  604                 FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head,
  605                     (0 << FO_PCI_EQ_HD_SHFT) & FO_PCI_EQ_HD_MASK);
  606         }
  607         FIRE_PCI_SET(sc, FO_PCI_MSI_32_BIT_ADDR, sc->sc_msi_addr32 &
  608             FO_PCI_MSI_32_BIT_ADDR_MASK);
  609         FIRE_PCI_SET(sc, FO_PCI_MSI_64_BIT_ADDR, sc->sc_msi_addr64 &
  610             FO_PCI_MSI_64_BIT_ADDR_MASK);
  611 
  612         /*
  613          * Establish a handler for interesting PCIe messages and disable
  614          * unintersting ones.
  615          */
  616         mtx_lock(&sc->sc_msi_mtx);
  617         for (i = 0; i < sc->sc_msiq_count; i++) {
  618                 if (isclr(sc->sc_msiq_bitmap, i) != 0) {
  619                         j = i;
  620                         break;
  621                 }
  622         }
  623         if (i == sc->sc_msiq_count) {
  624                 mtx_unlock(&sc->sc_msi_mtx);
  625                 panic("%s: no spare event queue for PCIe messages", __func__);
  626         }
  627         setbit(sc->sc_msiq_bitmap, j);
  628         mtx_unlock(&sc->sc_msi_mtx);
  629         i = INTMAP_VEC(sc->sc_ign, j + sc->sc_msiq_ino_first);
  630         if (bus_set_resource(dev, SYS_RES_IRQ, 2, i, 1) != 0)
  631                 panic("%s: failed to add interrupt for PCIe messages",
  632                     __func__);
  633         fire_set_intr(sc, 2, INTINO(i), fire_pcie, intr_vectors[i].iv_icarg);
  634         j += sc->sc_msiq_first;
  635         /*
  636          * "Please note that setting the EQNUM field to a value larger than
  637          * 35 will yield unpredictable results."
  638          */
  639         if (j > 35)
  640                 panic("%s: invalid queue for PCIe messages (%d)",
  641                     __func__, j);
  642         FIRE_PCI_SET(sc, FO_PCI_ERR_COR, FO_PCI_ERR_PME_V |
  643             ((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
  644         FIRE_PCI_SET(sc, FO_PCI_ERR_NONFATAL, FO_PCI_ERR_PME_V |
  645             ((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
  646         FIRE_PCI_SET(sc, FO_PCI_ERR_FATAL, FO_PCI_ERR_PME_V |
  647             ((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
  648         FIRE_PCI_SET(sc, FO_PCI_PM_PME, 0);
  649         FIRE_PCI_SET(sc, FO_PCI_PME_TO_ACK, 0);
  650         FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_SET_BASE + (j << 3),
  651             FO_PCI_EQ_CTRL_SET_EN);
  652 
  653 #define TC_COUNTER_MAX_MASK     0xffffffff
  654 
  655         /*
  656          * Setup JBC/UBC performance counter 0 in bus cycle counting
  657          * mode as timecounter.
  658          */
  659         if (device_get_unit(dev) == 0) {
  660                 FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT0, 0);
  661                 FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT1, 0);
  662                 FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT_SEL,
  663                     (FO_XBC_PRF_CNT_NONE << FO_XBC_PRF_CNT_CNT1_SHFT) |
  664                     (FO_XBC_PRF_CNT_XB_CLK << FO_XBC_PRF_CNT_CNT0_SHFT));
  665                 tc = malloc(sizeof(*tc), M_DEVBUF, M_NOWAIT | M_ZERO);
  666                 if (tc == NULL)
  667                         panic("%s: could not malloc timecounter", __func__);
  668                 tc->tc_get_timecount = fire_get_timecount;
  669                 tc->tc_counter_mask = TC_COUNTER_MAX_MASK;
  670                 if (OF_getprop(OF_peer(0), "clock-frequency", &prop,
  671                     sizeof(prop)) == -1)
  672                         panic("%s: could not determine clock frequency",
  673                             __func__);
  674                 tc->tc_frequency = prop;
  675                 tc->tc_name = strdup(device_get_nameunit(dev), M_DEVBUF);
  676                 tc->tc_priv = sc;
  677                 /*
  678                  * Due to initial problems with the JBus-driven performance
  679                  * counters not advancing which might be firmware dependent
  680                  * ensure that it actually works.
  681                  */
  682                 if (fire_get_timecount(tc) - fire_get_timecount(tc) != 0)
  683                         tc->tc_quality = FIRE_PERF_CNT_QLTY;
  684                 else
  685                         tc->tc_quality = -FIRE_PERF_CNT_QLTY;
  686                 tc_init(tc);
  687         }
  688 
  689         /*
  690          * Set up the IOMMU.  Both Fire and Oberon have one per PBM, but
  691          * neither has a streaming buffer.
  692          */
  693         memcpy(&sc->sc_dma_methods, &iommu_dma_methods,
  694             sizeof(sc->sc_dma_methods));
  695         sc->sc_is.is_flags = IOMMU_FIRE | IOMMU_PRESERVE_PROM;
  696         if (sc->sc_mode == FIRE_MODE_OBERON) {
  697                 sc->sc_is.is_flags |= IOMMU_FLUSH_CACHE;
  698                 sc->sc_is.is_pmaxaddr = IOMMU_MAXADDR(OBERON_IOMMU_BITS);
  699         } else {
  700                 sc->sc_dma_methods.dm_dmamap_sync = fire_dmamap_sync;
  701                 sc->sc_is.is_pmaxaddr = IOMMU_MAXADDR(FIRE_IOMMU_BITS);
  702         }
  703         sc->sc_is.is_sb[0] = sc->sc_is.is_sb[1] = 0;
  704         /* Punch in our copies. */
  705         sc->sc_is.is_bustag = rman_get_bustag(sc->sc_mem_res[FIRE_PCI]);
  706         sc->sc_is.is_bushandle = rman_get_bushandle(sc->sc_mem_res[FIRE_PCI]);
  707         sc->sc_is.is_iommu = FO_PCI_MMU;
  708         val = FIRE_PCI_READ_8(sc, FO_PCI_MMU + IMR_CTL);
  709         iommu_init(device_get_nameunit(dev), &sc->sc_is, 7, -1, 0);
  710 #ifdef FIRE_DEBUG
  711         device_printf(dev, "FO_PCI_MMU + IMR_CTL 0x%016llx -> 0x%016llx\n",
  712             (long long unsigned)val, (long long unsigned)sc->sc_is.is_cr);
  713 #endif
  714         /* Create our DMA tag. */
  715         if (bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0x100000000,
  716             sc->sc_is.is_pmaxaddr, ~0, NULL, NULL, sc->sc_is.is_pmaxaddr,
  717             0xff, 0xffffffff, 0, NULL, NULL, &dmat) != 0)
  718                 panic("%s: could not create PCI DMA tag", __func__);
  719         dmat->dt_cookie = &sc->sc_is;
  720         dmat->dt_mt = &sc->sc_dma_methods;
  721 
  722         if (ofw_pci_attach_common(dev, dmat, FO_IO_SIZE, FO_MEM_SIZE) != 0)
  723                 panic("%s: ofw_pci_attach_common() failed", __func__);
  724 
  725 #define FIRE_SYSCTL_ADD_UINT(name, arg, desc)                           \
  726         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),                     \
  727             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,     \
  728             (name), CTLFLAG_RD, (arg), 0, (desc))
  729 
  730         FIRE_SYSCTL_ADD_UINT("ilu_err", &sc->sc_stats_ilu_err,
  731             "ILU unknown errors");
  732         FIRE_SYSCTL_ADD_UINT("jbc_ce_async", &sc->sc_stats_jbc_ce_async,
  733             "JBC correctable errors");
  734         FIRE_SYSCTL_ADD_UINT("jbc_unsol_int", &sc->sc_stats_jbc_unsol_int,
  735             "JBC unsolicited interrupt ACK/NACK errors");
  736         FIRE_SYSCTL_ADD_UINT("jbc_unsol_rd", &sc->sc_stats_jbc_unsol_rd,
  737             "JBC unsolicited read response errors");
  738         FIRE_SYSCTL_ADD_UINT("mmu_err", &sc->sc_stats_mmu_err, "MMU errors");
  739         FIRE_SYSCTL_ADD_UINT("tlu_ce", &sc->sc_stats_tlu_ce,
  740             "DLU/TLU correctable errors");
  741         FIRE_SYSCTL_ADD_UINT("tlu_oe_non_fatal",
  742             &sc->sc_stats_tlu_oe_non_fatal,
  743             "DLU/TLU other event non-fatal errors summary");
  744         FIRE_SYSCTL_ADD_UINT("tlu_oe_rx_err", &sc->sc_stats_tlu_oe_rx_err,
  745             "DLU/TLU receive other event errors");
  746         FIRE_SYSCTL_ADD_UINT("tlu_oe_tx_err", &sc->sc_stats_tlu_oe_tx_err,
  747             "DLU/TLU transmit other event errors");
  748         FIRE_SYSCTL_ADD_UINT("ubc_dmardue", &sc->sc_stats_ubc_dmardue,
  749             "UBC DMARDUE erros");
  750 
  751 #undef FIRE_SYSCTL_ADD_UINT
  752 
  753         device_add_child(dev, "pci", -1);
  754         return (bus_generic_attach(dev));
  755 }
  756 
  757 static void
  758 fire_set_intr(struct fire_softc *sc, u_int index, u_int ino,
  759     driver_filter_t handler, void *arg)
  760 {
  761         u_long vec;
  762         int rid;
  763 
  764         rid = index;
  765         sc->sc_irq_res[index] = bus_alloc_resource_any(sc->sc_dev,
  766             SYS_RES_IRQ, &rid, RF_ACTIVE);
  767         if (sc->sc_irq_res[index] == NULL ||
  768             INTINO(vec = rman_get_start(sc->sc_irq_res[index])) != ino ||
  769             INTIGN(vec) != sc->sc_ign ||
  770             intr_vectors[vec].iv_ic != &fire_ic ||
  771             bus_setup_intr(sc->sc_dev, sc->sc_irq_res[index],
  772             INTR_TYPE_MISC | INTR_BRIDGE, handler, NULL, arg,
  773             &sc->sc_ihand[index]) != 0)
  774                 panic("%s: failed to set up interrupt %d", __func__, index);
  775 }
  776 
  777 static int
  778 fire_intr_register(struct fire_softc *sc, u_int ino)
  779 {
  780         struct fire_icarg *fica;
  781         bus_addr_t intrclr, intrmap;
  782         int error;
  783 
  784         if (fire_get_intrmap(sc, ino, &intrmap, &intrclr) == 0)
  785                 return (ENXIO);
  786         fica = malloc((ino >= FO_EQ_FIRST_INO && ino <= FO_EQ_LAST_INO) ?
  787             sizeof(struct fire_msiqarg) : sizeof(struct fire_icarg), M_DEVBUF,
  788             M_NOWAIT | M_ZERO);
  789         if (fica == NULL)
  790                 return (ENOMEM);
  791         fica->fica_sc = sc;
  792         fica->fica_map = intrmap;
  793         fica->fica_clr = intrclr;
  794         error = (intr_controller_register(INTMAP_VEC(sc->sc_ign, ino),
  795             &fire_ic, fica));
  796         if (error != 0)
  797                 free(fica, M_DEVBUF);
  798         return (error);
  799 }
  800 
  801 static int
  802 fire_get_intrmap(struct fire_softc *sc, u_int ino, bus_addr_t *intrmapptr,
  803     bus_addr_t *intrclrptr)
  804 {
  805 
  806         if (ino > FO_MAX_INO) {
  807                 device_printf(sc->sc_dev, "out of range INO %d requested\n",
  808                     ino);
  809                 return (0);
  810         }
  811 
  812         ino <<= 3;
  813         if (intrmapptr != NULL)
  814                 *intrmapptr = FO_PCI_INT_MAP_BASE + ino;
  815         if (intrclrptr != NULL)
  816                 *intrclrptr = FO_PCI_INT_CLR_BASE + ino;
  817         return (1);
  818 }
  819 
  820 /*
  821  * Interrupt handlers
  822  */
  823 static int
  824 fire_dmc_pec(void *arg)
  825 {
  826         struct fire_softc *sc;
  827         device_t dev;
  828         uint64_t cestat, dmcstat, ilustat, imustat, mcstat, mmustat, mmutfar;
  829         uint64_t mmutfsr, oestat, pecstat, uestat, val;
  830         u_int fatal, oenfatal;
  831 
  832         fatal = 0;
  833         sc = arg;
  834         dev = sc->sc_dev;
  835         mtx_lock_spin(&sc->sc_pcib_mtx);
  836         mcstat = FIRE_PCI_READ_8(sc, FO_PCI_MULTI_CORE_ERR_STAT);
  837         if ((mcstat & FO_PCI_MULTI_CORE_ERR_STAT_DMC) != 0) {
  838                 dmcstat = FIRE_PCI_READ_8(sc, FO_PCI_DMC_CORE_BLOCK_ERR_STAT);
  839                 if ((dmcstat & FO_PCI_DMC_CORE_BLOCK_INT_EN_IMU) != 0) {
  840                         imustat = FIRE_PCI_READ_8(sc, FO_PCI_IMU_INT_STAT);
  841                         device_printf(dev, "IMU error %#llx\n",
  842                             (unsigned long long)imustat);
  843                         if ((imustat &
  844                             FO_PCI_IMU_ERR_INT_EQ_NOT_EN_P) != 0) {
  845                                 fatal = 1;
  846                                 val = FIRE_PCI_READ_8(sc,
  847                                     FO_PCI_IMU_SCS_ERR_LOG);
  848                                 device_printf(dev, "SCS error log %#llx\n",
  849                                     (unsigned long long)val);
  850                         }
  851                         if ((imustat & FO_PCI_IMU_ERR_INT_EQ_OVER_P) != 0) {
  852                                 fatal = 1;
  853                                 val = FIRE_PCI_READ_8(sc,
  854                                     FO_PCI_IMU_EQS_ERR_LOG);
  855                                 device_printf(dev, "EQS error log %#llx\n",
  856                                     (unsigned long long)val);
  857                         }
  858                         if ((imustat & (FO_PCI_IMU_ERR_INT_MSI_MAL_ERR_P |
  859                             FO_PCI_IMU_ERR_INT_MSI_PAR_ERR_P |
  860                             FO_PCI_IMU_ERR_INT_PMEACK_MES_NOT_EN_P |
  861                             FO_PCI_IMU_ERR_INT_PMPME_MES_NOT_EN_P |
  862                             FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_P |
  863                             FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_P |
  864                             FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_P |
  865                             FO_PCI_IMU_ERR_INT_MSI_NOT_EN_P)) != 0) {
  866                                 fatal = 1;
  867                                 val = FIRE_PCI_READ_8(sc,
  868                                     FO_PCI_IMU_RDS_ERR_LOG);
  869                                 device_printf(dev, "RDS error log %#llx\n",
  870                                     (unsigned long long)val);
  871                         }
  872                 }
  873                 if ((dmcstat & FO_PCI_DMC_CORE_BLOCK_INT_EN_MMU) != 0) {
  874                         fatal = 1;
  875                         mmustat = FIRE_PCI_READ_8(sc, FO_PCI_MMU_INT_STAT);
  876                         mmutfar = FIRE_PCI_READ_8(sc,
  877                             FO_PCI_MMU_TRANS_FAULT_ADDR);
  878                         mmutfsr = FIRE_PCI_READ_8(sc,
  879                             FO_PCI_MMU_TRANS_FAULT_STAT);
  880                         if ((mmustat & (FO_PCI_MMU_ERR_INT_TBW_DPE_P |
  881                             FO_PCI_MMU_ERR_INT_TBW_ERR_P |
  882                             FO_PCI_MMU_ERR_INT_TBW_UDE_P |
  883                             FO_PCI_MMU_ERR_INT_TBW_DME_P |
  884                             FO_PCI_MMU_ERR_INT_TTC_CAE_P |
  885                             FIRE_PCI_MMU_ERR_INT_TTC_DPE_P |
  886                             OBERON_PCI_MMU_ERR_INT_TTC_DUE_P |
  887                             FO_PCI_MMU_ERR_INT_TRN_ERR_P)) != 0)
  888                                 fatal = 1;
  889                         else {
  890                                 sc->sc_stats_mmu_err++;
  891                                 FIRE_PCI_WRITE_8(sc, FO_PCI_MMU_ERR_STAT_CLR,
  892                                     mmustat);
  893                         }
  894                         device_printf(dev,
  895                             "MMU error %#llx: TFAR %#llx TFSR %#llx\n",
  896                             (unsigned long long)mmustat,
  897                             (unsigned long long)mmutfar,
  898                             (unsigned long long)mmutfsr);
  899                 }
  900         }
  901         if ((mcstat & FO_PCI_MULTI_CORE_ERR_STAT_PEC) != 0) {
  902                 pecstat = FIRE_PCI_READ_8(sc, FO_PCI_PEC_CORE_BLOCK_INT_STAT);
  903                 if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_UERR) != 0) {
  904                         fatal = 1;
  905                         uestat = FIRE_PCI_READ_8(sc,
  906                             FO_PCI_TLU_UERR_INT_STAT);
  907                         device_printf(dev,
  908                             "DLU/TLU uncorrectable error %#llx\n",
  909                             (unsigned long long)uestat);
  910                         if ((uestat & (FO_PCI_TLU_UERR_INT_UR_P |
  911                             OBERON_PCI_TLU_UERR_INT_POIS_P |
  912                             FO_PCI_TLU_UERR_INT_MFP_P |
  913                             FO_PCI_TLU_UERR_INT_ROF_P |
  914                             FO_PCI_TLU_UERR_INT_UC_P |
  915                             FIRE_PCI_TLU_UERR_INT_PP_P |
  916                             OBERON_PCI_TLU_UERR_INT_POIS_P)) != 0) {
  917                                 val = FIRE_PCI_READ_8(sc,
  918                                     FO_PCI_TLU_RX_UERR_HDR1_LOG);
  919                                 device_printf(dev,
  920                                     "receive header log %#llx\n",
  921                                     (unsigned long long)val);
  922                                 val = FIRE_PCI_READ_8(sc,
  923                                     FO_PCI_TLU_RX_UERR_HDR2_LOG);
  924                                 device_printf(dev,
  925                                     "receive header log 2 %#llx\n",
  926                                     (unsigned long long)val);
  927                         }
  928                         if ((uestat & FO_PCI_TLU_UERR_INT_CTO_P) != 0) {
  929                                 val = FIRE_PCI_READ_8(sc,
  930                                     FO_PCI_TLU_TX_UERR_HDR1_LOG);
  931                                 device_printf(dev,
  932                                     "transmit header log %#llx\n",
  933                                     (unsigned long long)val);
  934                                 val = FIRE_PCI_READ_8(sc,
  935                                     FO_PCI_TLU_TX_UERR_HDR2_LOG);
  936                                 device_printf(dev,
  937                                     "transmit header log 2 %#llx\n",
  938                                     (unsigned long long)val);
  939                         }
  940                         if ((uestat & FO_PCI_TLU_UERR_INT_DLP_P) != 0) {
  941                                 val = FIRE_PCI_READ_8(sc,
  942                                     FO_PCI_LPU_LNK_LYR_INT_STAT);
  943                                 device_printf(dev,
  944                                     "link layer interrupt and status %#llx\n",
  945                                     (unsigned long long)val);
  946                         }
  947                         if ((uestat & FO_PCI_TLU_UERR_INT_TE_P) != 0) {
  948                                 val = FIRE_PCI_READ_8(sc,
  949                                     FO_PCI_LPU_PHY_LYR_INT_STAT);
  950                                 device_printf(dev,
  951                                     "phy layer interrupt and status %#llx\n",
  952                                     (unsigned long long)val);
  953                         }
  954                 }
  955                 if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_CERR) != 0) {
  956                         sc->sc_stats_tlu_ce++;
  957                         cestat = FIRE_PCI_READ_8(sc,
  958                             FO_PCI_TLU_CERR_INT_STAT);
  959                         device_printf(dev,
  960                             "DLU/TLU correctable error %#llx\n",
  961                             (unsigned long long)cestat);
  962                         val = FIRE_PCI_READ_8(sc,
  963                             FO_PCI_LPU_LNK_LYR_INT_STAT);
  964                         device_printf(dev,
  965                             "link layer interrupt and status %#llx\n",
  966                             (unsigned long long)val);
  967                         if ((cestat & FO_PCI_TLU_CERR_INT_RE_P) != 0) {
  968                                 FIRE_PCI_WRITE_8(sc,
  969                                     FO_PCI_LPU_LNK_LYR_INT_STAT, val);
  970                                 val = FIRE_PCI_READ_8(sc,
  971                                     FO_PCI_LPU_PHY_LYR_INT_STAT);
  972                                 device_printf(dev,
  973                                     "phy layer interrupt and status %#llx\n",
  974                                     (unsigned long long)val);
  975                         }
  976                         FIRE_PCI_WRITE_8(sc, FO_PCI_TLU_CERR_STAT_CLR,
  977                             cestat);
  978                 }
  979                 if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_OEVENT) != 0) {
  980                         oenfatal = 0;
  981                         oestat = FIRE_PCI_READ_8(sc,
  982                             FO_PCI_TLU_OEVENT_INT_STAT);
  983                         device_printf(dev, "DLU/TLU other event %#llx\n",
  984                             (unsigned long long)oestat);
  985                         if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
  986                             FO_PCI_TLU_OEVENT_MRC_P |
  987                             FO_PCI_TLU_OEVENT_WUC_P |
  988                             FO_PCI_TLU_OEVENT_RUC_P |
  989                             FO_PCI_TLU_OEVENT_CRS_P)) != 0) {
  990                                 val = FIRE_PCI_READ_8(sc,
  991                                     FO_PCI_TLU_RX_OEVENT_HDR1_LOG);
  992                                 device_printf(dev,
  993                                     "receive header log %#llx\n",
  994                                     (unsigned long long)val);
  995                                 val = FIRE_PCI_READ_8(sc,
  996                                     FO_PCI_TLU_RX_OEVENT_HDR2_LOG);
  997                                 device_printf(dev,
  998                                     "receive header log 2 %#llx\n",
  999                                     (unsigned long long)val);
 1000                                 if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
 1001                                     FO_PCI_TLU_OEVENT_MRC_P |
 1002                                     FO_PCI_TLU_OEVENT_WUC_P |
 1003                                     FO_PCI_TLU_OEVENT_RUC_P)) != 0)
 1004                                         fatal = 1;
 1005                                 else {
 1006                                         sc->sc_stats_tlu_oe_rx_err++;
 1007                                         oenfatal = 1;
 1008                                 }
 1009                         }
 1010                         if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
 1011                             FO_PCI_TLU_OEVENT_CTO_P |
 1012                             FO_PCI_TLU_OEVENT_WUC_P |
 1013                             FO_PCI_TLU_OEVENT_RUC_P)) != 0) {
 1014                                 val = FIRE_PCI_READ_8(sc,
 1015                                     FO_PCI_TLU_TX_OEVENT_HDR1_LOG);
 1016                                 device_printf(dev,
 1017                                     "transmit header log %#llx\n",
 1018                                     (unsigned long long)val);
 1019                                 val = FIRE_PCI_READ_8(sc,
 1020                                     FO_PCI_TLU_TX_OEVENT_HDR2_LOG);
 1021                                 device_printf(dev,
 1022                                     "transmit header log 2 %#llx\n",
 1023                                     (unsigned long long)val);
 1024                                 if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
 1025                                     FO_PCI_TLU_OEVENT_CTO_P |
 1026                                     FO_PCI_TLU_OEVENT_WUC_P |
 1027                                     FO_PCI_TLU_OEVENT_RUC_P)) != 0)
 1028                                         fatal = 1;
 1029                                 else {
 1030                                         sc->sc_stats_tlu_oe_tx_err++;
 1031                                         oenfatal = 1;
 1032                                 }
 1033                         }
 1034                         if ((oestat & (FO_PCI_TLU_OEVENT_ERO_P |
 1035                             FO_PCI_TLU_OEVENT_EMP_P |
 1036                             FO_PCI_TLU_OEVENT_EPE_P |
 1037                             FIRE_PCI_TLU_OEVENT_ERP_P |
 1038                             OBERON_PCI_TLU_OEVENT_ERBU_P |
 1039                             FIRE_PCI_TLU_OEVENT_EIP_P |
 1040                             OBERON_PCI_TLU_OEVENT_EIUE_P)) != 0) {
 1041                                 fatal = 1;
 1042                                 val = FIRE_PCI_READ_8(sc,
 1043                                     FO_PCI_LPU_LNK_LYR_INT_STAT);
 1044                                 device_printf(dev,
 1045                                     "link layer interrupt and status %#llx\n",
 1046                                     (unsigned long long)val);
 1047                         }
 1048                         if ((oestat & (FO_PCI_TLU_OEVENT_IIP_P |
 1049                             FO_PCI_TLU_OEVENT_EDP_P |
 1050                             FIRE_PCI_TLU_OEVENT_EHP_P |
 1051                             OBERON_PCI_TLU_OEVENT_TLUEITMO_S |
 1052                             FO_PCI_TLU_OEVENT_ERU_P)) != 0)
 1053                                 fatal = 1;
 1054                         if ((oestat & (FO_PCI_TLU_OEVENT_NFP_P |
 1055                             FO_PCI_TLU_OEVENT_LWC_P |
 1056                             FO_PCI_TLU_OEVENT_LIN_P |
 1057                             FO_PCI_TLU_OEVENT_LRS_P |
 1058                             FO_PCI_TLU_OEVENT_LDN_P |
 1059                             FO_PCI_TLU_OEVENT_LUP_P)) != 0)
 1060                                 oenfatal = 1;
 1061                         if (oenfatal != 0) {
 1062                                 sc->sc_stats_tlu_oe_non_fatal++;
 1063                                 FIRE_PCI_WRITE_8(sc,
 1064                                     FO_PCI_TLU_OEVENT_STAT_CLR, oestat);
 1065                                 if ((oestat & FO_PCI_TLU_OEVENT_LIN_P) != 0)
 1066                                         FIRE_PCI_WRITE_8(sc,
 1067                                             FO_PCI_LPU_LNK_LYR_INT_STAT,
 1068                                             FIRE_PCI_READ_8(sc,
 1069                                             FO_PCI_LPU_LNK_LYR_INT_STAT));
 1070                         }
 1071                 }
 1072                 if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_ILU) != 0) {
 1073                         ilustat = FIRE_PCI_READ_8(sc, FO_PCI_ILU_INT_STAT);
 1074                         device_printf(dev, "ILU error %#llx\n",
 1075                             (unsigned long long)ilustat);
 1076                         if ((ilustat & (FIRE_PCI_ILU_ERR_INT_IHB_PE_P |
 1077                             FIRE_PCI_ILU_ERR_INT_IHB_PE_P)) != 0)
 1078                             fatal = 1;
 1079                         else {
 1080                                 sc->sc_stats_ilu_err++;
 1081                                 FIRE_PCI_WRITE_8(sc, FO_PCI_ILU_INT_STAT,
 1082                                     ilustat);
 1083                         }
 1084                 }
 1085         }
 1086         mtx_unlock_spin(&sc->sc_pcib_mtx);
 1087         if (fatal != 0)
 1088                 panic("%s: fatal DMC/PEC error",
 1089                     device_get_nameunit(sc->sc_dev));
 1090         return (FILTER_HANDLED);
 1091 }
 1092 
 1093 static int
 1094 fire_xcb(void *arg)
 1095 {
 1096         struct fire_softc *sc;
 1097         device_t dev;
 1098         uint64_t errstat, intstat, val;
 1099         u_int fatal;
 1100 
 1101         fatal = 0;
 1102         sc = arg;
 1103         dev = sc->sc_dev;
 1104         mtx_lock_spin(&sc->sc_pcib_mtx);
 1105         if (sc->sc_mode == FIRE_MODE_OBERON) {
 1106                 intstat = FIRE_CTRL_READ_8(sc, FO_XBC_INT_STAT);
 1107                 device_printf(dev, "UBC error: interrupt status %#llx\n",
 1108                     (unsigned long long)intstat);
 1109                 if ((intstat & ~(OBERON_UBC_ERR_INT_DMARDUEB_P |
 1110                     OBERON_UBC_ERR_INT_DMARDUEA_P)) != 0)
 1111                         fatal = 1;
 1112                 else
 1113                         sc->sc_stats_ubc_dmardue++;
 1114                 if (fatal != 0) {
 1115                         mtx_unlock_spin(&sc->sc_pcib_mtx);
 1116                         panic("%s: fatal UBC core block error",
 1117                             device_get_nameunit(sc->sc_dev));
 1118                 } else {
 1119                         FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
 1120                         mtx_unlock_spin(&sc->sc_pcib_mtx);
 1121                 }
 1122         } else {
 1123                 errstat = FIRE_CTRL_READ_8(sc, FIRE_JBC_CORE_BLOCK_ERR_STAT);
 1124                 if ((errstat & (FIRE_JBC_CORE_BLOCK_ERR_STAT_MERGE |
 1125                     FIRE_JBC_CORE_BLOCK_ERR_STAT_JBCINT |
 1126                     FIRE_JBC_CORE_BLOCK_ERR_STAT_DMCINT)) != 0) {
 1127                         intstat = FIRE_CTRL_READ_8(sc, FO_XBC_INT_STAT);
 1128                         device_printf(dev, "JBC interrupt status %#llx\n",
 1129                             (unsigned long long)intstat);
 1130                         if ((intstat & FIRE_JBC_ERR_INT_EBUS_TO_P) != 0) {
 1131                                 val = FIRE_CTRL_READ_8(sc,
 1132                                     FIRE_JBC_CSR_ERR_LOG);
 1133                                 device_printf(dev, "CSR error log %#llx\n",
 1134                                     (unsigned long long)val);
 1135                         }
 1136                         if ((intstat & (FIRE_JBC_ERR_INT_UNSOL_RD_P |
 1137                             FIRE_JBC_ERR_INT_UNSOL_INT_P)) != 0) {
 1138                                 if ((intstat &
 1139                                     FIRE_JBC_ERR_INT_UNSOL_RD_P) != 0)
 1140                                         sc->sc_stats_jbc_unsol_rd++;
 1141                                 if ((intstat &
 1142                                     FIRE_JBC_ERR_INT_UNSOL_INT_P) != 0)
 1143                                         sc->sc_stats_jbc_unsol_int++;
 1144                                 val = FIRE_CTRL_READ_8(sc,
 1145                                     FIRE_DMCINT_IDC_ERR_LOG);
 1146                                 device_printf(dev,
 1147                                     "DMCINT IDC error log %#llx\n",
 1148                                     (unsigned long long)val);
 1149                         }
 1150                         if ((intstat & (FIRE_JBC_ERR_INT_MB_PER_P |
 1151                             FIRE_JBC_ERR_INT_MB_PEW_P)) != 0) {
 1152                                 fatal = 1;
 1153                                 val = FIRE_CTRL_READ_8(sc,
 1154                                     FIRE_MERGE_TRANS_ERR_LOG);
 1155                                 device_printf(dev,
 1156                                     "merge transaction error log %#llx\n",
 1157                                     (unsigned long long)val);
 1158                         }
 1159                         if ((intstat & FIRE_JBC_ERR_INT_IJP_P) != 0) {
 1160                                 fatal = 1;
 1161                                 val = FIRE_CTRL_READ_8(sc,
 1162                                     FIRE_JBCINT_OTRANS_ERR_LOG);
 1163                                 device_printf(dev,
 1164                                     "JBCINT out transaction error log "
 1165                                     "%#llx\n", (unsigned long long)val);
 1166                                 val = FIRE_CTRL_READ_8(sc,
 1167                                     FIRE_JBCINT_OTRANS_ERR_LOG2);
 1168                                 device_printf(dev,
 1169                                     "JBCINT out transaction error log 2 "
 1170                                     "%#llx\n", (unsigned long long)val);
 1171                         }
 1172                         if ((intstat & (FIRE_JBC_ERR_INT_UE_ASYN_P |
 1173                             FIRE_JBC_ERR_INT_CE_ASYN_P |
 1174                             FIRE_JBC_ERR_INT_JTE_P | FIRE_JBC_ERR_INT_JBE_P |
 1175                             FIRE_JBC_ERR_INT_JUE_P |
 1176                             FIRE_JBC_ERR_INT_ICISE_P |
 1177                             FIRE_JBC_ERR_INT_WR_DPE_P |
 1178                             FIRE_JBC_ERR_INT_RD_DPE_P |
 1179                             FIRE_JBC_ERR_INT_ILL_BMW_P |
 1180                             FIRE_JBC_ERR_INT_ILL_BMR_P |
 1181                             FIRE_JBC_ERR_INT_BJC_P)) != 0) {
 1182                                 if ((intstat & (FIRE_JBC_ERR_INT_UE_ASYN_P |
 1183                                     FIRE_JBC_ERR_INT_JTE_P |
 1184                                     FIRE_JBC_ERR_INT_JBE_P |
 1185                                     FIRE_JBC_ERR_INT_JUE_P |
 1186                                     FIRE_JBC_ERR_INT_ICISE_P |
 1187                                     FIRE_JBC_ERR_INT_WR_DPE_P |
 1188                                     FIRE_JBC_ERR_INT_RD_DPE_P |
 1189                                     FIRE_JBC_ERR_INT_ILL_BMW_P |
 1190                                     FIRE_JBC_ERR_INT_ILL_BMR_P |
 1191                                     FIRE_JBC_ERR_INT_BJC_P)) != 0)
 1192                                         fatal = 1;
 1193                                 else
 1194                                         sc->sc_stats_jbc_ce_async++;
 1195                                 val = FIRE_CTRL_READ_8(sc,
 1196                                     FIRE_JBCINT_ITRANS_ERR_LOG);
 1197                                 device_printf(dev,
 1198                                     "JBCINT in transaction error log %#llx\n",
 1199                                     (unsigned long long)val);
 1200                                 val = FIRE_CTRL_READ_8(sc,
 1201                                     FIRE_JBCINT_ITRANS_ERR_LOG2);
 1202                                 device_printf(dev,
 1203                                     "JBCINT in transaction error log 2 "
 1204                                     "%#llx\n", (unsigned long long)val);
 1205                         }
 1206                         if ((intstat & (FIRE_JBC_ERR_INT_PIO_UNMAP_RD_P |
 1207                             FIRE_JBC_ERR_INT_ILL_ACC_RD_P |
 1208                             FIRE_JBC_ERR_INT_PIO_UNMAP_P |
 1209                             FIRE_JBC_ERR_INT_PIO_DPE_P |
 1210                             FIRE_JBC_ERR_INT_PIO_CPE_P |
 1211                             FIRE_JBC_ERR_INT_ILL_ACC_P)) != 0) {
 1212                                 fatal = 1;
 1213                                 val = FIRE_CTRL_READ_8(sc,
 1214                                     FIRE_JBC_CSR_ERR_LOG);
 1215                                 device_printf(dev,
 1216                                     "DMCINT ODCD error log %#llx\n",
 1217                                     (unsigned long long)val);
 1218                         }
 1219                         if ((intstat & (FIRE_JBC_ERR_INT_MB_PEA_P |
 1220                             FIRE_JBC_ERR_INT_CPE_P | FIRE_JBC_ERR_INT_APE_P |
 1221                             FIRE_JBC_ERR_INT_PIO_CPE_P |
 1222                             FIRE_JBC_ERR_INT_JTCEEW_P |
 1223                             FIRE_JBC_ERR_INT_JTCEEI_P |
 1224                             FIRE_JBC_ERR_INT_JTCEER_P)) != 0) {
 1225                                 fatal = 1;
 1226                                 val = FIRE_CTRL_READ_8(sc,
 1227                                     FIRE_FATAL_ERR_LOG);
 1228                                 device_printf(dev, "fatal error log %#llx\n",
 1229                                     (unsigned long long)val);
 1230                                 val = FIRE_CTRL_READ_8(sc,
 1231                                     FIRE_FATAL_ERR_LOG2);
 1232                                 device_printf(dev, "fatal error log 2 "
 1233                                     "%#llx\n", (unsigned long long)val);
 1234                         }
 1235                         if (fatal != 0) {
 1236                                 mtx_unlock_spin(&sc->sc_pcib_mtx);
 1237                                 panic("%s: fatal JBC core block error",
 1238                                     device_get_nameunit(sc->sc_dev));
 1239                         } else {
 1240                                 FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
 1241                                 mtx_unlock_spin(&sc->sc_pcib_mtx);
 1242                         }
 1243                 } else {
 1244                         mtx_unlock_spin(&sc->sc_pcib_mtx);
 1245                         panic("%s: unknown JCB core block error status %#llx",
 1246                             device_get_nameunit(sc->sc_dev),
 1247                             (unsigned long long)errstat);
 1248                 }
 1249         }
 1250         return (FILTER_HANDLED);
 1251 }
 1252 
 1253 static int
 1254 fire_pcie(void *arg)
 1255 {
 1256         struct fire_msiqarg *fmqa;
 1257         struct fire_softc *sc;
 1258         struct fo_msiq_record *qrec;
 1259         device_t dev;
 1260         uint64_t word0;
 1261         u_int head, msg, msiq;
 1262 
 1263         fmqa = arg;
 1264         sc = fmqa->fmqa_fica.fica_sc;
 1265         dev = sc->sc_dev;
 1266         msiq = fmqa->fmqa_msiq;
 1267         mtx_lock_spin(&fmqa->fmqa_mtx);
 1268         head = (FIRE_PCI_READ_8(sc, fmqa->fmqa_head) & FO_PCI_EQ_HD_MASK) >>
 1269             FO_PCI_EQ_HD_SHFT;
 1270         qrec = &fmqa->fmqa_base[head];
 1271         word0 = qrec->fomqr_word0;
 1272         for (;;) {
 1273                 KASSERT((word0 & FO_MQR_WORD0_FMT_TYPE_MSG) != 0,
 1274                     ("%s: received non-PCIe message in event queue %d "
 1275                     "(word0 %#llx)", device_get_nameunit(dev), msiq,
 1276                     (unsigned long long)word0));
 1277                 msg = (word0 & FO_MQR_WORD0_DATA0_MASK) >>
 1278                     FO_MQR_WORD0_DATA0_SHFT;
 1279 
 1280 #define PCIE_MSG_CODE_ERR_COR           0x30
 1281 #define PCIE_MSG_CODE_ERR_NONFATAL      0x31
 1282 #define PCIE_MSG_CODE_ERR_FATAL         0x33
 1283 
 1284                 if (msg == PCIE_MSG_CODE_ERR_COR)
 1285                         device_printf(dev, "correctable PCIe error\n");
 1286                 else if (msg == PCIE_MSG_CODE_ERR_NONFATAL ||
 1287                     msg == PCIE_MSG_CODE_ERR_FATAL)
 1288                         panic("%s: %sfatal PCIe error",
 1289                             device_get_nameunit(dev),
 1290                             msg == PCIE_MSG_CODE_ERR_NONFATAL ? "non-" : "");
 1291                 else
 1292                         panic("%s: received unknown PCIe message %#x",
 1293                             device_get_nameunit(dev), msg);
 1294                 qrec->fomqr_word0 &= ~FO_MQR_WORD0_FMT_TYPE_MASK;
 1295                 head = (head + 1) % sc->sc_msiq_size;
 1296                 qrec = &fmqa->fmqa_base[head];
 1297                 word0 = qrec->fomqr_word0;
 1298                 if (__predict_true((word0 & FO_MQR_WORD0_FMT_TYPE_MASK) == 0))
 1299                         break;
 1300         }
 1301         FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head, (head & FO_PCI_EQ_HD_MASK) <<
 1302             FO_PCI_EQ_HD_SHFT);
 1303         if ((FIRE_PCI_READ_8(sc, fmqa->fmqa_tail) &
 1304             FO_PCI_EQ_TL_OVERR) != 0) {
 1305                 device_printf(dev, "event queue %d overflow\n", msiq);
 1306                 msiq <<= 3;
 1307                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
 1308                     FIRE_PCI_READ_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq) |
 1309                     FO_PCI_EQ_CTRL_CLR_COVERR);
 1310         }
 1311         mtx_unlock_spin(&fmqa->fmqa_mtx);
 1312         return (FILTER_HANDLED);
 1313 }
 1314 
 1315 static int
 1316 fire_maxslots(device_t dev)
 1317 {
 1318 
 1319         return (1);
 1320 }
 1321 
 1322 static uint32_t
 1323 fire_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
 1324     int width)
 1325 {
 1326 
 1327         return (ofw_pci_read_config_common(dev, PCIE_REGMAX, FO_CONF_OFF(bus,
 1328             slot, func, reg), bus, slot, func, reg, width));
 1329 }
 1330 
 1331 static void
 1332 fire_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
 1333     uint32_t val, int width)
 1334 {
 1335 
 1336         ofw_pci_write_config_common(dev, PCIE_REGMAX, FO_CONF_OFF(bus, slot,
 1337             func, reg), bus, slot, func, reg, val, width);
 1338 }
 1339 
 1340 static int
 1341 fire_route_interrupt(device_t bridge, device_t dev, int pin)
 1342 {
 1343         ofw_pci_intr_t mintr;
 1344 
 1345         mintr = ofw_pci_route_interrupt_common(bridge, dev, pin);
 1346         if (!PCI_INTERRUPT_VALID(mintr))
 1347                 device_printf(bridge,
 1348                     "could not route pin %d for device %d.%d\n",
 1349                     pin, pci_get_slot(dev), pci_get_function(dev));
 1350         return (mintr);
 1351 }
 1352 
 1353 static void
 1354 fire_dmamap_sync(bus_dma_tag_t dt __unused, bus_dmamap_t map,
 1355     bus_dmasync_op_t op)
 1356 {
 1357 
 1358         if ((map->dm_flags & DMF_LOADED) == 0)
 1359                 return;
 1360 
 1361         if ((op & BUS_DMASYNC_POSTREAD) != 0)
 1362                 ofw_pci_dmamap_sync_stst_order_common();
 1363         else if ((op & BUS_DMASYNC_PREWRITE) != 0)
 1364                 membar(Sync);
 1365 }
 1366 
 1367 static void
 1368 fire_intr_enable(void *arg)
 1369 {
 1370         struct intr_vector *iv;
 1371         struct fire_icarg *fica;
 1372         struct fire_softc *sc;
 1373         struct pcpu *pc;
 1374         uint64_t mr;
 1375         u_int ctrl, i;
 1376 
 1377         iv = arg;
 1378         fica = iv->iv_icarg;
 1379         sc = fica->fica_sc;
 1380         mr = FO_PCI_IMAP_V;
 1381         if (sc->sc_mode == FIRE_MODE_OBERON)
 1382                 mr |= (iv->iv_mid << OBERON_PCI_IMAP_T_DESTID_SHFT) &
 1383                     OBERON_PCI_IMAP_T_DESTID_MASK;
 1384         else
 1385                 mr |= (iv->iv_mid << FIRE_PCI_IMAP_T_JPID_SHFT) &
 1386                     FIRE_PCI_IMAP_T_JPID_MASK;
 1387         /*
 1388          * Given that all mondos for the same target are required to use the
 1389          * same interrupt controller we just use the CPU ID for indexing the
 1390          * latter.
 1391          */
 1392         ctrl = 0;
 1393         for (i = 0; i < mp_ncpus; ++i) {
 1394                 pc = pcpu_find(i);
 1395                 if (pc == NULL || iv->iv_mid != pc->pc_mid)
 1396                         continue;
 1397                 ctrl = pc->pc_cpuid % 4;
 1398                 break;
 1399         }
 1400         mr |= (1ULL << ctrl) << FO_PCI_IMAP_INT_CTRL_NUM_SHFT &
 1401             FO_PCI_IMAP_INT_CTRL_NUM_MASK;
 1402         FIRE_PCI_WRITE_8(sc, fica->fica_map, mr);
 1403 }
 1404 
 1405 static void
 1406 fire_intr_disable(void *arg)
 1407 {
 1408         struct intr_vector *iv;
 1409         struct fire_icarg *fica;
 1410         struct fire_softc *sc;
 1411 
 1412         iv = arg;
 1413         fica = iv->iv_icarg;
 1414         sc = fica->fica_sc;
 1415         FIRE_PCI_WRITE_8(sc, fica->fica_map,
 1416             FIRE_PCI_READ_8(sc, fica->fica_map) & ~FO_PCI_IMAP_V);
 1417 }
 1418 
 1419 static void
 1420 fire_intr_assign(void *arg)
 1421 {
 1422         struct intr_vector *iv;
 1423         struct fire_icarg *fica;
 1424         struct fire_softc *sc;
 1425         uint64_t mr;
 1426 
 1427         iv = arg;
 1428         fica = iv->iv_icarg;
 1429         sc = fica->fica_sc;
 1430         mr = FIRE_PCI_READ_8(sc, fica->fica_map);
 1431         if ((mr & FO_PCI_IMAP_V) != 0) {
 1432                 FIRE_PCI_WRITE_8(sc, fica->fica_map, mr & ~FO_PCI_IMAP_V);
 1433                 FIRE_PCI_BARRIER(sc, fica->fica_map, 8,
 1434                     BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
 1435         }
 1436         while (FIRE_PCI_READ_8(sc, fica->fica_clr) != INTCLR_IDLE)
 1437                 ;
 1438         if ((mr & FO_PCI_IMAP_V) != 0)
 1439                 fire_intr_enable(arg);
 1440 }
 1441 
 1442 static void
 1443 fire_intr_clear(void *arg)
 1444 {
 1445         struct intr_vector *iv;
 1446         struct fire_icarg *fica;
 1447 
 1448         iv = arg;
 1449         fica = iv->iv_icarg;
 1450         FIRE_PCI_WRITE_8(fica->fica_sc, fica->fica_clr, INTCLR_IDLE);
 1451 }
 1452 
 1453 /*
 1454  * Given that the event queue implementation matches our current MD and MI
 1455  * interrupt frameworks like square pegs fit into round holes we are generous
 1456  * and use one event queue per MSI for now, which limits us to 35 MSIs/MSI-Xs
 1457  * per Host-PCIe-bridge (we use one event queue for the PCIe error messages).
 1458  * This seems tolerable as long as most devices just use one MSI/MSI-X anyway.
 1459  * Adding knowledge about MSIs/MSI-Xs to the MD interrupt code should allow us
 1460  * to decouple the 1:1 mapping at the cost of no longer being able to bind
 1461  * MSIs/MSI-Xs to specific CPUs as we currently have no reliable way to
 1462  * quiesce a device while we move its MSIs/MSI-Xs to another event queue.
 1463  */
 1464 
 1465 static int
 1466 fire_alloc_msi(device_t dev, device_t child, int count, int maxcount __unused,
 1467     int *irqs)
 1468 {
 1469         struct fire_softc *sc;
 1470         u_int i, j, msiqrun;
 1471 
 1472         if (powerof2(count) == 0 || count > 32)
 1473                 return (EINVAL);
 1474 
 1475         sc = device_get_softc(dev);
 1476         mtx_lock(&sc->sc_msi_mtx);
 1477         msiqrun = 0;
 1478         for (i = 0; i < sc->sc_msiq_count; i++) {
 1479                 for (j = i; j < i + count; j++) {
 1480                         if (isclr(sc->sc_msiq_bitmap, j) == 0)
 1481                                 break;
 1482                 }
 1483                 if (j == i + count) {
 1484                         msiqrun = i;
 1485                         break;
 1486                 }
 1487         }
 1488         if (i == sc->sc_msiq_count) {
 1489                 mtx_unlock(&sc->sc_msi_mtx);
 1490                 return (ENXIO);
 1491         }
 1492         for (i = 0; i + count < sc->sc_msi_count; i += count) {
 1493                 for (j = i; j < i + count; j++)
 1494                         if (isclr(sc->sc_msi_bitmap, j) == 0)
 1495                                 break;
 1496                 if (j == i + count) {
 1497                         for (j = 0; j < count; j++) {
 1498                                 setbit(sc->sc_msiq_bitmap, msiqrun + j);
 1499                                 setbit(sc->sc_msi_bitmap, i + j);
 1500                                 sc->sc_msi_msiq_table[i + j] = msiqrun + j;
 1501                                 irqs[j] = sc->sc_msi_first + i + j;
 1502                         }
 1503                         mtx_unlock(&sc->sc_msi_mtx);
 1504                         return (0);
 1505                 }
 1506         }
 1507         mtx_unlock(&sc->sc_msi_mtx);
 1508         return (ENXIO);
 1509 }
 1510 
 1511 static int
 1512 fire_release_msi(device_t dev, device_t child, int count, int *irqs)
 1513 {
 1514         struct fire_softc *sc;
 1515         u_int i;
 1516 
 1517         sc = device_get_softc(dev);
 1518         mtx_lock(&sc->sc_msi_mtx);
 1519         for (i = 0; i < count; i++) {
 1520                 clrbit(sc->sc_msiq_bitmap,
 1521                     sc->sc_msi_msiq_table[irqs[i] - sc->sc_msi_first]);
 1522                 clrbit(sc->sc_msi_bitmap, irqs[i] - sc->sc_msi_first);
 1523         }
 1524         mtx_unlock(&sc->sc_msi_mtx);
 1525         return (0);
 1526 }
 1527 
 1528 static int
 1529 fire_alloc_msix(device_t dev, device_t child, int *irq)
 1530 {
 1531         struct fire_softc *sc;
 1532         int i, msiq;
 1533 
 1534         sc = device_get_softc(dev);
 1535         if ((sc->sc_flags & FIRE_MSIX) == 0)
 1536                 return (ENXIO);
 1537         mtx_lock(&sc->sc_msi_mtx);
 1538         msiq = 0;
 1539         for (i = 0; i < sc->sc_msiq_count; i++) {
 1540                 if (isclr(sc->sc_msiq_bitmap, i) != 0) {
 1541                         msiq = i;
 1542                         break;
 1543                 }
 1544         }
 1545         if (i == sc->sc_msiq_count) {
 1546                 mtx_unlock(&sc->sc_msi_mtx);
 1547                 return (ENXIO);
 1548         }
 1549         for (i = sc->sc_msi_count - 1; i >= 0; i--) {
 1550                 if (isclr(sc->sc_msi_bitmap, i) != 0) {
 1551                         setbit(sc->sc_msiq_bitmap, msiq);
 1552                         setbit(sc->sc_msi_bitmap, i);
 1553                         sc->sc_msi_msiq_table[i] = msiq;
 1554                         *irq = sc->sc_msi_first + i;
 1555                         mtx_unlock(&sc->sc_msi_mtx);
 1556                         return (0);
 1557                 }
 1558         }
 1559         mtx_unlock(&sc->sc_msi_mtx);
 1560         return (ENXIO);
 1561 }
 1562 
 1563 static int
 1564 fire_release_msix(device_t dev, device_t child, int irq)
 1565 {
 1566         struct fire_softc *sc;
 1567 
 1568         sc = device_get_softc(dev);
 1569         if ((sc->sc_flags & FIRE_MSIX) == 0)
 1570                 return (ENXIO);
 1571         mtx_lock(&sc->sc_msi_mtx);
 1572         clrbit(sc->sc_msiq_bitmap,
 1573             sc->sc_msi_msiq_table[irq - sc->sc_msi_first]);
 1574         clrbit(sc->sc_msi_bitmap, irq - sc->sc_msi_first);
 1575         mtx_unlock(&sc->sc_msi_mtx);
 1576         return (0);
 1577 }
 1578 
 1579 static int
 1580 fire_map_msi(device_t dev, device_t child, int irq, uint64_t *addr,
 1581     uint32_t *data)
 1582 {
 1583         struct fire_softc *sc;
 1584         struct pci_devinfo *dinfo;
 1585 
 1586         sc = device_get_softc(dev);
 1587         dinfo = device_get_ivars(child);
 1588         if (dinfo->cfg.msi.msi_alloc > 0) {
 1589                 if ((irq & ~sc->sc_msi_data_mask) != 0) {
 1590                         device_printf(dev, "invalid MSI 0x%x\n", irq);
 1591                         return (EINVAL);
 1592                 }
 1593         } else {
 1594                 if ((sc->sc_flags & FIRE_MSIX) == 0)
 1595                         return (ENXIO);
 1596                 if (fls(irq) > sc->sc_msix_data_width) {
 1597                         device_printf(dev, "invalid MSI-X 0x%x\n", irq);
 1598                         return (EINVAL);
 1599                 }
 1600         }
 1601         if (dinfo->cfg.msi.msi_alloc > 0 &&
 1602             (dinfo->cfg.msi.msi_ctrl & PCIM_MSICTRL_64BIT) == 0)
 1603                 *addr = sc->sc_msi_addr32;
 1604         else
 1605                 *addr = sc->sc_msi_addr64;
 1606         *data = irq;
 1607         return (0);
 1608 }
 1609 
 1610 static void
 1611 fire_msiq_handler(void *cookie)
 1612 {
 1613         struct intr_vector *iv;
 1614         struct fire_msiqarg *fmqa;
 1615 
 1616         iv = cookie;
 1617         fmqa = iv->iv_icarg;
 1618         /*
 1619          * Note that since fire_intr_clear() will clear the event queue
 1620          * interrupt after the handler associated with the MSI [sic] has
 1621          * been executed we have to protect the access to the event queue as
 1622          * otherwise nested event queue interrupts cause corruption of the
 1623          * event queue on MP machines.  Obviously especially when abandoning
 1624          * the 1:1 mapping it would be better to not clear the event queue
 1625          * interrupt after each handler invocation but only once when the
 1626          * outstanding MSIs have been processed but unfortunately that
 1627          * doesn't work well and leads to interrupt storms with controllers/
 1628          * drivers which don't mask interrupts while the handler is executed.
 1629          * Maybe delaying clearing the MSI until after the handler has been
 1630          * executed could be used to work around this but that's not the
 1631          * intended usage and might in turn cause lost MSIs.
 1632          */
 1633         mtx_lock_spin(&fmqa->fmqa_mtx);
 1634         fire_msiq_common(iv, fmqa);
 1635         mtx_unlock_spin(&fmqa->fmqa_mtx);
 1636 }
 1637 
 1638 static void
 1639 fire_msiq_filter(void *cookie)
 1640 {
 1641         struct intr_vector *iv;
 1642         struct fire_msiqarg *fmqa;
 1643 
 1644         iv = cookie;
 1645         fmqa = iv->iv_icarg;
 1646         /*
 1647          * For filters we don't use fire_intr_clear() since it would clear
 1648          * the event queue interrupt while we're still processing the event
 1649          * queue as filters and associated post-filter handler are executed
 1650          * directly, which in turn would lead to lost MSIs.  So we clear the
 1651          * event queue interrupt only once after processing the event queue.
 1652          * Given that this still guarantees the filters to not be executed
 1653          * concurrently and no other CPU can clear the event queue interrupt
 1654          * while the event queue is still processed, we don't even need to
 1655          * interlock the access to the event queue in this case.
 1656          */
 1657         critical_enter();
 1658         fire_msiq_common(iv, fmqa);
 1659         FIRE_PCI_WRITE_8(fmqa->fmqa_fica.fica_sc, fmqa->fmqa_fica.fica_clr,
 1660             INTCLR_IDLE);
 1661         critical_exit();
 1662 }
 1663 
 1664 static inline void
 1665 fire_msiq_common(struct intr_vector *iv, struct fire_msiqarg *fmqa)
 1666 {
 1667         struct fire_softc *sc;
 1668         struct fo_msiq_record *qrec;
 1669         device_t dev;
 1670         uint64_t word0;
 1671         u_int head, msi, msiq;
 1672 
 1673         sc = fmqa->fmqa_fica.fica_sc;
 1674         dev = sc->sc_dev;
 1675         msiq = fmqa->fmqa_msiq;
 1676         head = (FIRE_PCI_READ_8(sc, fmqa->fmqa_head) & FO_PCI_EQ_HD_MASK) >>
 1677             FO_PCI_EQ_HD_SHFT;
 1678         qrec = &fmqa->fmqa_base[head];
 1679         word0 = qrec->fomqr_word0;
 1680         for (;;) {
 1681                 if (__predict_false((word0 & FO_MQR_WORD0_FMT_TYPE_MASK) == 0))
 1682                         break;
 1683                 KASSERT((word0 & FO_MQR_WORD0_FMT_TYPE_MSI64) != 0 ||
 1684                     (word0 & FO_MQR_WORD0_FMT_TYPE_MSI32) != 0,
 1685                     ("%s: received non-MSI/MSI-X message in event queue %d "
 1686                     "(word0 %#llx)", device_get_nameunit(dev), msiq,
 1687                     (unsigned long long)word0));
 1688                 msi = (word0 & FO_MQR_WORD0_DATA0_MASK) >>
 1689                     FO_MQR_WORD0_DATA0_SHFT;
 1690                 /*
 1691                  * Sanity check the MSI/MSI-X as long as we use a 1:1 mapping.
 1692                  */
 1693                 KASSERT(msi == fmqa->fmqa_msi,
 1694                     ("%s: received non-matching MSI/MSI-X in event queue %d "
 1695                     "(%d versus %d)", device_get_nameunit(dev), msiq, msi,
 1696                     fmqa->fmqa_msi));
 1697                 FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_CLR_BASE + (msi << 3),
 1698                     FO_PCI_MSI_CLR_EQWR_N);
 1699                 if (__predict_false(intr_event_handle(iv->iv_event,
 1700                     NULL) != 0))
 1701                         printf("stray MSI/MSI-X in event queue %d\n", msiq);
 1702                 qrec->fomqr_word0 &= ~FO_MQR_WORD0_FMT_TYPE_MASK;
 1703                 head = (head + 1) % sc->sc_msiq_size;
 1704                 qrec = &fmqa->fmqa_base[head];
 1705                 word0 = qrec->fomqr_word0;
 1706         }
 1707         FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head, (head & FO_PCI_EQ_HD_MASK) <<
 1708             FO_PCI_EQ_HD_SHFT);
 1709         if (__predict_false((FIRE_PCI_READ_8(sc, fmqa->fmqa_tail) &
 1710             FO_PCI_EQ_TL_OVERR) != 0)) {
 1711                 device_printf(dev, "event queue %d overflow\n", msiq);
 1712                 msiq <<= 3;
 1713                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
 1714                     FIRE_PCI_READ_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq) |
 1715                     FO_PCI_EQ_CTRL_CLR_COVERR);
 1716         }
 1717 }
 1718 
 1719 static int
 1720 fire_setup_intr(device_t dev, device_t child, struct resource *ires,
 1721     int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg,
 1722     void **cookiep)
 1723 {
 1724         struct fire_softc *sc;
 1725         struct fire_msiqarg *fmqa;
 1726         u_long vec;
 1727         int error;
 1728         u_int msi, msiq;
 1729 
 1730         sc = device_get_softc(dev);
 1731         /*
 1732          * XXX this assumes that a device only has one INTx, while in fact
 1733          * Cassini+ and Saturn can use all four the firmware has assigned
 1734          * to them, but so does pci(4).
 1735          */
 1736         if (rman_get_rid(ires) != 0) {
 1737                 msi = rman_get_start(ires);
 1738                 msiq = sc->sc_msi_msiq_table[msi - sc->sc_msi_first];
 1739                 vec = INTMAP_VEC(sc->sc_ign, sc->sc_msiq_ino_first + msiq);
 1740                 msiq += sc->sc_msiq_first;
 1741                 if (intr_vectors[vec].iv_ic != &fire_ic) {
 1742                         device_printf(dev,
 1743                             "invalid interrupt controller for vector 0x%lx\n",
 1744                             vec);
 1745                         return (EINVAL);
 1746                 }
 1747                 /*
 1748                  * The MD interrupt code needs the vector rather than the MSI.
 1749                  */
 1750                 rman_set_start(ires, vec);
 1751                 rman_set_end(ires, vec);
 1752                 error = bus_generic_setup_intr(dev, child, ires, flags, filt,
 1753                     intr, arg, cookiep);
 1754                 rman_set_start(ires, msi);
 1755                 rman_set_end(ires, msi);
 1756                 if (error != 0)
 1757                         return (error);
 1758                 fmqa = intr_vectors[vec].iv_icarg;
 1759                 /*
 1760                  * XXX inject our event queue handler.
 1761                  */
 1762                 if (filt != NULL) {
 1763                         intr_vectors[vec].iv_func = fire_msiq_filter;
 1764                         intr_vectors[vec].iv_ic = &fire_msiqc_filter;
 1765                         /*
 1766                          * Ensure the event queue interrupt is cleared, it
 1767                          * might have triggered before.  Given we supply NULL
 1768                          * as ic_clear, inthand_add() won't do this for us.
 1769                          */
 1770                         FIRE_PCI_WRITE_8(sc, fmqa->fmqa_fica.fica_clr,
 1771                             INTCLR_IDLE);
 1772                 } else
 1773                         intr_vectors[vec].iv_func = fire_msiq_handler;
 1774                 /* Record the MSI/MSI-X as long as we we use a 1:1 mapping. */
 1775                 fmqa->fmqa_msi = msi;
 1776                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_SET_BASE + (msiq << 3),
 1777                     FO_PCI_EQ_CTRL_SET_EN);
 1778                 msi <<= 3;
 1779                 FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
 1780                     (FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) &
 1781                     ~FO_PCI_MSI_MAP_EQNUM_MASK) |
 1782                     ((msiq << FO_PCI_MSI_MAP_EQNUM_SHFT) &
 1783                     FO_PCI_MSI_MAP_EQNUM_MASK));
 1784                 FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_CLR_BASE + msi,
 1785                     FO_PCI_MSI_CLR_EQWR_N);
 1786                 FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
 1787                     FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) |
 1788                     FO_PCI_MSI_MAP_V);
 1789                 return (error);
 1790         }
 1791 
 1792         /*
 1793          * Make sure the vector is fully specified and we registered
 1794          * our interrupt controller for it.
 1795          */
 1796         vec = rman_get_start(ires);
 1797         if (INTIGN(vec) != sc->sc_ign) {
 1798                 device_printf(dev, "invalid interrupt vector 0x%lx\n", vec);
 1799                 return (EINVAL);
 1800         }
 1801         if (intr_vectors[vec].iv_ic != &fire_ic) {
 1802                 device_printf(dev,
 1803                     "invalid interrupt controller for vector 0x%lx\n", vec);
 1804                 return (EINVAL);
 1805         }
 1806         return (bus_generic_setup_intr(dev, child, ires, flags, filt, intr,
 1807             arg, cookiep));
 1808 }
 1809 
 1810 static int
 1811 fire_teardown_intr(device_t dev, device_t child, struct resource *ires,
 1812     void *cookie)
 1813 {
 1814         struct fire_softc *sc;
 1815         u_long vec;
 1816         int error;
 1817         u_int msi, msiq;
 1818 
 1819         sc = device_get_softc(dev);
 1820         if (rman_get_rid(ires) != 0) {
 1821                 msi = rman_get_start(ires);
 1822                 msiq = sc->sc_msi_msiq_table[msi - sc->sc_msi_first];
 1823                 vec = INTMAP_VEC(sc->sc_ign, msiq + sc->sc_msiq_ino_first);
 1824                 msiq += sc->sc_msiq_first;
 1825                 msi <<= 3;
 1826                 FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
 1827                     FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) &
 1828                     ~FO_PCI_MSI_MAP_V);
 1829                 msiq <<= 3;
 1830                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
 1831                     FO_PCI_EQ_CTRL_CLR_COVERR | FO_PCI_EQ_CTRL_CLR_E2I |
 1832                     FO_PCI_EQ_CTRL_CLR_DIS);
 1833                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_TL_BASE + msiq,
 1834                     (0 << FO_PCI_EQ_TL_SHFT) & FO_PCI_EQ_TL_MASK);
 1835                 FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_HD_BASE + msiq,
 1836                     (0 << FO_PCI_EQ_HD_SHFT) & FO_PCI_EQ_HD_MASK);
 1837                 intr_vectors[vec].iv_ic = &fire_ic;
 1838                 /*
 1839                  * The MD interrupt code needs the vector rather than the MSI.
 1840                  */
 1841                 rman_set_start(ires, vec);
 1842                 rman_set_end(ires, vec);
 1843                 error = bus_generic_teardown_intr(dev, child, ires, cookie);
 1844                 msi >>= 3;
 1845                 rman_set_start(ires, msi);
 1846                 rman_set_end(ires, msi);
 1847                 return (error);
 1848         }
 1849         return (bus_generic_teardown_intr(dev, child, ires, cookie));
 1850 }
 1851 
 1852 static struct resource *
 1853 fire_alloc_resource(device_t bus, device_t child, int type, int *rid,
 1854     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 1855 {
 1856         struct fire_softc *sc;
 1857 
 1858         if (type == SYS_RES_IRQ && *rid == 0) {
 1859                 sc = device_get_softc(bus);
 1860                 start = end = INTMAP_VEC(sc->sc_ign, end);
 1861         }
 1862         return (ofw_pci_alloc_resource(bus, child, type, rid, start, end,
 1863             count, flags));
 1864 }
 1865 
 1866 static u_int
 1867 fire_get_timecount(struct timecounter *tc)
 1868 {
 1869         struct fire_softc *sc;
 1870 
 1871         sc = tc->tc_priv;
 1872         return (FIRE_CTRL_READ_8(sc, FO_XBC_PRF_CNT0) & TC_COUNTER_MAX_MASK);
 1873 }

Cache object: 70d3586f1d17e93a3a17adfcd2e3a792


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.